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1. Introduction

Throughout this paper R will be a complete noetherian local ring with maximal
ideal m. We put Rn = R/mn+1 for each n ≥ 0. The natural map R → lim←−Rn is a

ring isomorphism and we will henceforth identify these two rings.
For the theory of formal schemes over R, we refer the reader to [EGAI, §10],

[Ha, §II.9] and [St, Tag 0AHW, §79].1 Let X be a proper R–scheme, and let X̂
be the associated formal scheme. Grothendieck’s existence theorem provides an
equivalence of categories between the category of coherent sheaves over X and

the category of coherent sheaves on the formal scheme X̂ [EGAIII, 5.1.4], [I, §8.4].
The restriction to locally trivial coherent sheaves of constant rank r yields a natural

equivalence between the category of GLr–torsors over X and the category of ĜLr–

torsors over X̂.
The purpose of the paper is to extend this statement to a larger class of affine

group schemes over X which includes semisimple group schemes. This question
has been also studied by Baranovsky [B, §3], but only for group schemes arising
from R–group schemes by base change.

Conventions on vector groups and linear groups.

We use mainly the terminology and notation of Grothendieck-Dieudonné [EGAI,
§9.4 and 9.6], which agrees with that of Demazure-Grothendieck used in [SGA3,
Exp. I.4]

Let S be a scheme and let E be a quasi-coherent sheaf over S. For each morphism
f : T → S, we denote by E(T ) = f∗(E) the inverse image of E by the morphism f .

1Since the numbering of the Stacks Project [St] evolves over time, we also provide the relevant
tags.
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Recall that the S–scheme V(E) = Spec
(
Sym•(E)

)
is affine over S and represents

the S–functor T 7→ HomOT
(E(T ),OT ) [EGAI, 9.4.9].

We assume now that E is locally free of finite rank and denote by E∨ its dual.
In this case the affine S–scheme V(E) is of finite presentation (ibid, 9.4.11); also
the S–functor T 7→ H0(T, E(T )) = HomOT

(OT , E(T )) is representable by the affine
S–scheme V(E∨) which is also denoted by W(E) [SGA3, I.4.6].

The above considerations apply to the locally free coherent sheaf End(E) =
E∨ ⊗OS

E over S so that we can consider the affine S–scheme V
(
End(E)

)
which is

an S–functor in associative commutative and unital algebras [EGAI, 9.6.2]. Now
we consider the S–functor T 7→ AutOT

(E(T )). It is representable by an open S–

subscheme of V
(
End(E)

)
which is denoted by GL(E) (loc. cit., 9.6.4).

We set GLr,S = GL(Or
S) for each r ≥ 1. If S = Spec(A) is affine, then E = Or

S

corresponds to the A-module E = Ar. In this case we will use the notation GLr(E)
instead of GLr,S . Finally, for scheme morphisms Y → X → S, we denote by∏
X/S

(Y/X) the S–functor defined by

(∏

X/S

(Y/X)
)
(T ) = Y (X ×S T )

for each S–scheme T . Recall that if
∏
X/S

(Y/X) is representable by an S-scheme,

this scheme is called the Weil restriction of Y to S.

Acknowledgement: My sincere gratitude to the referee for his/her careful reading
of the original version, and the valuable corrections and feedback.

2. Formal torsors

Let R be as above, and let X be a proper R–scheme. We start with the following
key observation about limits.

Lemma 2.1. Let f : Y → X be a separated morphism of finite type. Then the
natural map

(∏

X/R

(Y/X)
)
(R) → lim←−

n

(∏

X/R

(Y/X)
)
(Rn) = lim←−

n

( ∏

Xn/Rn

(Yn/Xn)
)
(Rn)

is bijective.

Proof. The last equality follows from the fact that
∏
X/S

(Y/X) commutes with base

change. Consider the commutative diagram

HomR(X,Y ) // lim←−n
HomRn

(Xn, Yn)

( ∏
X/R

(Y/X)
)
(R)

?�

OO

// lim←−n

( ∏
Xn/Rn

(Yn/Xn)
)
(Rn)

