FORMAL TORSORS UNDER REDUCTIVE GROUP SCHEMES

BENEDICTUS MARGAUX

Laboratoire de Recherche "Princesse Stéphanie" Monte Carlo 51840, Monaco. Email: benedictus.margaux@gmail.com

ABSTRACT. We consider the algebraization problem for torsors over a proper formal scheme under a reductive group scheme. Our results apply to the case of semisimple group schemes (which is addressed in detail).

Keywords: Torsors, formal schemes, reductive group schemes, algebraization. **MSC:** 14D15, 14L30.

1. INTRODUCTION

Throughout this paper R will be a complete noetherian local ring with maximal ideal \mathfrak{m} . We put $R_n = R/\mathfrak{m}^{n+1}$ for each $n \ge 0$. The natural map $R \to \varprojlim R_n$ is a ring isomorphism and we will henceforth identify these two rings.

For the theory of formal schemes over R, we refer the reader to [EGAI, §10], [Ha, §II.9] and [St, Tag 0AHW, §79].¹ Let X be a proper R-scheme, and let \hat{X} be the associated formal scheme. Grothendieck's existence theorem provides an equivalence of categories between the category of coherent sheaves over X and the category of coherent sheaves on the formal scheme \hat{X} [EGAIII, 5.1.4], [I, §8.4]. The restriction to locally trivial coherent sheaves of constant rank r yields a natural equivalence between the category of GL_r-torsors over X and the category of $\widehat{\text{GL}}_r$ -torsors over \hat{X} .

The purpose of the paper is to extend this statement to a larger class of affine group schemes over X which includes semisimple group schemes. This question has been also studied by Baranovsky [B, §3], but only for group schemes arising from R-group schemes by base change.

Conventions on vector groups and linear groups.

We use mainly the terminology and notation of Grothendieck-Dieudonné [EGAI, §9.4 and 9.6], which agrees with that of Demazure-Grothendieck used in [SGA3, Exp. I.4]

Let S be a scheme and let \mathcal{E} be a quasi-coherent sheaf over S. For each morphism $f: T \to S$, we denote by $\mathcal{E}_{(T)} = f^*(\mathcal{E})$ the inverse image of \mathcal{E} by the morphism f.

 $^{^1\}mathrm{Since}$ the numbering of the Stacks Project [St] evolves over time, we also provide the relevant tags.

B. MARGAUX

Recall that the *S*-scheme $\mathbf{V}(\mathcal{E}) = \operatorname{Spec}(\operatorname{Sym}^{\bullet}(\mathcal{E}))$ is affine over *S* and represents the *S*-functor $T \mapsto \operatorname{Hom}_{\mathcal{O}_T}(\mathcal{E}_{(T)}, \mathcal{O}_T)$ [EGAI, 9.4.9].

We assume now that \mathcal{E} is locally free of finite rank and denote by \mathcal{E}^{\vee} its dual. In this case the affine *S*-scheme $\mathbf{V}(\mathcal{E})$ is of finite presentation (ibid, 9.4.11); also the *S*-functor $T \mapsto H^0(T, \mathcal{E}_{(T)}) = \operatorname{Hom}_{\mathcal{O}_T}(\mathcal{O}_T, \mathcal{E}_{(T)})$ is representable by the affine *S*-scheme $\mathbf{V}(\mathcal{E}^{\vee})$ which is also denoted by $\mathbf{W}(\mathcal{E})$ [SGA3, I.4.6].

The above considerations apply to the locally free coherent sheaf $\mathcal{E}nd(\mathcal{E}) = \mathcal{E}^{\vee} \otimes_{\mathcal{O}_S} \mathcal{E}$ over S so that we can consider the affine S-scheme $\mathbf{V}(\mathcal{E}nd(\mathcal{E}))$ which is an S-functor in associative commutative and unital algebras [EGAI, 9.6.2]. Now we consider the S-functor $T \mapsto \operatorname{Aut}_{\mathcal{O}_T}(\mathcal{E}_{(T)})$. It is representable by an open S-subscheme of $\mathbf{V}(\mathcal{E}nd(\mathcal{E}))$ which is denoted by $\operatorname{GL}(\mathcal{E})$ (*loc. cit.*, 9.6.4).

