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Abstract

We derive polynomial rates of convergence for orbits of maps that
converge to an equilibrium via the center manifold. Similar estimates
are obtained for the variational equation along these orbits. We show
how these results apply to the analysis of discrete saddle-node homo-
clinics.
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1 Introduction
Consider a discrete dynamical system depending on a parameter
-Tn—l—l:f(xn,)\); xERm: )‘ER:

where m > 1 and the map f is smooth with respect to both z and A.
The behaviour of orbits near a hyperbolic fixed point, and the convergent
or divergent properties along the stable or unstable manifold are known to
be exponential. At a critical fixed point (£, \), where the Jacobian matrix
D, f(&, ) has an eigenvalue of the central type, i.e. its norm is 1, bifurcations
of fixed points may occur under small perturbation. On the other hand, there
are also many bifurcation phenomena of connecting orbits related to a critical
fixed point, e.g. saddle-node homoclinic or heteroclinic orbit, which plays an
important role in global bifurcation analysis, especially for the analysis of
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appearance of chaos. All of these motivate us to study the exact behaviour
of convergence of the orbit along the center manifold of the critical point,
which is the main objective of this work. Instead of the exponential behaviour
near a hyperbolic fixed point, we will prove the polynomial rate of decay for
orbits on the center manifold.

The solutions of the associated variational equation are the basic tools
for detailed analysis near the orbit. They show exponential dichotomies on
a hyperbolic set, see [12]. In the case of the saddle-node homoclinic orbit,
there is a nontrivial solution which has the rate of 1/n? as n — —oo or +o00
for some o > 1. For flows this has been used by Schecter in [14] with o = 2 to
analyze numerical methods for a saddle-node homoclinic bifurcation point.
In this work, we will derive a general analysis for the discrete variational
equation along an orbit which converges to a critical point.

In section 2, we study the rate of convergence for a general map with
a simple eigenvalue 1. This case occurs for simple bifurcations, such as
fold bifurcation, pitchfork bifurcation and cusp bifurcation, see [11]. In ap-
plications, many phenomena, e.g. the flip bifurcation point (with a simple
eigenvalue —1) and Neimark-Sacker bifurcation point (with a pair of purely
imaginary eigenvalues) can be reduced to this case, by looking at the map
f? and using polar coordinates, respectively. The solutions of the variational
equations are also of importance for further global analysis near the orbit.
The polynomial rate is derived for both the orbit and the solutions of the
variational equation.

Many bifurcation properties on the saddle-node homoclinic orbits have
been summarized in [1, 9]. In section 3, we study the exact behaviour of the
discrete transversal saddle-node homoclinic orbit. As an application of the
results in section 2, the rate of convergence of the homoclinic orbit along the
center manifold and of the solutions of the associated variational equation
is shown to be of polynomial type. Together with the exponential estimates
along stable and unstable directions, this provides us with appropriate tech-
niques for analyzing numerical approximations of saddle-node homoclinic
orbits.

2 Basic estimates and a model function

In this section, we will introduce the basic lemma which is used to estimate
the rate of convergence of a map along the one dimensional center manifold
in section 3.



Lemma 2.1 For any o > 0 and integer k > 1, define

. T
g(l‘,&) - (1 +Oé$k)1/k‘

Then

g(Oaa) :0, g;'c(0,0z) = 1, gg)(o’a) :0, ’i:2,"-,k,
g 0,0) = —(k+1)(k — 1),

and for any 0 < x; < the sequence generated by

al/k’
Tni1 = g(Tp, ), mEN, (2.1)
converges to 0 as n — +o00. Furthermore,

lim al/knl/k:rn =1.
n—+0o0o

Proof. The values and derivatives of the function g at x = 0 with respect to

x follow from direct computation. Let x; = ik with v > 1, by induction
Yo

we can prove that the sequence with initial value z; created by (2.1) exactly is

which gives us the the desired rate of convergence.

I = Gk (n — 1 4 AR)R

Let f(x) be a C¥*2 smooth function and satisfy
f0)=0, f(0)=1, fD0)=0, i =2,---,k, f*1(0) <0, (2.2)
which indicates that the function f has the form
f(z) =z — BxFT + O(aF1?), (2.3)

where 8 > 0.

Mostly, in bifurcation analysis, the map restricted to its one-dimensional
center manifold usually has the form of (2.3). It is of interest for us to under-
stand the behaviour of the f-orbit and solutions of the associated variational
equation near a critical fixed point. We start to show the convergent rate of
orbits generated by f.

