
ON THE RATIONALITY PROBLEM FOR FORMS OF MODULI

SPACES OF STABLE MARKED CURVES OF POSITIVE GENUS

MATHIEU FLORENCE AND ZINOVY REICHSTEIN

Abstract. Let Mg,n (respectively, Mg,n) be the moduli space of smooth (respectively
stable) curves of genus g with n marked points. Over the field of complex numbers,
it is a classical problem in algebraic geometry to determine whether or not Mg,n (or

equivalently, Mg,n) is a rational variety. Theorems of J. Harris, D. Mumford, D. Eisenbud
and G. Farkas assert that Mg,n is not unirational for any n > 0 if g > 22. Moreover,
P. Belorousski and A. Logan showed that Mg,n is unirational for only finitely many pairs
(g, n) with g > 1. Finding the precise range of pairs (g, n), where Mg,n is rational, stably
rational or unirational, is a problem of ongoing interest.

In this paper we address the rationality problem for twisted forms of Mg,n defined

over an arbitrary field F of characteristic 6= 2. We show that all F -forms of Mg,n are
stably rational for g = 1 and 3 6 n 6 4, g = 2 and 2 6 n 6 3, g = 3 and 1 6 n 6 14,
g = 4 and 1 6 n 6 9, g = 5 and 1 6 n 6 12.

1. Introduction

Let Mg,n (respectively M g,n) be the moduli space of smooth (respectively stable) curves
of genus g with n marked points. Recall that these moduli spaces are defined over the
prime field (Q in characteristic zero and Fp in characteristic p). The purpose of this paper
is to address the rationality problem for twisted forms of M g,n. Recall that a form of a
scheme X defined over a field F is another scheme Y , also defined over F , such that X
and Y become isomorphic over the separable closure F sep. We will use the terms “form”,
“twisted form” and “F -form” interchangeably throughout this paper. Forms of M g,n

are of interest because they shed light on the arithmetic geometry of M g,n, and because
they are coarse moduli spaces for natural moduli problems in their own right; see [FR17,
Remark 2.4].

This paper is a sequel to [FR17], where we considered twisted forms of M 0,n. The main
results of [FR17] can be summarized as follows.

Theorem 1.1. Let F be a field of characteristic 6= 2 and n > 5 be an integer. Then

(a) all F -forms of M 0,n are unirational.

(b) If n is odd, all F -forms of M 0,n are rational.
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(c) If n is even, then there exist fields E/F and E-forms of M0,n that are not stably
rational (or even retract rational) over E.

In the present paper we will study the rationality problem for forms of Mg,n in the case,
where g > 1. Here the the rationality problem for the usual (split) moduli space M g,n

(or equivalently, for Mg,n) over the field of complex numbers is already highly non-trivial.
Theorems of J. Harris, D. Mumford, D. Eisenbud [HM82, EH87] and G. Farkas [Fa11]
assert that if g > 22, then Mg,0 is not unirational (and hence, neither is Mg,n for any
n > 0). Moreover, work of P. Belorousski [Bel98] (for g = 1) and A. Logan [Lo03]
(for g > 2) tells us that Mg,n is unirational for only finitely many pairs (g, n) with
g > 1. Finding the precise range of pairs (g, n), where Mg,n is rational, stably rational or
unirational, is a problem of ongoing interest. In particular, over C, Mg,n is known to be
rational for 1 6 n 6 rg and not unirational for n > ng, where

g 1 2 3 4 5
rg 10 12 14 15 12
ng 11 - - 16 15

,

see [Lo03] and [CF07]. Surprisingly, we have not been able to find specific values for n2

and n3 in the literature, even though Logan showed that they exist; see [Lo03, Theorem
2.4]. The main result of the present paper is as follows.

Theorem 1.2. Let F be a field of characteristic 6= 2. Then every F -form of Mg,n is
stably rational over F if

g = 1 and 3 6 n 6 4 (Theorems 4.1 and 5.1),

g = 2 and 2 6 n 6 3 (Theorems 6.1 and 7.1),

g = 3 and 1 6 n 6 14 (Theorem 8.1),

g = 4 and 1 6 n 6 9 (Theorem 9.1),

g = 5 and 1 6 n 6 12 (Theorem 10.1).

Several remarks are in order.

(1) (Stable) rationality of every form of M g,n is a priori much stronger than (stable)
rationality of M g,n itself. For example, M 1,1 ≃ P1 is obviously rational, but its forms are
conic curves which are not unirational in general.

(2) Theorem 1.2 also holds for (g, n) = (1, 2) (respectively, (2, 1)), provided char(F ) = 0
(respectively, char(F ) 6= 2, 3); see Remark 2.11.

(3) By [DR15, Theorem 6.1(b)], every F -form of M1,n is unirational for 3 6 n 6 9.

(4) In some cases, with additional work, our proofs can be modified to establish ratio-
nality of all forms of Mg,n, rather than just stable rationality. To keep our arguments as
uniform and transparent as possible, we will be satisfied with establishing stable rational-
ity in the present paper.

Roughly speaking, the approach taken in [CF07] and [BCF09] to prove the rational-
ity of Mg,n over C for small g and n, is to find an intrinsic map of a general curve of
genus g with n marked points to some projective space P(V ), thus reducing the ratio-
nality problem for Mg,n to the rationality problem for a quotient variety of the form
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X/PGL(V ). The PGL(V )-variety X is studied separately in each case; the rationality of
X/PGL(V ) is often established using the so-called “no-name lemma” [Do85]. Our proof
of Theorem 1.2 proceeds along similar lines, with an important caveat: in order to es-
tablish (stable) rationality of all twisted forms of M g,n, our geometric constructions need
to be Sn-equivariant, i.e., symmetric in the n marked points on the curve. This gives
rise to an Sn×PGL(V )-equivariant birational isomorphism between M g,n and a rational
quotient of the form X/PGL(V ), where X is a suitable variety. A theorem of B. Fantechi
and A. Massarenti [FM14] (see Theorem 2.9 and Corollary 2.10 below) then allows us
to conclude that every F -form of M g,n is birationally isomorphic to TX/PGL(V ), for a
suitable Sn-torsor T → Spec(F ). Here TX denotes the twist of X by T ; see Section 2b.
To prove stable rationality for quotients of this form we appeal to Proposition 3.6, a
convenient variant of the “no-name lemma” developed in Section 3. While our argument
follows the same general pattern for all pairs (g, n) covered by Theorem 1.2, our proof
relies on case-by-case analysis carried out in Sections 4-10. In each case our argument
takes advantage of some numerical coincidence, such as the degree a certain line bundle on
a general marked curve being prime to the dimension of its space of global section. Why
such numerical coincidences occur in every case and why the situation of Theorem 1.1(c),
where some forms of M 0,n are stably rational and others are not, does not reproduce itself
for any of the pairs (g, n) covered by Theorem 1.2, remains a mystery to us.

2. Preliminaries

All algebraic groups in this paper will be assumed to be affine, and all algebraic varieties
to be quasi-projective.

2a. Group actions and rational quotients. Consider the action of an algebraic group
G on an integral algebraic variety X defined over a field F . A rational quotient for this
action is, by definition, and F -variety Y such that F (Y ) = F (X)G. Clearly Y is unique up
to birational isomorphism. The natural inclusion F (Y ) →֒ F (X) induces a rational map
π : X 99K Y which is called the rational quotient map. By a theorem of Rosenlicht [Ro56,
Theorem 2], there exists a dense open subvariety Y0 ⊂ Y and a G-invariant dense open
subvariety X0 ⊂ X such that π|X0

: X0 → Y0 is regular, and the preimage of any y ∈ Y0 is
a single G-orbit in X0; see also [BGR17, Section 7].

We say that the action of G on X is generically free if there exists a dense open subset
U ⊂ X such that the scheme-theoretic stabilizer Gx = {1} for every x ∈ U . For a
generically free action, Rosenlicht’s theorem can be strengthened as follows: the open
subvarieties Y0 ⊂ Y and X0 ⊂ X can be chosen so that π|X0

: X0 → Y0 is, in fact, a
G-torsor; see [BF03, Theorem 4.7].

2b. Twisting. Let G be an algebraic group defined over a field F , X be an F -variety
endowed with a G-action, and P → Spec(F ) be a G-torsor. The twisted variety PX is
defined as PX := (X × P )/G. Here X × P is, in fact, a G-torsor over (X × P )/G; in
particular, X × P → (X × P )/G is a geometric quotient and a rational quotient (as in
Section 2a above). A G-equivariant morphism of F -varieties f : Y → X gives rise to
a G-equivariant morphism f × id : X × P → Y × P which descends to an F -morphism
Pf : PX →P Y . Similarly a G-equivariant rational map f : X 99K Y of F -varieties induces
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a rational map Pf : PX 99K PY . For the basic properties of the twisting operation we
refer the reader to [Flo08, Section 2] or [DR15, Section 3]. In particular, we will repeatedly
use the following facts in the sequel.

Lemma 2.1. Let G be an algebraic group defined over a field F and f : X → Y be a
G-equivariant morphism of F -varieties and P → Spec(F ) be a G-torsor.

(a) If X = Z × Y and f is projection to the first factor, then PX ≃F
PZ × PY and

Pf is also projection to the first factor.

(b) If f is an open (respectively closed) immersion, then so is Pf .

(c) If f is dominant (respectively birational, respectively an isomorphism), then so is
Pf .

(d) If f is a vector bundle of rank r, then so is Pf . In particular, in this case PX is
rational over PY . Here we are assuming that G acts on X by vector bundle automor-
phisms. That is, for any g ∈ G and y ∈ Y , g restricts to a linear map between the fibers
f−1(y) and f−1(g(y)).

Proof. (a)-(c) See [DR15, Corollary 3.4].
(d) The first assertion is a consequence of Hilbert’s Theorem 90. The second assertion

follows from the first, since the vector bundle Pπ : PX → PY becomes trivial after passing
to some dense Zariski open subset of PY . �

The F -forms of a varietyX are in a natural bijective correspondence withH1(F,Aut(X));
see [Se97, II.1.3]. (Recall that all varieties in this paper are assumed to be quasi-
projective.) Here Aut(X) is a functor which associates to the scheme S/F the abstract
group Aut(XS). In general this functor is not representable by an algebraic group de-
fined over F . If it is, one usually says that Aut(X) is an algebraic group. In this case
the bijective correspondence between H1(F,Aut(X)) (which may be viewed as a set of
Aut(X)-torsors P → Spec(F )) and the set of F -forms of X (up to F -isomorphism) can
be described explicitly as follows. An Aut(X)-torsor P → Spec(F ) corresponds to the
twisted variety PX , and a twisted form Y of X corresponds to the isomorphism scheme
P = IsomF (X, Y ), which is naturally an Aut(X)-torsor over Spec(F ); see [Se97, Section
III.1.3], [Sp98, Section 11.3].

