INFINITE QUIVERS AND COHOMOLOGY GROUPS

Pu ZHANG

By a theorem of Gabriel (cf. [G]), any finite-dimensional basic algebra over an alge-
braically closed field k is of the form kQ/I, where @ is a finite quiver, I is an ideal of the
path algebra kQ satisfying JV C I C J? for some N > 2, and J is the ideal of k(Q) generated
by arrows of ). In dealing with infinite-dimensional algebras, it is also natural to con-
sider the algebras given by infinte quivers and relations. On the hand, in the recent years,
there are a lot of papers to study the Hochschild cohomology groups of finite-dimensional
algebras by using some methods in the representation theory of finite-dimensional algebras.
This inspires us to consider the Hochschild cohomology groups of some infinite-dimensional
algebras given by infinite quivers and relations.

The aim of this paper is to report some results on cohomology groups of algebras given
by arbitrary quivers (not necessarily finite quivers) and relations. Different from the finite-
dimensional case, the algebras A given by infinte quivers and relations may have no units, and
hence the Hochschild cohomology groups H™(A) are no longer isomorphic to the cohomology
groups Ezt". (A4, A) (see e.g. 1.5 below), thus, we should distingush the two cohomology
groups for algebras given by infinite quivers and relations. The main results reported here
are Theorems 2.2 and 3.1, and some other vanishing conditions on the first Hochschild
cohomology group, see Theorems 4.1-4.3.

1. PRELIMINARIES

1.1. A quiver is a datum Q = (Qq, @1, h,t), where Qy,Q; are two sets, which are
respectively called the set of vertices and the set of arrows of @), and h,t : Q1 — Qo are
two maps, for which h(«) and t(«) are respectively called the head and the tail of arrow «.
Thus, for « € Q1, we write « : h(«) — t(«). We emphasize that the quiver () considered
here may be an infinite quiver, i.e. at least one of Qg and )1 is an infinite set.

A path p in @ of length | means a sequence of arrows p = aq - - -y with t(«;) = h(t1)
for1 <i<Il—1. Call h(p) = h(a1), t(p) = t(ay), and I(p) = I respectively the head, the tail,
and the length of p. If we regard a vertex i € Qg as a path of length 0, it will be denoted
by e;. A path p with [(p) > 1 is called an oriented cycle provided h(p) = t(p). Denote by
Qp the set of all paths in ). We emphasize that the quiver ) considered here may contain
an oriented cycle.

A quiver is called locally finite provided that for any i € Q)¢ there are only finitely many
a € Qq with h(a) =i, and there are only finitely many 3 € @Q; with t(a) = .

For an arrow a € @1, consider the formal inverse a~!. Define h(a™!) = t(a) and
t(a™1) = h(a). A walk w is an “unoriented path”, i.e. a sequence w = 3y - - - 3, where 3; is
an arrow «; or a formal inverse o] ' of an arrow «; such that ¢(8;) = h(Bi41), 1 <i <1—1,
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and that w contains no subsequences of the form aa~! and the form o', where o is

an arrow. Define the head h(w) of w to be h(81), and the tail ¢(w) of w to be t(5).
A walk of length [ is denoted by i1 — 4o — -+ — 441, where i; — ;41 means the arrow
can go in either direction. In particular, we regard a vertex as a walk of length 0. Two
walks w; and ws are said to be parallel provided that they have the same head and the
same tail. A walk w : i3 — iy — .-+ — 441 is called an unoriented cycle provided that
> 0,h(w) =iy =41 = t(w), and that the vertices iy, --- ,4; are pairwise distinct. Thus,
by definition, for any arrow «, at most one of @ and o' occurs in an unoriented cycle. A
quiver @ is called a tree provided that ) contains no unoriented cycles. A quiver is called
connected provided that for any two vertices ¢ and j, there is a walk connecting ¢ and j.

For a field k and a quiver Q, let A = kQ be the k—space with basis of all paths in Q. For
D=1 Oy, q= P11 Py € Qp, define the multiplication

= 03B 1(p) = h(q)
0. t(p) # h(a).

