REPRESENTATIONS OF SEMISIMPLE LIE ALGEBRAS IN POSITIVE
CHARACTERISTIC AND QUANTUM GROUPS AT ROOTS OF UNITY

IAIN GORDON

1. INTRODUCTION

1.1. If A is a finite dimensional algebra then its blocks are in one-to-one correspondence with its primitive
central idempotents. The aim of this paper is to study this interaction for a class of noetherian algebras
arising naturally in representation theory. This class includes the universal enveloping algebra of a reductive
Lie algebra in positive characteristic and its quantised counterpart, the quantised enveloping algebra of a
Borel subalgebra and the quantised function algebra of a semisimple algebraic group at roots of unity.

1.2.  More generally this paper is concerned with the role the centre of these algebras plays in their represen-
tation theory. The techniques used fall into two categories: local and global. The local approach is concerned
principally with the behaviour of certain finite dimensional factors of these noetherian algebras whilst the
global approach focuses on general properties of these algebras. The aim in both cases is to understand the
structure of these finite dimensional factor algebras. In the first case we use a little deformation theory to
piece things together whilst in the second case we can use some geometric tools before passing to the factors.

1.3. In Section 2 we introduce the class of algebras we wish to study and present some general properties
these have in common. In the following three sections we apply this theory to the study of enveloping
algebras and quantised enveloping algebras of Lie algebras and to quantised function algebras. We end with
an appendix on the structure of the centre of a quantised Borel algebra. Most of this paper surveys results
from the articles [5] and [6]. The approach to Theorem 3.6 using deformation theory is new whilst several
results in Section 5 tie up loose ends from [6].

2. (GENERALITIES

2.1. Throughout K denotes an algebraically closed field. We consider a triple of K-algebras
RCZCH

where H is a prime Hopf algebra with centre Z and R is an affine sub-Hopf algebra of H over which H (and
hence Z) are finitely generated modules. We have four examples in mind.

(A) Let K have positive characteristic p and let g be a finite dimensional restricted Lie algebra over K.
Then H is U(g), the enveloping algebra of g, and R the p-centre of H.

(B) Let K = C, let g be a finite dimensional semisimple Lie algebra over C and let € € C be a primitive
21 root of unity, for £ an odd integer greater than 1. Then H is the quantised enveloping algebra U, (g) and
R the (-centre of H.

(C) Let K, g and £ be as above. Then H is U= the subalgebra of U.(g) corresponding to a Borel
subalgebra of g, and R the ¢-centre of H.

(D) Let K = C, let G be a simply-connected, semisimple algebraic group over C and let ¢ be as above.
Then H is O.[G], the quantised function algebra of G, and R the {-centre of H.

T am grateful to the organisers of the Durham Symposium on Quantum Groups for the opportunity to talk to the conference
and to a submit a paper to the proceedings. I have, as always, benefitted from conversations with Ken Brown. I also thank
Gerhard Rohrle for useful discussions. Financial support was provided by TMR, grant ERB FMRX-CT97-0100 at the University
of Bielefeld.
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2.2. It is straightforward to show that there is an upper bound on the dimension of the simple H-modules,
namely the PI degree of H, [4, Proposition 3.1]. In particular, each simple H-module is annihilated by a
maximal ideal of R. As a result the family of finite dimensional algebras

{i :m a maximal ideal in R}
mH

captures an important slice of the representation theory of H: each simple H-module is a simple module for
exactly one algebra in this family.

2.3.  To firm up this notion of a “family of finite dimensional algebras” recall the following definition of the
variety of n-dimensional algebras over K, [19]. Let

Bil(n) = { bilinear maps m : K" x K" — K"} & A’};’
and
Alg(n) = { associative, bilinear m which have an identity} C Bil(n).

It can be shown that Alg(n) is an affine variety, locally closed in Bil(n).
Let Q(R) be the quotient field of R and let Q(H) = H®rQ(R). Since H is a finitely generated R-module
there is an integer n such that Q(H) is an n-dimensional Q(R)-module.

Lemma. Let n be as above. There is a morphism of varieties
a : Maxspec(R) — Alg(n),
sending m to H/mH.

Proof. By [35] our hypotheses in 2.1 ensure that H is a free R-module of rank n. Let {x1,... ,2,} be a basis
for H over R and define ci—“j € R for 1 <14, 7,k < n by the following equations,

_ § : k
Tilj = Cijxlc-
k

For any maximal ideal, m, of R the structure constants of H/mH with respect to the basis {; + mH} are
given by the scalars (cfj +m) € R/mR > K. It follows that a is a morphism of varieties, as required. O

In 2.2 we could have equally considered the family of algebras {H/MH : M a maximal ideal of Z}. This
family, however, does not behave very well in general since the extension Z C H need not be flat. For
instance in examples (A), (B), (D) and often in (C) the presence of singular points in Maxspec(Z) prevents
flatness since H has finite global dimension, [4].

2.4. Miller’s Theorem. The first result on the block structure of the algebras H/mH is a striking analogue
of the finite dimensional case.

Theorem. The blocks of H/mH are in one-to-one correspondence with the mazimal ideals of Z lying over
m.

From now on we write By to denote the block of H/(M N R)H corresponding to M.

Remark. This result first appears in a different and more general context in [28, Theorem 7]; the interpre-
tation here is discussed in [5, 2.10].

2.5.  There is also a result on the local level about the number of blocks of H/mH.
Proposition. [19, Proposition 2.7] Let s € N. The set
X = {m € Maxspec(R) : H/mH has no more than s blocks}

is closed in Maxspec(R).
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2.6. There is one type of block that is controlled by Z, a block corresponding to a point on the Azumaya
locus of H:

Apg = {M € Maxspec(Z) : Bys has a simple module of maximal dimension}.
This definition is not standard, but under the hypotheses of 2.1 is equivalent to the usual notion, see [5, 2.5].

Proposition. [5, Proposition 2.5] Let M be a mazimal ideal of Z belonging to Ag and let m = M N R.