We set $\operatorname{GL}_{r,S} = \operatorname{GL}(\mathcal{O}_S^r)$ for each $r \geq 1$. If S = Spec(A) is affine, then $\mathcal{E} = \mathcal{O}_S^r$ corresponds to the A-module $E = A^r$. In this case we will use the notation $\operatorname{GL}_r(E)$ instead of $\operatorname{GL}_{r,S}$. Finally, for scheme morphisms $Y \to X \to S$, we denote by $\prod_{X/S} (Y/X)$ the S-functor defined by

$$\Bigl(\prod_{X/S} (Y/X) \Bigr)(T) = Y(X \times_S T)$$

for each S-scheme T. Recall that if $\prod_{X/S} (Y/X)$ is representable by an S-scheme, this scheme is called the Weil restriction of Y to S.

Acknowledgement: My sincere gratitude to the referee for his/her careful reading of the original version, and the valuable corrections and feedback.

2. Formal torsors

Let R be as above, and let X be a proper R-scheme. We start with the following key observation about limits.

Lemma 2.1. Let $f : Y \to X$ be a separated morphism of finite type. Then the natural map

$$\left(\prod_{X/R} (Y/X)\right)(R) \to \underbrace{\lim_{n}}_{n} \left(\prod_{X/R} (Y/X)\right)(R_n) = \underbrace{\lim_{n}}_{n} \left(\prod_{X_n/R_n} (Y_n/X_n)\right)(R_n)$$

is bijective.

Proof. The last equality follows from the fact that $\prod_{X/S} (Y/X)$ commutes with base change. Consider the commutative diagram

FORMAL TORSORS

According to [St, Tag 0898, 29.28.3], the top horizontal map is bijective so that the bottom horizontal map is injective. Let $(s_n : X_n \to Y_n)_{n\geq 0}$ be a coherent family of sections. It lifts to a (unique) morphism $s : X \to Y$. Then the morphism $g = f \circ s : X \to X$ is such that $g_n = id_{X_n}$ for all $n \geq 0$. Since the map $\operatorname{Hom}_R(X, X) \to \lim_n \operatorname{Hom}_{R_n}(X_n, X_n)$ is bijective, we conclude that $g = id_X$ whence s is a section of $Y \to X$. We have shown the surjectivity of the bottom map.

Let \mathfrak{G} be an affine X-group scheme of finite presentation. We set $X_n = X \times_R R_n$ and $\mathfrak{G}_n = \mathfrak{G} \times_X X_n$ for each $n \ge 0$. We denote by $\widehat{\mathfrak{G}} = (\mathfrak{G}_n)_{n\ge 0}$ the formal group scheme over \widehat{X} attached to \mathfrak{G} .

A formal $\widehat{\mathfrak{G}}$ -torsor $\widehat{\mathfrak{P}}$ is the data of a \mathfrak{G}_n -torsor \mathfrak{P}_n over X_n for each $n \geq 0$ together with compatible \mathfrak{G}_{n+1} -isomorphisms $\theta_n : \mathfrak{P}_{n+1} \times_{R_{n+1}} R_n \xrightarrow{\sim} \mathfrak{P}_n$. If \mathfrak{P} is \mathfrak{G} -torsor, $\widehat{\mathfrak{P}}$ is formal $\widehat{\mathfrak{G}}$ -torsor and this assignment is faithful in the following sense.

Lemma 2.2. Let \mathfrak{P} , \mathfrak{Q} be two \mathfrak{G} -torsors. The natural map $\operatorname{Isom}_{\mathfrak{G}}(\mathfrak{P}, \mathfrak{Q}) \to \operatorname{Isom}_{\mathfrak{F}}(\widehat{\mathfrak{P}}, \widehat{\mathfrak{Q}})$ is bijective.

Proof. Up to replacing \mathfrak{G} (resp. \mathfrak{Q}) by the twisted *R*-group scheme $\mathfrak{P}\mathfrak{G}$ (resp. $\mathfrak{P}^{op} \wedge \mathfrak{G}\mathfrak{Q}$), we may assume that $\mathfrak{P} = \mathfrak{G}$. In this case, we have $\operatorname{Isom}_{\mathfrak{G}}(\mathfrak{P}, \mathfrak{Q}) = \mathfrak{Q}(X)$ so that our original question is reduced to showing that the natural map

$$\mathfrak{Q}(X) \to \varprojlim_n \mathfrak{Q}_n(X_n)$$

is bijective. Locally for the fppf topology, \mathfrak{Q} is isomorphic to \mathfrak{G} . According to the permanence properties of faithfully flat descent \mathfrak{Q} is affine of finite presentation over X [EGAIV, 2.7.1.(vi) and (xiii)]. So Lemma 2.1 applies and shows that the above map is bijective.