?�

OO
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According to [St, Tag 0898, 29.28.3], the top horizontal map is bijective so that the
bottom horizontal map is injective. Let (sn : Xn → Yn)n≥0 be a coherent family
of sections. It lifts to a (unique) morphism s : X → Y . Then the morphism g =
f ◦ s : X → X is such that gn = idXn

for all n ≥ 0. Since the map HomR(X,X)→
lim←−n

HomRn
(Xn, Xn) is bijective, we conclude that g = idX whence s is a section

of Y → X . We have shown the surjectivity of the bottom map. �

Let G be an affine X–group scheme of finite presentation. We set Xn = X×RRn

and Gn = G×X Xn for each n ≥ 0. We denote by Ĝ = (Gn)n≥0 the formal group

scheme over X̂ attached to G.
A formal Ĝ-torsor P̂ is the data of a Gn–torsor Pn over Xn for each n ≥ 0

together with compatible Gn+1–isomorphisms θn : Pn+1 ×Rn+1
Rn

∼
−→ Pn. If P

is G–torsor, P̂ is formal Ĝ-torsor and this assignment is faithful in the following
sense.

Lemma 2.2. Let P, Q be two G–torsors. The natural map IsomG(P,Q) →

Isom
Ĝ
(P̂, Q̂) is bijective.

Proof. Up to replacing G (resp. Q) by the twisted R–group scheme PG

(resp. Pop∧GQ), we may assume thatP = G. In this case, we have IsomG(P,Q) =
Q(X) so that our original question is reduced to showing that the natural map

Q(X)→ lim←−
n

Qn(Xn)

is bijective. Locally for the fppf topology, Q is isomorphic to G. According to the
permanence properties of faithfully flat descent Q is affine of finite presentation
over X [EGAIV, 2.7.1.(vi) and (xiii)]. So Lemma 2.1 applies and shows that the
above map is bijective. �

2.1. Algebraizable torsors. We say that a formal Ĝ–torsor P̂ is algebraizable if
it arises from a G–torsor P. Lemma 2.2 shows that if such a P exists, it is unique
up to isomorphism.

Lemma 2.3. Let G and G′ be two X-group schemes which are affine and of finite
presentation. Assume that G is flat and that i : G → G′ is a monomorphism of
X-group schemes with the property that the fppf quotient G′/G is representable by
an affine X–scheme Q.

Let F̂ be a Ĝ–torsor and denote by F̂′ = i∗(F̂) the corresponding Ĝ′–torsor. Then

F̂ is algebraizable if and only if F̂′ is algebraizable.

Proof. It is clear that if F̂ is algebraizable then so is F̂′. Conversely, assume that

the Ĝ′–torsor F̂′ is algebraizable i.e. it arises from a G′–torsor F′. We consider the
affine X-scheme Z = F′/G := F′ ∧G

′

(G′/G); the reduction of F′ to G defined by
faithfully flat descent. According to [SGA3, VIB.9.2.(xiii).b], the X-scheme G′/G
is of finite presentation. Since Z is locally isomorphic to G′/G with respect to the
fppf topology, the permanence properties of faithfully flat descent show that Z is
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affine of finite presentation over X [EGAIV, 2.7.1.(vi) and (xiii)]. According to
Lemma 2.1, the map Z(X)→ lim←−n

Zn(Xn) is bijective.

Each Fn defines a point zn ∈ Z(Rn) in a coherent way so that we get a point
z ∈ Z(R). That point defines a reduction of the G′–torsor F′ to a G–torsor F

[Gd, III.3.2.1]. Since z maps to zn, we have FRn
= Fn for each n ≥ 0. Thus F̂ is

algebraizable. �

3. Representations of group schemes

3.1. The Chevalley case. Let G be a reductive split Z–group scheme and we
denote by Gad its adjoint quotient. We remind the reader that the functor of
automorphisms of G is representable by a smooth Z–group scheme Aut(G) [SGA3,
XXIV.1]. Furthermore there is an exact sequence of Z–group schemes

1→ Gad
int
−−→ Aut(G)

π
−→ Out(G)→ 1

where Out(G) is a constant group scheme. In other words, Out(G) is the Z–group
scheme attached to the abstract group Out(G)(Z). In the semisimple case Out(G)
is finite (and in particular Aut(G) is affine). This is not the case in general. For
example Aut(G2

m) is the constant Z–group scheme attached to the abstract group
GL2(Z).

Let Γ be a finite subgroup of Out(G)(Z). We get a monomorphism of Z–group
schemes ΓZ → Out(G) and consider the Z–group scheme

AutΓ(G) = Aut(G)×Out(G) ΓZ.

obtained by pullback. The above yields the exact sequence

1→ Gad → AutΓ(G)
π
−→ ΓZ → 1.