There is an algebra isomorphism
Z
BMghh%(—lL>
mZM

where Zyp/mZy is the primary component of Z/mZ associated to M.

Recall a block is primary if it has a unique simple module. The proposition shows that blocks correspond-
ing to Azumaya points are primary.

2.7. Being Azumaya is a generic condition, that is A is a dense open set in Maxspec(Z), [34, Section
1.9]. Under the hypotheses of 2.1 Ay is contained in the smooth locus of Maxspec(Z), [4, Lemma 3.3]. In
sufficiently well-behaved situations the converse holds.

Theorem. [4, Theorem 3.8] Suppose H has finite global dimension. If codim(Maxspec(Z) \ Ag) > 2 then
A equals the smooth locus of Maxspec(Z).

It is not true in general that Maxspec(Z) is Azumaya in codimension one, [6, Proposition 2.6].

2.8.  We finish this section with a comparison of Z/mZ and Z(H/mH) for m € Maxspec(R). Quite generally

there is an homomorphism
Z H
T — Z | — .
“mz (mH )

Lemma. The map ¢ is generically an isomorphism. Moreover, if K has characteristic zero then it is always
imjective.

Proof. The morphism 7 : Maxspec(Z) — Maxspec(R) is finite since 7 is a finitely generated R-module.
Since finite morphisms are closed the set Fg = Maxspec(R) \ m(Maxspec(Z) \ Apg) is a dense open set
containing precisely those maximal ideals, m, of R whose fibre 7—1(m) is contained in Ag. It follows from
Proposition 2.6 that for any m € Fg we have an isomorphism

H Z
1 —— &~ Mat, | —
1) mH an(mz),
proving the first claim.
Now suppose that K has characteristic zero. Then there is a Z-module map, the reduced trace, T'r :

H — Z splitting the inclusion, [33, 9.8 and Theorem 10.1]. Thus Z is a direct summand of H and so
mH N Z =mZ for all m € Maxspec(R), as required. O

2.9. Under the hypotheses of 2.1 the algebras H/mH are all Frobenius, [20, Theorem 3.4].
Lemma. [13, cf. 1.3.9] Suppose that H/mH is a symmetric algebra. Then

dim(soc(Z(H/mH))) > the number of simple H/mH -modules.
In particular, if (Z/mZ) is self-injective then v is surjective only if all blocks of H/mH are primary.

Proof. Write A for H/mH. Let {Sy,...,S:} be a complete set of representatives for the isomorphism classes
of simple A-modules and let P; be the projective cover of S; for 1 < ¢ < t. Since Morita equivalence preserves
symmetry and the centre of an algebra, [2, Volume I, Proposition 2.2.7], without loss of generality we may
assume that A is basic.

The homomorphism
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defines an element in A = End 4 (®F;)°P. Write an arbitrary element of A as f = >, Ay idp, + f' where f/
is a radical morphism. Then, by construction, 6;f = Ay ;0; = f0;. In particular 0; is central and lies in the
socle of Z(H/mH).

Let Z' = «(Z/mZ) and decompose Z' into primary components. By hypothesis each of these is self-
injective and so Frobenius, [1, Example IV.3]. In particular each component has a simple socle. Suppose
that Z' = Z(A). If S; and S; belong to the same block of A then #; and ; belong to the same primary
component of 7', contradicting the simplicity of the socle. O

Remark. Let K have positive characteristic p and let [ be the Heisenberg Lie algebra over K, that is the Lie
algebra with basis {x,y, 2z} such that [x,y] = z and z is central. Let H = U(l) and R = Z = K|z, 2P, y"].
Let m = (2,27, y?)Z, a maximal ideal of Z. Then H/mH is a truncated polynomial ring, showing that the
converse of the second claim is false in general. This also shows that in general not all primary blocks are
Azumaya.

2.10. The following proposition provides a partial adjunct to Lemma 2.9.
Proposition. [19, Proposition 2.7] Let s € N. The set

Y, = {m € Maxspec(R) : dim Z(H/mH) > s}
is closed in Maxspec(R).

3. ENVELOPING ALGEBRAS

3.1. We follow the notation used in [25]. Let G be a connected, reductive algebraic group over K, an
algebraically closed field of positive characteristic p, and let g = Lie(G). We assume that G satisfies the
following hypotheses:

1. The derived group DG of G is simply-connected;

2. The prime p is good for g;

3. There exists a G-invariant non-degenerate bilinear form on g.
More details can be found in [25, Section 6]. Let ' C B = U.T be a maximal torus contained in a Borel
subgroup of G and let h = Lie(T), n = Lie(U) and b = Lie(B). Let X be the character group of T and let
A = X/pX. Let @ be the set of roots associated with g and let ®* be set of positive roots corresponding to
the choice of B. Let W be the Weyl group of G. We will be interested only in the “dot action” of W on X
(and hence on A). By definition this is just an affine translation of the natural action of W on X. Given a
K-vector space V, let V(1) denote the twist of V along the automorphism of K which sends X to AP.

3.2. Being the Lie algebra of G, g has a restriction map z — z[Pl. We have a triple
Zy € Z CU(g)

where U(g) is the enveloping algebra of g and Zg = K |2 — P! : x € g] is the p-centre of g, a central sub-Hopf
algebra of U(g). Standard arguments with the PBW theorem imply that Zy = O(g*(")), the ring of regular
functions on g*(") and that U(g) is a free Zp-module of rank pd™ 8, [25, Proposition 2.3]. Thus U(g) satisfies
the hypotheses of 2.1. By Lemma 2.3 we have a morphism of varieties

a: g — Alg(ptime)

sending x to the algebra U, = U(g)/(zP — zlPl — x(z)), a reduced enveloping algebra. Note that if y = 0 then
Uy is the restricted enveloping algebra of g. It is straightforward to check that Uy, = U, for g € G acting
on g*(M by the coadjoint action, [25, 2.9].