Lemma 2.2 There exists an Ty > 0 small, such that for any 0 < 1 < T,
the orbit defined by

Tpnt1 = f(z,), meN (2.4)
satisfies
. 1k, 1k, _
nETw(Bk) n'fx, =1. (2.5)



Proof. Define h(z,«) := f(z) — g(z, ), we get

RD(0,0) = 0,i=0,...,k,
AED(0,a) = —(k+1)18+ (k+1)(k— 1)l

For a = k3 it follows AY (0, @) = 0 and for any € > 0 we have
RED (0,0 +¢€) >0, AED(0,a—¢) <0.
Let g > 0 fixed. Thus there exists an z > 0, such that for 0 <z < z
R*HD (2 a4+ e9) >0, A* Y (z,a —g) < 0.

Noticing hg)(O, a) =0 fori=0,1,---,k, by induction from & to 0, we find
for 0 < x < Z, T can be reduced if necessary,

h(z,&+¢e0) >0, h(z,a—-¢e) <0,
which implies
g(z,a+¢) < f(z) < g(z, @ — €).- (2.6)
For any fixed 0 < #; < Z, let z; = x = %, define for n € N the
sequences

x;—f—l = g(x;’d_*_gO)a i‘n+1 = f(:i'n)a x;z'——{—l = g(x:,&—eo).
(2.6) implies z; < To < z3. Assume z, < I, < z,7 for n > 2. Due to the
strictly monotone increasing properties of f near x = 0, we get

Ty =9z, a+e0) < f(x;) < f(Zn)=Fpi1 < flz))<g(z},a—eo)=1],,.

By induction, we obtain z, < &, < z; for all n € N, and from Lemma 2.1
we know

lim nVeeE= L
n—+o00 n (C_y F 50)1/"’ )

Thus there exists an N(gg) such that for all n > N(gg)

X

" 1 1

=0T, € | ———7 — €0, ——— ¢

+ &g y

which means that the sequence a,, is bounded, hence lim sup a,, and lim inf a,,
n—+o0o n—+00

exist. Next, we want to prove that lim a, = —. For contradiction we
n—+oo al/ k



1

make the assumption limsupa, = — 7 + ¢ with ¢ > 0. Then we choose
n—4o00 al/

€1 < &g such that

11
+e1 < = + =c

(@ —eq)l/k allk 2

holds. Similarly, we find an Z* such that

g (z,a+¢e1) < fM(z) < g"(x,a — &1)
for all 0 < x < z* and all n € N. Because Z,, converges to 0 there exists an
[ > 0 such that z, < z* for all n > [. Defining ¥, := %, for n € N, we get

lim supn'/*%, = lim supn'/*,.

n—-+0o00 n—-+0o00

Set y; = 41 = yi € (0,z*). Similarly y, < §, <y holds for all n € N and
there exists an N(g1) such that the following holds:

1 1
— &
(d+51)1/k b (d—é‘l

n'*g, € [ i7E —|—€1} , Yn > N(e1).

But &l—l/k +cé¢ [(a+511)1/k — &4, (a—sll)l/k + 51], which is a contradiction, hence

limsupa, < T The same argumentation shows lim infa, > —
n——+0o0o

al/ n—+oo al/k '
Thus we proved lim a'/*n'/*z, = 1. m
n—-+o0o

Remark 2.3 In the general case of f(x) = x — BxF™L + O(2**2) with B # 0
and for any initial value xo close to 0, whether the sequence T,y 1 = f(xy)
converges to 0 or not, depends on the value of k, the sign of B and xy, and
the limit process being either n — —oo or n — +o0o. For example, if k = 2,
B <0 and xqg > 0, x,, converges to 0 only if n — —oo. In any case, if an
orbit x,, converges to 0, the corresponding rate of convergence must be (2.5)
with B and x,, replaced by their absolute values, respectively.

The former lemma interprets the rate of convergence of the orbits created
by the map (2.4). Next, we study the rate of the solution of the associated
variational equation along these orbits.

Lemma 2.4 For any 0 < 21 < Z, u; € R and 0 < 6 < % the solutions
(Un)nen of the variational equation

kol

Up+1 = f,(mn)un
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satisfy

I+5—0

lim n U, = 0,

n—+o0
where Tpi1 = f(xy).
Proof. Without losing generality and to simplify the notations of the proof,

we assume = 1 in (2.3) and u; > 0, then u, > 0 for all n € N. We also
assume that the function f has the form f(z) = z — 2**!. We get

Unir = f(@n)un = (1= (k+ Daf)up = [[ (1 = (k+ D)ab) uy
i=1

For any given 0 < 6 < ¢, let 6 = 6; + &, 01,0, > 0. Take g9 > 0 such

4+ &
>
that 1—|—%7(51 k+eo —

By showing b,, := log (n”%_‘sunﬂ) goes to —oo as n — 0o, we can finish
the proof of this lemma.