2.1. Algebraizable torsors. We say that a formal \mathfrak{G} -torsor \mathfrak{P} is *algebraizable* if it arises from a \mathfrak{G} -torsor \mathfrak{P} . Lemma 2.2 shows that if such a \mathfrak{P} exists, it is unique up to isomorphism.

Lemma 2.3. Let \mathfrak{G} and \mathfrak{G}' be two X-group schemes which are affine and of finite presentation. Assume that \mathfrak{G} is flat and that $i : \mathfrak{G} \to \mathfrak{G}'$ is a monomorphism of X-group schemes with the property that the fppf quotient $\mathfrak{G}'/\mathfrak{G}$ is representable by an affine X-scheme \mathfrak{Q} .

Let $\widehat{\mathfrak{F}}$ be a $\widehat{\mathfrak{G}}$ -torsor and denote by $\widehat{\mathfrak{F}}' = i_*(\widehat{\mathfrak{F}})$ the corresponding $\widehat{\mathfrak{G}}'$ -torsor. Then $\widehat{\mathfrak{F}}$ is algebraizable if and only if $\widehat{\mathfrak{F}}'$ is algebraizable.

Proof. It is clear that if $\hat{\mathfrak{F}}$ is algebraizable then so is $\hat{\mathfrak{F}}'$. Conversely, assume that the $\hat{\mathfrak{G}}'$ -torsor $\hat{\mathfrak{F}}'$ is algebraizable i.e. it arises from a \mathfrak{G}' -torsor \mathfrak{F}' . We consider the affine X-scheme $\mathfrak{Z} = \mathfrak{F}'/\mathfrak{G} := \mathfrak{F}' \wedge^{\mathfrak{G}'}(\mathfrak{G}'/\mathfrak{G})$; the reduction of \mathfrak{F}' to \mathfrak{G} defined by faithfully flat descent. According to [SGA3, VI_B.9.2.(xiii).b], the X-scheme $\mathfrak{G}'/\mathfrak{G}$ is of finite presentation. Since \mathfrak{Z} is locally isomorphic to $\mathfrak{G}'/\mathfrak{G}$ with respect to the fppf topology, the permanence properties of faithfully flat descent show that \mathfrak{Z} is

3

B. MARGAUX

affine of finite presentation over X [EGAIV, 2.7.1.(vi) and (xiii)]. According to Lemma 2.1, the map $\mathfrak{Z}(X) \to \varprojlim_n \mathfrak{Z}_n(X_n)$ is bijective.

Each \mathfrak{F}_n defines a point $z_n \in \mathfrak{J}(R_n)$ in a coherent way so that we get a point $z \in \mathfrak{J}(R)$. That point defines a reduction of the \mathfrak{G}' -torsor \mathfrak{F}' to a \mathfrak{G} -torsor \mathfrak{F} [Gd, III.3.2.1]. Since z maps to z_n , we have $\mathfrak{F}_{R_n} = \mathfrak{F}_n$ for each $n \geq 0$. Thus $\widehat{\mathfrak{F}}$ is algebraizable.

3. Representations of group schemes

3.1. The Chevalley case. Let G be a reductive split \mathbb{Z} -group scheme and we denote by G_{ad} its adjoint quotient. We remind the reader that the functor of automorphisms of G is representable by a smooth \mathbb{Z} -group scheme $\operatorname{Aut}(G)$ [SGA3, XXIV.1]. Furthermore there is an exact sequence of \mathbb{Z} -group schemes

$$1 \to G_{ad} \xrightarrow{int} \operatorname{Aut}(G) \xrightarrow{\pi} \operatorname{Out}(G) \to 1$$

where $\operatorname{Out}(G)$ is a constant group scheme. In other words, $\operatorname{Out}(G)$ is the \mathbb{Z} -group scheme attached to the abstract group $\operatorname{Out}(G)(\mathbb{Z})$. In the semisimple case $\operatorname{Out}(G)$ is finite (and in particular $\operatorname{Aut}(G)$ is affine). This is not the case in general. For example $\operatorname{Aut}(\mathbb{G}_m^2)$ is the constant \mathbb{Z} -group scheme attached to the abstract group $\operatorname{GL}_2(\mathbb{Z})$.