3.3. Hypothesis 3.1.3 yields a G-equivariant isomorphism 6 : g*() — g1, In particular, given y € g*()
let y = 0(x) and write y = ys+yn, the Jordan decomposition of y in g. Then y = s+ X, Where x5 = 071 (ys)
and X, = 071 (yn). We call x = xs + xn the Jordan decomposition of x.

Let 34(x) ={zr € g: x([z,9]) =0} and Zg(x) = {g € G : g.x = x}. Under the hypotheses in 3.1 we have
that Za(xs) is a connected, reductive algebraic group such that 34(xs) = Lie(Za(xs)) and Zg(xs) satisfies
3.1.1,3.1.2, and 3.1.3, [25, 6.5 and 7.4]. Note that x can be considered as an element of 4 (xs)*W.
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3.4. Reduction Theorem. It is reasonable to be concerned mostly with almost simple G and simple g.
The following reduction theorem in conjunction with 3.3, however, justifies the general hypotheses of 3.1.

Theorem. [37, Theorem 2], [18, Theorem 3.2] Let x = s + Xn € ¢*Y) be the Jordan decomposition. Let

d = 1(dimG.x,). Then there is an algebra isomorphism

UX (g) = Nlatpd (an (59 (Xs))) .

3.5. Thanks to Theorem 3.4, without loss of generality we can work under the hypothesis x = xs + xn
where 34(xs) = g. Since there is a finite number of nilpotent orbits in g, [21, Chapter 3], the classification of
simple g-modules essentially becomes a finite problem.

3.6. Blocks of U(g). Recall that we consider the dot action of the Weyl group W on A = X/pX.
Theorem. Let x be as in 3.5. Then U, has |A/W| blocks.

Proof. Let N' = {n € g : (n) nilpotent} C g*(») be the nilpotent cone in g*("). By 3.5 affine translation
N — xs+N is a G-equivariant isomorphism of varieties. In particular ys+A\ is irreducible and has a unique
dense orbit consisting of regular elements, that is of elements whose centraliser has minimal dimension, [21,
Chapter 4]. Moreover, every G-orbit in x5 + A contains x; in its closure, [31, Theorem 2.5].

Let

O ={n € xs +N : U, has |[A/W]| blocks}.
Clearly O is G-stable and by Proposition 2.5 O is locally closed in xs + N. By [25, Section 10] O contains
both xs and the regular orbit. The result follows. O

This theorem first appeared in [5], confirming a conjecture of Humphreys in [22]. The proof given in [5],
however, was based on Miiller’s Theorem, 2.4, and less representation theoretic than the above. Moreover
the case p = 2 was omitted.

Henceforth we write

U= P Bynr
AeA/W
We often abuse notation by writing B, x for A € A or even A € X.
3.7. Baby Verma modules. Let x = xs+X» € g*(!) be as in 3.5. We can assume without loss of generality
that x(n) = 0, [25, Lemma 6.6]. Then any element A € A gives rise to K, a one dimensional representation

of U, (b), a reduced enveloping algebra of the Lie algebra of b. Indeed, by [25, 11.1] and [5, 3.19] there is a
W-equivariant isomorphism

A= {Xeb*: AR)P — A(hIP)) = x(h) for all h € b}.

The induced module V, () = Uy, ®u, (6) K, a baby Verma module, plays an important role in the represen-
tation theory of U,. For instance it follows from [25, 10.11] and Theorem 3.6 that V) (\) belongs to a block
of U, and further that we can choose the labelling of blocks such that V, (\) belongs to By x. In particular
Vi (A) and V; (weX) belong to the same block for all w € W.

3.8. Primary Blocks. We can describe when a block B, is primary.

Proposition. Assume that p # 5 if R is of type E7. Then the block By x is primary if and only if it
corresponds to an Azumaya point of Maxspec(Z).

Proof. Sufficiency follows from 2.6. For the converse, let A € X and suppose that L is the unique simple
module in the block By, ) and let P(L) be its projective cover. By [23, B.12(2)] we have

dim P(L) = p™[We(A +pX)|[Vy () : L],

where N = |®"]|, the number of positive roots. On the other hand, by [23, C.2], there is a projective
By, x-module P such that

dim P = p™V|W.A|.
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We deduce that for € Wl + pX

[Wep
[We(p+pX)|

Moreover [V, (u) : L] = p* since Vy (1) belongs to By x. So we must find an element u € W + pX which
forces ¢ to be zero.

Arguing as in [23, H.1 Remarks] we can assume without loss of generality that G is almost simple.

Let

(2) (Vi () : L] divides

Co={AeX:0<A\+p,BY)y<pforall g d"}
and
Cho={AeX:0<(A+p.BY)<ploral fedt}.

Since Cj is a fundamental domain for the dot action of the affine Weyl group W x pX on X, we can assume
without loss of generality that p € Cy. By [23, C.1 Lemma) if € C{ then |[Wep| = |[We(u+pX)| and so, by
(2), i =0 as required. By [23, H.1 Proposition], if ® is not exceptional then we can choose p € C{ finishing
the proof. Hence we need only consider the case p € Cy \ C} and @ exceptional. In particular if p is prime
to the order of W then (2) forces i = 0. The only remaining cases are p = 5 and ® of type Fg, E7 or, Eg
and p = 7 and @ of type E7 or Eg. A case-by-case analysis shows that the only possible exception to i = 0
occurs when ® has type E7, p =5 and y = @y + ws (where we've followed the numbering of [3]). O

3.9.  The previous proposition has a consequence for the structure of the centre of U,. This phenomenon
was observed in the case x = 0 by Premet and noted in [5, 3.17].

Corollary. Suppose that p # 2 and that p # 5 if ® has a component of type E;. Then the centre of U, is
isomorphic to Z/m, Z if and only if x is regular.

Proof. By [36] and [18, 1.2] the algebras U, are symmetric. By [5, Theorem 3.5(4)] Z is a complete inter-
section ring (this is where we require p # 2), so in particular Gorenstein. By [5, Theorem 3.5(6)] Z is a
free Zp-module so, since Zy is smooth, standard commutative algebra implies that each factor Z/m, 7 is
Gorenstein, or, in other words, self-injective. Premet has proved the following, [32],

the natural map ¢ : Z/m, Z — Z(U,) is injective.