2c. Étale algebras. An étale algebra A/F is a commutative F -algebra of the form
F1 × · · · × Fr, where each Ai is a finite separable field extension of F . n-dimensional
étale algebras over A are F -forms of the split étale algebra A = F × · · · × F (n times).
The automorphism group of this split algebra is the symmetric group Sn, permuting the
n factors of F . Thus n-dimensional étale algebras over F are in a natural bijective corre-
spondence with the Galois cohomology set H1(F, Sn); see, e.g., [Ser03, Examples 2.1 and
3.2].

2d. Weil restriction. Let A be an étale algebra over F and X → Spec(A) be a variety
defined over A. The Weil restriction (or Weil transfer) of X to F is, by definition an
F -variety RA/F (X) satisfying

(2.2) MorF (Y,RA/F (X)) ≃ MorA(YA, X)
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where YA := Y ×Spec(F ) Spec(A), MorF (Y, Z) denotes the set of F-morphisms Y → Z, and
≃ denotes an isomorphism of functors (in Y ). For generalities on this notion we refer the
reader to [BLR90, Section 7.6]. For a brief summary, see [Ka00, Section 2]. In particular,
it is shown in [BLR90, Theorem 4] that if X is quasi-projective over A, then RA/F (X)
exists. Note that uniqueness of RA/F (X) follows from (2.2) by Yoneda’s lemma.

The following properties of Weil restriction will be helpful in the sequel.

Lemma 2.3. Let A/F be an étale algebra and X be a (quasi-projective) variety defined
over A. Then

(a) If X is an algebraic group over A, then RA/F (X) is naturally an algebraic group
over F .

(b) Let V be a free A-module of finite rank, and X = AA(V ) be the associated affine
space. Then RA/F (X) = AF (V ), where we view V as an F -vector space.

(c) If X and Y are birationally isomorphic over A, then RA/F (X) and RA/F (Y ) are
birationally isomorphic over F .

(d) If X is a rational variety over A, then RA/F (X) is rational over F .

Proof. (a) The structure of an algebraic group on X is given by the identity element
1 : Spec(F ) → X , the multiplication map µ : X × X → X and the inverse i : X → X ,
satisfying certain commutative diagrams, such as

X ×X ×X
id×µ

//

µ×id
��

X ×X

µ

��

X ×X
µ

// X

for associativity. Since the Weil transfer is functorial with respect to morphisms and
direct products (see [BLR90, p. 192] or [Ka00, Proposition 1.1]), we see that 1, µ and
i induce the identity RA/F (1), multiplication RA/F (µ) and inverse RA/F (i) on RA/F (X).
Applying Weil restriction to the appropriate commutative diagrams, we see that RA/F (X)
is an algebraic group with respect to RA/F (1), RA/F (µ) and RA/F (i).

(b) follows directly from (2.2). For details, see [Ka00, Lemma 1.2].
(c) Since X and Y are birationally isomorphic, there exists a variety U defined over

A and open immersions i : U →֒ X and j : U →֒ Y . In fact, after replacing U by an
open subvariety, we may assume that U is quasi-projective (we may even assume that U
is affine). Since Weil restriction commutes with open immersions, i and j induce open
immersions of RA/F (U) into RA/F (X) and RA/F (Y ), respectively, and part (c) follows.

(d) By our assumption, X is birationally isomorphic to Y = Ad over A, where d is the
dimension of X . By part (c), RA/F (X) and RA/F (Y ) are birationally isomorphic over F ,
and by part (b), RA/F (Y ) is an affine space over F . �

In the special case, where X is defined over F , the Weil transfer RA/F (XA) can be
explicitly described as follows. The symmetric group Sn acts on the n-fold direct product
Xn by permuting the factors. If P → Spec(F ) is a Sn-torsor, and A/F is the étale algebra
of degree n representing the class of P in H1(F, Sn), then RA/F (XA) =

P (Xn); see, e.g.,
[DR15, Proposition 3.2].
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2e. Special groups. An algebraic group G defined over a field F is called special if
H1(E,G) = {1} for every field extension E/F . In other words, every G-torsor P →
Spec(E) is split. Special groups were introduced by J.-P. Serre [Se58], who showed,
among other things, that every special group is affine and connected. A direct product of
special groups is again special. The general group GLn is special by Hilbert’s Theorem
90. If A/F is an étale algebra and G is a special group over F then the Weil restriction
RA/F (GA) is a special group over F by Shapiro’s Lemma. In particular, RA/F (Gm) is
special.
Over an algebraically closed field of characteristic 0, special groups were classified by

A. Grothendieck [Gro58]. For a partial classification of special reductive groups over an
arbitrary field due to M. Huruguen, see [Hu16].

2f. Twisted groups and their actions. Let H and G be algebraic group. Assume G
acts on H by group automorphisms; denote this action by

(2.4) (g, h) 7→ gh .

Let P → Spec(F ) be a G-torsor.

Lemma 2.5. PH is naturally an algebraic group.

Proof. We argue as in the proof of Lemma 2.3(a). The structure of an algebraic group on
H is given by the G-equivariant morphisms,

1 : Spec(F ) → H , µ : H ×H → H and i : H → H ,

the identity, multiplication and inverse. To check that
P1: Spec(F ) → PH , Pµ : PH × PH → PH and Pi : PH → PH

satisfy the properties of the identity, the multiplication and the inverse for PH , encode
the group axioms for H into commutative diagrams and twist each diagram by P . �

Proposition 2.6. (a) Suppose G and H both act on an algebraic variety X defined over
F , and these actions skew-commute, in the sense that

(2.7) g · (h · x) = gh · (g · x)

for any g ∈ G, h ∈ H and x ∈ X. Let P → Spec(F ) be a G-torsor. Then

(a) the H-action on X naturally induces an PH-action on PX.

(b) Furthermore, assume that f : X → Y is a G-equivariant H-torsor. (Here H acts
trivially on Y .) Then Pf is an PH-torsor. In particular, if PH is special and rational,
then PX is rational over PY .

Note that the term “skew-commute” defined in part (a), is somewhat ambiguous, be-
cause it depends on the action (2.4) of G on H . In most cases the action (2.4) is clear
from the context, and making an explicit reference to it complicates the terminology. We
hope this ambiguity will not cause any confusion for the reader.

Proof. (a) Condition (2.7) tell us that the H-action map f : H×X → X is G-equivariant.
Twisting this map by P and remembering that P(H ×X) = PH × PX by Lemma 2.1(a),
we obtain a morphism

Pf : PH ×PX →P X .
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It remains to show that Pf is a group action. Since f is a group action, the diagram

H ×H ×X
id×f

//

µ×id
��

H ×X

f
��

H ×X
f

// X

commutes. Here µ : H ×H → H is the multiplication map. By (2.7), this entire diagram
is G-equivariant. Twisting it by P we obtain the commutative diagram

PH × PH × PX
id× Pf

//

Pµ×id
��

PH × PX

Pf
��

PH × PX
Pf

// PX

which tells us that Pf is a group action.
(b) To check that Pf is an H-torsor, we may pass to the separable closure F sep of F .

Over F sep, P becomes split. Hence, PH becomes isomorphic to H , and Pf : PX → PY
becomes the same as f : X → Y , which we know is a H-torsor.

If PH is special, then Pf splits over a dense open subset of PY . Thus PX is birationally
isomorphic to PH ×F

PY . If PH is also rational over F , this tells us that PX is rational
over PY , as desired. �

2g. Automorphism of marked curves. The following well-known result will be re-
peatedly used in the sequel. Proofs can be found, e.g., in [Ha77, Corollary 4.4.7] for g = 1
and [Ha77, Exercise V.1.11] for g > 2.

Proposition 2.8. Suppose 2g+n > 5. Then Aut(C, p1, . . . , pn) = {1} for a general point
(C, p1, . . . , pn) of Mg,n (or equivalently, of Mg,n). �

2h. Automorphisms and forms of M g,n. The following theorem is the starting point
of our investigation.

Theorem 2.9. (A. Massarenti [Mas13], B. Fantechi and A. Massarenti [FM14]) Let F be
a field of characteristic 6= 2. If g, n > 1, (g, n) 6= (2, 1) and 2g + n > 5, then the natural
embedding Sn → AutF (M g,n) is an isomorphism.

Using the bijective correspondence between F -forms of X and Aut(X)-torsors P →
Spec(F ) described at the end of Section 2b, we obtain the following.

Corollary 2.10. For F, g, n as in Theorem 2.9 every F -form of M g,n is F -isomorphic to
PMg,n for some Sn-torsor P → Spec(F ). �

Remark 2.11. Theorem 1.2 also holds in the following cases.

(a) g = 2 and n = 1, and char(F ) = 0,

(b) g = 1 and n = 2 and char(F ) 6= 2 or 3.

In case (a), M 2,1 has no non-trivial automorphisms by [FM14, Theorem 1] and hence,
no non-split forms. On the other hand, the split form of M 2,1 is known to be rational;
see [CF07].
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In case (b), the automorphism group of M 1,2 is non-trivial; however, it is special
see [FM14, Proposition 2.4]. As a consequence, M1,2 has no non-split forms (see [DR15,
Remark 6.4]) and the split form of M1,2 is rational (see [CF07]).

Remark 2.12. We do not know if Mg,n can be replaced by Mg,n in the statement of The-
orem 2.9. If so, then M g,n can also be replaced by Mg,n in the statements of Theorems 1.2.
The proof remains unchanged.

3. Anti-versal group actions

Recall that an action of an algebraic group G on an integral variety X defined over
a field F is (weakly) versal if PX(E) 6= ∅ for every field extension E/F , and for every
G-torsor P → Spec(E); see [DR15]. We will now consider group actions that are far from
being versal in the following sense.

Definition 3.1. We will say that the action of G on a geometrically integral F -variety
X is anti-versal if PX(E) = ∅ for any field extension E/F , and any non-split G-torsor
P → Spec(E).

Example 3.2. The G-action on X = G by translations is anti-versal. Indeed, by the
definition of the twisting operation, PX ≃ P for any G-torsor P → Spec(E), and P (E) 6=
∅ if and only if P is split.

