ON CONNECTED SUMS OF FOUR-DIMENSIONAL MANIFOLDS

STEFAN BAUER

ABSTRACT. The monopole map defines an element in an equivariant stable cohomotopy
group refining the Seiberg-Witten invariant. A gluing theorem for this stable cohomotopy
invariant gives new results on diffeomorphism types of decomposable manifolds.

1. INTRODUCTION

For a closed Riemannian four-manifold (X, g) the choice of both an orientation or(X) and
a spin‘-structure s gives rise to an S'-equivariant monopole map ¥ = ‘I’g,or( X),s between
certain affine Hilbert spaces. The moduli space of monopoles is obtained as the quotient of
the zero-set of this map by the S'-action. It serves as the basic geometric ingredient in the
definition of the integer valued Seiberg-Witten invariants for four-dimensional manifolds
[13]. For this definition it actually suffices to consider moduli spaces of monopoles up to
certain bordisms. If the relevant Hilbert spaces were finite dimensional, the Pontrijagin-
Thom construction would relate the corresponding bordism groups to stable homotopy
classes of maps. This analogue suggests to interpret Seiberg-Witten invariants as invariants
of some kind of homotopy class of the monopole map W.

Theorem 1.1. The monopole map ¥ defines an element in an equivariant stable cohomo-

topy group

%1 (Pic’(X); ind(D)),
which is independent of the chosen Riemannian metric. For b > dim(Pic®(X)) + 1, a
homology orientation determines a homomorphism of this stable cohomotopy group to 7,
which maps [V] to the integer valued Seiberg- Witten invariant.

Here Pic®(X) denotes the Picard torus H'(X;R)/H'(X;Z). The Dirac operator asso-
ciated to the chosen spin®-structure defines a virtual complex index bundle ind(D) over
the Picard torus, and b = b, (X) denotes the rank of the positive part of the intersection
form on X. The suffix H stands for a universe for the S'-action, that is a Hilbert space
with an orthogonal S'-action. Its finite dimensional invariant linear subspaces provide the
suspension coordinates in the construction of equivariant cohomotopy groups.

The stable cohomotopy invariant in the theorem does not capture all the features of Seiberg-
Witten theory. The reason is that the restriction of the monopole map to the S!-fixed point

set is quite special: It is linear. It seems that most, if not all, of the known features of
1



2 STEFAN BAUER

Seiberg-Witten theory can be recaptured in the stable cohomotopy setting by looking at ¥
up to equivariant homotopy relative to the fixed point set. In case b > dim(Pic’(X)) + 1
these relative homotopy classes are one-to-one with the homotopy classes which form the
stable cohomotopy groups above. In general the stable relative homotopy classes don’t
admit a natural group structure, but only form a set. Fixing a generic metric, one can
define a map of such a set to the integers. The map changes as one changes the metric. In
this way chamber structures appear in Seiberg-Witten theory.

The above definition of a refined version of the Seiberg-Witten invariants grew out of my
attempts to understand Furuta’s work on the %—Conjecture [9]. Actually, when talking to
Furuta about my results, I learnt that he was independently working in a similar direction
[10]. The main emphasis of the present article lies in the fact that this refined version
actually contains more information than the integer valued Seiberg-Witten invariants. This
is because the stable cohomotopy invariant defined by the monopole map behaves nicely
when taking connected sums. Recall that a spin®-structure on a connected sum uniquely
decomposes as the sum of spinf-structures on the respective summands.

Theorem 1.2. For a connected sum X = Xo#X1 of 4-manifolds, the stable equivariant
cohomotopy invariant is the smash product of the invariants of its summands

[Wx] = [Wxo] A [¥x,]-
Here are two sample applications:

Corollary 1.3. Let K denote the K3-surface and suppose there is an oriented diffeomor-
phism X1H#KH#K = Xo#H KH#K, where the X; are simply connected Kdhler manifolds with
bT = 3mod4. Then the integer Seiberg- Witten invariants of X1 and Xo are the same mod 2.
More precisely, there is an isometry of second cohomology groups with integer coefficients
of the X; which maps the characteristic elements of X1 with odd Seiberg- Witten number to
their counterparts in the cohomology of Xs.

Corollary 1.4. Suppose the connected sum #.",FE; of simply connected minimal elliptic
surfaces of odd geometric genus is diffeomorphic to a connected sum #7_1F; of elliptic
surfaces. If m < 4, then n = m and the F; and the E; are diffeomorphic up to permutation.

2. FREDHOLM MAPS AND STABLE HOMOTOPY

A Fredholm map f : H — H in this paper will be a compact perturbation of a linear
Fredholm operator between separable Hilbert spaces. This means that f is of the form
f = 1+ ¢, where [ is linear Fredholm and the continuous map ¢ maps bounded sets into
compact sets.

A theorem, which goes back to A. S. Schwarz [11], associates to certain such Fredholm
maps stable homotopy classes of maps between finite dimensional spheres: Let D’ C H' be
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a disc with boundary dD’. Two continuous maps f; : 0D’ — H \ {0} are called compactly
homotopic relative to [, if there is a continuous and compact map ¢ : 9D’ x [0, 1] — H with
fi=1+c¢ forie {0,1} and

fe(R) =1(R) + a(h) #0
for all t € [0,1] and ' € OD'.

Theorem 2.1. The compact homotopy classes of continuous Fredholm maps relative to |
are in one-to-one correspondence with elements of the stable homotopy group ngdl(so) of
the sphere.

This correspondence can be described as follows: Any compact map ¢ on the bounded
set D’ can be uniformly approximated by maps ¢, mapping to finite dimensional linear
subspaces V,, C H containing im(l)L. The correspondence associates to [ + ¢ the maps
fn/l|fnll with f,, being the restriction of [ + ¢, to I=1(V,,) N OD’. A detailed proof of this
theorem can be found in [2], p.257f.

In this paper, this concept will be used with a few modifications: Firstly, we will consider
Fredholm maps which extend continuously to maps

ft.gt - gt

between the one-point completed Hilbert spheres. Equivalently, we suppose f to satisfy
a boundedness condition: The preimages of bounded sets are bounded. Secondly, we will
consider equivariant maps, which are furthermore parametrized over some space.

First a short discussion of the boundedness condition: In finite dimensions this condition
is equivalent to f being proper, i.e. f is closed and the preimage of any point in the target
space is compact. Here is a proof that in the setting of Fredholm maps the boundedness
condition at least implies properness:

Lemma 2.2. Letl: H — H be a continuous linear Fredholm map between Hilbert spaces
and let ¢ : H — H be a compact map. Then the the restriction of the map f =1+ c to any
closed and bounded subset A C H' is proper.