Then A = kQ becomes a k-algebra, which is called the path algebra of (). Note that A may
have no unit, however A2 = A; and that A has the unit if and only if @ is a finite set,

and in this case 1 = Y e;; also note that A is finite-dimensional if and only if @ is a finite
1€Qo
quiver (i.e. both Qg and @ are finite sets) and @ contains no oriented cycles.

We are interested in considering the monomial algebras, which is by definition of the
form A = kQ/I, where @Q is an arbitrary quiver, and I is an ideal of kQ generated by a
set of paths of length bigger than 1. In particular, path algebras are monomial algebras.
Note that if A = kQ/I is a monomial algebra, then I C J?, where J is the ideal of kQ
generated by all arrows of (). We emphasize that monomial algebras considered here may
be infinite-dimensional.

1.2. Let R be a ring and e> = ¢ € R. Then Re and eR are respectively left and
right projective R-module. We do not assume that R has a unit, but assume that R has

a set of orthogonal idempotents {e;|i € I'} such that R = @ Re; = EB e;R. Consider the
i€l

category R — Mod of all left R-modules X with RX = X, or equlvalently, X = 69 e; X (the

morphisms in this category are just the R-module homomorphisms). Clearly, Rez and R
are objects of R — Mod; and R — Mod is an extension closed abelian category. Such a ring
R is called (left) hereditary provided that every submodule X € R — Mod of a projective
module P € R — Mod is also projective.

Now, let @ = (Qo, @1, h,t) be a quiver. Then A =kQ = @ Ae; = @ e;A. Note that
1€Qo 1€Qo
Ae; is the k—space with basis the set of all paths in () with tail i. Let X € A — Mod.

The following construction of a projective resolution of X is the explicit form of Happel’s
resolution in [Ha, 1.6], and its proof is due to Crawley-Boevey [CB], both are stated for A
being finite-dimensional. Fortunately, it is also valid for infinite quivers. For the convenience
of the reader we include the proof here. The tensor product ® will mean ®y.

Lemma. (Happel and Crawley-Boevy) We have the following projective resolution of X €
A— Mod
0— €D Aene) ® exie X =5 PAesmeiX < X —0, (1)

acQq 1€Qo
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where g and f are A-homomorphisms defined by
gla®@x)=ax for a€Ae; and x€e;X;
fla®z)=aa@r—a®ax for ac Aepn)y and T € eya)X.

Proof. Note that Ae; ® V is always A-projective for any k-space V. Since X € A — Mod,

it follows that g is epic. We claim that f is mono. In fact, let 0 Z & € @ Aepa) @ ey X.
acQ:
Then £ can be written as a finite sum

&= Z Z PRTayp With  Z4) € €yq)X.
acQ1  peEQp,t(p)=h(a)
Let p be a path of maximal length such that x , # 0 for some «. Then
e =3 S (pa® ey - p®azay).
ac@Q1  peQp,t(p)=h(a)

Since pa ® Ta,p # 0 by assumption, it follows that f(§) # 0.
Clearly, fg=0. Let n € @ Ae; ® ¢;X. Then 7 can be uniquely written as a finite sum
1€Qo

n= Z Z pRzxp with z,€eX.
i€Qo  pEQp,t(p)=i
Define deg(n) to be the maximal length of the paths p with z, # 0. Write p € Q, with
t(p) =i and l(p) > 1 as p = p’a with @ € Q1. Then
f' @ xp) =p®a, —p' & ax,.
Now we can claim that 1 + I'm(f) contains an element of degree 0: if deg(n) = d > 0, then

n—f(> > P’ ®x,) is of degree less than d, and the assertion follows from
1€Qo0  pEQRp,t(p)=i,l(p)=d
induction.
Let n € Ker(g), and 7’ € n+Im(f) with deg(n') = 0. Then we can write ' = >~ e;®@u,
1€Q0

with z € e;X, and then
0=g(n) =g()=g(> ewal)=Y a. c PeX,
1€Q0 1€Q0 1€Q0

it follows that every component z7, = 0, and hence 1’ = 0 and 1 € I'm(f). O

Corollary. Let A= kQ with Q a quiver. Then
(i) For X € A— Mod, the projective dimension p.d.X < 1.
(i) A is hereditary.