Since ΓZ and Gad are smooth affine over Z, so is AutΓ(G) [SGA3, VIB9.2.(viii)].

Lemma 3.1. There exists a free Z–module of finite type E, and a closed immersion
Z–group scheme homomophism i : G⋊AutΓ(G) → GL(E) such that the fppf quo-
tient sheaf GL(E)/G (resp. GL(E)/

(
G⋊AutΓ(G)

)
, GL(E)/Gad) is representable

by a smooth affine Z–scheme.

Proof. Since G⋊AutΓ(G) is an affine smooth Z–group scheme, there exists a free
Z-module of finite rank E and a faithful linear representation ρ : G⋊AutΓ(G) →
GL(E) which is a closed immersion [BT, 1.4.5].

The fppf sheaf GL(E)/
(
G⋊AutΓ(G)

)
is representable by a Z-scheme [A, Th.

IV.4.B] which is smooth and separated [SGA3, VIB.9.2.(x) and (xii)]. The Z–
group scheme G ⋊ Gad is reductive. According to [CTS, 6.12.ii], the fppf sheaf
GL(E)/(G ⋊Gad) is representable by an affine smooth Z–scheme and so are GL(E)/G
and GL(E)/Gad. Since the map GL(E)/(G ⋊ Gad) → GL(E)/

(
G ⋊ AutΓ(G)

)
is

a ΓZ-torsor, it is a finite étale cover. It follows that GL(E)/
(
G ⋊ AutΓ(G)

)
is

affine [St, Tag 01YN, lemma 29.13.3]. Similarly the Z-scheme GL(E)/AutΓ(G) is
affine. �
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3.2. An isotriviality condition. In this section, we assume that the base scheme
S is noetherian and we are given a reductive S–group scheme G of constant type.
Thus, there exists a Chevalley Z–group scheme G such that G is locally isomorphic
to GS for the étale topology [SGA3, XXII.2.3, 2.5]. Also the fppf sheaf Isom(GS ,G)
is representable by a Aut(G)S–torsor Isom(GS ,G) defined in [SGA3, XXIV.1.8].
The contracted product Isomext(GS ,G) := Isom(GS ,G) ∧Aut(G)S Out(G)S is a
Out(G)S–torsor (ibid, 1.10) which encodes the isomorphism class of the quasi-split
form of G.

Proposition 3.2. We assume that the Out(G)S–torsor Isomext(GS ,G) is isotriv-
ial, i.e. there exists a finite étale cover S′/S such that Isomext(GS ,G)(S′) 6= ∅.
Then there exists a locally free coherent OS–module E, and a closed immersion
S–group scheme homomorphism i : G → GL(E) such that the fppf quotient sheaf
GL(E)/G is representable by a smooth affine S–scheme.

Remark 3.3. (a) If G is semisimple, Out(G) is a finite constant group so that the
isotriviality condition is obviously satisfied.

(b) If S is a normal connected scheme, the isotriviality condition is satisfied since
Isomext(GS ,G)→ S is a Out(G)S–cover [SGA3, X.6.2 and 5.14].

Proof. The noetherian assumption reduces the problem to the connected case (in
particular S is non-empty by convention [St, Tag 004R, 5.7.1]). We consider the
Aut(G)S-torsor E = Isom(GS ,G) defined above; we have G = E(GS), i.e. G is the
twist of GS by the Aut(G)S–torsor E.

The isotriviality assumption for the Out(G)S–torsor F = E ∧Aut(G)S Out(G)S
means that there exists a finite étale cover S′/S such that F(S′) 6= ∅. Grothendieck’s
theory of the algebraic fundamental group [SGA1] permits to assume that S′ is con-
nected and that S′ → S is a ΘS–torsor where Θ is a finite abstract group.

We have a bijection H1(Θ,Out(G)(S′))
∼
−→ H1(S′/S,Out(G)) [Gi, end of §2.2].

Since S′ is connected, we have Out(G)(Z) = Out(G)(S′) so that the action of Θ
on Out(G)(S′) is trivial. We have then a bijection

Homgr

(
Θ,Out(G)(Z)

)
/Out(G)(Z)

∼
−→ H1(Θ,Out(G)(S′)).

It follows that the class of the Out(G)S–torsor F is given by the conjugacy class of
a homomorphism ρ : Θ→ Out(G)(Z).