The result follows from Lemma 2.9, Proposition 3.8 and [5, Proposition 3.15]. O

3.10. Example. Let G = SLy(K) where K has odd characteristic. If y satisfies the condition in 3.5 then
either x is regular nilpotent or x = 0. The algebra U, has (p + 1)/2 blocks, labelled by the set of integers
{—1,0,...,(p — 3)/2}. In all cases the block corresponding to —1 is associated with a simple projective
module, the Steinberg module, and is isomorphic to Mat,(K). If x is regular then B, ; = Mat,(K[X]/(X?))
for 0 <i < (p—3)/2. This follows, for instance, from [5, Proposition 3.16]. If x = 0 then it is shown in [16]
that for 0 < ¢ < (p — 3)/2 the block By ; is Morita equivalent to the path algebra of the quiver

with relations ad = By = 0; da = v = 0; ary = 0; ya = §3, an eight-dimensional algebra. In this case the
centre of the block is spanned by the linearly independent elements 1, @y and ya. In particular we have
3p—1

2 )

dim Z(Ug) = 3 (’%) +1=

whilst dim Z/mgZ = p.
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3.11. Let’s conclude with a number of remarks.

1) The structure of Z/m, Z is known, [27]. To the best of my knowledge, however, the structure of Z(U,)
is, in general, unknown.

2) Proposition 3.8 completes the classification of blocks of finite representation type begun in [29]. Indeed,
thanks to [15, Theorem 3.2], any block of finite representation type is uniserial so in particular primary.
Then Proposition 3.8 tells us that the block is Azumaya. Consequently the results in [29] and [5] can be
applied.

3) The structure of Z has a number of further consequences for the representation theory of U thanks to
Theorem 2.7 which is valid in this situation, [4, Theorem 4.10] and [5, Theorem 2.9.1]. In particular see [5,
3.11 and 3.13).

4. QUANTISED ENVELOPING ALGEBRAS

4.1.  We follow the notation of [11]. Let G be a simply-connected, semisimple algebraic group of rank r
over C and let g = Lie(G). Let BT be a Borel subgroup of G and let B~ be the Borel subgroup opposite to
BT in G. Let T = BT N B~, a maximal torus of G, so that B* = T.U*. Let W = Ng(T)/T be the Weyl
group of G.

Let € € C be a primitive
has a component of type Ga.

£ root of unity where £ is an odd integer greater than 1 and prime to 3 if G

4.2. Let U.(g) be the simply-connected quantised enveloping algebra of g at a root of unity e, as defined in
[8]. In particular U(g) is a Hopf algebra. We have a triple

ZO g Z g Ue(g);

where Zj is {-centre of U,(g), a central sub-Hopf algebra generated by the £ powers of certain generators
of U.(g), [8]. Then U.(g) is a free Zg-module of rank ¢4™¢. Thanks to Lemma 2.3 we have a map

Maxspec(Zg) — Alg(£4™ )
where x € Maxspec(Zp) is sent to U y.
Remark. The algebra Uc(g) is not the quantised enveloping algebra considered by Lusztig in [26]. Lusztig’s
algebra is a quantum analogue of the hyperalgebra of g whilst U,(g) is a quantum analogue of the enveloping
algebra of g. However the reduced quantum group of Lusztig, a finite dimensional sub-Hopf algebra of

Lusztig’s quantised enveloping algebra, is isomorphic to a skew group extension of the algebra U, i, where
1 € Maxspec(Zp) is the augmentation ideal of Zj.

4.3. The structure of Zj is well-understood, [8]. In particular there is an unramified covering of degree 2"
7 : Maxspec(Zg) 2 (U~ xUT)xT — B~ Bt CG.

Moreover, given ¥ € (U~ x UT) x T there exists x = xuXs € U~ x T = B~ such that 7(x.)7(xs) is the
Jordan decomposition of 7(x) in G and Ue = U, x.

4.4. The algebra U.(g) can be defined as the specialisation of an integral form of U,(g), the quantised
enveloping algebra of g at a transcendental parameter ¢q. As a result we can find a central subalgebra
Z1 C Uc(g), the specialisation of the centre of U,(g).

Theorem. [11, Section 21] The algebra Z is a complete intersection ring and there is an isomorphism
7 =2 7y Qzynzy, Z1. Moreover, Z is a free Zg-module of rank €7

4.5. Blocks of Uc(g). Theorem 4.4 allows us to determine the structure of the algebra Z/m,Z for x =
XuXs € B™, [5, Theorem 4.5]. In particular we find that the primary components of Z/m, Z are in natural
bijection with the elements of R, = {t € T : t* € Wx?}/W. Theorem 2.4 gives the following result.

Theorem. [5, Theorem 4.8] Let x = xuXs € B~ be as above. Then the blocks of Ue ,, naturally correspond
to elements of R,.

If we have x5 = 1 then R, = {t € T : t* = 1}/W and we have the quantum analogue of Theorem 3.6.
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4.6. We conclude with a number of remarks.

1) There is an analogue of Theorem 3.4 for the algebras U, , which shows that the classification of the simple
U.(g)-modules is a finite problem, [7]. The reduction theorem, however, is difficult to use in practise: there
is no guarantee that we remain in the class of simply-connected quantised enveloping algebras and it is not
enough in general to consider only unipotent central characters.

2) The algebra U, ; is a Hopf algebra whose antipode squared is inner, [24, 4.9(1)]. Since U, ; has a unique
one dimensional module it follows from [15, Lemma 3.1] and [17, Lemma 1.5] that U, ; is symmetric. Since
the block containing this module is never primary we deduce from Lemma 2.9 and Theorem 4.4 that Z/m;Z
is a proper subalgebra of Z (U, 1). Note that Z/m, Z is always a subalgebra of Z(U. ) thanks to Lemma 2.8.
3) More details on the influence of Z on the representation theory of U(g) can be found in [5, Section 4].