In particular, if preimages of bounded sets in H under the map f are bounded, then f is
proper and extends to a proper map f1 : H'" — H* between the one point completions.

Proof. Let p : H — kerl denote the orthogonal projection. Then f|4: factors through an

injective, closed and thus proper map A" — H x q(A’) x p(A’), a’ — (I(d’),q(d’), p(a’)), a

homeomorphism (h, s,e) — (h+ s, s,e) and the projection H x q(A’) x p(A’) — H which is
proper as the two extra factors are compact.

Now we invoke the boundedness condition: As the preimages of points in H are bounded,
they are compact by what was already shown. Let h € H be in the closure of f(A’),
with A’ closed in H'. By the boundedness condition, A is already in the closure of f(A'y),



4 STEFAN BAUER

where A’y is a bounded closed subset of A’. From the first part of the proof it follows
that h is contained in f(A'y) € f(A’). Thus f is proper. But properness extends to
fT: If, for a closed A’ ¢ H'", the closure f*(A’) contains the point at infinity, then
fH(A)YNH = f(A'n H') is unbounded. Since f is a compact perturbation of a continuous
linear map, A’ N H' is unbounded and thus contains the point at infinity in its closure. In
particular, f is closed and thus proper. O

We are now going to associate to a Fredholm map satisfying the boundedness condition a
stable homotopy class of maps between spheres. The next lemma will provide the technical
foundations. Let’s start with fixing notation:

Let W C H be a finite dimensional linear subspace and let W’ = [=1(W) be its preimage
under the linear Fredholm map I. Let S(W+) denote the unit sphere in the orthogonal
complement W+ of W. As in finite dimensions, the inclusion W+ — H*\ S(W1) is a
deformation retract. The retracting map py can be described as follows: The one-point
completed Hilbert space H™ identifies with the unit sphere S(R® H) = S(Re W ¢ W)
in R @ H via the map h + (k% + 1)71(h? — 1,2h). In this identification, the subspace
W maps to the "equatorial” subsphere S(R® W & 0) C S(R® W & W) and S(WH)
maps to the complementary ”polar” subsphere S(0 @ 0 @ W+). The retracting homotopy
shrinks the latitutes in S(RGW & WL)\ S(060® W) to the equator. The retraction py/
has the following property: For h € H \ W, the vector py (k) differs from the orthogonal
projection pryy(h) to W by a positive scalar factor pyw (k) = A(h)prw (h).

Lemma 2.3. There are finite dimensional linear subspaces V- C H, such that the following
statements hold:

1. The subspace V' spans, together with the image Im(l) of the linear Fredholm map I,
the Hilbert space H = Im(l) + V.

2. For WOV withW =U LV, the restricted map f|y+ : W't — HY misses the unit
sphere S(W+) in the orthogonal complement of W.

3. The maps pr\W/Jr and id;} A pvfm, are homotopic as pointed maps

Wt2utavt s UtAvVT=wt.

Indeed, if H is separable, then the subspaces V' satisfying these three conditions are cofinal
in the direct system of finite dimensional subspaces in H.

Proof. The preimage f!(D) of the unit disc D in H is bounded in H’. So the closure C of
its image under the compact map c is compact in H. Cover C by finitely many balls with
radius € < i, centered at points v;. Together with the orthogonal complement to the image
of the linear Fredholm map [, these points v; span a finite dimensional linear subspace V' of
H. Let’s check the second condition: Suppose w € S(W+) is in the image of f|y". Then
f Y w)n W't ¢ fYDy(H)) will be mapped by flw = (W) 4 ¢(W) to a subspace of
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W + C. So w will be contained both in S(W+) and W + C. However, these two subsets of
H are at least 1 — e > % apart.

We will identify W’ with the orthogonal sum U L V' via the map
w' = (Lo (1 —pry:)(w'), pry:(w')).

To prove the last claim, it suffices to show that idg+ A py f \;}, and f PVE/’ are homotopic as
maps W't — HT\S(W1). Let D' C H' be a disk, centred at the origin, which contains the
preimage f~1(D) of the unit disk in H. Consider the homotopy h : D'x[0,3] — HT\S(W+),
defined by:

I+ ((1 —t)idyg +t-pry)oc for 0 <t <1,
ht: l—l—p’r‘VoCO((2—t)idvr—{—(t—1)p7‘vv fOI‘lStSQ,
pryol+ (3 —=t)pry + (t —2)py)o(l+c)opry for 2 <t < 3.

Note that the image during the homotopy stays within an e-neighbourhood of W. The
homotopy is chosen in such a way that the image of the sphere S” = D’ N W' during the
homotopy stays away not only from the unit sphere S(W+) in W+, but from the whole
of W+. Before we check this, let’s consider the consequences: Since H* \ (D N W) is
contractible, the homotopy h; can be extended to the complement of D’ MW’ in W'T, thus
defining a homotopy as claimed.

Let s’ be an element in the sphere S’. We will track the path its image will take during
the homotopy. At starting time, it is mapped to f(s’), which is of norm greater or equal
to 1, and furthermore, in an e-neighbourhood of W. In particular, its distance form W+ is
at least 1 —e > %. During the first part of the homotopy, the image will move at most a
distance of ¢, so it will definitely stay away from WL,

From time ¢t = 1 on one has pry o hy(s') = pry o I(s'). Since pry (W) = 0 by definition,
we are reduced to checking the case pry o l(s') = 0, that is for s’ € S’ N V’. But for such
an element, the image during the second part of the homotopy stays fixed and during the
third part moves on a straight line between pry (f(s')) and py (f(s')), which are nonzero
vectors in V, differing by a positive real factor. This concludes the proof of 2.3. O

In particular, the restrictions f |l*1(v) to finite dimensional linear subspaces V' C H as in
2.3 together define an element in the colimit of pointed homotopy classes

R + : -1 + g+ 1
1) = coliml(7 1) ] € colim {1~ (V)" HE\ (V)
The homotopy equivalences V* C (Ht\ S(V1)) combine to an isomorphism

minar(8") = golim [(I7H(V))*, VI 5 colim [(17H(V)*, H \ S(V)].