Let Γ be a finite subgroup of $\operatorname{Out}(G)(\mathbb{Z})$. We get a monomorphism of \mathbb{Z} -group schemes $\Gamma_{\mathbb{Z}} \to \operatorname{Out}(G)$ and consider the \mathbb{Z} -group scheme

$$\operatorname{Aut}_{\Gamma}(G) = \operatorname{Aut}(G) \times_{\operatorname{Out}(G)} \Gamma_{\mathbb{Z}}.$$

obtained by pullback. The above yields the exact sequence

$$1 \to G_{ad} \to \operatorname{Aut}_{\Gamma}(G) \xrightarrow{\pi} \Gamma_{\mathbb{Z}} \to 1.$$

Since $\Gamma_{\mathbb{Z}}$ and G_{ad} are smooth affine over \mathbb{Z} , so is Aut_{Γ}(G) [SGA3, VI_B9.2.(viii)].

Lemma 3.1. There exists a free \mathbb{Z} -module of finite type E, and a closed immersion \mathbb{Z} -group scheme homomophism $i: G \rtimes \operatorname{Aut}_{\Gamma}(G) \to \operatorname{GL}(E)$ such that the fppf quotient sheaf $\operatorname{GL}(E)/G$ (resp. $\operatorname{GL}(E)/(G \rtimes \operatorname{Aut}_{\Gamma}(G))$, $\operatorname{GL}(E)/G_{ad}$) is representable by a smooth affine \mathbb{Z} -scheme.

Proof. Since $G \rtimes \operatorname{Aut}_{\Gamma}(G)$ is an affine smooth \mathbb{Z} -group scheme, there exists a free \mathbb{Z} -module of finite rank E and a faithful linear representation $\rho : G \rtimes \operatorname{Aut}_{\Gamma}(G) \to \operatorname{GL}(E)$ which is a closed immersion [BT, 1.4.5].

The fppf sheaf $\operatorname{GL}(E)/(G \rtimes \operatorname{Aut}_{\Gamma}(G))$ is representable by a \mathbb{Z} -scheme [A, Th. IV.4.B] which is smooth and separated [SGA3, VI_B.9.2.(x) and (xii)]. The \mathbb{Z} -group scheme $G \rtimes G_{ad}$ is reductive. According to [CTS, 6.12.ii], the fppf sheaf $\operatorname{GL}(E)/(G \rtimes G_{ad})$ is representable by an affine smooth \mathbb{Z} -scheme and so are $\operatorname{GL}(E)/G$ and $\operatorname{GL}(E)/G_{ad}$. Since the map $\operatorname{GL}(E)/(G \rtimes G_{ad}) \to \operatorname{GL}(E)/(G \rtimes \operatorname{Aut}_{\Gamma}(G))$ is a $\Gamma_{\mathbb{Z}}$ -torsor, it is a finite étale cover. It follows that $\operatorname{GL}(E)/(G \rtimes \operatorname{Aut}_{\Gamma}(G))$ is affine [St, Tag 01YN, lemma 29.13.3]. Similarly the \mathbb{Z} -scheme $\operatorname{GL}(E)/\operatorname{Aut}_{\Gamma}(G)$ is affine. \Box

FORMAL TORSORS

3.2. An isotriviality condition. In this section, we assume that the base scheme S is noetherian and we are given a reductive S-group scheme \mathfrak{G} of constant type. Thus, there exists a Chevalley \mathbb{Z} -group scheme G such that \mathfrak{G} is locally isomorphic to G_S for the étale topology [SGA3, XXII.2.3, 2.5]. Also the fppf sheaf $\underline{\text{Isom}}(G_S, \mathfrak{G})$ is representable by a $\text{Aut}(G)_S$ -torsor $\text{Isom}(G_S, \mathfrak{G})$ defined in [SGA3, XXIV.1.8]. The contracted product $\text{Isomext}(G_S, \mathfrak{G}) := \text{Isom}(G_S, \mathfrak{G}) \wedge^{\text{Aut}(G)_S} \text{Out}(G)_S$ is a $\text{Out}(G)_S$ -torsor (ibid, 1.10) which encodes the isomorphism class of the quasi-split form of \mathfrak{G} .