1.3. Let A be an algebra over a field k. We will not insist on A to have a unit.
Let A° = A ® A* be the enveloping algebra of A, where A* is the opposite algebra of
A. For a € A, the corresponding element in A* is denoted by a’. Thus, in A® we have
(a®b)(c®d) =ac® (db)'. Regard A as a left A°~-module in a natural way: (a ® b')z = axb
fora®d’ € A¢,x € A.

Now, we consider the path algebra A = kQ@Q, where @) is an arbitrary quiver. Then
A= D A(ei®e)= D Aei®(e;A).

1,J€Qo 1,J€Qo



Corollary. Let A = kQ with Q an arbitrary quiver. Then we have the following projective
resolution of A over A€

0 — @D Aen) @ (exmA) L @D Ae; @ (e;4) 2> A —0, (2)
ac@Q i€Qo
where g and f are A®-homomorphisms defined by
gla®@lt)=ab for a€Ae; and be€ e4;
fla®b)=aa®@b—a@ab for ac Aepn) and bE eyq)A.

Proof. 'Take X in (1) in Lemma 1.2 to be 4. A, then the exact sequence (1) gives a projective
resolution of the A°—module z¢ A, and hence the assertion follows. [

1.4 Let A be an algebra over a field k. We will not insist on A to have a unit. Let A®"
denote the n-fold tensor product of A with itself over k, and X be a A®-module. Regard X as
a A°-bimodule by azb =: (a ® b')z. Recall that the Hochschild complex (C™,d") introduced
in [Ho] is defined as follows:

C"=0 for n<0; C°=X; C"=Homp(A®",X) for n>0;
d’: X — Homg(A, X) with d°z(a) =az —za for v € X, a € A;
and d" : Homy(A®", X) — Homy(A®(*tD X)) with

d"fa1® - R an+1) =ar1f(a2® -+ R any1)
+ Z (=1) fla1 ® - ®ajaj11 @ @ ani1)

1<j<n
+ (D" (a1 ® - ® an)angs
for fe C™ and ay,--- ,a,41 € A; and the n—th Hochschild cohomology of A with coefficient

in X is by definition the k-space H™(A, X) = Ker(d™)/Im(d"!). In particular, H"(A) =
H™(A,A) is called the n — th Hochschild cohomology of A.

It is clear that H(A,X) = {2 € X | za = az,Va € A }; in particular, H°(A) is the
center Z(A) of A. Let

Der(A, X) = { &€ Homy(A, X) | 6(ab) = 6(a)b + ad(b) },

and

Der®(A, X) ={ 6, € Homg(A, X) | 2 € X }  with 0,(a) = za — az,Ya € A.

Then HY(A, X) = Der(A, X)/Der®(A, X); in particular, H'(A) = Der(A)/Der®(A), where
Der(A) = Der(A,A) and Der®(A) = DerY(A, A) are respectively the k-spaces of the deriva-
tions and inner derivations of A.

1.5. Note that in standard literature (see e.g. [CE, W]) the Hochschild cohomology
is defined for algebras with unit, and then we have the isomorphism of k-spaces H™(A) =
Exth.(A,A) for n > 0. But for an algebra without unit, this isomorphism is no longer valid.
We have the following



Lemma. Let A = kQ with Q an arbitrary connected quiver. Then the following are
equivalent

(i) A has a unit.

(i) Qo is a finite set.

(i) Z(A) #0.

(iv) We have the isomorphism of k-spaces H"(A) = Ext}.(A, A) for n > 0.

Proof. Tt is clear that (i) is equivalent to (i¢), and (7) implies (i4¢). The implication of (i)
to (iv) is well known, see e.g. [CE]; and the implication of (iv) to (i) follows from the fact

Z(A) = H°(A) = Homa- (A, A) #£ 0.