In this way [f] can be identified as an element in the stable homotopy group st (S%):
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Corollary 2.4. Let f =1+ c: H — H be a compact perturbation of the linear Fredholm
map | such that the preimages of bounded sets under the map f are bounded. Then f defines
an element [f] € mst,,(S°). O

In the construction above the linear map [ seems to play an essential role. In fact it will
turn out that the homotopy class [f] basically is independent of the choice of decomposition
of fas asum f =1+ c. In order to show this, we will have to consider a parametrized
version of the above situation and reach back some way:

Let Y be a finite CW-complex. The group KO°(Y) can be described as follows (cf. [12]):

A (real) Hilbert bundle over Y is a locally trivial fiber bundle with fiber a separable Hilbert
space H, whose structure group is the group of linear isometric bijections, equipped with the
norm topology. A cocycle A = (E',1, E) over Y consists of two Hilbert bundles over Y and a
Fredholm morphism [ : B/ — E between them. Here a Fredholm morphism is a continuous
map which is fiber preserving and fiberwise linear Fredholm over Y. Two cocycles \; over
Y for i € {0,1} are homotopic, if there is a cocycle A over Y x [0, 1] such that the restriction
Aly x{sy i isomorphic to A\;. A cocycle (E',[, E) is trivial, if [ is invertible. Two cocycles
Ao and A; are equivalent, if there is a trivial cocycle 7 such that A\g & 7 and \; & 7 are
homotopic. The group KO°(Y) is the set of equivalence classes of cycles with addition
given by the Whitney sum of cocycles.

Let f: E' — E be a continuous map between Hilbert bundles of the form f = [+ ¢, where
A= (E',l,E) is a cocycle over Y and c is fiber preserving and compact, i.e. maps bounded
disk bundles in E’ to subspaces in E, which are proper over Y. Let’s call such a map f a
Fredholm map overY. The boundedness condition in this parametrized situation reads: The
preimages of bounded disk bundles are contained in bounded disk bundles. An equivalent
condition is: The Fredholm map over Y extends to the fiberwise one-point completions of
E’ and E.

Every Hilbert bundle over the compact space Y is trivial, i.e. £ =Y x H by the theorem
of Kuiper [8]. The boundedness condition on f thus translates to the condition that the
composed map pryof : E' — H extends to the one-point completions, defining a continuous
map

(preo /)T T(E) — HY

from the Thom space of the Hilbert bundle E’ to the Hilbert sphere H™.

The stage is now set for the definition of stable cohomotopy groups with coefficients: Let A
be a finite dimensional virtual vector bundle over Y. Suppose we are given a presentation
A = Iy — F; with vector bundles F; such that F} 2 Y x V is a trivial vector bundle with
V a finite dimensional linear subspace of a Hilbert space H. With T Fy denoting the Thom
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space of the bundle Fj, stable cohomotopy groups are defined as the colimits

74 (Y;A) = colim [UTATEy, UTAVTASY
vcv+
= colim [WH AT, WT A S
WCH

of pointed homotopy classes of maps, where the colimits are over the finite dimensional
linear subspaces U C V+ € H and W = U +V C H, respectively. Here the connecting
morphism for W C W, with Uy = W+ N W is the suspension map (idU1+ A .). The symbol
T\ stands not anymore for a space, but for a spectrum.

The reason for keeping the Hilbert space H in the notation lies in the equivariant version:
For a compact Lie group G we fix a G-universe H, i.e. a real Hilbert space H equipped with
an orthogonal G-action such that H contains the trivial representation and, furthermore,
the space of equivariant morphisms Homg(V, H) for a real G-module V either is zero or
infinite dimensional. Let A = Fy — F} be a virtual equivariant vector bundle over a finite
G-CW complex Y such that F; 2 Y x V is a trivial bundle with V' C H a finite dimensional
subrepresentation of G. Stable equivariant cohomotopy groups are the colimits

men(Y3N) = colim [U¥ ATFy, UTAVEASTE
= colim [WHATXA, Wt A<
WCH

of pointed equivariant homotopy classes of maps, where the colimit now is over the finite
dimensional subrepresentations U € V+ € H and W = U + V C H, respectively. This
definition of stable equivariant cohomotopy groups differs a little from the usual one as we
allow for coefficients A in the equivariant K O-group K O%(Y) and our universe H need not
contain all irreducible representations.

Let f : E' — E be a G-equivariant Fredholm map between G-Hilbert space bundles over
the finite G-CW complex Y such that £ =2 Y x H is a trivialised bundle. Let f =1+ ¢
be a presentation of f as a sum of a linear Fredholm morphism and a compact map. For
sufficiently large linear G-subspaces V' C H, the cocycle A = (E', 1, E) admits a presentation
as virtual index bundle

A=Fy(V)—F(V)

with equivariant vector bundles Fy(V) = (pry ol)™Y(V) € E' and Fy(V) =Y x V. The
following lemma parallels 2.3. Its proof is omitted, as it is almost verbatim the same.

Lemma 2.5. There exist finite dimensional linear G-subspaces V- C H such that the fol-
lowing hold:

1. For every y € Y, the subspace V is mapped onto coker (I, : E; — H). In particular,
Fo(V) is a bundle over Y and A = Fo(V) — F1(V') represents the virtual index bundle
ind(l).
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2. For any G-linear W = W' +V with W' C V| the restricted map f(W)* = (prg o
f) ;0<W) : TEy(W) — H* misses the unit sphere S(W+=).
3. The maps pw f(W)T and idy,+ A py f(V)T are G-homotopic as pointed maps

F (W)t =Wt AFR,(W)t WAVt =w*t. O

Theorem 2.6. An equivariant Fredholm map f =1+ c: E' — E between G-Hilbert space
bundles over Y with E =Y x H, which extends continuously to the fiberwise one-point
completions, defines a stable cohomotopy Euler class

[f] € WOG,H(YQ ind1).

This Fuler class is independent of the presentation of f as a sum.

Proof. The only statement left to prove is the final one. Note that the restriction maps

m&,m (Y > 0,11, A) = g g (Y < {i}s Aly xqiy))

are isomorphisms. Thus a homotopy of cocycles naturally induces an isomorphism of the
corresponding cohomotopy groups. (An extension of this statement to equivalences of co-
cycles needs further discussion of universes; it seems unnecessary in the present context.)
If f=1+c=1+c are two different presentations as a sum, then the constant homotopy
f=fi=0—-t)(l+c)+t(l'+) defines an Euler class in the cohomotopy group of Y x [0, 1],
which restricts for i € {0,1} to the Euler classes defined via the respective presentations of

f. O
2.7. Remarks.

e Indeed any element in 77%’ y(Y;ind 1) can be realized by a map between Hilbert space
bundles satisfying the boundedness condition: Take a finite dimensional representative
pT : TFf — V7T. After possibly stabilizing further, this map is homotopic to one
where the preimage of the basepoint consists only of the base point. Now take the
smash product with the identity on an infinite dimensional Hilbert sphere and remove
the base point.