Example 3.3. The natural action of PGL(V ) on X = P(V ) is anti-versal, for any finite-
dimensional F -vector space V . Indeed, if E/F is a field extension and P → Spec(E) is a
PGLn-torsor, then

P X is the Brauer-Severi variety associated to P . This variety has an
E-point if and only if P is split over E.

Lemma 3.4. (a) If X −→ Y is a G-equivariant morphism between geometrically integral
G-varieties, and the G-action on Y is anti-versal, then so is the G-action on X.

(b) If the actions of G on X and H on Y are anti-versal, then so is the product action
of G×H on X × Y .

(c) Suppose that A/F is an étale algebra, and that X is an F -variety, equipped with
an anti-versal action of the group G := PGLn. If [A : F ] is prime to n, then the induced
PGLn-action on the Weil transfer RA/F (X) is anti-versal.

Proof. Let E/F be a field extension and P → Spec(E) be a G-torsor.

(a) Twisting the morphism X → Y by P , we obtain a morphism PX → PY . If PX
has an E-point, then so does PY . Since Y is anti-versal, P is split, as desired.

(b) Let E/F be a field extension. A G×H-torsor over Spec(E) is of the form P ×E U ,
where P → Spec(E) is a G-torsor and U → Spec(E) is an H-torsor. By Lemma 2.1(a)

P×U(X × Y ) ≃F
P×UX × P×UY ≃F

PX × UY .

If this twisted variety has an E-point, then PX(E) 6= ∅ and UY (E) 6= ∅. Since both X
and Y are anti-versal, we conclude that both P and U are split, and hence, so is P ×E U .

(c) First note that PRA/F (X) is naturally isomorphic to RA/F (
PX). Thus PR/F (X)

has an E-point if and only if X has an E⊗F A-point; see (2.2). Since the PGLn-action on
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X is anti-versal, this tells us that P is split by E ⊗F A. On the other hand, since [A : F ]
is prime to n, this implies that P is split over E, as desired. �

Example 3.5. Lemma 3.4(a) implies that if a G-variety Y is anti-versal, then Z × Y
(with diagonal G-action) is also anti-versal for any G-variety Z. In particular, taking
Y = G, with translation G-action, as in Example 3.2, we see that Z ×G is anti-versal for
any G-variety Z.

Proposition 3.6. Consider a generically free action of an algebraic group G on an integral
variety X defined over a field F . Suppose there exists a G-equivariant rational map
X 99K Y such that the G-action on Y is anti-versal. Then

(a) the rational quotient map q : X 99K X/G has a rational section. In other words,
there exists a G-equivariant birational isomorphism X ≃ (X/G)×G.

(b) If the group G is rational over F , then X is rational over X/G.

Proof. (b) is an immediate consequence of (a). To prove (a), let X0 be the domain of the
rational map X 99K Y . Note that X0 is a G-invariant open subvariety of X ; in particular,
the G-action onX0 is generically free. By Lemma 3.4(a), the G-action onX0 is anti-versal.
After replacing X by X0, we may assume that the G-action on X is anti-versal.

Recall that the function field E = F (X/G) of X/G is, by definition, the field of G-
invariant functions on X . That is, E = F (X)G. Since the action of G on X is generically
free, the rational quotient map

q : X 99K X/G

gives rise to a G-torsor over the generic point of X/G; see Section 2a. Denote this torsor
by P → Spec(E). The twist PX is the generic fiber of the natural map

(X ×X)/G −→ X/G,

induced by the first projection. This map has a section, induced by the diagonal em-
bedding X −→ X × X . Hence, the twist P X has an E-point. By the definition of
anti-versality, this means that P is trivial. Equivalently, q has a rational section, and
X ≃ (X/G)×G, as claimed. �

The following lemma supplies us with a family of anti-versal actions for G = PGLn,
generalizing Example 3.3. These examples will be used in place of Y in our subsequent
applications of Proposition 3.6.

Lemma 3.7. Let V be an n-dimensional F -vector space and ρ : GL(V ) → GL(W ) be a
finite-dimensional representation of GL(V ) over a field F , such that ρ(t · IdV ) = td · IdW .
Suppose 1 6 m < n. If d and m are both coprime to n, then the action of PGL(V ) on
the Grassmannian Gr(m,W ) induced by ρ is anti-versal. In particular, if d and n are
coprime, then the PGL(V )-action on PGL(W ) is anti-versal.

Proof. The second assertion is obtained from the first by setting m = 1. To prove the
first assertion, consider the diagram

1 // Gm
//

×d

��

GL(V ) //

ρ

��

PGL(V ) //

ρ̄

��

1

1 // Gm
// GL(W ) // PGL(W ) // 1
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and the associated connecting maps

[P ]

ρ̄∗

��

∈ H1(E,PGL(V ))
∂

//

ρ̄∗

��

H2(E,Gm)

×d
��

[U ] ∈ H1(E,PGL(W ))
∂

// H2(E,Gm).

Let E/F be a field extension, P → Spec(E) be a PGL(V )-torsor, [P ] be the class of P in
H1(E,PGL(V )) and U → Spec(E) be the PGL(W )-torsor representing the image of [P ]
in H1(E,PGL(W )). Since P is a PGL(V )-torsor and dim(V ) = n, we have

(3.8) n · ∂([P ]) = 0 in Br(E).

Now observe that the twised variety P Gr(m,W ) = U Gr(m,W ) is the generalized Brauer-
Severi variety BS(m,A), where A is the central simple algebra whose Brauer class is
∂([U ]) = d · ∂([P ]). Our goal is to show that if BS(m,A) has an E-point, then P is split.
Indeed, assume that BS(m,A) has an E-point. Then by [Ar81, (3.4)], the index of A
divides m. Thus m · ∂([U ]) = 0 or equivalently,

(3.9) md · ∂([P ]) = 0 in Br(E).

Since md and n are coprime, (3.8) and (3.9) tell us that ∂([P ]) = 0 in Br(E). Equivalently,
P is split over E, as desired. �

4. Forms of M 1,3

In this section we will prove the following.

Theorem 4.1. Let F be a field of characteristic 6= 2. Then every F -form of M 1,3 is
stably rational.

For the rest of this section, V will denote a 3-dimensional F -vector space, and W3 :=
S3(V ∗) will denote the 10-dimensional space of cubic forms on V . Consider the closed
subvariety X of P(W3)× P(V )3 given by

X := {(C, p1, p2, p3) | p1, p2, p3 ∈ C, and p1, p2, p3 are collinear}.

Here points of P(W3) are viewed as cubic curves in P(V ) = P2. The group S3 acts on X
by permuting p1, p2, p3; this action commutes with the natural action of PGL(V ) on X .

Lemma 4.2. (a) The rational quotient X/PGL(V ) is S3-equivariantly birationally iso-
morphic to M1,3.

(b) The PGL(V )-action on X is generically free.

Proof. (a) The natural map f : X 99K M1,3 sending the quadruple (C, p1, p2, p3) (with
C smooth) to its isomorphism class is clearly S3-equivariant and factors through the
rational quotient X/PGL(V ). We claim that the induced S3-equivariant rational map
f : X/PGL(V ) 99K M1,3 is a birational isomorphism.

To prove this claim, we will construct the inverse h : M1,3 → X/PGL(V ) to f as follows.
Given a point (C, p1, p2, p3) ∈ M1,3, consider the invertible sheaf OC(p1 + p2 + p3). By
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the Riemann-Roch theorem, the space of global sections H0(C,OC(p1 + p2 + p3)) is 3-
dimensional. Identifying this space with V ∗ we obtain an embedding

h : C →֒ P(V )

of C into P(V ) = P2 as a curve of degree 3. The element of V ∗ corresponding to
1 ∈ H0(C,OC(p1 + p2 + p3)) cuts out a projective line L ⊂ P(V ) passing through
h(p1), h(p2) and h(p3). This shows that (h(C), h(p1), h(p2), h(p3)) ∈ X . Note that
(h(C), h(p1), h(p2), h(p3)) ∈ X is not intrinsically defined by (C, p1, p2, p3), because it
depends on the isomorphism we have chosen between V ∗ with H0(C,OC(p1 + p2 + p3)).
On the other hand, the image of (h(C), h(p1), h(p2), h(p3)) in X/PGL(V ) does not de-
pend on this choice. Using the universal property of M1,3 one readily checks that there

is a rational map h : M1,3 99K X/PGL(V ) which sends (C, p1, p2, p3) to the image of
(h(C), h(p1)h(p2), h(p3)) ∈ X in X/PGL(V ).

It remains to show that f : X/PGL(V ) 99K M1,3 and h : M1,3 99K X/PGL(V ) are

mutually inverse rational maps. The composition f h : M1,3 99K M1,3 is clearly the identity

map: h embeds (C, p1, p2, p3) into P(V ) = P2, and f “forgets” this embedding and returns
(C, p1, p2, p3) as an abstract curve with three marked points. On the other hand, to see
that h f : X/PGL(V ) 99K X/PGL(V ) is the identity map, note that if C is a smooth cubic
curve in P(V ) with three distinct marked collinear points p1, p2 and p3, then OC(p1+p2+
p3) = OC(1). In other words, we can identify the space of global sections H0(C,OC(p1 +
p2 + p3)) with V ∗ so that h(C, p1, p2, p3) = (C, p1, p2, p3).

(b) Suppose H ⊂ PGL(V ) is the stabilizer subgroup of (C, p1, p2, p3) ∈ X in general
position. One readily checks that the natural homomorphism H → Aut(C, p1, p2, p3)
is injective. Since the map f defined in part (a) is dominant, we may assume that
Aut(C, p1, p2, p3) = {1} is the trivial group; see Proposition 2.8. Thus H = {1} as
well. �

Proof of Theorem 4.1. By Corollary 2.10, every F -form of M 1,3 is isomorphic to PM1,3

for some S3-torsor P → Spec(F ). By Lemma 4.2(a), PM 1,3 is birationally isomorphic to
PX/PGL(V ). It thus remains to show that PX/PGL(V ) is stably rational over F . We
will fix the S3-torsor P for the rest of the proof.

Claim 1: PX is rational over PX/PGL(V ).

We will deduce Claim 1 from Proposition 3.6(b), with G = PGL(V ) and Y = P(V ∗).
To apply Proposition 3.6, it suffices to check that

(i) PGL(V ) is rational,

(ii) PGL(V )-action on PX is generically free,

(iii) the PGL(V )-action on P(V ∗) is anti-versal, and

(iv) there exists a PGL(V )-equivariant rational map PX 99K P(V ∗).