It remains to prove that if (g is infinite, then Z(A) = 0. Otherwise, let 0 # a = > ¢ip; €
Z(A) with p; € Qp and ¢; € k*. Let p be a path amoung those p; which is of maximal
length. Then h(p) = ¢(p) = j. Since Qo is infinite and @ is connected, it follows that there
exists an arrow a, such that h(a) = j # t(a); or t(a) = j # h(a). Without loss of generality,
we assume that h(a) = j # t(a). Then we get the contradiction aax # aa.

2.  COHOMOLOGY GROUPS Exth.(A,A)

We are interested in the cohomology groups Ext%.(A,A), where A = kQ with Q an
arbitrary quiver.

We need the following observation

Lemma 2.1. Let Q = (Qo, Q1,h,t) be an arbitrary quiver. Then Q is a tree if and only

if for any (do)acq, € 11 ka, where ko =k for any o € Qn, the system of linear equations
acQq

Ti(a) = Th(a) = da, Vo € Q1 (3)
has a solution x; = ¢;, Vi € Qp.

Proof.  Assume that the system of linear equations (3) has a solution. If @Q is not a tree,
then there is an unoriented cycle ¢ = (31 - - - B, in @), where 3; is arrow «;, or a formal inverse

of arrow ;. Choose (dy) € [] ko with dq =0 for all & # oy, and d,, = 1. Then from (3)
acQ1
we have the contradiction

0= Z (=1)7Pd,,. = (=1)7),

1<i<n

where o(8;) =1 if 8; = a;, and o(5;) = -1 if 3; = a;l.

Conversely, without loss of generality, we may assume that @ is a connected tree. Start
from an arbitrary vertex i, and take a fixed value of x;, say z; = ¢;. Then for any vertex j
we have a walk w starting at ¢ and ending at j, since @ is connected. Then by (3) we obtain
the value of z; = ¢;. Since @ is a tree, it follows that such a walk w is unique, in this way
we get a solution z; = ¢;,Vj € Qq. of the system of linear equations (3). O



Theorem 2.2. Let A =kQ, where Q is an arbitrary quiver. Then
(i) we have Ext}.(A,A) =0 forn > 2.
(ii) Exti.(A,A) =0 if and only if Q is a tree.

Proof. The assertion (i) follows from Corollary in 1.3.

In order to prove (i), applying Hom ge(—, A) to the exact sequence (2) in Corollary 1.3,
we see that Exth.(A, A) = 0 if and only if the map

fr HOmAe(@ Ae; @ (e;A), A) — Homae ( @ Aena) @ (eya)A)', A)

1€Qo ac@Q1

induced by f is epic.

Note that
Hom ¢ ( @Aei ® (e;A), A) H Hom 4e (Ae; ® (e;A)', A);
i€Qo i€Qo
Hom 4 ( EB Aep(a) ® (era)A), A) = H Hom g (Aep(a) @ (e4(a)A)’, A).
ac@ acQ1

If Q is a tree, then
HomAe(@Aei ® (eiA)', A) = H k)fz,
i€Qo i€Qo
where f; € Homae(Ae; ® (e;A), A) is given by fi(e; ® €}) = e;; and
HOmAe( @ Aeh(a) (39 (et(a)A)/, A) = H kfa,
acQ1 ac@Qr

where f, € Homae(Aep(q) ® (e4(a)A)’, A) is given by fa(en) @ e;(a)) = . Note that

f*((cifi)iEQo) = ((Ct(a) - Ch(a))fa)oéEQl' (4)
Take an arbitrary element (do fa)ac@, € Homae( @ Aepa) ® (ea)A)’, A), by Lemma 2.1

a€Q:
the system of linear equations

Ti(a) — Th(a) = da, Vo € Q1

has a solution z; = ¢;, Vi € Q. By (4) this means

f*((cifi)ing) = (dafa)atea
that is, f* is epic.