e The stable cohomotopy Euler class has been defined and investigated by Crabb and
Knapp [3]. It is related to the standard Euler class the following way: A section of an
oriented vector bundle £ over Y can be regarded as a map o : Y x R? — ¢, Choosing
an bundle isomorphism £ &7 =2 Y x R", this section and the projection to the fibers
of a trivialized bundle together define a map (o +id,))* : n* — (Y x R")" — 5™ and
thus an element of 7%(Y; —¢). The choice of a Thom class u € H"(Y; &) = H" (D¢, S€)
corresponds to choosing an orientation of £. The standard Euler class is defined by
e(€) = o*(u) € H"(Y). A generator 1 € H%(SY) gives rise to the Hurewicz map
70(Y; =€) — HO(Y; —€), which associates to a stable pointed map o : T(—¢) — S°
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the image 0*(1). Using the cup product pairing H*(Y; —¢) x H*(Y;¢&) — H*(Y'), the
singular cohomology Euler class and the stable cohomotopy one are related by

e(6) = o°(1)

e The approach of 2.1 and the one outlined above obviously are closely related: If
f=1+k:H — H admits a priori estimates and D'\ 9D’ C H' contains f~1(0), then
its compact homotopy class in C (0D, H \ {0}) corresponds to [f] € 7% (pt;indl) =
i (S9)-

3. THE MONOPOLE MAP

Let ST and S~ denote the Hermitian rank-2 bundles associated to the given Spin¢ structure
on X and let L denote their determinant line bundle. Clifford multiplication 7*X x S* — SF
defines a linear map p : A2 — Endg(S™) from the bundle of 2-forms to the endomorphism
bundle of the positive spinor bundle. The kernel of this homomorphism is the subbundle A~
of anti-selfdual 2-forms. Its image is the subbundle of trace-free Hermitian endomorphisms.
For a spin‘-connection A, denote by D4 : T'(S*) — T'(S7) its associated Dirac operator.
The monopole map ¥ is defined for triples (A, ¢,a) of a spin®-connection A, a positive
spinor ¢ and a 1-form a on X by

¥ : Conn x (r(s+) B Ql(X)) —  Conn x (r(s—) et (X) e HY(X;R) & QO(X)/R)
(A,p,a) — (A, Dagad, Fi , — 0(®), anarm, d*a).

Here o(¢) denotes the trace free endomorphism ¢ ® ¢* — %|<7§|2 -id of ST, considered via the
map p as a selfdual 2-form on X. As a map over the space Conn of spin-connections, the
monopole map is equivariant with respect to the action of the gauge group G = map(X, S1).
This group acts on spinors via multiplication with v : X — S', on connections via addition
of fudu~! and trivially on forms. Fixing a base point * € X, the based gauge group Gy is
obtained as the kernel of the evaluation homorphism map(X, S') — St at .

Let A be a fixed connection. The subspace A + ker(d) C Conn is invariant under the free
action of the based gauge group with quotient space isomorphic to

Pic’(X) = HY(X;R)/H (X, Z).
Let A and C denote the quotients
A = (A+kerd) x (r(s+) @ Ql(X)) /Go
C = (A+kerd)x (r(s—) &0t (X)s HY(X;R) & QO(X)/R) /Go
by the pointed gauge group. Both spaces are bundles over Pic’(X) and the quotient
U=0/Gy: A—C

of the monopole map is a fiber preserving, S'-equivariant map over Pic’(X).
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For a fixed k > 4, consider the fiberwise Li Sobolev completion A; and the fiberwise L%fl
Sobolev completion Ci_1 of A and C The monopole map extends to a continuous map
U =V : A — Cp_y over Pic’(X). It is the sum ¥ = [ + c of the linear Fredholm map
| =Das®d" &pry,,, ®d* and a term c: (¢,a) — (F5,0,0,0) + (a-¢,0(¢),0). This map c
is compact as the sum of the constant map FX and the composition of a multiplication map
A x A — Cg, which is continuous for £ > 2, and a compact restriction map Cp — Cp_1.
The following statement and its proof are only slight variations of standard ones in Seiberg-
Witten theory, compare e.g. [7]:

Proposition 3.1. Preimages ¥~ 1(B) C A of bounded disk bundles B C Cyp_1 are con-
tained in bounded disk bundles.

Proof. 1t is sufficient to prove this fiberwise for the Sobolev completions of the restriction
of the monopole map to the space {A} x (T'(S1) & ker(d*)), which maps to {A} x (['(S™)®
QT (X) @ HY(X;R)). Using the elliptic operator D = D4 + d* and its adjoint, define the
L%—norm via the scalar product on the respective function spaces through

(0 )i=(s Yo+ (DD )i, (.,.)0:(.,.):/)(< o>l

The norms for the LY-spaces are defined correspondingly. Let W(A, ¢,a) = (A, ¢, b, aparm) €
Cr—1 be bounded by some constant R. The Weitzenbock formula for the Dirac operator
associated to the connection A + a = A’ reads

1

1
DZ/DA/ = VZ/VA/ + -5 — §FA|—”

4
with s denoting the scalar curvature of X. As a consequence, there is a pointwise estimate:

Al = 2< Vi Vaug ¢>-2<Vup, V>
< 2 < VZ/VA/¢’¢ >

= 2<DyDud— 16+ %Fj{,qf),qf) >
= <2Dhe— o+ (b+0(9)6,6 >
In particular, there are inequalities
ABP + 216 + 301" < <2Dhpd> + <26 >+ < bpé >

< 21D3ell + llal s lel k=) - 8] + [[Bll - 9]
< (0t llallellellz - 16l + lbllz - 16F),

with a constant c¢; by applying the Sobolev embedding theorems. To get a bound for

1

the remaining term, use a Sobolev estimate ||allp~ < c2flall;» for some p > 4 and the

elliptic estimate [|af|p» < 03(||d+a||Lg + ||@harm|])- Combination with the equality dta =
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b— Ff + o(¢) then leads to an estimate

lall= < calllanarmll + Bllgz + 1E Iz + o (@)llge)
< es(lanarmll + Bllz + 1EF gz + [16]12).

At the maximum of |$|?, its Laplacian is non-negative. So, putting everything together,

one obtains a polynomial estimate of the form

18]l < eR((1+ B[@lluoe + 16l1200 + 161300 ) + Nl 19113

Combining the last two estimates, one obtain bounds for the [L°°-norm and a fortiori for
the L{-norm of (¢, a) for every p > 1.