Proposition 3.2. We assume that the $\operatorname{Out}(G)_S$ -torsor $\operatorname{Isomext}(G_S, \mathfrak{G})$ is isotrivial, i.e. there exists a finite étale cover S'/S such that $\operatorname{Isomext}(G_S, \mathfrak{G})(S') \neq \emptyset$. Then there exists a locally free coherent \mathcal{O}_S -module \mathcal{E} , and a closed immersion S-group scheme homomorphism $i : \mathfrak{G} \to \operatorname{GL}(\mathcal{E})$ such that the fppf quotient sheaf $\operatorname{GL}(\mathcal{E})/\mathfrak{G}$ is representable by a smooth affine S-scheme.

Remark 3.3. (a) If G is semisimple, Out(G) is a finite constant group so that the isotriviality condition is obviously satisfied.

(b) If S is a normal connected scheme, the isotriviality condition is satisfied since $\operatorname{Isomext}(G_S, \mathfrak{G}) \to S$ is a $\operatorname{Out}(G)_S$ -cover [SGA3, X.6.2 and 5.14].

Proof. The noetherian assumption reduces the problem to the connected case (in particular S is non-empty by convention [St, Tag 004R, 5.7.1]). We consider the Aut(G)_S-torsor $\mathfrak{E} = \operatorname{Isom}(G_S, \mathfrak{G})$ defined above; we have $\mathfrak{G} = \mathfrak{E}(G_S)$, i.e. \mathfrak{G} is the twist of G_S by the Aut(G)_S-torsor \mathfrak{E} .

The isotriviality assumption for the $\operatorname{Out}(G)_S$ -torsor $\mathfrak{F} = \mathfrak{E} \wedge^{\operatorname{Aut}(G)_S} \operatorname{Out}(G)_S$ means that there exists a finite étale cover S'/S such that $\mathfrak{F}(S') \neq \emptyset$. Grothendieck's theory of the algebraic fundamental group [SGA1] permits to assume that S' is connected and that $S' \to S$ is a Θ_S -torsor where Θ is a finite abstract group.

We have a bijection $H^1(\Theta, \operatorname{Out}(G)(S')) \xrightarrow{\sim} H^1(S'/S, \operatorname{Out}(G))$ [Gi, end of §2.2]. Since S' is connected, we have $\operatorname{Out}(G)(\mathbb{Z}) = \operatorname{Out}(G)(S')$ so that the action of Θ on $\operatorname{Out}(G)(S')$ is trivial. We have then a bijection

$$\operatorname{Hom}_{gr}\left(\Theta,\operatorname{Out}(G)(\mathbb{Z})\right)/\operatorname{Out}(G)(\mathbb{Z})\xrightarrow{\sim} H^{1}(\Theta,\operatorname{Out}(G)(S')).$$

It follows that the class of the $\operatorname{Out}(G)_S$ -torsor \mathfrak{F} is given by the conjugacy class of a homomorphism $\rho: \Theta \to \operatorname{Out}(G)(\mathbb{Z})$.

Let $\Gamma = \operatorname{Im}(\rho)$, it is a finite subgroup of $\operatorname{Out}(G)(\mathbb{Z})$. We consider the \mathbb{Z} group scheme $\operatorname{Aut}_{\Gamma}(G) = \pi^{-1}(\Gamma)$ as in the previous section. The isomorphism $\operatorname{Aut}(G)_S/\operatorname{Aut}_{\Gamma}(G)_S \xrightarrow{\sim} \operatorname{Out}(G)_S/\Gamma_S$ induces an isomorphism $\mathfrak{E}/\operatorname{Aut}_{\Gamma}(G)_S \xrightarrow{\sim} \mathfrak{F}/\Gamma_S$. The reduction of the $\operatorname{Out}(G)_S$ -torsor \mathfrak{F} to Γ_S defines then a reduction of the $\operatorname{Aut}(G)_S$ -torsor \mathfrak{E} to a $\operatorname{Aut}_{\Gamma}(G)_S$ -torsor \mathfrak{E}_{\sharp} [Gd, III.3.2.1]. \Box

Remark 3.4. (a) If G is semisimple, we can take in the proof $\Gamma = \text{Out}(G)(\mathbb{Z})$. We thus find a \mathcal{O}_S -coherent sheaf \mathcal{E} as desired which is $\mathfrak{G} \rtimes \text{Aut}(\mathfrak{G})$ -equivariant.