(i) is obvious. To prove (ii), note that the property of being generically free is geometric,
i.e., can be checked after passing to the separable closure of our base field F . When we
pass to the separable closure of F , PX becomes isomorphic to X . Thus (ii) follows from
Lemma 4.2(b). (iii) follows from Lemma 3.7 with W = V ∗, and d = m = 1. To prove
(iv), we begin with the S3×PGL(V )-equivariant rational map X 99K P(V ∗) sending the
quadruple (C, p1, p2, p3) ∈ X to the unique line L ⊂ P(V ) passing through p1, p2 and p3.
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Here S3 acts trivially on P(V ∗). Twisting by P , we obtain a desired PGL(V )-equivariant
rational map

PX 99K P(V ∗) .

This completes the proof of Claim 1.

Claim 2: PX is stably rational over F .

To prove Claim 2, let T → P(V ∗) be the tautological line bundle, whose fiber over the
line {l = 0} in P(V ∗) consists of vectors v ∈ V such that l(v) = 0. Let (T 3)0 be the dense
open subset of T 3 := T ×P(V ∗) T ×P(V ∗) T consisting of triples (v1, v2, v3) which impose
independent conditions on cubic polynomials φ ∈ W3. Let E be the vector subbundle of
the trivial bundle W3 × (T 3)0 on (T 3)0 consisting of quadruples (φ, v1, v2, v3) such that
φ(v1) = φ(v2) = φ(v3) = 0. Finally, let E0 be obtained from E by removing the zero
section, i.e., by requiring that φ 6= 0 in W3. In summary, we have the following diagram
of S3-equivariant morphisms

E0

α

��✎
✎
✎
✎
✎
✎
✎
✎
✎
✎
✎
✎
✎
✎
✎
✎

�

� i
// E

β
��

(T 3)0
�

� j
// T 3

γ

��

X P(V ∗)

where α : (φ, v1, v2, v3) 7→ ([φ], [v1], [v2], [v3]) and β, γ are natural projections. Here the
horizontal maps i and j are open immersions, β and γ are vector bundles, and α is a (Gm)

4-
torsor, where (s, t1, t2, t3) ∈ (Gm)

4 acts on E0 by (φ, v1, v2, v3) 7→ (sφ, t1v1, t2v2, t3v3). By
Lemma 2.1(d), P(T 3)0 is rational over PP(V ∗) and PE is rational over P (T 3)0.
On the other hand, the actions of G := S3 and H := (Gm)

4 on E0 skew-commute,
relative to the S3-action on H given by permuting the last three Gm-factors (and leaving
the first factor unchanged). Applying Proposition 2.6(b) to these skew-commuting actions
of G := S3 and H := (Gm)

4 on E0, we see that PE0 is rational over PX . Indeed,
Proposition 2.6(b) applies in this situation, because PH = Gm × RA/F (G

3
m) is both

special (see Section 2e) and rational.
Putting all of this together, and remembering that S3 acts trivially on P(V ∗) and thus

PP(V ∗) = P(V ∗), we obtain the following diagram

PE0

rational

��✌
✌
✌
✌
✌
✌
✌
✌
✌
✌
✌
✌
✌
✌
✌
✌

�

�

// PE

rational
��

P(T 3)0
�

�

// PT 3

rational
��

PX P(V ∗)

rational
��

Spec(F ).



FORMS OF MODULI SPACES 13

By Lemma 2.1(b), the horizontal maps Pi and Pj are open immersions (hence, birational),
and Claim 2 follows. This completes the proof of Theorem 4.1. �

5. Forms of M 1,4

In this section we will prove the following.

Theorem 5.1. Let F be a field of characteristic 6= 2. Then every F -form of M 1,4 is
stably rational.

Let V be a 4-dimensional F -vector space and W2 := S2(V ∗) be the 10-dimensional
space of homogeneous quadratic polynomials on V . Consider the closed subvariety X ⊂
Gr(2,W2)× P(V )4 given by

X := {(Q, p1, . . . , p4) | q(p1) = · · · = q(p4) = 0 for any q ∈ Q,
and p1, p2, p3, p4 are collinear in P(V ) }.

The group S4 acts on X by permuting the points p1, p2, p3, p4; this action commutes with
the natural action of PGL(V ).

Lemma 5.2. (a) The rational quotient X/PGL(V ) is S4-equivariantly birationally iso-
morphic to M1,4.

(b) The PGL(V )-action on X is generically free.

Proof. (a) Define a rational map f : X 99K M1,4 as follows. Given (Q, p1, . . . , p4) ∈ X ,
choose a basis q1, q2 of the 2-dimensional subspace Q ⊂ W2 and set f(Q, p1, . . . , p4) ∈
M 1,4 to be the isomorphism class of (C, p1, . . . , p4), where C ⊂ P3 is the curve given by
q1 = q2 = 0. Clearly (C, p1, . . . , p4) does not depend on the choice of the basis q1, q2
of Q. For (Q, p1, . . . , p4) in general position in X , C is a smooth curve of genus 1; see,
e.g., [Ha77, Exercise I.7.2]. Hence, f is a well-defined rational map. By construction f is
S4×PGL(V ) equivariant, where PGL(V ) acts trivially on M1,4. Thus f factors through
the rational quotient X/PGL(V ). We claim that the induced S3-equivariant rational map
f : X/PGL(V ) 99K M1,4 is a birational isomorphism.

To prove this claim, we will construct the inverse h : M1,4 → X/PGL(V ) to f as
follows. Given (C, p1, . . . , p4) ∈ M1,4, consider the invertible sheaf OC(p1 + · · · + p4).
By the Riemann-Roch theorem, the space of global sections H0(C,OC(p1 + · · · + p4))
is 4-dimensional. Identifying this space with V ∗, we obtain an embedding h : C →֒
P(V ). The element of V ∗ corresponding to 1 ∈ H0(C,OC(p1 + · · · + p4)) cuts out
a plane L ⊂ P(V ) passing through h(p1), . . . , h(p4). Moreover, by [Ha77, Exercise
3.6(b)], the space H0(P(V ), Ih(C)(2)) of global sections of the ideal sheaf Ih(C)(2) is 2-
dimensional. Set Q := H0(P(V ), Ih(C)(2)). Then (Q, h(p1), . . . , h(p4)) ∈ X . Note that
while (Q, h(p1), . . . , h(p4)) ∈ X depends on how we identified H0(C,OC(p1+. . .+p4)) with
V ∗, the image of (Q, h(p1), . . . , h(p4)) in X/PGL(V ) does not. By the universal property
of M1,4 there is a rational map h : M1,4 99K X/PGL(V ) which sends (C, p1, . . . , p4) to the
class of (Q, h(p1), . . . , h(p4)) ∈ X in X/PGL(V ).

It remains to show that f : X/PGL(V ) 99K M1,4 and h : M1,4 99K X/PGL(V ) are mutu-

ally inverse rational maps. To see that the composition f h : M1,4 99K M1,4 is the identity

map, note that h presents an abstract marked curve (C, p1, . . . , p4) as an intersection of
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a pencil Q of quadrics in P(V ) = P3 (up to an element of PGL(V )), and f “forgets” this
presentation and returns (C, p1, . . . , p4) as an abstract curve with four marked points.
To verify that h f : X/PGL(V ) 99K X/PGL(V ) is the identity map, recall that for

(Q, p1, . . . , p4) ∈ X in general position, f(Q, p1, . . . , , p4) is the isomorphism class of
(C, p1, . . . , p4), where C is the curve of genus 1 cut out by a basis q1, q2 of Q. Since
OC(p1+ . . .+ p4) is OC(1), up to an element of PGL(V ), (h(C), h(p1), . . . , h(p4)) recovers
(C, p1, . . . , p4), and H0(P(V ), Ih(C)(2)) recovers Q. This completes the proof of part (a).

(b) follows from Proposition 2.8 by the same argument as in the proof of Lemma 4.2(b).
�

Proof of Theorem 5.1. By Corollary 2.10, every F -form of M1,4 is isomorphic to PM 1,4

for some S4-torsor P → Spec(F ). By Lemma 4.2(a), PM1,4 is birationally isomorphic to
PX/PGL(V ). Thus it remains to show that PX/PGL(V ) is stably rational over F . We
will fix the S3-torsor P for the rest of the proof.

Claim 1: PX is rational over PX/PGL(V ).

The proof, based on Proposition 3.6(b), with G = PGL(V ) and Y = P(V ∗), follows
the same pattern as the proof of Claim 1 in the previous section. Once again, in order to
apply Proposition 3.6(b), we need to check items (i) - (iv). The proof of (i), (ii) and (iii) is
exactly the same. To define a PGL(V )-equivariant rational map PX 99K P(V ∗), start with
the PGL(V )-equivariant rational map X 99K P(V ∗) sending a quadruple (Q, p1, . . . , p4)
in general position to the unique hyperplane in P3 passing through p1, . . . , p4, then twist
this map by P . This completes the proof of Claim 1.

Claim 2: PX is stably rational over F .

To prove Claim 2, let

T → P(V ∗) be the tautological line bundle, whose fiber over the plane {l = 0} in P(V )
consists of vectors v ∈ V such that l(v) = 0,

(T 4)0 be the dense open subset of T 4 := T ×P(V ∗) · · · ×P(V ∗) T (4 times) consisting of
quadruples (v1, . . . , v4) which impose independent conditions on quadrics in P(V ),

E be the vector subbundle of the trivial bundle W2×(T 4)0 on (T 4)0 consisting of tuples
(φ1, v1, . . . , v4) such that φ(v1) = · · · = φ(v4) = 0,

E2
0 be the dense open subset of E2 = E ×(T 4)0 E consisting of tuples (φ1, φ2, v1, . . . , v4)

such that φ1 and φ2 are linearly independent, and

X0 be the dense open subset ofX consisting of tuples (Q, p1, . . . , p4) such that p1, . . . , p4
span a 2-dimensional projective plane in P(V ).

Then we have the following diagram of S4-equivariant morphisms

(E2)0

α

��☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞

�

� j
// E2

β
��

(T 4)0
�

� k
// T 4

γ

��

X0
�

� i
// X P(V ∗)
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where α : (φ1, φ2, v1, . . . , v4) 7→ (Span(φ1, φ2), [v1], [v2], [v3], [v4]) and β, γ are natural pro-
jections. Note that the horizontal maps i, j and k are open immersions, β and γ are
vector bundles, and α is a GL2 × (Gm)

4-torsor. Twisting by P , we obtain the following
diagram of F -morphisms:

P (E2)0

rational

��✠✠
✠✠
✠✠
✠✠
✠✠
✠✠
✠✠
✠✠
✠

�

�

// PE2

rational
��

P (T 4)0
�

�

// P (T 4)

rational
��

PX0
�

�

// PX P(V ∗)

rational
��

Spec(F ).