1
by = <1+E—6)log<n>+logunﬂ
1
= (1+E—5)log +§ log(1 — (k + 1)a¥) + log(u,)

=1

= —dqlog(n) + M, + II,, + log(u,),

where

n

I, = » (k+1)zf+ Zn:log(l — (k+1)zh),

i=1 =1

1
M, = (1+E—(51)10g ka

We will show that M, is bounded from above and II,, converges as n — oo.
For 0 < 21 < 7 let z; = ¢g*(z1, &+ &¢). Then we get z; < z; and

M, < (1+%—(51)[log() 1+__512k ]

_ (1+%—51)[1°g(n)— 1TE o 2": : ’“]

1+E_61 k+60 i:12—1+’7

IN

1 " 1
14— — 1 —5:7
C*,

IN



n
1
i | — - 13].
since log(n) ;z converges, see [13]
Next we show the convergence of I1,:

n

I, = > [log(1— (k+1)zf)+ (k+1)a¥].

=1

We see that =¥ — 0 as i — oo. Using L’Hospitals principle twice we get

log(1 — 1 1 1
lim og(l— (k+ );v)-l—(k-l— ) ~ Lty
z—0,2>0 T 2
Therefore
log(1 — (k+ 1)x* k+1)xk 1
oo (z7)? 2
1 o
From Lemma 2.2 we know lim (z%)%? = — hence Z:(ac'?)2 absolutely con-
ioo b 2 s
verges. Thus Z [log(1 — (k + 1)zf) + (k + 1)z¥] converges. [

=1

Remark 2.5 1) A similar result for ODEs is given by Schecter in [14].
He considered an equation of the form © = f(x) = 22 + O(2%), and he
proved if y(t) is a solution of its variational equation §(t) = f'(x(t))y(t),
then tlggo t2y(t) = constant.

2) For further analysis of the discrete saddle-node homoclinic orbit, we

need that the series Zun converges absolutely. This of course is true due

n=1
to Lemma 2.4.

3 Asymptotic estimates for saddle-node ho-
moclinic orbits

In this section, we apply the results prepared in the previous section to the
discrete dynamical systems

Tp41 = f(xna )\)a (31)

and study the rate of convergence of its saddle-node homoclinic orbit along
the one-dimensional center manifold. Furthermore, we investigate the be-
haviour of solutions of the associated variational equation along this orbit.
First, we start to introduce our basic assumptions.
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H1l f:R™ xR — R™ is smooth enough.

H2 (£, ) is a saddle-node fixed point of the system (3.1).

Let A = D,f(£,)) be the Jacobian Matrix which has m, stable and
m, unstable eigenvalues besides the simple eigenvalue 1. Denote by X°
(1 = s,u,c) the corresponding eigenspaces of dimension my, m, and 1, re-
spectively. The spaces X* (i = s, u, ¢) are equivalent to the spaces R™s R™«
and R, respectively, and without loss of generality, we identify them. Let
AT be the restrictions of A to X* and X“. Obviously, the restriction of A
to X¢is 1. Then the spectra of A* lay inside and outside the unit circle on
complex plane, respectively. Assume the matrix A has left and right unit
eigenvectors corresponding to eigenvalue 1, which are denoted by e; and e,,
respectively.

H3 ele, =1, €' Dyf(E,N)(er,er) > 0.

Due to H1-H3, two families of hyperbolic fixed points bifurcate from the
saddle-node point (£, )). Without loss of generality, we assume they exist for
A < A and there is no fixed point for A > X. For simplicity, let (£, A) = (0,0).

Let n; (j = 1,---,m — 1) be the eigenvalues of A besides the simple
eigenvalue 1. We require the following nonresonance condition.

H4 |n;| # |m|** - - - |fm—1 |1, for all j and any xk € Z7 ', |k| > 2.

H5 At A =0, the mapping f(-,0) permits a transversal saddle-node homo-
clinic orbit Z,, which is the intersection of the stable manifold and the
unique part of the center manifold, (see Figure 3.1).

Figure 3.1 The transversal saddle-node homoclinic orbit.



For further analysis, we will rectify the local stable, unstable and center
manifolds to the corresponding axes simultaneously. It is here that the non-
resonance condition H4 is used. The corresponding results can be found in
[8, 9] for maps, and in [15, 6, 3, 14, 9] for flows. Here we show the results
that are presented in [9].