Conversely, if f* is epic, then for any (dq)acg, € [ ka, where ko = k for any a € @1,
aEQ:
there exists 6 = (0;)icq, € [[ Homae(Ae; ® (e;A), A), such that f*(0) = (da fa)acq, - Let
1€Qo
di(e; ® €}) = a; € e;Ae;. Then

T () (ena) ® e;(a)) =di(a® e;(a) — en(a) ¥ )
=(a® e;(a))(get(a) (et(a) ® e;(a)) — (eh(a) & a’)5eh(a) (eh(a) & e;z(a))
= AQ(a) — Ap(a)A-



It follows that
AQ(a) =~ Ap(a)@ = doar  for o€ Q1. (5)

Let a; = cije; + x; with x; € e;Ae; N J, where J is the ideal of A generated by all arrows in
Q. Then (5) forces z; = 0 and

Ct(a) — Ch(a) = do Vo€ Qq,

it follows from Lemma 2.1 that @ is a tree. [J

3. MONOMIAL ALGEBRAS

The following result generalizes and unifies several well-known corresponding results in
[BM, 2.2], [Ha, 1.6, 2.2, 2.3, 3.2].

Theorem 3.1. Let A = kQ/I be a monomial algebra with QQ connected. Then the following
are equivalent

(i) H'Y(A)=0;
(i) Q@ is a finite tree;
(ii) H™(A)=0 forn>1.

Note that if @ is a tree, then any ideal of kQ is generated by a set of paths in Q. It
follows that we have

Corollary 3.2. Let A = kQ/I with Q a connected tree, and I C J?, where J is the ideal
of kQ generated by all arrows of Q. Then H*(A) = 0 if and only if Qo is a finite set.

In order to prove the theorem, we need the following construction of derivations, which
is introduced by Happel [Ha, 3.2] and developed by Bardzell and Marcos [BM, 2.1].

Given any function w : @1 — k, one can easily see that w can be extended to be a
function from @), to k, again denoted by w, such that w(e;) = 0 for i € Qo and w(pg) =
w(p) +w(q) for p,q € Qp.

Define the k-map d(w) : kQ — kQ by d(w)(p) = w(p)p for p € Qp. Then it is clear
that d(w) € Der(kQ).

Further, the function w can be extended to the set of all walks in @ by w(a™!) = —w/(«)
for @ € @1, again denoted by w.

Lemma 3.3. Let A =kQ/I with Q an arbitrary quiver and I an ideal of kQ with I C J?.
Let w : Q1 — k be a function such that d(w)(I) C I. If H*(A) = 0, and q1, g2 are two
parallel walks in Q, then w(q1) = w(qa)-

Proof.  The proof is same as the one in [BM, 2.1], in which is stated only for finite-
dimensional case. For the convenience of the reader, we include the proof.

For any element ¢ € k@, denote the canonical image of ¢ in A by ¢. Since d(w)(I) C I, it
follows that d(w) induces a derivation of A, again denoted by d(w). Thus, d(w)(p) = w(p)p

for p € Q. Since H(A) = 0, it follows that d(w) = 6_ for some a = Y cie; + = (a
@ 1€Qo

finite sum) with z € J. Then for any o € Q1 we have w(a)a = §_(a) = aa — aa =
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(ch(a) — ct(a))& +y with y € J2. Since I C J2, it follows that (w(a) — Ch(a) T Ci(a))x € J?.
This forces

Ch(a) =~ Ct(a) = w(a)a (6)
which means that for any walk v we have w(y) = w(h(y)) —w(t(7)). From this the assertion
follows. [

Corollary 3.4. Let A and w be in the same situations as in Lemma 3.5. If H'(A) =0,
then w(c) =0 for any unoriented cycle c.

For the general case, we have the following similar result as in the finite-dimensional case
due to Bardzell and Marcos [BM, 2.2]

Lemma 3.5. Let A=kQ/I be a monomial algebra. If H*(A) = 0, then Q is a tree.