(b) Thomason has proven stronger statements than (1) for embedding group schemes in linear group schemes $[T, \S 3]$.

 $\mathbf{5}$

B. MARGAUX

4. Main statement

4.1. The following generalization of Grothendieck existence theorem strengthens Baranovsky's result [B, Th. 3.1].

Theorem 4.1. Let R be a complete noetherian local ring. Let X be a proper R-scheme and let \widehat{X} be the associated formal scheme. Let G be a Chevalley \mathbb{Z} -group scheme and let \mathfrak{G} be an X-form of G_X . Assume that the $\operatorname{Out}(G)_X$ -torsor $\operatorname{Isomext}(G_X, \mathfrak{G})$ is isotrivial. Then.

(1) The assignment $\mathfrak{P} \mapsto \widehat{\mathfrak{P}}$ induces an equivalence of categories between the category of \mathfrak{G} -torsors of X and that of $\widehat{\mathfrak{G}}$ -torsors over \widehat{X} .

(2) Assume that \mathfrak{G} is semisimple. For $\mathfrak{H} = \mathfrak{G}$, $\operatorname{Aut}(\mathfrak{G})$, $\mathfrak{G} \rtimes \operatorname{Aut}(\mathfrak{G})$ the assignment $\mathfrak{P} \mapsto \widehat{\mathfrak{P}}$ induces an equivalence of categories between the category of \mathfrak{H} -torsors of X and that of $\widehat{\mathfrak{H}}$ -torsors over \widehat{X} .

Proof. (1) By Lemma 2.2, we have only to show algebraization. The R-scheme X is proper, namely separated, of finite type, and universally closed. Since R is noetherian, X is locally noetherian. Also the morphism $X \to \operatorname{Spec}(R)$ is quasi-compact [St, 28.39.10] so that X is quasi-compact. The scheme X is quasi-compact and locally noetherian, hence is noetherian by definition [St, Tag 01OU, 27.5.1]. Without lost of generality we may assume that X is connected.

Proposition 3.2 provides a closed immersion $i: \mathfrak{G} \to \operatorname{GL}(\mathcal{E})$ where \mathcal{E} is a locally free coherent \mathcal{O}_X -module and such that the fppf quotient sheaf $\operatorname{GL}(\mathcal{E})/\mathfrak{G}$ is representable by a smooth affine X-scheme. Lemma 2.3 reduces the algebraization problem to the case of $\operatorname{GL}(\mathcal{E})$. Since X is connected, \mathcal{E} is locally free of rank r. We consider the GL_r -torsor $\mathfrak{Q} = \operatorname{Isom}(\mathcal{O}_X^r, \mathcal{E})$ over X. Torsion by \mathfrak{Q} (resp. $\widehat{\mathfrak{Q}}$) induces an equivalence of categories between the category of GL_r -torsors (resp. $\widehat{\operatorname{GL}}_r$ -torsors) and that of $\operatorname{GL}(\mathcal{E})$ -torsors (resp. $\widehat{\operatorname{GL}(\mathcal{E})}$ -torsors). It follows that the algebraization question is equivalent for GL_r -torsors over \widehat{X} are algebraizable. Thus algebraization holds for $\operatorname{GL}(\mathcal{E})$ and for \mathfrak{G} .

(2) Remark 3.4.(a) shows that the representation $\mathfrak{G} \to \operatorname{GL}(\mathcal{E})$ arises from a representation $\mathfrak{G} \rtimes \operatorname{Aut}(\mathfrak{G}) \to \operatorname{GL}(\mathcal{E})$. The same argument applies then to $\mathfrak{G} \rtimes \operatorname{Aut}(\mathfrak{G})$ and $\operatorname{Aut}(\mathfrak{G})$. \Box

4.2. Examples and applications. Let $d \ge 1$ be a positive integer. If we consider the case of $\mathfrak{G} = \operatorname{PGL}_n$ and use the dictionary given in [G, §7] between PGL_d -torsors and Azumaya algebras of degree d, we get an algebraization statement for Azumaya algebras of degree d we obtain the following.