Let Γ = Im(ρ), it is a finite subgroup of Out(G)(Z). We consider the Z–
group scheme AutΓ(G) = π−1(Γ) as in the previous section. The isomorphism

Aut(G)S/AutΓ(G)S
∼
−→ Out(G)S/ΓS induces an isomorphism E/AutΓ(G)S

∼
−→

F/ΓS. The reduction of the Out(G)S–torsor F to ΓS defines then a reduction of
the Aut(G)S–torsor E to a AutΓ(G)S–torsor E♯ [Gd, III.3.2.1]. �

Remark 3.4. (a) If G is semisimple, we can take in the proof Γ = Out(G)(Z). We
thus find a OS–coherent sheaf E as desired which is G⋊Aut(G)-equivariant.

(b) Thomason has proven stronger statements than (1) for embedding group schemes
in linear group schemes [T, §3].
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4. Main statement

4.1. The following generalization of Grothendieck existence theorem strengthens
Baranovsky’s result [B, Th. 3.1].

Theorem 4.1. Let R be a complete noetherian local ring. Let X be a proper

R–scheme and let X̂ be the associated formal scheme. Let G be a Chevalley Z–
group scheme and let G be an X-form of GX . Assume that the Out(G)X–torsor
Isomext(GX ,G) is isotrivial. Then.

(1) The assignment P 7→ P̂ induces an equivalence of categories between the cate-

gory of G–torsors of X and that of Ĝ–torsors over X̂.

(2) Assume that G is semisimple. For H = G,Aut(G),G⋊Aut(G) the assignment

P 7→ P̂ induces an equivalence of categories between the category of H–torsors of

X and that of Ĥ–torsors over X̂.

Proof. (1) By Lemma 2.2, we have only to show algebraization. The R–scheme
X is proper, namely separated, of finite type, and universally closed. Since R is
noetherian, X is locally noetherian. Also the morphism X → Spec(R) is quasi-
compact [St, 28.39.10] so that X is quasi-compact. The scheme X is quasi-compact
and locally noetherian, hence is noetherian by definition [St, Tag 01OU, 27.5.1].
Without lost of generality we may assume that X is connected.

Proposition 3.2 provides a closed immersion i : G→ GL(E) where E is a locally
free coherent OX–module and such that the fppf quotient sheaf GL(E)/G is rep-
resentable by a smooth affine X–scheme. Lemma 2.3 reduces the algebraization
problem to the case of GL(E). Since X is connected, E is locally free of rank r.

We consider the GLr–torsor Q = Isom(Or
X , E) over X . Torsion by Q (resp. Q̂)

induces an equivalence of categories between the category of GLr–torsors (resp.

ĜLr–torsors) and that of GL(E)–torsors (resp. ĜL(E)–torsors). It follows that
the algebraization question is equivalent for GLr–torsors and for GL(E)–torsors.

Grothendieck’s existence theorem states that GLr–torsors over X̂ are algebraizable.
Thus algebraization holds for GL(E) and for G.

(2) Remark 3.4.(a) shows that the representation G→ GL(E) arises from a repre-
sentation G⋊ Aut(G)→ GL(E). The same argument applies then to G⋊Aut(G)
and Aut(G). �

4.2. Examples and applications. Let d ≥ 1 be a positive integer. If we consider
the case of G = PGLn and use the dictionary given in [G, §7] between PGLd-torsors
and Azumaya algebras of degree d, we get an algebraization statement for Azumaya
algebras of degree d we obtain the following.

Corollary 4.2. There is an equivalence of categories between Azumaya algebras

over X (of degree d) and formal degree d Azumaya algebras over X̂ (of degree
d). �

Similarly, by considering the case of the Chevalley Z–group scheme of type
G2, we obtain an equivalence of categories octonion algebras over X and formal

octonion algebras over X̂ [Co, App. B].
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More generally for the group scheme Aut(G) of a semisimple Chevalley Z–group
G we have the following fact as special case of Theorem 4.1.(2).

Corollary 4.3. There is an equivalence of categories between the groupoid of X–

forms of GX and that of formal X̂-forms of ĜX . �

In particular, we obtain the following fact.

Corollary 4.4. Assume that we are given a formal X̂-group scheme Ĝ such that

each Gn is an Xn–form of GXn
. Then Ĝ is algebraizable in a semisimple X–group

scheme G which is a X-form of GX . �
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