Now comes bootstrapping: For i < k, assume inductively L?f ;-bounds on (¢, a) with p =
2k—1 To obtain LP-bounds, compute:

(& allfr = 11(¢:a)ll{z = ll(Dagd,d"a)llfs
= ll(e.0, anarm)l7>  +1(ad, =F5 = a())llf» -

The latter equality holds as D4 = D4 + a. The summands in the last expression are
bounded by the assumed L?f ,-bounds on (¢, a). O

The proposition in particular implies that the assumptions of 2.6 are satisfied for the mono-
pole map W. The conclusion is spelled out in the following

Corollary 3.2. The monopole map defines an element [V] in the stable cohomotopy group
mo1 g (Pic®(X); A) = g g (Pic®(X);ind(D)),

where H is a Sobolev completion of the sum ['(S™ @ A%(T*X)) of the vector spaces of
negative spinors and selfdual two-forms on X. The virtual index bundle X = ind(D) © H
is the difference of the complex vitual index bundle of the Dirac operator over Pic®(X) and
the trivial bundle Hy with fiber HJQF(X; R), which for a chosen metric on X may be viewed
as the space of selfdual harmonic two-forms. The St-action on ind(D) is by multiplication
with complex numbers and on Hy is trivial. O

There is a comparison map from the stable equivariant cohomotopy group above to the
integers, which relates the element defined by the monopole map with the integer valued
Seiberg-Witten invariant associated to it:

Proposition 3.3. Let X be a closed 4-manifold with b = by > by + 1. The choice of
a homology orientation (i.e. an orientation of H'(X;R) @& H3(X;R)) then determines a
homomorphism t : ngvH(PicO(X); ind(D)) — Z, which maps the class of the monopole map
to the integer valued Seiberg- Witten invariant.
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Proof. Let S(A\)T denote the sphere spectrum (with a disjoint base point at the zero
level) of the virtual index bundle of the Dirac operator over Pic’(X). Consider the pair
(Pic’(X)*,S(\)*") as the pair of virtual disc and sphere bundle. one can identify stable
equivariant cohomotopy groups:

w1, (T(N),pt) = w51 5 (Pic”(X)*, S(A)F).
The connecting homomorphism

A (ST = me y (Pic®(X)H, S(V))

in the long exact cohomology sequence for the pair (Pic’(X)*, S(A)*) is an isomorphism for
b > by+1. This is because by dimension reasons the groups 7%, ,;(Pic’(X)*) have to vanish
for i > dim(Pic’(X)). So in this case the monopole map is répresented by an equivariant
pointed map ¥ : S(A)TA(C*@R™)T — (SP"HA(C*@R™)* for some n and m. By abuse
of notation we still call the spaces on either side S(\)T and S, respectively. Now apply
reduced equivariant cohomology to the map . Since the S'-action on S()) is free, the
equivariant cohomology group ﬁ;l(S (A)1) identifies with the nonequivariant cohomology
H*(P(\)) of the quotient, which is a projective bundle over Pic’(X). An orientation of
H'(X;R) together with the standard orientation of complex projective space defines an
orientation class [P())] of this manifold. Considering the sphere S®~1 as the unit sphere in
HJZr (X), the chosen homology orientation of X and the orientation of Pic’(X) determine
the orientation of S*~! and thus a generator in dimension b — 1 of the reduced equivariant
cohomology of S*~1 as a free H%, (%) = Z[r]-module of rank one. The homomorphism ¢
associates to ¢ the degree zero part of ¥*(320° #*) N [P(A)]. Using the Kuranishi model for
the monopole map as in [9], it is straightforward to check that this integer indeed gives the
Seiberg-Witten invariant. O

If the first Betti number of X vanishes, the group 7%, ,(Pic®(X);ind(D)) simplifies: The
index of the Dirac operator is a complex vector space of complex dimension
c(s)? — signature(X)

8 )
where c(s) is the first Chern class of the spinor bundles S* associated to the spin‘-structure
5.

d:

Proposition 3.4. For ¢ > 1, the stable equivariant cohomotopy groups WE,I’H(*; Cd)) are
1somorphic to the nonequivariant stable cohomotopy groups ﬂi’l(CPd_l) of complex pro-
jective (d — 1)-space. In particular, if X is a closed j-manifold with by = 0 and by > 1,
then the monopole map determines an element in w1 (CP4™1).

Proof. The long exact stable cohomotopy sequence for the (D(C?), S(C?)) consisting of the
unit disk and sphere in the complex vector space C¢ allows to identify for i > 1 the groups
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ng,c(*Q C%)) with ﬁg_l’lc(S(Cd)ﬂ. But for the free S'-space S(C?) equivariant cohomotopy

is isomorphic to the nonequivariant cohomotopy of its quotient [4]. O

To analyse this cohomotopy of projective spaces a little further, consider the Hurewicz map
T(Y) — H(Y)
f1 = f(),
with 1 € H'(S%) = H°(S®) defined by the orientation. Rationally it is an isomorphism,
as rationally the sphere spectrum is an Eilenberg MacLane spectrum by Serre’s theorem.
However, nonrationally, the Hurewicz map has both kernel and cokernel. An estimate
for the cokernel in each degree was obtained in [1]. The main result of [10] uses similar
methods. In what follows, the focus will be on the kernel of the Hurewicz map. In the case
of the monopole invariant of a 4-manifold, its image under the Hurewicz map is detected
by the integer valued Seiberg-Witten invariants. So to show that the stable cohomotopy
invariants are indeed effective generalizations, one has to detect torsion in the kernel of the
Hurewicz map. In the following lemma the results are ordered according to k, which can
be interpreted as the "expected dimension of the moduli space”, i.e. the dimension of the
preimage of a generic point in the sphere.

Lemma 3.5. The Hurewicz map h??—2=F . g2d=2=k(Ccpi-1) - H2d-2-k(CPI)

for k =0 is an isomorphism.

for k =1 has kernel isomorphic to Z/gcd(2,d).

for k = 2 has kernel isomorphic to Z/gcd(2,d) and cokernel isomorphic to Z/gcd(2,d — 1).
for k = 3 has kernel isomorphic to Z/l with | = ged(24,d —3)/ged(2,d — 1) for d > 2,
and l =24 for d = 2.

4. for k =4 has trivial kernel.

w D= o

Proof. The proof employs the Atiyah-Hirzebruch spectral sequence with Fo-term
H*(Y;7*(pt)) = m*(Y)

and uses the following facts:

1. The attaching map of the 4-cell in CP? is the Hopf map, which is the generator n of
7l (pt) =2 Z/2.

2. The group 7~ 2(pt) = Z/2 is generated by 0.

3. The attaching map of the 8-cell in HP? is again a Hopf map, which is stably the generator
v of 773(pt) = Z/24. Furthermore, n® = 12v.