Proof.  Otherwise, let ¢ be an unoriented cycle containing an arrow «. Choose a function
w: Q1 — k to be w(a) =1 and w(F) = 0 for otherwise. Since A is monomial, it follows
that d(w)(I) C I, and hence w(c) = 0. But w(c) = 1 by the choice of w. O

Lemma 3.6. Let A = kQ/I be a monomial algebra. If H'(A) = 0, then Q is locally
finite.

Proof.  Otherwise, since @ contains no loops (i.e. an arrow a with h(a) = t(a)) by
Lemma 3.5 it follows that @ must contain either a subquiver D = (D, D7) with Dy = Ny
and D; = {a; : 0 — i | i € Ny }, or a subquiver D' = (D{, D}) with D} = Ny and
Di={a;: i—0|ieN; },hereN;={neZ|n>i}.

By the dual argument, it suffices to assume that @) contains a subquiver D. Consider the
function w : Q1 — k by

w(agy) =1 for n>1; and w(B) =0, VB€Q —{ax |neN; }.
Since A is a monomial algebra, it follows that d(w)(I) C I, and hence we have the derivation

d(w) of A given by d(w)(p) = w(p)p for p € Qp, where p denotes the canonical image in A
of p. Let § =68 _ +d(w). Then § € Der(A). We claim that § ¢ Der®(A), and hence we
o

get a desired contradiction with the assumption H!(A) = 0.
In fact, if 6 = d_, where a € kQ is a finite sum of the form
a
a= Zciei + Zdiai + Ztaa,
1€Np 1€Ny ac2

with Q = Qp — {eo,ei,a; for ¢ € N; }. Then we have

Qo = 0(02n) = 0_(02n) = aq2, — azna = (Co = C2n)02n + T
with z € J2. Since I C J?, it follows that
Co — Cop = 1. (7)

Similarly, we have
Co — Coan—1 — 0. (8)

Since a is a finite sum, it follows that almost all ¢; are zero, which contradicts (7) and (8).
(]



Lemma 3.7. Let A = kQ/I be a monomial algebra with ) connected and H'(A) = 0.
Then Q is a finite tree.

Proof.  Since @ is connected, by Lemmas 3.5 and 3.6 it is enough to prove @ is a finite
set.
Consider the k-map & : A — A given by §(p) = I(p)p for p € Q,, where [(p) is the length
of p. Then § € Der(A) since A is monomial, and hence § = 6_ for some a = ) c;e; + 1 (a
@ 1€Qo
finite sum) with = € J. Since I C J2, it follows that

Ch(a) = Ct(a) =1, for a€ Q. (9)

Let @ be the set of vertices ¢ with ¢; # 0. Since a is a finite sum, it follows that @ is a
finite set. For every arrow a we see from (4) that at least one of h(«) and ¢(«) belongs to
Q).

If 1 is an infinite set, then there exists a vertex ¢ € )}, and infinitely many arrows c;,
such that ¢ is the head or the tail of ;. This is impossible since @ is locally finite by Lemma
3.6. O

Lemma 3.8. ([Ha, 2.2]) Let A =kQ/I with Q a finite tree and I C J2. Then H"(A) =0
for alln > 1.

Proof of Theorem 3.1. The implication of (i) to (i7) follows from Lemma 3.7; and
the implication of (i) to (i) follows from Lemma 3.8. O

Remark. For a non-monomial algebra A = kQ/I, even if @ is a finite quiver, the
Theorem is no longer valid. For example, let @ be the quiver with Qo = { 1,2,3,4 } and
Qr={a:1—2,0:2—4;~v:1—3;6§:3—4};and I = (af—~5 ). Then
HY(kQ/I) =0, but @ is not a tree.

4. VANISHING OF THE FIRST HOCHSCHILD COHOMOLOGY

Let A = kQ/I with Q a finite quiver and I an ideal of kQ with J~ C I C J? for some
positive integer N. Recently, Buchweitz and Liu ([BL]) have constructed an algebra A with
a loop with H'(A) = 0. However, in many cases, H'(A) = 0 implies that Q is directed,
that is, @ contains no oriented cycles (cf. [Ha]). We include several results towards this
direction.