5. QUANTISED FUNCTION ALGEBRAS AND QUANTUM BORELS

5.1. Let G,BT,B~,T and W be as in 4.1. Let X be the character group of T and let ® be the root system
of G. Let ®* be the positive roots of ® with respect to Bt and let {a; : 1 < i < r} be the simple roots in
®* and {w; : 1 <7 <7} be the fundamental weights in X. Let (, ) be the natural pairing between the root
lattice, @, and the weight lattice, P.

There is a stratification of G

G= I Xuwi.uw

w1, w2 €W

where Xy, w, = BTw1 BT N B wyB~. This restricts to a stratification of B*

BT =[] Xew-
weWw

For w € W let £(w), respectively s(w), equal the minimal length of an expression for w as a product of
simple, respectively arbitrary, reflections.

Let wo be the longest word in W and let N = {(wp). Since wg sends ®T to —®* there is an involution o
on the set of integers [1,r] defined by woa; = —a(;y. It can be shown that the number of fixed points of o
equals 2s(wy) — r.

5.2. Let € € C be a primitive ¢! root of unity where £ is an odd integer greater than one and good, that
is £ is prime to the bad primes of .

Let U= be the non-positive subalgebra of U(g) as defined in [9], the quantised enveloping algebra of a
Borel subalgebra of g. We have a triple

Z5° € Z(UZ) S UE"

where Z5¥ is the f-centre of U=, that is the intersection of the -centre of U, (g) with U=C. By [10] U= is a
free Zogo—module of rank ¢dimB™ By [10] ZOSO is isomorphic as a Hopf algebra to O[B™T], the ring of regular

functions on B¥. Given b € B* we let m; denote the corresponding maximal ideal of ZOSO. By Theorem 2.3
we have a morphism of varieties

o : Maxspec(Z5") — Alg(fdimBJr).

We denote a(my,) by US(b).
Let O.][G] be the quantised function algebra of G at a root of unity ¢, as defined in [10]. We have a triple

Zo € Z(O[G]) € Oc[G],

where Zj is the (-centre of O[G], [10]. By [10] and [35] O[G] is a free Zg-module of rank (4™ ¢, By [10]
Zy is isomorphic as a Hopf algebra to O[G]. Given g € G we let m, denote the corresponding maximal ideal
of Zy. By Theorem 2.3 we have a morphism of varieties

3 : Maxspec(Zg) — Alg(¢dim &),
We denote 3(mg) by O[G](g).
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5.3. The following theorem shows us that there is only a finite number of isomorphism classes of algebras
U=(b) and O.[G](g). Tt also demonstrates that the PI degree of US?, respectively of O[G], is £2(N+s(wo))
respectively ¢V,

Theorem. [9, Theorem 4.4], [10, Section 9], [12, Theorem 4.4 and Proposition 4.10] Let w, w1, w2 € W and
let b,V € Xe o and 9,9 € Xuy s -

(a)(i) There is an algebra isomorphism U=9(b) = US0(Y').

(ii) There are precisely (7=®) simple US%(b)-modules, each having dimension £z ({@)+sw)),

(b)(i) There is an algebra isomorphism O[G](g) = O[G|(q')-

(i) There are precisely gr=s(wz w1) gimple O.[G](g)-modules, each having dimension 03 (Ew)+U(we)+s(wg ' w))

5.4. Centres. We begin by introducing some distinguished elements in O[B*| and O[G]. Let V(w;) be the
simple G-module with highest weight w; and let V(w;)* be its dual. For each i choose a highest weight
vector v;, respectively a lowest weight vector v}, of V(w;) . Let f;, respectively f/, be the unique weight
vector in V(w;)* dual to v;, respectively v;. For each i we have elements a;, b; and ¢; of O[G| defined by

ai(9) = foi)(9Vw),  bilg) = filgvi),  ci(9) = foti) (905 ))-

These elements restrict to elements of O[B*] which we will denote by a;, b; and ¢; too.
Given a subset I C [1,7] let S(I) be the subalgebra of C[Xy,Y,...,X,,Y,] generated by Xik’Yf*k for
i€Iand0<k<{ Then S(I) is a free module of rank ¢/ over So(I) = C[X!, Y 1 i € 1]

Theorem. a) Let [ = {1 <i <71 :0(i) #i} and let I be a set of orbit representatives for the o-action on
1. Then the centre of US" is isomorphic to the algebra

O[B*] ®s,(1) S(),

where So(I) — O[BT] sends X! to ac; and Y to ay(iycyiy. In particular Z(US) is a free Z=-module of
rank ¢7—5(wo),
b) The centre of O.|G] is isomorphic to the algebra

OlG] ®s(11,r)) S([L,7]),
where So([1,7]) — O[G] is obtained by sending X! to b; and Y} to ¢;. In particular Z(O[G)) is a free
Zo-module of rank 7.

Proof. Part (a) can be found in the appendix: it follows the method of proof of (b) in [14]. O

Remark. Tf G only has components of type B,., C,, D,. (r even),FE7, Eg, Fy or G5 then s(wg) = r so I=0and
consequently Z(USY) = O[BT]. Tt can be shown that this is the only case when one of the algebras above
is Gorenstein.

5.5. In constrast to Section 3 the centre of U=%(b) or O[G](g) is easy to describe.

Lemma. a) Let b € BY. Then Z(US%(b)) = Z/mpZ.
b) Let g € G. Then Z(O[G](9)) = Z/myZ.