Here PP(V ∗) = P(V ∗) because S4 acts trivially on P(V ∗); P (E2) is rational over P (T 4)0
and P (T 4) is rational over P(V ∗) by Lemma 2.1(d). Finally, to show that P (E2)0 is
rational over PX , we apply Proposition 2.6(b) to the skew-commuting actions of S4 and
(Gm)

4 on (E2)0. The twisted group

P(GL2 ×G4
m) = GL2 ×RA/F (Gm)

(where A/F is the étale algebra of degree 4 associated to P ) is both special (see Section 2e)
and rational, and Proposition 2.6(b) applies.

Finally, the horizontal maps P i, P j and Pk are open immersions (and hence, birational)
by Lemma 2.1(b). Thus the diagram shows that PX is stably rational over F . This
completes the proof of Claim 2 and thus of Theorem 4.1. �

6. Forms of M 2,2

In this section we will prove the following.

Theorem 6.1. Let F be a field of characteristic 6= 2. Then every F -form of M 2,2 is
stably rational.

For the rest of this section V will denote a 3-dimensional F -vector space, and W4 :=
S4(V ∗) will denote the 15-dimensional space of degree 4 homogeneous polynomials on
V . Let (P(V ∗) × P(V ∗))0 be the dense open subset of P(V ∗)× P(V ∗) consisting of pairs
(L1, L2) of distinct lines in P(V ). Consider the subbundle E of the trivial vector bundle
W4 × (P(V ∗) × P(V ∗))0 over (P(V ∗) × P(V ∗))0 consisting of triples (φ, L1, L2) such that
the restriction of φ ∈ W4 to Li (i = 1, 2) vanishes to second order at the intersection point
p = L1 ∩ L2. In other words, the plane curve C ⊂ P(V ) given by {φ = 0} is singular at p
and L1, L2 are tangent lines to C at p.

Lemma 6.2. (a) The rational quotient P(E)/PGL(V ) is S2-equivariantly birationally
isomorphic to M2,2.

(b) The PGL(V )-action on P(E) is generically free.
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Proof. (a) We begin by defining a S2 ×PGL(V )-equivariant rational map

f : P(E) 99K M2,2

as follows. Given a triple ([φ], L1, L2) ∈ P(E), in general position, let C ⊂ P(V ) = P2 be
the quartic curve cut out by φ, and p be the point of intersections of L1 and L2. Then C
has a node at p and is smooth elsewhere, and thus is a curve of genus 1. Blowing up C at
p, we obtain a smooth curve C ′, with two marked points, p1 and p2, corresponding to the
tangent lines L1 and L2 to C at p. We define f([φ], L1, L2) to be the isomorphism class of
(C ′, p1, p2). Clearly any PGL(V )-translate of ([φ], L1, L2) will have the same image under
f . Thus f descends to an S2-equivariant rational map

f : P(E)/PGL(V ) 99K M2,2 .

To prove that f is a birational isomorphism, we will construct the inverse h : M2,2 →
P(E)/PGL(V ) to f as follows. Given a point (C ′, p1, p2) ∈ M2,2, consider the invertible
sheaf OC(K + p1 + p2), where K is the canonical divisor on C ′. By the Riemann-Roch
theorem, the space of global sections H0(C,OC(K+p1+p2)) is 3-dimensional. Identifying
this space with V ∗, we obtain a map

h : C → P(V )

of C into P(V ) = P2 as a curve of degree 4. Assuming that p1 and p2 are in general
position in C, the image C = h(C ′) of this map is a quartic curve with one node, and
h : C ′ → C is the normalization map; see [H11, Example 5.15]. Moreover, C has two
tangent lines at p, L1 and L2, which correspond to p1 and p2 under h. Thus we send
(C ′, p1, p2) ∈ M2,2 to ([φ], L1, L2) ∈ P(E), where φ ∈ W4 is a defining equation for C.
Once again, ([φ], L1, L2) depends on the isomorphism we have chosen between V ∗ with
H0(C,OC(K + p1 + p2)), but the image ([φ], L1, L2) in P(E)/PGL(V ) does not depend
on this choice, giving rise to a rational map

h : M2,2 99K P(E)/PGL(V ) .

Both f and h are S2-equivariant; it remains to show that they are mutually inverse.
The composition f̄ h̄ : M2,2 99K M2,2 is clearly the identity map. To prove that the
composition h̄ f̄ is the identity map on P(E)/PGL(V ), it suffices to establish the following
claim. Suppose C ⊂ P(V ) is a plane quartic curve with a single node at p, π : C ′ → C
is the normalization map, and p1, p2 ∈ C ′ are the preimages of p. Then π∗OC(1) =
OC′(K + p1 + p2), where K is the canonical divisor on C ′.
To prove this claim, note that if L is a general line through p in P(V ), cut out by a

linear form l ∈ V ∗, and q1, q2 are the two other intersection points of L with C (other than
p), then clearly H0(C ′, π−1(q1) + π−1(q2)) contains a non-constant function l′/l, where l
and l′ ∈ V ∗ are linearly independent. By the Riemann-Roch Theorem, this implies that
π−1(q1) + π−1(q2) = K is the canonical divisor on C ′, and the claim follows.

(b) is a consequence of Proposition 2.8 with g = n = 2. The proof is the same as in
Lemma 4.2(a). �

Proof of Theorem 6.1. By Corollary 2.10, every F -form of M2,2 is isomorphic to PM 2,2

for some S2-torsor P → Spec(F ). By Lemma 6.2(a), PM2,2 is birationally isomorphic to
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PP(E)/PGL(V ). It thus remains to show that PP(E)/PGL(V ) is stably rational over F .
Let us fix the S2-torsor P → Spec(F ) for the rest of the proof.

Claim 1: PP(E) is rational over PP(E)/PGL(V ).

We will deduce Claim 1 from Proposition 3.6(b), with P(E) = PP(E), G = PGL(V ) and
Y = P(W4). The group PGL(V ) ≃ PGL2 is clearly rational. It follows from Lemma 6.2(b)
that the PGL(V )-action on P P(E) is generically free. The PGL(V )-action on Y is anti-
versal by Lemma 3.7 with W = W4, m = 1, n = dim(V ) = 3 and d = 4. It thus remains
to construct a PGL(V )-equivariant rational map PP(E) 99K Y = P(W4). We begin with
the S2×PGL(V )-equivariant rational map P(E) → P(W4) sending ([φ], L1, L2) ∈ P(E)
to [φ] ∈ P(W4). Here S2 acts trivially on P(W4). Twisting by P , we obtain a PGL(V )-
equivariant rational map PP(E) 99K PP(W4) = P(W4), as desired. Claim 1 now follows
from Proposition 3.6(b).

Claim 2: PP(E) is stably rational over F .
To prove Claim 2, recall that at the beginning of this section we defined (P(V ∗)×P(V ∗))0

as the dense open subset of P(V ∗) × P(V ∗) consisting of pairs of distinct lines (L1, L2)
and E as a vector bundle on (P(V ∗)×P(V ∗))0. Let E0 be the dense open subset obtained
from E by removing the zero section. That is, points of E0 are triples (φ, L1, L2) ∈ E
such that 0 6= φ ∈ W4. In summary, we have a diagram of S2-equivariant maps

E0
�

� i
//

α
��

E
β

''◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆

P(E) (P(V ∗)× P(V ∗))0
�

� j
// P(V ∗)× P(V ∗)

given by α(φ, L1, L2) = ([φ], L1, L2) and β(φ, L1, L2) = (L1, L2). Then α is a Gm-torsor,
the horizontal maps i and j are open immersions, and β is a vector bundle. Twisting by
P , we obtain the following diagram

PE0
�

�

//

rational
��

PE

rational

''P
PPP

PP
PPP

PPP
P

PP(E) P (P(V ∗)× P(V ∗))0
�

�

// P (P(V ∗)× P(V ∗))

rational
��

Spec(F ).

Here PE0 is rational over P (P(V ∗)× P(V ∗))0 by Lemma 2.1(d).
To show that PE0 is rational over

PP(E), we appeal to Proposition 2.6(b). The actions
of G = S2 and H = Gm on E0 commute, i.e., skew-commute relative to the trivial action
of S2 on Gm. Since S2 acts trivially on Gm,

PGm ≃ Gm is special and rational, and
Proposition 2.6(b) tells us that PE0 is rational over PP(E), as desired.

To see that P (P(V ∗) × P(V ∗)) is rational over F , note that P (P(V ∗) × P(V ∗)) =
RA/F (P(V

∗
A)), where A/F is the 2-dimensional étale algebra associated to the class of

P in H1(F, S2); see the last paragraph of Section 2d. On the other hand, RA/F (P(V
∗
A)) is

rational over F by Lemma 2.3(d).
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Finally, the horizontal maps P i and P j are immersions by Lemma 2.1(b). We con-
clude that PP(E) is stably rational over F , thus completing the proof of Claim 2 and of
Theorem 6.1. �

7. Forms of M 2,3

In this section we will prove the following.

Theorem 7.1. Let F be a field of characteristic 6= 2. Then every F -form of M 2,3 is
stably rational.

For the rest of this section V will denote a 2-dimensional F -vector space, and W2,3

will denote the 12-dimensional space of degree bihomogeneous polynomials on V × V of
bidegree (2, 3). The group

G := PGL(V )× PGL(V ) ≃ PGL2 × PGL2

acts on P(V )3 × P(V ) by (g, h) : (a1, a2, a3, b) 7→ (ga1, ga2, ga3, hb) and the symmetric
group S3 by permuting a1, a2, a3. Let (P(V )3×P(V ))0 be the S3×G-invariant dense open
subset of P(V )3×P(V ) consisting of quadruples (a1, a2, a3, b) such that (a1, b), (a2, b) and
(a3, b) ∈ P(V )×P(V ) impose three independent conditions on bihomogeneous polynomials
of bidegree (2, 3). Let E be the rank 9 vector subbundle of the trivial bundle W2,3 ×
(P(V )3 × P(V ))0 over (P(V )3 × P(V ))0 consisting of tuples (φ, a1, a2, a3, b) such that

φ(a1, b) = φ(a2, b) = φ(a3, b) = 0 .

Denote the associated projective bundle over (P(V )3 × P(V ))0 by P(E). The symmetric
group S3 acts on P(E) by permuting a1, a2, a3, and G = PGL(V )×PGL(V ) acts on P(E)
by

(g, h) : ([φ], a1, a2, a3, b) 7→ ([φg,h], ga1, ga2, ga3, hb)

for any (g, h) ∈ PGL(V )× PGL(V ) and a1, a2, a3, b ∈ P(V ). Here φg,h(x, y) := φ(gx, hy).