4. The stable homotopy groups 7 ~*(pt) and 7~°(pt) vanish.

5. For even d, there is a projection of the complex projective to the quaternionic projective
space.

6. The differentials in the spectral sequence are differentials for the tensor algebra structure

on the respective E;-terms.
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7. The spectral sequence is natural in Y. In particular one may use the map between
spectral sequences induced by inclusions of the projective spaces into higher dimensional
projective spaces and induced by the projection of complex projective spaces to quaternionic
projective spaces. ]

One observation to be made in the spectral sequence argument above should be singled out

for later reference:

Lemma 3.6. Let kg be a generator of the stable cohomotopy group w21—2(CPY1) = Zky.
The composition
SQd*l N S2d71/Sl _ CPd*l i 52d72
- )

of kq with the quotient map of the free S'-action is the nontrivial Hopf element n € 75t(S°)
iff d is even. O

4. A GLUING THEOREM

By a folklore theorem the integer valued Seiberg-Witten invariant for a connected sum
of 4-manifolds vanishes if either summand has nonzero by. This section deals with the
corresponding statement for the stable cohomotopy invariant. To state the result, consider
a pair X = Xy [ X of closed connected Riemannian 4-manifolds. Suppose each component

X, =X uXxt

is the union of submanifolds along the common boundary 8XijE = $3 and suppose the
Riemannian metric on X; is a product [~L, L] x S3 of an interval and the round three
dimensional sphere in a neighbourhood of the submanifold S3. The length 2L >> 2 of this
“long neck” [~L, L] x S? is to be determined in the course of the proof.

Let X = X(]] X be the manifold obtained from X by interchanging the negative parts of
the X, that is

X, =X, UX;.
Spinf-structures on both components X; of X induce by gluing spin®structures on the
components X; of X. Fix a spin‘-structure and a spin®-connection A on X, which induces
the flat connection on det(ST) over the long neck. Fix once and for all identifications of the
spinor bundles and the chosen spin®-connection over the two copies [—1,1] x S% in X.

For the gluing, choose a smooth function
te : X —[0,1],

which is constant 1 on XZ-Sf1 and vanishes identically on Xizl. This function p. should be
a function of the first variable only in the “short neck” [—1,1] x (S ][ S®). In analogy to

def /
,usé 1_:“%'

sine and cosine, define
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Forms «; (and similarly spinors ¢;) on the components X; are patched to forms (and spinors,
respectively,) on X; via the map

Vi(ag, a1)— (a0, al)-(_'u; Zé>

This gluing defines bundle isomorphisms A — A and C — C of the Hilbert space bundles
over an identification Pic’(X) — Pic’(X) to be detailed below. All of these isomorphisms
will be denoted by V.

Theorem 4.1. Gluing via the map V' induces an isomorphism
w1y (Pic®(X)yind(D)) — 72, =(Pic®(X);ind(D)),

which identifies the classes of the monopole maps of X and X for corresponding spin‘-
structures.

The proof will be given in the next paragraph. In the special case where X; and X are
both diffeomorphic to the standard four-disk, the theorem above implies the gluing theorem
stated in the introduction. This is a consequence of the following statements.

Proposition 4.2. The monopole map ¥ for a spin-structure on X = Xo][ X1, with a
base point fized on either component, is the product of the monopole maps

\I’:\Ifox‘llllA:A(]X.Al —>C0 XC1:C.
Thus the associated stable equivariant cohomotopy element is the smash product
(W] = [Wo] A [W1] € Tg1, 51, e, (Pic”(X)sind(D))

of the cohomotopy elements associated to the respective components. The action of the torus
St x St on the sum Hy @ H is factorwise. O

In the gluing situation, it is convenient to choose a base point in S2. The gluing map V is
Sl-equivariant with respect to the action of the diagonal subgroup of the torus.

Proposition 4.3. The stable cohomotopy element associated to any spin®-structure on a
four dimensional manifold X with vanishing Betti numbers by = by = 0 is the class of the
identity map
: 0 ~
V] =[id] € ”Sl,H(*) ~7.

Proof. In this case, the equivariant index A € RO(S!) is zero. Hence, the ring 7721 (%)
coincides with the Burnside ring A(S') = Z. This isomorphism can be described as the
map

ng,H(*) — (%) 2 Z
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induced by restriction to fixed point sets (cf. [4], 133ff). However, on the S!-fixed point
set, the monopole map is just the linear isomorphism

d+d*: QYX) - 04 (X) ® Q°(X)/R.

5. PROOF OF THE GLUING THEOREM

Let G, C G denote the subgroup consisting of gauge transformations u : X — S' which
are trivial over the “short neck” [—1,1] x (S]] S?). Let ker(d), C ker(d) be the space of
1-forms on X vanishing identically on the short neck. The group G, decomposes into a
product of gauge groups, each corresponding to one of the submanifolds XZ-jE of X. Using
the identification of the chosen spin®-connections A and A over the short neck, the space
A+ ker(d), = A + ker(d), can be viewed as a subspace of the space of spin‘-connections
both over X and X. After suitable Sobolev completion, A + ker(d),./G, identifies this way
both with Pic’(X) and Pic’(X). In particular, the map

(A + ker(d);) x (D(SF) & Q1(X))/Gr — A

induced by inclusion, is an isomorphism and similarly for the Hilbert space bundle C over
Pic’(X). The gluing maps

ViAd— A and V:C—C
are defined fiberwise over the identification Pic’(X) = Pic’(X) by multiplying forms and

(%, )
—Hs  He '

Let ¥ and ¥ denote the monopole maps on the spin®manifolds X and X, respectively.

spinors with the matrix

The diagram
A—2.¢

v| v

A-Y.¢
is of course not commuting. The theorem claims that it commutes up to suitable homotopy:
For a proof of the theorem it suffices to show that ¥ is homotopic to V- WV through a
homotopy of Fredholm maps

\IJt = lt + Ct
such that there is a uniform bound on the solutions during the homotopy, i.e. there is a
bound on elements of W;1(0), uniform for all ¢.

In the proof the help of several homotopies in the above sense will be invoked: The first
two homotopies from ¥ to an auxiliary map P : A — C will tame the quadratic terms
in the monopole map: As an operator on sections over X, the map P differs from the
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monopole map ¥ only over the long neck. Over the short neck, P is the linearisation of
V. The homotopies will be designed in such a way that the solutions stay bounded during
the homotopy. This boundedness is achieved by the use of Weitzenbdck formulas for both
the Dirac operator and the covariant derivative. Positivity of scalar and Ricci curvature,
respectively, on the long neck provide sufficient control on the spinor and form components
of solutions. In order to tune the estimates for spinors and forms, it may be necessary to
stretch the long neck even longer.