Proof. (a) By Lemma 2.8 the natural map ¢ : Z/m,Z — Z(UZ°(b)) is injective, so by Theorem 5.4(a),
it is enough to show that dim Z(UZ0(b)) = ¢"~*(%0) for all b € B*. Since X, ,, = [ < Xew, Where <
denotes the Bruhat-Chevalley order on W, the identity of BT is contained in the closure of any cell X, .
By Proposition 2.10 dim Z(U=%(b)) < dim Z(US°(1)) for all b € B*. We will prove that dim Z(U=%(1)) =
érfs(wo)_

Let U; = US%(1). Fix a reduced expression wg = s;, ... s;, and hence an ordering 41 < ... < By in R*.
The algebra U, is generated by the elements Fj;, (1 <j < N) and K; (1 <i <) subject to the relations

(3) K,K; = K;K;, K/=1
— P Z o

(4) KiFg = e =) Fy K;, Fj =0

(5) Fy By, = WP By By +pj j<k

where p}k is a polynomial in the variables Fj, for j < h <k, [11, Theorem 9.3].
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Suppose we have defined inductively an ¢4im B™_qimensional algebra U, with generators Fg, and K;
satisfying (3), (4) and

(6) Fﬁj Fs, = ef(ﬁjﬁk)pﬁkpﬂj + pgr;e
where pJ; is a polynomial in the variables Fj, for j < h < min{k, N + 1 — m}. We have a morphism
C — Alg(¢dimB™)

where ¢ € C is sent to the algebra U,,(t) with generators Fj, and K; satisfying relations (3), (4) and (6)
obtained from (6) by replacing Fp,,, ,. with tFs,,, ... Then U,,(t) 2 U,, for t € C* and, by definition,
Umy1r = U'm(o)'_

The algebra Uy is generated by Fj, and K; subject to relations (3), (4) and

Fp, Fy, = ¢ M Fy F,.

By a repeated application of Proposition 2.10 we find that dim Z(U=°(1)) < dim Z(Uy). Using the tech-
niques of [11, Chapter 2 and Section 10] we can see that the dimension of Z(U ) is £" (") as required.
(b) This is proved in a similar manner using [20, Section 2.9]. O

5.6. Blocks. Given w,wy,wy € W let
S(w) ={1<i<r:o(i) #1 and wow, wwy € Staby (w;)}
and
T (wr,we) = {1 <i <r:wowy,wows € Stabyy (cv;)}-
Note that S(w) is o-stable.

Theorem. (a) Let b € X,.,. Then US0(b) has £315) blocks.
(b) Let g € Xupy wn- Then OJ[G)(g) has £1T W2l plocks.

Proof. (a) Recall that I is a set of representatives for the g-action on I = {1 < i <r: (i) # i}. The number
of blocks of U=%(b) equals the number of maximal ideals of Z/m,Z, either by Theorem 2.4 or by Lemma
5.5. The description of Z(U=) shows that Z/m;,Z is the tensor product of a discrete family of ¢-dimensional
algebras indexed by elements of I, where

(i) if @sci(b) # 0 # ag(i)Co(iy(b) then Z; = C

(ii) if a;ci(b) # 0 and a,(i)cq(iy(b) = 0 (or vice-versa) then Z; = C[X]/(X*);

(iii) if aici(b) = 0 = ag(i)Co@y(b) then Z; = C[Xy,... Xp 1]/ (X; Xy : 1 < j,k < £—1).

It follows that UZ%(b) has £# blocks where d = [{i € I : a;c;(b) # 0 # a,(i)Cq(iy(b)}]-

By definition a; is a co-ordinate function on the maximal torus T so is non-vanishing on BT. By [6, Lemma
7.2] ¢; does not vanish on X, ,, if and only if wow € Staby (w;), or equivalently wwq € Stabyw (w, ;). The
first part follows.

(b) This is proved similarly. Details can be found in [6, Section 7]. O

5.7. Azumaya locus. The precise structure of Z(U=°(b)) and Z(0O.[G](g)) can be determined using Lemma
5.5 and the methods in the proof of Theorem 5.6. The result, however, is a little awkward to present in
general, but in the Azumaya case things are simpler.

Theorem. (a) Let w € W be such that {(w) + s(w) = N + s(wp). Let n =1 —s(w) and d = 3(N + s(wp)).
Then for b € X, ., we have

Z’n
(C[le---quwfsw
Ujo(b)g®Mat€d<(Xe XZ( - 0;]>'
1o

7 s(w)—s(wo)

(b) Let wy,wy € W be such that £(wy)+£(ws)+s(wy 'wy) = 2N. Let n = r—s(wy 'w;). Then for g € Xy, a,
we have

e ClX1, e s Xy ty)]
O.[G](9) = EP Maten ( AR )

(X!, ..., X¢ )

s(wy twy)
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Proof. (a) By Theorem 5.3 every simple U=%(b)-module has maximal dimension so it follows from (1) that
U=%(b) = Mat(Z/mpZ). The argument of [6, Proposition 3.2] shows that a point (b, x) € Maxspec(Z(US?))
such that a;c;(b) = aq(5)Co(i)(b) = 0 for some i € I is singular. Since the Azumaya locus is contained in the
smooth locus of Maxspec(Z(U=?)) it follows that only cases (i) and (ii) in the proof of Theorem 5.6 can
occur. The result follows from 5.3 by counting the number of simple Z/mpZ-modules.

(b) This is proved similarly. Details can be found in [6, Section 3]. O

Remark. This theorem is the crucial step in the determination of the representation type of the algebras
UZ0(b) and O.[G](g), see [6, Section 4].
APPENDIX A.

A.1.  We would like to describe the centre of US?. We follow the ideas of [14] and use the notation of [12]
without further ado. We recall that there is an isomorphism of Hopf algebras

VS = 0B

where O [B*] is the factor algebra of O.[G] essentially obtained by restricting functions from U, (g) to UZ°,
[10]. Let

7: OJ[G] — O[B™]
be the canonical map. We often abuse notation by continuing to write z for 7(x).

A.2. For 1 <i<r the following elements of O.[B"] are defined as matrix coefficients (compare 5.4)

o V(—wowi) _ V(—U)owi)
T = C¢w0Wi7v7Wia Yi = C¢Wi7v7wl, .

We have a general commutation rule, [12, 1.2]

(7) CowCapw = 6*(N17H2)+(u1,u2)c¢),wc¢,v + Z oy Cy ;5
J

where ¢; ® ¢; = p;(M;(E) @ M;(F))) @9, wj @ vj = pj(Mj(E) ® M}(F))w ® v and pj, p; are scalars and
M;, M J’ are monomials, at least one of which is non-constant.