Lemma 7.2. (a) The rational quotient P(E)/G is S3-equivariantly birationally isomorphic
to M2,3.

(b) The G-action on P(E) is generically free.

Proof. (a) A bihomogeneous polynomial φ ∈ W2,3 in general position cuts out a smooth
curve C ⊂ P(V ) × P(V ) = P1 × P1 of genus 2; see [Ha77, Exercise 5.6(c)]. Sending
([φ], a1, a2, a3, b) to the isomorphism class of the marked curve (C, p1, p2, p3), where pi =
(ai, b) ∈ P(V )× P(V ), gives rise to a G× S3-equivariant rational map

f : P(E) 99K M2,3 .

Here G acts trivially on M2,3. We claim that the induced S3-equivariant rational map

f : P(E)/G 99K M2,3

is a birational isomorphism. To prove this claim we will define the inverse

h : M2,3 99K P(E)/G
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to f as follows. Let K be the canonical divisor on C. By the Riemann-Roch theorem,
the spaces of global sections H0(C,OC(K)) and H0(C,OC(p1 + p2 + p3)) are both 2-
dimensional. Identifying them with V ∗, we obtain ramified covers

π1 and π2 : C → P(V )

of degrees 2 and 3 respectively; see [H11, Examples 5.11 and 5.13]. (Note that π2 is
not well defined for every choice of p1, p2 and p3 but is well defined for p1, p2 and p3
in general position.) For p1, p2, p3 in general position, C ′ := (π1 × π2)(C) is a curve
of bidegree (2, 3) in P(V ) × P(V ), π1 × π2 is an isomorphism between C and C ′, and
π2(p1) = π2(p2) = π2(p3) in P(V ). Denote a defining polynomial for C ′ in P(V ) × P(V )
by φ ∈ W2,3 and set ai = π1(pi) for i = 1, 2, 3 and b := π2(p1) = π2(p2) = π2(p3). The
resulting point ([φ], a1, a2, a3, b) ∈ P(E) depends on how we identified H0(C,OC(K)) and
H0(C,OC(p1 + p2 + p3)) with V ∗, but its image in P(E)/G does not. This gives rise to a
rational map h : M2,3 99K P(E)/G given by

h(C, p1, p2, p3) := ([φ], a1, a2, a3, b) .

Now one readily checks that f and h are mutually inverse S3-equivariant birational iso-
morphisms between P(E)/G and M2,3.

(b) is, once again, a consequence of Proposition 2.8. The proof is the same as in
Lemma 4.2(b). �

Proof of Theorem 7.1. Once again, in view of Corollary 2.10 and Lemma 7.2(a), it suffices
to show that PP(E)/G is stably rational over F for every S3-torsor P → Spec(F ).

Claim 1: PP(E) is rational over PP(E)/G.

We will prove Claim 1 by applying Proposition 3.6(b) to the G = PGL(V )× PGL(V )-
action on P P(E), with

Y = P (P(V )3 × P(V )) = RA/F (P(V ))× P(V ),

where A/F is the étale algebra of degree 3 representing the class of P in H1(F, S3).
Here the G = PGL(V )× PGL(V )-action is the product of the natural action of the first
factor of PGL(V ) on RA/F (P(V )) and the second factor of PGL(V ) on P(V ). To apply
Proposition 3.6, we need to check that

(i) G is rational,

(ii) the G-action on PP(E) is generically free,

(iii) the G-action on Y is anti-versal, and

(iv) there exists a G-equivariant rational map PP(E) 99K Y .

(i) is obvious and (ii) follows from Lemma 7.2(b). To prove (iii), note that the PGL(V )-
action on P(V ) is anti-versal by Example 3.3 (or as a special case of Lemma 3.7). Since
[A : F ] = 3 is prime to dim(V ) = 2, the PGL(V )-action on RA/F (P(V )) is also anti-
versal by Lemma 3.4(c). Hence, by Lemma 3.4(b), the action of G = PGL(V )×PGL(V )
on Y = RA/F (P(V )) × P(V ) is also anti-versal. The proof of (iii) is now complete.
To proof (iv), twist the natural S3×G-equivariant projection P(E) → P(V )3 × P(V )
taking ([φ], a1, a2, a3, b) to (a1, a2, a3, b), by P to obtain a desired G-equivariant morphism
PP(E) → RA/F (P(V ))× P(V ) = Y . This finishes the proof of Claim 1.
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Claim 2: PP(E) is stably rational over F .

To prove Claim 2, let E0 be the dense open subset obtained from E by removing the
zero section. That is, E0 consists of tuples (φ, a1, a2, a3, b) ∈ E such that 0 6= φ ∈ W2,3.
Then we have a diagram of S2-equivariant maps

E0
�

� i
//

α
��

E
β

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖

P(E) (P(V ∗)3 × P(V ∗))0
�

� j
// P(V ∗)3 × P(V ∗)

The horizontal maps i and j are open immersions, α : (φ, a1, a2, a3, b) 7→ ([φ], a1, a2, a3, b)
is a Gm-torsor, and β : (φ, a1, a2, a3, b) 7→ (a1, a2, a3, b) is a vector bundle. Twisting by P ,
we obtain the following diagram

PE0
�

�

//

rational
��

PE

rational

''❖
❖❖❖

❖❖❖
❖❖❖

❖❖❖

P(E) P (P(V )3 × P(V ))0
�

�

// P (P(V )3 × P(V ))

rational
��

Spec(F ).

We will now justify the rationality assertions in this diagram. First note that since β is an
S3-equivariant vector bundle,

PE0 is rational over
P (P(V )3×P(V ))0 by Lemma 2.1(d). The

rationality of PE0 over P(E) follows from Proposition 2.6(b), applied to the commuting
actions of S3 and Gm on E0 in the same way as in the previous section. The rationality of
P (P(V )3 × P(V )) = RA/F (P(VA))× P(V ) over F follows from Lemma 2.3(d). (Here A/F
is the degree 3 étale algebra associated to the S3-torsor P → Spec(F ), as above.)
Finally, the horizontal maps in the above diagram are open immersions by Lemma 2.1(b).

Claim 2 now follows from this diagram. This completes the proof of Theorem 7.1. �

8. Forms of M 3,n

In this section we will prove the following.

Theorem 8.1. Let F be a field of characteristic 6= 2 and 1 6 n 6 14 be an integer. Then
every F -form of M 3,n is stably rational.

Recall that every non-hyperelliptic curve of genus 3 can is embedded, via its canonical
linear system, as a smooth curve of degree 4 in P2. Conversely, every smooth curve of
degree 4 in P2 is a canonically embedded curve of genus 3; see [Ha77, Example IV.5.2.1].
Let V be a 3-dimensional F -vector space and W4 := S4(V ∗) be the 15-dimensional

space of homogeneous polynomials of degree 4 on V . For 1 6 n 6 14, let P(V )n0 be a
Sn-invariant dense open subset of P(V )n consisting of n-tuples (p1, . . . , pn) which impose n
independent conditions on quartic polynomials. Now consider the rank 15− n subbundle
E → P(V )n0 of the rank 15 trivial bundle W4 × P(V )n0 → P(V )n0 consisting of tuples
(φ, p1, . . . , pn) such that φ(pi) = 0 for i = 1, . . . , n. Denote the associated projective
bundle over P(V )n0 by P(E).
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Lemma 8.2. (a) M3,n is Sn-equivariantly birationally isomorphic to P(E)/PGL(V ).
(b) The PGL(V )-action on P(E) is generically free.

Proof. (a) Let f : P(E) 99K M3,n be the Sn-equivariant rational map which associates to a
point ([φ], p1, . . . , pn) the quartic curve cut out by φ ∈ W4 with nmarked points p1, . . . , pn.
This map factors through P(E)/PGL(V ). Note that the actions of PGL(V ) and Sn

commute. Denote the resulting Sn-equivariant rational map by φ : P(E)/PGL(V ) 99K

M3,n.

To show that φ is a birational isomorphism, we will construct the inverse map as follows.
Let C be a smooth non-hyperelliptic curve of genus 3, with n marked points x1, . . . , xn.
The canonical linear systemH0(C,OC(K)) and V are both 3-dimensional F -vector spaces.
Identifying H0(C,OC(K)) with V ∗, we obtain a canonical embedding h : C → P(V ) as
a plane quartic. Set pi := h(xi). If 0 6= φ ∈ W4 is a quartic polynomial vanishing on
h(C), then ([φ], p1, . . . , pn) ∈ P(E). Note that ([φ], p1, . . . , pn) ∈ P(E) depends on the
isomorphism of F -vector spaces we chose between H0(C,OC(K)) with V ∗. On the other
hand, the image of ([φ], p1, . . . , pn) in P(E)/PGL(V ) does not. This gives rise to a rational
map h : M3,n 99K P(E)/PGL(V ) which takes (C, x1, . . . , xn) to ([φ], p1, . . . , pn) as above.

It remains to check that f : P(E)/PGL(V ) 99K M3,n and h : M3,n 99K P(E)/PGL(V )
are mutually inverse rational maps. To see that

f h : M3,n 99K M3,n

is the identity map, note that after h embeds (C, x1, . . . , xn) into P(V ) = P2 as a canonical
curve and h “forgets” this embedding and returns (C, x1, . . . , xn) as an abstract curve
with n marked points. On the other hand, h f : P(E)/PGL(V ) 99K P(E)/PGL(V ) is
the identity map, because the canonical linear system on C is H0(C,OC(1)); see [Ha77,
Example IV.5.2.1]. This completes the proof of Lemma 8.2.

(b) is, once again, a consequence of Proposition 2.8, as in the proof of Lemma 4.2(a). �

Proof of Theorem 8.1. By Corollary 2.10, every F -form of M 3,n is isomorphic to PM 3,n

for some Sn-torsor P → Spec(F ). By Lemma 8.2(a), PM 3,n is birationally isomorphic to
PP(E)/PGL(V ). Thus it remains to show that PP(E)/PGL(V ) is stably rational over
F . We will fix the Sn-torsor P → Spec(F ) for the rest of the proof.

Claim 1: PP(E) is rational over PP(E)/PGL(V ).