Another homotopy then will start from P and end in VPV, where P : A — C is the
corresponding map for the manifold X.

Let pr : R — [0,1] denote a smooth function, which is constant 1 outside the interval
[—R, R] and constant 0 in the interval [-R + 1, R — 1]. The functions pr for R < L define
functions on X and X, which are constant 1 outside the long neck and are functions in the
first variable only on the long neck. The homotopies
def
pre'= (1—1) +tpn,

for the time parameter t in the unit interval, describe a homotopy from the constant map
1 to the function pr on X and on X.

Consider the homotopy ¥; : A — C defined by
‘Ilt(Av 0, a) = (Av DA+a¢, FX—i—a - pL,tU(¢)7 Aharm d*a)

Lemma 5.1. The preimage W;(0) is uniformly bounded for all times t € [0, 1].

Proof. The proof of 3.1 applies with minor modifications. Here only the preimage of zero
is to be considered. As a consequence, most terms in the estimates in 3.1 vanish. The
Weitzenbock formula for the Dirac operator implies a pointwise estimate

s 1
All® + Slel* + Sprlol* <0.

for the spinor component of a solution. The scalar curvature over the long neck is positive.
So the maximum of |$|? is attained outside the long neck and is bounded by the norm of
the scalar curvature. The norm of the term pr, ;0(¢) in the rest of the argument is bounded
by a multiple of the norm of o(¢). These bounds are independent of the parameter t. O

The next homotopy moderates the second quadratic term over the short neck:

‘Ijt+1 (Aa QS-/ CL) = (Aa D(A—i—pg’ta)(b’ FX—{—a - PLU(¢), Aharm d*a)

This homotopy starts at W1 and ends at W = P. Note that the latter differential operator
is linear on the short neck. This second homotopy is more delicate than the first: In order
to get the necessary bounds on the solutions during the homotopy, it may become necessary

to stretch the long neck even longer, like playing the trombone.
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Lemma 5.2. If the long neck of X is longer than a threshold length, depending on the
geometry of the complement of the long neck, then the preimage \Ilt_l(()) 1s uniformly bounded
for all times t € [1,2].

Proof. Again, the proof of 3.1 applies after suitable modifications:

First, consider the monopole map for the manifold with boundary Y =Y, which one gets
from both X and X by removing the open neck of length 2L — 2. It may be suitably defined
for one-forms annihilating normal vectors at the boundary. The argument of 3.1 (compare
[7]) then provides C° bounds on both the spinor and the form component of a solution to
the monopole equation on Y. Tt also provides uniform bounds on solutions in ¥, *(0) during
the first homotopy ¢t < 1. These CY-bounds on solutions on Y are sufficient for the proof
as long as one can assure that the spinor and the one-form component of a solution on X
both attain their maximum in Y during the second homotopy.

The one-form component of a solution on X is harmonic in the complement of Y. Because
of nonnegative Ricci curvature along the neck, the maximum principle holds for the norm of
such a one-form in the complement of Y. Moreover, because of the product structure of the
neck, such an harmonic one-form on the neck splits into a sum a = a; 4+ a4 of harmonic one-
forms, according to the direct sum decomposition of the cotangent bundle. The harmonic
summand ag pointing in the sphere direction satisfies an inequality

Alag? < ~2 < Ric(as), a5 > .

Since the Ricci tensor in direction of the sphere is positive definite, |a,|? is bounded by a
linear combination of cosh(dr) and sinh(dr) for some 6 # 0 and r € [-L 4+ 1,L — 1]. In
particular, there is exponential decay of the norm of as towards the middle of the neck.

If the spinor component of a solution during the homotopy attains its maximum in the
complement of Y, then at that maximuin, it satisfies an inequality

S
0 < Al]* < =516+ < (dpas Aa)¥ 6,6 > .

Because of dps ¢+ Aa = dpa s A ag, the norm of the latter summand decays exponentially with
the length of the long neck. If it is long enough, the scalar curvature summand will dominate
and the spinor component cannot attain its maximum in the complement of Y. O

To finish the proof of the gluing theorem, one has to construct a homotopy between P
and V~'PV. Note that both operators differ only over the short neck in X. Because
both differential operators are linear over the short neck, their difference is a multiplication
operator:

VPV =P +dV
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Let g+ denote the convex combination p.; = (¢t —1)+tu. and accordingly pus: = /1 — ,uit.
Consider the matrix
( He,t ,Us,t)
—HUs,it Mt

Multiplication of spinors or forms with this matrix defines a map V; over the long neck:
Pairs of forms or spinors over the long neck are mapped to pairs of forms or spinors over
the long neck. Multiplication of pairs of spinors or forms with this matrix will not make
sense outside the long neck. However, since multiplication with V; is the identity outside
the short neck, the conjugate VflPVt : A — C is a well defined operator for 0 < ¢ < 1.
These operators
Vi 'PV, = P +4aV,

provide the final homotopy in the argument. The following lemma finishes the proof of the
gluing theorem.

Lemma 5.3. The preimage (P + dV;) 1(0) is uniformly bounded for all times t € [0,1].

Proof. As for the second homotopy, one only has to show that the spinor and the one-form
components of a solution attain their maxima outside the long neck. A solution to P + dV;
admits the same C° bounds over the manifold Y as solutions to P, since both operators
coincide over Y. It remains to consider the restrictions of solutions to the long neck.
However, if (¢,a) is a solution to P + dV; = V,"' PV} over the long neck, then V;7(¢, @) is
a solution to P over the long neck. In particular, they attain their maxima in Y. O

6. MISCELLANEA

A spin®structure on a four dimensional manifold is the same as a stably almost complex
structure. This follows from the fact that the natural map between the respective classifying
spaces BU — BSpin©, has the appropriate connectivity. Currently, in all known (at least to
the author) examples of four dimensional spin®-manifolds with nonvanishing integer valued
Seiberg-Witten invariant, the spin®structure is indeed associated to an (unstably) almost
complex structure. As a consequence, the moduli spaces for all these examples have zero-
dimensional expected dimension.