A.3. We define
Zik = (miyi)k(l‘a(i)ya(i))eik'
Lemma. For1 <i<r and 0 <k </ the element z;}, is central in U;O.
Proof. It can be checked, using (7), that z; ; commutes with all matrix coefficients of the form cZy(v)‘)
is a lowest weight of V/(\). By [12, Lemma 2.3(2)] O.[B*] is generated by such matrix coefficients, together

where v

with the inverse of cgp(’pv)_p. O

A4, TetI={1<i<r:o(i)#i}andlet n=|I|. Let R be the algebra with generators X; and Y; for
j € I satisfying the following relations
(8) XiXp =XpX;, Y;Yp =YpYj, X;Yp =Ewomm @)y X,
Let Rp be the subalgebra generated by X f and Yf , a polynomial ring in 2n variables. It is immediate that
R is a free Ryp-module of rank £2" with basis {X5... XJ‘.‘:Yjﬁ" . .Yj:" 10 <a;,b; < L}

By (7) we have an algebra map

Y : R — OJ[BT]

which sends X; to z; and Y; to y;. There is a commutative diagram,

UZ%(sly,i) —— UZ°(g)

! !

Uy(sla, i) —— Uy(g)
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which, in particular, induces maps
ni: OBY] — OB (SL(2)),1]
and
Ti : Oc[G] — Oc[SL(2), ],

see [12, 2.4] for example. Let wg = s;; ... 8;, be a fixed reduced expression for the longest word of the Weyl
group. We define two algebra maps

o: 0[BT 21 o BrjEN 1 @N 0, BH(SL(2). ],

Jj=1
and

AN-1) Ti) @ QT
_— _

71 O[C] O.[c)*N ®;j1 OcISL(2). ;)
The map o is injective by [12, Theorem 3.2]. By construction we have another commutative diagram
O[B*] —'— QJL, O[B*(SL(2)),i;]
(9) KT Tﬂil R QT 5
T N .
O[G] —— ®j:1 O[SL(2),144]
A.5.  For any algebra O [B™(SL(2)),i] we can construct elements analogous to z; and y;, which we denote
by z(i) and y(i).
Lemma. Let j € J. Then n(z;) = ®;z(i)"™ and n(y;) = ®ay(i)™5 .

Proof. This first equality follows from [14, Proposition 3.1] together with (9). For the second part we note
that in O[G] we have

A(yz) = Aqﬁwi,vfwi = Z Co=i,vg & Cops v,
S

where {¢°} and {v,} are dual bases for V(—wyw;)* and V(—wow;) respectively, chosen so that ¢! = ¢
and v; = v_g,. In O[B*] we have ¢4=; ,, =0 unless s = 1. So we deduce that in O[B7]

AN () =y, ©... Q.
Hence we need only describe 7;(y;) to complete the lemma. A simple calculation yields the following

iy =45 ifi=j
e 1 otherwise.

A.6. The above lemma provides us with a pair of linear maps
m:N*— NV m:N*— NV,

which are determined on the components by m; and m; respectively. These induce linear maps

_(NY NV — (NY NV
=] — = =) — =] -
(N (N ’ (N (N

Lemma. The maps m and M are injective.

Proof. For m this is proved in [14, Proposition 3.2 and Proposition 6.1]. That 7’ is injective follows from
the explicit description given in the proof of Lemma A.5. O
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A.7. We now have two algebra maps
N
01 : O[BY] — (X) O[B* (SL(2)), ],
j=1
and

0: R — R OB (SL(2).ij]

where 6, is the restriction of o to O[B*] and 65 is the composition o o 1.

Let T be a set of orbit representatives for the o-action on I. In particular \I| =1 — s(wg). Let Zj) =
(X;Y5)5(Xo(j)Yoj)) *for j€Tand 0 <k < Candlet R’ C R be the subalgebra generated by the elements
Zj - It follows from (8) that R’ is commutative and it is straightforward to check that R’ is free over the
subring R{, generated by Z; o and Z;, with j € I, a polynomial ring in n variables.

Lemma. There exists an algebra map

N
(10) 0: 0B @p, B — Q) OB (SL(2)).i;],
j=1
such that 0 is injective. In particular O[BT] QR R’ is an integral domain of Krull dimension dim B™T.

Proof. The map 0 is obtained by combining #; and f5. That this is well-defined follows immediately from
construction. Let t = r— s(wg) and {j1,...,5:} = I. The left hand side of (10) is a free O[B™]-module with
basis {Zj, k, .- Zj, k, : 0 < ki < £} whilst the right hand side is a free @, O[BT(SL(2)), i;]-module with

basis {®§V:1x§-j yJC-j :0 < bj,¢; < {}. By Lemma A.6 0, is injective with respect to these bases, proving the
first claim. The second follows from the fact that the right hand side of (10) is a domain and that the left

hand side is a finite extension of O[B™]. O
A.8. Now we have an algebra map

b: OB 0p R — O.[B"),
whose image is generated by O[B"] and the elements z; .

Theorem. The centre of US is isomorphic to O[BY] ®p; R under the map ¢.

Proof. Let Z' be the image of ¢. By Lemma A.3 Z’ is central in O [B™]. Since Z’ is an integral domain of
Krull dimension dim B™ it follows from the second claim of Lemma A.7 that ¢ is an injection.

Let PYo = {X\ € P: woA = A\}. Write A = Y a;o0;. It is clear that woA = X if and only if >;_,(a; +
aq(i))@i = 0. It follows that P"° = Z[w; — wy(;) : 4 € I]. Now the quotient ring of Z' must equal the
quotient ring of Z(O[B"]) thanks to the description given in [12, Theorem 4.5]. Since Z(O.[B™]) is a finite
extension of Z' it is therefore enough to show that Z’ is integrally closed. But the arguments of [14, Section
7] can be applied verbatim, confirming this. O

REFERENCES

[1] M. Auslander, 1. Reiten, and S.O. Smalg. Representation Theory of Artin Algebras. Number 36 in Cambridge studies in
advanced mathematics. Cambridge University Press, first paperback edition, 1995.