Corollary 4.2. There is an equivalence of categories between Azumaya algebras over X (of degree d) and formal degree d Azumaya algebras over \hat{X} (of degree d).

Similarly, by considering the case of the Chevalley \mathbb{Z} -group scheme of type G_2 , we obtain an equivalence of categories octonion algebras over X and formal octonion algebras over \hat{X} [Co, App. B].

FORMAL TORSORS

More generally for the group scheme $\operatorname{Aut}(G)$ of a semisimple Chevalley \mathbb{Z} -group G we have the following fact as special case of Theorem 4.1.(2).

Corollary 4.3. There is an equivalence of categories between the groupoid of X-forms of G_X and that of formal \hat{X} -forms of \hat{G}_X .

In particular, we obtain the following fact.

Corollary 4.4. Assume that we are given a formal \widehat{X} -group scheme $\widehat{\mathfrak{G}}$ such that each \mathfrak{G}_n is an X_n -form of G_{X_n} . Then $\widehat{\mathfrak{G}}$ is algebraizable in a semisimple X-group scheme \mathfrak{G} which is a X-form of G_X .

References

- [A] S. Anantharaman, Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1, Mémoires de la Société Mathématique de France 33 (1973), 5-79.
- [B] V. Baranovsky, Algebraization of bundles on non-proper schemes, Trans. Amer. Math. Soc. 362 (2010), 427-439.
- [BT] F. Bruhat, J. Tits, Groupes réductifs sur un corps local : II. Schémas en groupes. Existence d'une donnée radicielle valuée, Publications Mathématiques de l'IHÉS 60 (1984), 5-184.
- [CTS] J.-L. Colliot-Thélène, J.-J. Sansuc, Fibrés quadratiques et composantes connexes réelles, Math. Annalen 244 (1979), 105–134.
- [Co] B. Conrad, Non-split reductive groups over Z, Autour des schémas en groupes, vol II, Panoramas et Synthèses 46 (2015), 193-253.
- [EGAI] A. Grothendieck, J.-A. Dieudonné, Eléments de géométrie algébrique. I, Grundlehren der Mathematischen Wissenschaften 166; Springer-Verlag, Berlin, 1971.
- [EGAIII] A. Grothendieck (avec la collaboration de J. Dieudonné), Eléments de Géométrie Algébrique II, Publications mathématiques de l'I.H.É.S. no 11 and 17 (1961-1963).
- [EGAIV] A. Grothendieck (avec la collaboration de J. Dieudonné), Eléments de Géométrie Algébrique IV, Publications mathématiques de l'I.H.É.S. no 20, 24, 28 and 32 (1964 - 1967).
- [Gi] P. Gille, Sur la classification des schémas en groupes semi-simples, "Autour des schémas en
- groupes, III", Panoramas et Synthèses **47** (2015), 39-110. [Gd] J. Giraud, *Cohomologie non-abélienne*, Springer (1970).
- [G] A. Grothendieck, Le groupe de Brauer I: Algèbres d'Azumaya et interprétations diverses, Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, 1968, 46-66.
- [Ha] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Springer.
- L. Illusie, Grothendieck's existence theorem in formal geometry, with a letter of Jean-Pierre Serre, Math. Surveys Monogr. 123 (2005), Fundamental algebraic geometry, 179-233, Amer. Math. Soc., Providence, RI.
- [SGA1] Séminaire de Géométrie algébrique de l'I.H.É.S., 1960-1961, Revêtements étales et groupes fondamental, dirigé par A. Grothendieck, Lecture Notes in Math. 151-153. Springer (1970).
- [SGA3] Séminaire de Géométrie algébrique de l'I.H.É.S., 1963-1964, Schémas en groupes, dirigé par M. Demazure et A. Grothendieck, Lecture Notes in Math. 151-153. Springer (1970).
- [St] Stacks Project, https://stacks.math.columbia.edu
- [T] R. W. Thomason, Equivariant resolution, linearization, and Hilbert's fourteenth problem over arbitrary base schemes, Adv. in Math. 65 (1987), 16-34.

7