For an arbitrary quiver @, recall that a relation p in @ is a finite combination Y ¢;p; of
paths p; of length bigger than 1, such that all p; have the same head, and have the same
tail, see [R, p.43]. Note that any ideal I of kQ with I C J? is generated by a set of relations
in Q. Anideal I = (p;) with all p; = 3" ¢; jp; ; being relations is called a homogeneous ideal
proveded that I(p; ;) does not depends on j.

~

Denote by A, 4 the quiver with Qo ={ 1,--- ,p+¢ltand Q1 ={ s :i — i+1forl <
i<p—lioay:p—pt+qg f:l—p+tl Bjiptj—1l—pt+jfor2<j<q}.
Theorem 4.1. Let A = kQ/I with Q an arbitrary quiver and I be a homogeneous ideal

of kQ. If H'(A) =0, then Q does not contain a subquiver A, , with p # q.
9



Proof.  Otherwise, denote by ¢ the unoriented cycle given by a subquiver A;,q. Consider
the length function I, that is, [(a) = 1 for o € Q1. Since I is homogeneous, it follows that
d(w)(I) € I and I(c) = 0 by Corollary 3.4. On the other hand, [(c) # 0 since p # ¢. O

Theorem 4.2. Let A = kQ/I with Q an arbitrary quiver and I an ideal of kQ with
I C J2 If HY(A) = 0, then either Q is a tree, or for any unoriented cycle ¢ and any arrow

a occuring in ¢, there exists a generating relation g = > cp; of I with n > 2, and i,j
1<i<n
such that ma(p;) # ma(pj), where mq(p;) = the times of the occurances of « in p;.

Proof. Assume that @ is not a tree. Then by Theorem 3.1 we see that A is not monomial.

Let I = (p; | i) with all p; being relations. Consider the set S of all generators of I which

are not paths. If there exists an oriented cycle ¢ and an arrow « occuring in ¢, such that

ma(pi) = ma(p;) for any relation g = Y ¢p; € S and all 1 < ¢,j < n, then define
1<i<n

w: Q1 — k by w(a) =1 and w(F) = 0 for otherwise. Then d(w)(I) C I and by Corollary

3.4 we have w(c) = 0. But w(c) =1 by the choice of w. [

Theorem 4.3. Let Q be a cyclic quiver, that is, Qo = {1,2,---,1} and Q1 = {a; : i —
i+1,V1<i<Il—1; ay: 1l — 1} and I be an ideal of kQ with JN C I C J? for some
positive integer N. Then I is generated by some paths, and H'(kQ/I) # 0.

Proof. By Theorem 3.1, it is enough to prove the first assertion. Otherwise, assume that

g= > cp; € Iisarelation with [] ¢ #0,n>2,p; € Qp, and p; ¢ I for 1 <i <n,
1<i<n 1<i<n

such that n is minimal amoung all such relations in I. Since @ is a cyclic quiver, we see

I(p1) > - > l(pn).

Since JN C I C J? for some positive integer N, it follows that kQ/I is finite-dimensional,
and hence there exists a unique path ¢ such that I(p1¢) is minimal amoung p1¢q € I. Denote
p1q by p. Then

p=pa=c(ga— > cipiq),
2<i<n
it follows that > ¢;p;q € I. By the minimality of n, we see that p;q € I for 2 <i < n.
2<i<n

Let ¢ be the oriented cycle with I(¢) =1 and h(c) = t, t(c) = t, where t = ¢(p;). Then
p1 = ppc™ for some m > 1. Write ¢ as ¢ = ¢"q; with r > 0 and h(q1) = ¢, I(q1) < .

If » > m, then we have

Png = pPnc q1 = (puc™)(" @) = pi(c" "q1) €1,

which contradicts to the assumption of ¢ since I((¢""™¢1)) < l(q)-
If m > r, then there exists a unique p’ € @, such that ¢™~" = ¢1p’, and hence we have

m—r

p1 = pnc™ = (Pnc”)™ T = () (@1p') = (pn@)p" € 1,

a contradiction. This completes the proof. [
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