(2] D.J. Benson. Representations and Cohomology. Number 30 (1) in Cambridge studies in advanced mathematics. Cambridge
University Press, 1991.

[3] N. Bourbaki. Groupes et algébres de Lie, Chapitres 4,5 et 6. Eléments de Mathématique. Hermann, 1968.

[4] K.A. Brown and K.R. Goodearl. Homological aspects of noetherian PI Hopf algebras and irreducible modules of maximal
dimension. J. Alg., 198(1):240 265, 1997.

[5] K.A. Brown and I. Gordon. The ramification of centres: Lie algebras in positive characteristic and quantised enveloping
algebras. University of Glasgow preprint no. 99/16.

[6] K.A. Brown and I. Gordon. The ramification of centres: quantised function algebras at roots of unity. University of Glasgow
preprint no. 99/46.

[7] C. De Concini and V.G. Kac. Representations of quantum groups at roots of 1: reduction to the exceptional case. Adv.
Ser. Math. Phys., 16:141-149, 1992.

[8] C. De Concini, V.G. Kac, and C. Procesi. Quantum coadjoint action. J. Amer. Math. Soc., 5(1):151-189, 1992.

[9] C. De Concini, V.G. Kac, and C. Procesi. Some quantum analogues of solvable Lie groups. In Geometry and Analysis,
pages 41-65. Tata Inst. Fund. Res., Bombay, 1992.



14

[10]
11]
(12]
(13]
(14]
[15]
[16]
(17]
(18]
(19]
[20]
(21]

[22]
(23]

[24]
[25]

[26]
27]
28]
[29]

(30]
(31]

[32]
(33]
[34]
(35]

[36]
37]

IAIN GORDON

C. De Concini and V. Lyubashenko. Quantum function algebras at roots of 1. Adv. Math., 108:205 262, 1994.

C. De Concini and C. Procesi. Quantum groups. Springer Lecture Notes in Mathematics 1565. 31-140.

C. De Concini and C. Procesi. Quantum Schubert cells and representations at roots of 1. In G.I. Lehrer, editor, Algebraic
groups and Lie groups, number 9 in Australian Math. Soc. Lecture Series. Cambridge University Press, Cambridge, 1997.
K. Erdmann. Blocks of Tame Representation Type and Related Algebras, number 1428 in Springer Lecture Notes in
Mathematics, 1990.

B. Enriquez. Le centre des algebres de coordonnées des groupes quantiques aux racines p®-iémes de l'unité. Bull. Soc.
Math. France, 122(4), 1994.

R. Farnsteiner. Periodicity and representation type of modular Lie algebras. J. reine angew. Math., 464:47—-65, 1995.

G. Fischer. Darstellungtheorie des ersten Frobeniuskerns der SLs, PhD thesis, Universitit Bielefeld, 1982.

D. Fischman, S. Montgomery, and H. J. Schneider. Frobenius extensions of subalgebras of Hopf algebras. Trans. Amer.
Math. Soc., 349(12):4857-4895, 1997.

E.M. Friedlander and B.J. Parshall. Modular representation theory of Lie algebras. Amer. J. Math., 110(6):1055-1093,
1988.

P. Gabriel. Finite representation type is open. In V. Dlab and P. Gabriel, editors, Representations of Algebras, number
488 in Springer Lecture Notes in Mathematics, pages 132—-155, 1974.

I. Gordon. Complexity of representations of quantised function algebras and representation type. Preprint, University of
Glasgow, 1998.

J.E. Humphreys. Conjugacy Classes in Semisimple Algebraic Groups, volume 43 of Math. Surveys Monographs. Amer.
Math. Soc., Providence, RI, 1995.

J.E. Humphreys. Modular representations of simple Lie algebras. Bull. Amer. Math. Soc., 35(2):105 122, 1998.

J. C. Jantzen. Subregular nilpotent representations of Lie algebras in prime characteristic. Represent. Theory, 3:139-152,
1999.

J.C. Jantzen. Lectures on Quantum Groups. Number 6 in Graduate Studies in Mathematics. Amer. Math. Soc., Providence,
R.I., 1996.

J.C. Jantzen. Representations of Lie algebras in prime characteristic. In A. Broer, editor, Representation Theories and
Algebraic Geometry, Proceedings Montréal 1997 (NATO ASI series C 514), pages 185-235. Dordrecht etc, Kluwer, 1998.
G. Lusztig. Quantum groups at roots of 1. Geom. Dedicata, 35:89—114, 1990.

I. Mirkovi¢ and D. Rumynin. Centers of reduced enveloping algebras. Math. Zeit., 231:123-132, 1999.

B. J. Miiller. Localization in non-commutative Noetherian rings. Canad. J. Math., 28:600-610, 1976.

D. K. Nakano and R. D. Pollack. Blocks of finite type in reduced enveloping algebras for classical Lie algebras. Preprint
1998.

R. Pollack. Restricted Lie algebras of bounded type. Bull. Amer. Math. Soc., 74:326-331, 1968.

A. Premet. An analogue of the Jacobson-Morozov theorem for Lie algebras of reductive groups of good characteristics.
Trans. Amer. Math. Soc., 347:2961-2988, 1995.

A. Premet. Private communication.

I. Reiner. Maximal orders. Number 5 in London Mathematical Society Monographs,. Academic Press, 1975.

L.H. Rowen. Polynomial Identities in Ring Theory. Number 84 in Pure and Applied Mathematics. Academic Press, 1980.
D. Rumynin. Hopf-Galois extensions with central invariants and their geometric properties. Algebra and Rep. Theory,
1:353-381, 1998.

J. R. Schue. Symmetry for the enveloping algebra of a restricted Lie algebra. Proc. Amer. Math. Soc., 16:1123-1124, 1965.
B. Ju. Veisfeiler and V.G. Kac. The irreducible representations of Lie p-algebras. Funkcional. Anal. i PriloZen., 5(2):28-36,
1971.