For simplicity, consider from now on only closed, oriented, four-dimensional spin®-manifolds
with vanishing first Betti number. If the spin®structure of X is associated to an almost
complex structure, then the stable map ¥ nonequivariantly is an element of the stable
homotopy group m5(Sy). This group has two elements, the trivial map and the Hopf map
1. The lemma 3.6 gives a criterion to distinguish the two elements:

Proposition 6.1. The cohomotopy invariant of an almost complex manifold with vanishing
first Betti number nonequivariantly is the Hopf map if and only if both by is congruent
3mod4 and the integer valued Seiberg- Witten invariant is odd.
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The computations of the stable equivariant cohomotopy groups in 3.5 lead to the following
statement:

Proposition 6.2. Let the spin®-manifold X be a connected sum of at least two, but finitely
many, almost complex manifolds X; with vanishing first Betti numbers. The stable equivari-
ant cohomotopy element of X is nonvanishing if and only if the following three conditions
are satisfied: There are at most three summands X;. Fach summand has by congruent

3mod4. The integer valued Seiberg- Witten invariants are odd for each summand.

Proof. The “if” part of the statement follows from the fact that the square and the cube of
the Hopf map are nontrivial stable homotopy elements.

The second stable homotopy group of the sphere spectrum has as its only nontrivial element
the square of the Hopf map. The equivariant cohomotopy element which corresponds to

h2?=3 of 3.5 nonequivariantly has

the nontrivial element in the kernel of the Hurewicz map
to be the square of the Hopf map. For d = 2 this is by definition of the ring structure on
the stable homotopy groups of the sphere spectrum. Otherwise this follows by induction
from 3.6 and the fact that every even integer d > 2 is the sum of positive even integers.
The same argument applies to the kernel of the Hurewicz map h29=*. Since the kernel of

h??75 is odd if d is even, higher powers of the equivariant Hopf map will be zero. O

Proof. (of 1.3) For Kéhler manifolds it is known that solutions to the monopole equations
correspond to holomorphic sections of certain line bundles. The Seiberg-Witten invariant
is nonzero if such holomorphic sections exist. This in particular implies that the preimage
of the zero under the monopole map is empty unless the integer valued Seiberg-Witten
invariant is nonzero. As a consequence, the equivariant cohomotopy elements corresponding
to spin®-structures are detected by the integer valued Seiberg-Witten invariants.

For the K3-surface the SW-invariants are completely known: They vanish except for the one
spinf-structure which lifts to a Spin-structure. For this the value is 1, up to sign convention.
From the statements above it follows that for a connected sum K#K#X or K#X for
a simply connected Kahler surface X, the spin®-structures supporting nontrivial stable
cohomotopy invariants of the connected sum correspond to exactly those spin®-structures
on X having odd SW-invariants (if b4 is of correct modulus). O

For simply connected manifolds, the spin®-structures are detected by the first Chern classes
of the associated spinor bundles. The argument above can be rephased the following way:
For a connected sum of Kéahler surfaces, the nontrivial stable cohomotopy invariants detect
the pairs (or triples) consisting of cohomology classes of the summands which support
odd Seiberg-Witten invariants. This can be applied in special situations to recognize the
summands:
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Proof. (of 1.4) The proof is based on the known classification of elliptic surfaces (see e.g.
[6]) via SW-invariants. To a simply connected minimal elliptic surface with given by one
can associate a pair 1 < m < n of coprime integers which, together with the geometric
genus py = bJrT_l, classify the diffeomorphism type. Note that b4 is congruent to 3 mod 4
iff the geometric genus is odd. The point in the proof is that one can recognize m,n and
py for odd geometric genus from the pattern of the cohomology classes corresponding to
odd SW-invariants, the “recognizable” classes. Here comes a description, how this can be
accomplished combinatorially.

The cohomology classes corresponding to nontrivial SW-invariants are multiples of an indi-
visible element f in the second cohomology with integer values of the elliptic surface. The
multiplicities are of the form (p; —1—2a)mn+ (m—2b—1)n+ (n—2c—1)m for nonnegative
integers a < py, b < m and ¢ < n. The value of the SW-invariant for such a multiple of f

is <p g 1).

a
Note that the distribution of basic classes is symmetric around the origin and the SW-
invariant for the largest such multiple k£ of f, where a = b = ¢ = 0, is odd. So there are

at least two recognizable classes except in the case of a K3-surface p, = m = n = 1, where
there is exactly one recognizable class.

If there are no more than three recognizable classes, then either m = n =1 or n = 2m =
2py = 2. In the latter case, the largest multiple is 1, in the former, it is p, — 1, which is

even.

In the case of at least four recognizable classes, consider the second but largest multiple. In
case n > 1, the integer m, which is half the difference, is coprime to the largest multiple.

If m = n = 1, then there is an 0 < 2a < p, — 1 with (Pga— 1) odd. This integer a has

. -1
to be even, because otherwise Pg
a+1

a rational number having a + 1 in its denominator, could not be an integer. In this case,

), which is obtained from it by multiplication with

half the difference cannot be coprime to the largest multiple; both are even. This makes it
possible to distinguish the m = n = 1-cases.

Finally consider the largest multiple £ and the second largest multiple. It can be assumed
that half the difference is coprime to k and thus equals m. Consider the multiples (k—2Am) f
for A > 1. The SW-invariants associated to these classes will be 1 for A < n and zero or
pg — 1, anyway even, for A = n. This characterizes the second integer n. Knowing both
integers this way, the geometric genus follows from the formula for .

In the situation of a connected sum of no more than three elliptic surfaces, as in 1.4, the
number of summands can be read off the dimension of the moduli spaces having nontrivial
invariants. The cohomology classes associated to nontrivial invariants are situated in a
bounded region in a sublattice of the second cohomology of rank at most 3. They form a
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box and the pattern characterizing the individual summands can be found on the respective
edges of the box. O

6.3. The monopole map ¥ may be pertubed quite a bit without changing the resulting sta-
ble cohomotopy invariant. For example the term o(¢p) may be replaced by some function
f(o)o(@) as long as f does not decay too fast at infinity. Any polynomial with positive
leading coefficient will give different moduli spaces, but the same stable cohomotopy invari-
ant.

A well known theorem of C.T.C. Wall states that any two homeomorphic simply connected
four dimensional differentiable manifolds become diffeomorphic after taking connected sum
with finitely many copies of S? x S2. Moreover, in many cases of algebraic surfaces it is
known that it suffices to take connected sum with only one such copy of S? x S2.

Question 6.4. Suppose X andY are homeomorphic, simply connected differentiable four-
manifolds. Do they become diffeomorphic after taking connected sum with sufficiently many
K3-surfaces?

Question 6.5. Are there manifolds realizing other stable cohomotopy elements in Wft(CPdfl),
for example the element associated to the stable Hopf map v : ST — S42
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