We will deduce Claim 1 from Proposition 3.6(b), with X = PP(E), G = PGL(V )
and Y = P(W4). To see that Proposition 3.6 applies in this situation, note that (i) the
group PGL(V ) is clearly rational, (ii) the PGL(V )-action on PP(E) is generically free by
Lemma 8.2(b), (iii) the PGLn-action on Y is anti-versal by Lemma 3.7 with W = W4,
m = 1, n = dim(V ) = 3 and d = 4. Moreover, (iv) there exists a PGL(V )-equivariant
rational map PP(E) 99K Y = P(W4). To construct it, twist the natural projection
P(E) → P(W2) by P . The proof of Claim 1 is now complete.

Claim 2: PP(E) is stably rational over F .

To prove Claim 2, let E0 be the dense open subset obtained from E by removing the
zero section. That is, E0 consists of tuples (φ, p1, . . . , pn) ∈ E such that 0 6= φ ∈ W3.
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Then we have a diagram of Sn-equivariant maps

E0
�

� i
//

α
��

E
β

""❊
❊❊

❊❊
❊❊

❊❊

P(E) P(V )n0
�

� j
// P(V )n

The horizontal maps i and j are open immersions, α : (φ, p1, . . . , pn) 7→ ([φ], p1, . . . , pn) is
a Gm-torsor, and β : (φ, p1, . . . , pn) 7→ (p1, . . . , pn) is a vector bundle. Twisting by P , we
obtain the following diagram

PE0
�

�

//

rational
��

PE

rational

$$❏
❏❏

❏❏
❏❏

❏❏
❏

PP(E) P (P(V )n0 )
�

�

// P (P(V )n)

rational
��

Spec(F ).

Once again, the horizontal maps are open immersions by Lemma 2.1(b) and the rationality
of PE over PP(V )n0 follows from Lemma 2.1(d). To show that PE0 is rational over
PP(E), we apply Proposition 2.6(b) to the commuting actions of G = Sn and Gm on E0,
as in the previous section. The rationality of P (P(V )n) over F by Lemma 2.3(d), since
P (P(V )n) = RA/F (P(V )), where A/F is the étale algebra associated to the Sn-torsor
P → Spec(F ).
Claim 2 now follows from the above diagram. This completes the proof of Theorem 7.1.

�

9. Forms of M 4,n

In this section we will prove the following theorem.

Theorem 9.1. Let F be a field of characteristic 6= 2 and 1 6 n 6 9 be an integer. Then
every F -form of M 4,n is stably rational.

Our proof will be based on the fact that every non-hyperelliptic curve of genus 4 can
is embedded, via its canonical linear system, as a degree 6 curve in P3. This embedded
canonical curve is a complete intersection of a unique irreducible quadric surface Q and
an irreducible cubic surface S in P3. Moreover, the cubic polynomial s which cuts out
S, is uniquely determined up to replacing s by s′ = αs + lq, where α ∈ F ∗ is a non-zero
constant, and l is a linear form. Conversely, any irreducible non-singular curve in P3,
which is a complete intersection of a quadric surface and a cubic surface, is a canonically
embedded curve of genus 4. For proofs of these assertions, see [Ha77, Example IV.5.2.2].
Let V be a 4-dimensional vector space, Wi := Symi(V ∗) be the

(

3+i
3

)

-dimensional vector
space of homogeneous polynomials of degree i on V .

Lemma 9.2. Assume n 6 9. There exists a Sn×PGL(V )-invariant dense open subset
P(V )n0 of P(V )n such that for every (p1, . . . , pn) ∈ P(V )n0 ,
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(i) p1, . . . , pn impose independent conditions on quadric hypersurfaces in P(V ),

(ii) p1, . . . , pn impose independent conditions on cubic hypersurfaces in P(V ), and

(iii) there is a smooth quadric hypersurface Q ⊂ P(V ) and a smooth cubic hypersurface
S ⊂ P(V ) such that C := Q∩S is a complete intersection smooth irreducible curve passing
through p1, . . . , pn.

Proof. (i) and (ii) are clearly open conditions in P(V )n, invariant under the natural
PGL(V ) × Sn-action. Since dim(W2) = 10, dim(W3) = 20 and we are assuming that
n 6 9, there exists a Sn ×PGL(V )-invariant dense open subset En ⊂ P(V )n such that (i)
and (ii) hold for every (p1, . . . , pn) in Un.

Now consider the closed subvariety I ofW2×W3×Un consisting of tuples (q, s, p1, . . . , pn)
such that q(pi) = s(pi) = 0 for every i = 1, . . . , n, along with the natural projections

I
π1

zz✈✈
✈✈
✈✈
✈✈
✈✈

π2

��
❄❄

❄❄
❄❄

❄❄

W2 ×W3 Un
�

�

// P(V )n

given by π1(q, s, p1, . . . , pn) 7→ (q, s) and π1(q, s, p1, . . . , pn) 7→ (p1, . . . , pn). Note that π2 is
a vector bundle over Un; in particular, I is irreducible. Note also that both π1 and π2 are
invariant under the commuting natural GL(V )- and Sn-actions. (Here Sn acts trivially
on W2 and W3.) By Bertini’s theorem, there is a GL(V )-invariant dense open subset
(W2 ×W3)0 consisting of pairs (q, s) such that the quadric surface Q given by q = 0 and
the cubic surface S given by s = 0 intersect transversely, in a smooth irreducible curve
in P(V ) = P3. The preimage I0 := π−1

1 (W2 ×W3) is a dense open Sn×GL(V )-invariant
subset of I. The image π2(I0) contains a dense subset Sn×PGL(V )-invariant subset of
P(V )n. This is our desired open subset (P(V )n)0. �

From now on, let us assume that n 6 9, so that we can apply Lemma 9.2. Set

E2 := {(φ, p1, . . . , pn) | φ(p1) = · · · = φ(pn) = 0} ⊂ W2 × P(V )n0 .

We will view E2 as a rank 10 − n subbundle of the trivial bundle over P(V )n0 and will
denote the associated projective bundle over P(V )n0 by P(E2). Let Λ3 → P(E2) be the
rank 20− n vector bundle whose fiber over ([q], p1, . . . , pn) consist of cubic forms s ∈ W3

such that s(p1) = · · · = s(pn) = 0. Set Λ1.2 to be the rank 4 vector subbundle of Λ3

whose fiber over ([q], p1, . . . , pn) consist of cubic forms s ∈ W3 of the form s = l · q as
l ranges over W1 = V ∗. All of these vector bundles are equivariant with respect to the
natural commuting actions of GL(V ) (by coordinate changes in V ) and Sn (by permuting
the points p1, . . . , pn).

Lemma 9.3. Assume 1 ≤ n 6 9. Let Λ3/Λ1,2 denote the quotient vector bundle of rank
16− n over P(E2), and P(Λ3/Λ1,2) denote the associated projective bundle. Then

(a) M4,n is Sn-equivariantly birationally isomorphic to P(Λ3/Λ1,2)/PGL(V ).

(b) The PGL(V )-action on P(Λ3/Λ1,2) is generically free.

Proof. (a) Consider the natural rational Sn-equivariant map

Λ3 99K M4,n
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which takes a point (q, s, p1, . . . , pn) ∈ Λ3 to the smooth irreducible curve C ⊂ P(V )
of degree 6 obtained by intersecting the quadric surface {q = 0} and the cubic surface
{s = 0}. Here (p1, . . . , pn) denotes a point of (P(V )n)0, q is a quadratic polynomial
vanishing at p1, . . . , pn, and s is a cubic polynomial vanishing at p1, . . . , pn. For a point
of Λ3 in general position C is a curve of genus 4 in P(V ) = P3, and p1, . . . , pn ∈ C.
This gives rise to a rational map Λ3 99K M4,n taking (q, s, p1, . . . , pn) to the isomor-
phism class of (C, p1, . . . , pn). This map descends to a rational map f : P(Λ3/Λ1,2) 99K

M4,n. Moreover, f is Sn×PGL(V )-equivariant, and factors through the rational quotient
P(Λ3/Λ1,2)/PGL(V ), yielding an Sn-equivariant rational map

(9.4) f : P(Λ3/Λ1,2)/PGL(V ) 99K M4,n.

In order to complete the proof of the lemma, it remains to show that f is a birational
isomorphism. We will do so by constructing the inverse

(9.5) h : M4,n 99K P(Λ3/Λ1,2)/PGL(V ) .

Let C be a non-hyperelliptic curve of genus 4 with n marked points x1, . . . , xn. The
canonical linear system H0(C,OC(K)) and V are both 3-dimensional F -vector spaces.
Identifying H0(C,OC(K)) with V ∗, we obtain a canonical embedding h : C → P(V ). Let
pi := h(xi), q ∈ W2 a homogeneous quadratic form on V vanishing on h(C), and 0 6= s ∈
W3 be a cubic form vanishing on h(C). The discussion at the beginning of this section
shows that h uniquely determines the point ([s], q, p1, . . . , pn) in P(Λ3/Λ1,2). Moreover,
the projection of this point to P(Λ3/Λ1,2)/PGL(V ) depends only on (C, x1, . . . , xn) and
not on the isomorphism of F -vector spaces we chose between H0(C,OC(K)) and V ∗. This
gives rise to a rational map (9.5) which takes (C, x1, . . . , xn) to ([s], q, p1, . . . , pn).
It remains to show that the Sn-equivariant rational maps (9.4) and (9.5) are mutually

inverse. To see that the composition

φ̄ h̄ : M4,n 99K M4,n

is the identity map, note that h embeds (C, x1, . . . , xn) into P(V ) = P3 as a canonical
curve and φ “forgets” this embedding and returns (C, x1, . . . , xn) as an abstract curve
with n marked points. On the other hand,

h f : P(Λ3/Λ1,2)/PGL(V ) 99K P(Λ3/Λ1,2)/PGL(V )

is the identity map, because the canonical linear system on a complete intersection of
a smooth quadric surface and a smooth cubic surface in P3 is H0(C,OC(1)); see [Ha77,
Example IV.5.2.2]. This completes the proof of Lemma 9.3.

(b) We argue as in the proof of Lemma 4.2(b). The stabilizer H of a point of P(Λ3/Λ1,2)
represented by (s, q, p1, . . . , pn) naturally embeds in Aut(C, p1, . . . , pn), where C is the
curve in P(V ) = P3 given by q = s = 0. For (s, q, p1, . . . , pn) in general position in Λ3, C
is a smooth irreducible curve of genus 4. Moreover, since the rational map f constructed
in part (a) is dominant, we may assume that Aut(C, p1, . . . , pn) = {1}; see Proposition 2.8.
Thus H = {1}, as desired. �

Proof of Theorem 9.1. By Corollary 2.10, every F -form of M 4,n is isomorphic to PM 4,n

for some Sn-torsor P → Spec(F ). On the other hand, in view of Lemma 9.3(a), it suffices
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to show that the quotient variety PP(Λ3/Λ1,2)/PGL(V ) is stably rational. We will fix the
Sn-torsor P → Spec(F ) for the rest of the proof.