Lemma 3.1 [9, Theorem 4.1] Assume H1-H4. Then there exists a neighbor-
hood of the origin and a C? change of coordinates ® : R™ — R™ @ R™ @R
such that in the new coordinates and in that neighborhood the system has the
following form:

Sp+1 = A+(wna )‘)Sn; Up+1 = A™ (wna A)un: Wp41 = fc(wna A) (32)

where s, € R™  u, € R™, w, € R (n € Z), A¥(0,0) = A%, fe(w,)\) =
A+ w + p(w, \)w? and p(w, ) is C* smooth.

Assumption H3 implies p(0,0) > 0. Applying Lemma 2.2 and Remark
2.3 in the case of £k = 1 to the iteration w, 1 = f°(wy,0) with w; > 0, we
obtain nw, — 1/p(0,0) as n — —oc.

As n — —oo, the tail of the homoclinic orbit Z, has the form (0,0, w,)
and the associated variational equation reads

Sn+1 A+ (U_jna 0) Sn
Un+1 = A (u_}m 0) B Un
Whia Dwfc(wna 0) Wh

Due to the roughness lemma in [5, 12], we know that the solutions of the
form (S, 0, 0) leave from 0 and of the form (0, U,, 0) tend to 0 exponentially
as n — —oo, respectively. More precisely, there exist two constants v, K > 0
such that for —co<n <[ <0

ISl < Ke ™ D[Sull, 1Uall < Ke Uy

Due to Lemma 2.3, any solution of the form (0, 0, W,,) satisfies for any given
0<dé<1
lim n®°W, = 0.

n——0oo

Transforming the variables (s,u,w) back to the original variable z, we
get the following results for the map f(-,0).

Theorem 3.2 Assume H1-H5. Then the homoclinic orbit Z, of the map
f(-,0) satisfies

lim nZ, = constant.
n——0o0



Furthermore, for any given 0 < § < 1, the variational equation along this
homoclinic orbit

Xpi1 = Dof (0,00 X, Xn €R", n <0

possesses m linearly independent solutions Xj’j (j=1,--,my), qu’j (j =
1,---,my) and X§ with J = Z~, which satisfy

IX7) < Ke )X, j =1, m,,
”X;f,” < Ke_y(l_n)”Xlu,j |7 .7 = 17 Ty My
for some v, K >0 and —oo <n <[ <0, and
lim n?7||X¢|| = 0.
n——0o0

Next, we consider the behaviour of solutions of the variational equation as
n — +00. Meanwhile, the tail of the homoclinic orbit has the form (5,,0,0).

Theorem 3.3 Assume H1-H5. As n — +oo, the saddle-node homoclinic
orbit T, converges to the fixed point 0 exponentially fast. Furthermore, the
variational equation

Zn+1 = Dy f(Z,,0)Z,, Z,€R™, n>0

possesses m linearly independent solutions Zj’j (j=1,---,my), Z}"j (j =
1,---,my) and Z§ with J = Z*, which satisfy

”ZZ’” S Ke_’Y(n_l)Hle,” ’ .7 = 17 ce, My,
127 < Ke "D Zwd|l, j=1,---,m,

for some v, K >0 and 0 <l < n < 400, and there exists a nonzero constant
c* such that

lim Z7 = c*e, with exponential rate.

n—o0
Proof. As n — +00, the homoclinic orbit z,, is on the stable manifold, then
the exponential rate follows. From Lemma 3.1 we know that the correspond-
ing variational equation along the saddle-node homoclinic orbit (s,,0,0) is
of the form

St A*(0,00 0  D,AT(0,0)5, S
U1 | = 0 A (0,0) 0 U. |, (33)
Watt 0 0 1 W,
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as n — +o00. Rewrite (3.3) as

(Sn—i—la Un—l—la Wn+1)T - (Cn + Bn)(sn; Una Wn)T, (34)
where
0 0 D,AT(0,0)s,
C, = Diag(A*,A°,1), B,=| 0 0 0
00 0
Consider the follow equation
(S;,-H’ U7Iz+1’ Wnl,—f—l)T = CH(S;,’ Urlw WWI,)T (35)

It follows immediately that the W'-component of its solution satisfies

li ' = .
Jim W, =c, (3.6)
where ¢ is a constant and the (S’,U’)-components have the properties of
exponential dichotomies.

Obviously, the matrix B,, satisfies lirf |B,,| = 0 with exponential rate.
n—-+00

Similar to the roughness lemma for continuous time systems, (see [4, p.
104, 106], [7, p. 305], [5], [14] and [2]), we can prove that by adding the expo-
nentially small perturbation of B, to the system (3.5), the similar asymptotic
behaviour, i.e. the property of (3.6) and the exponential dichotomies, will be
preserved by solutions of the perturbed system (3.4) as n — +oo. Trans-
forming the variable (s, u,w) back to x leads to the estimates in the theorem.

|
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