Claim 1: PP(Λ3/Λ1,2) is rational over
PP(Λ3/Λ1,2)/PGL(V ).

We will deduce Claim 1 from Proposition 3.6(b), with X = PP(Λ3/Λ1,2) and G =
PGL(V ) and Y = Gr(5,W3). To prove that Proposition 3.6(b) applies in this situa-
tion, note that (i) the group PGL(V ) ≃ PGL4 is rational, (ii) The PGL(V )-action on
PP(Λ3/Λ1,2) is generically free by Lemma 9.3(b), and (iii) the PGL(V )-action on Y is
anti-versal by Lemma 3.7 with W = W3, n = dim(V ) = 4, d = 3 and m = 5. Finally,
(iv) there exists PGL(V )-equivariant rational map PP(Λ3/Λ1,2) → Y = Gr(5,W3). To
construct this rational map, start with α : Λ3 99K Gr(5,W3) taking (q, s, p1, . . . , pn) to
the subspace of W3 spanned by the cubic forms s and l · q, as l ranges over V ∗. For
(q, s, p1, . . . , pn) ∈ Λ3 in general position this subspace of W3 will be 5-dimensional. One
readily checks that α descends to a PGL(V )× Sn-equivariant rational map

α : P(Λ3/Λ1,2) → Gr(5,W3) ,

where Sn acts trivially on Gr(5,W3). Twisting by P , we obtain a desired PGL(V )-
equivariant rational map

Pα : PP(Λ3/Λ1,2) 99K Gr(5,W3) ,

This completes the proof of Claim 1.

Claim 2: PP(Λ3/Λ1,2) is stably rational over F .

To prove Claim 2, let (Λ3/Λ1,2)0 be the dense open subset obtained from Λ3/Λ1,2 by
removing the zero section. Then we have a diagram of Sn-equivariant maps

(Λ3/Λ12)0

α

��

�

�

// Λ3/Λ1,2

β

��

(E2)0
�

�

//

γ
zz✉✉
✉✉
✉✉
✉✉
✉

E2

δ

��

P(E2)

P(Λ3/Λ1,2) P(V )n0
�

�

// P(V )n

Here the horizontal maps are open immersions, α and γ are Gm-torsors, and β and δ are
vector bundles. Twisting by P and applying Lemma 2.1(d) and Proposition 2.6(b), as we
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did in the previous sections, we obtain the following diagram

P (Λ3/Λ12)0

rational

��

�

�

// P (Λ3/Λ1,2)

rational

��

P (E2)0
�

�

//

rationalxxqq
qq
qq
qq
qq

PE2

rational

��

PP(E2)

PP(Λ3/Λ1,2)
P (P(V )n0)

�

�

// P (P(V )n)

rational
��

Spec(F ).

Here the horizontal maps are open immersions by Lemma 2.1(b), and the rationality
assertions in this diagram are established in the same way as in the proof of Claim 2 in
the previous section. In particular, P (Λ3/Λ1,2) is rational over

PP(E2) and
PE2 is rational

over P (P(V )n) by Lemma 2.1(d). The rationality of P (Λ3/Λ1,2)0 over
PP(Λ3/Λ1,2) and of

P (E2)0 over PP(E2) follows from applying Proposition 2.6(b) to the commuting actions
of G = Sn and H = Gm. Finally, the rationality of P (P(V )n) over F follows from
Lemma 2.3(d), since P (P(V )n) = RA/F (P(V )A), where A/F is the étale algebra associated
to the Sn-torsor P → Spec(F ). Claim 2 now follows from the above diagram, and the
proof of Theorem 9.1 is complete. �

10. Forms of M5,n

In this section we will prove the following.

Theorem 10.1. Let F be a field of characteristic 6= 2 and 1 6 n 6 12 be an integer.
Then every F -form of M 5,n is stably rational.

Our proof will be based on the fact that a general curve of genus 5 (and more precisely,
any smooth curve of genus 5 with no g13) can is embedded, via its canonical linear system,
as a complete intersection of three quadric hypersurfaces in P4. Conversely, any irreducible
non-singular curve, which is a complete intersection of three quadrics in P4, is a canonically
embedded curve of genus 5. For proofs of these assertions, see [Ha77, Example IV.5.5.3].
Let V be a 5-dimensional F -vector space and W2 := S2(V ∗) be the 15-dimensional

space of homogeneous polynomials of degree 2 on V . For 1 6 n 6 14, let (P(V )n)0 be a
Sn-invariant dense open subset of P(V )n consisting of n-tuples (p1, . . . , pn) which impose
n independent conditions on qudratic polynomials. Now consider the vector bundle E →
(P4)n0 of rank 15−n whose fiber of E over (p1, . . . , pn) consists of homogeneous quadratic
polynomials vanishing at p1, . . . , pn. Denote the Grassmannian bundle of 3-dimensional
subspaces associated to E by Gr(3, E). The natural action of PGL(V ) on P(V ) induces
PGL(V )-actions on P(V )n, P(V )n0 , E and Gr(3, E).
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Lemma 10.2. (a) M5,n is Sn-equivariantly birationally isomorphic to Gr(3, E)/PGL(V ).

(b) The PGL(V )-action on Gr(3, E) is generically free.

Proof. (a) Let f : Gr(3, E) 99K M5,n be the Sn-equivariant rational map which associates
to a point (L, p1, . . . , pn) the curve {φ = 0 | φ ∈ L} with n marked points p1, . . . , pn.
Here L denotes a 3-dimensional subspace of E(p1,...,pn). Since f(L, p1, . . . , pn) remains
unchanged when we translate (L, p1, . . . , pn) by an element of PGL(V ), f factors through
Gr(3, E)/PGL(V ). Denote the resulting rational map by f : Gr(3, E)/PGL(V ) 99K M3,n.
Note that the actions of PGL(V ) and Sn on Gr(3, E) commute. Hence, the rational map
φ is Sn-equivariant.

To show that f is a birational isomorphism, we will construct the inverse map as follows.
Let C be a smooth curve of genus 5 with no g13, equipped with n marked points x1, . . . , xn.
Identifying V ∗ with the canonical linear system on C (both are 5-dimensional F -vector
spaces) we obtain a canonical embedding h : C → P(V ). Set pi := h(xi). The space
L := H0(P(V ), Ih(C)(2)) of global sections of the ideal sheaf Ih(C)(2) is 3-dimensional.
The resulting point (L, p1, . . . , pn) of Gr(3, E) depends on the choice of isomorphism
between V ∗ and H0(C,OC(K)) but the projection of (L, p1, . . . , pn) to Gr(3, E)/PGL(V )
does not. This gives rise to a rational map h : M5,n 99K Gr(3, E)/PGL(V ) which takes
(C, x1, . . . , xn) to (L, p1, . . . , pn), as above.

Now observe that the composition f h : M5,n 99K M5,n is the identity map. Indeed, h

embeds (X, x1, . . . , xn) into P(V ) as a canonical curve, and h “forgets” this embedding
and returns (X, x1, . . . , x3) as an abstract curve with n marked points. On the other hand,
h f : Gr(3, E)/PGL(V ) 99K Gr(3, E)/PGL(V ) is the identity map, because the canonical
linear system on a complete intersection X of three smooth quadric hypersurfaces in P4

is H0(X,OX(1)); see [Ha77, Example IV.5.5.3]. This completes the proof of Lemma 10.2.
(b) is deduced from Proposition 2.8 (with g = 5) in the same way as in the proof of

Lemma 4.2(b). �

Proof of Theorem 10.1. By Corollary 2.10, every F -form of M 5,n is isomorphic to PM 5,n

for some Sn-torsor P over Spec(F ). By Lemma 10.2(b), PM 5,n is birationally isomor-
phic to P Gr(3, E)/PGL(V ). Thus it remains to show that P Gr(3, E)/PGL(V ) is stably
rational over F . We fix the PGL(V )-torsor P → Spec(F ) for the rest of the proof.

Claim 1: P Gr(3, E) is rational over P Gr(3, E)/PGL(V ).

We will deduce Claim 1 from Proposition 3.6(b), with X = P Gr(3, E), G = PGL(V )
and Y = Gr(3,W2). To check that Proposition 3.6 applies in this situation, note that (i)
the group PGL(V ) ≃ PGL5 is rational, (ii) the PGL(V )-action on Gr(3, E) is generically
free by Lemma 10.2(a), (iii) the PGL(V )-action on Y is anti-versal by Lemma 3.7 with
W = W2, n = dim(V ) = 5, d = 2 and m = 3, and (iv) there exists a PGL(V )-equivariant
map P Gr(3, E) → Y = P(3,W2). To construct this map, recall that E is, by definition,
a subbundle of the trivial bundle over P(V )n0 with fiber W2. Twisting the tautological
PGL(V )× Sn-equivariant morphism

Gr(3, E) → Gr(3,W2)

by P , we obtain a desired PGL(V )-equivariant morphism
P Gr(3, E) → P Gr(3,W2) = Gr(3,W2) .
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This completes the proof of Claim 1.

Claim 2: P Gr(3, E) is stably rational over F .

To prove Claim 2, let (E3)0 be a dense open subset of E3 := E×P(V )n
0
E×P(V )n

0
E whose

elements are tuples (q1, q2, q3, p1, . . . , pn) such that q1, q2 and q3 ∈ W2(V ) are linearly
independent over F . Consider the following diagram of Sn-equivariant morphisms

(E3)0
�

� i
//

α

��

E3

β

""❊
❊❊

❊❊
❊❊

❊❊

Gr(3, E) P(V )n0
�

� j
// P(V )n

The horizontal maps i and j are open immersions,

α : (q1, q2, q3, p1, . . . , pn) 7→ (Span(q1, q2, q3), p1, . . . , pn)

is a GL3-torsor, and β : (q1, q2, q3, p1, . . . , pn) 7→ (p1, . . . , pn) is a vector bundle. Twisting
by P , and applying Lemma 2.1, Lemma 2.3 and Proposition 2.6(b), as in the previous
sections, we obtain the following diagram

P (E3)0
�

�

//

rational
��

PE3

rational

%%❏
❏❏

❏❏
❏❏

❏❏
❏

Gr(3, E) P (P(V )n0 )
�

�

// P (P(V )n)

rational
��

Spec(F ).

This completes the proof of Claim 2 and thus of Theorem 10.1. �
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