MINIMAL GENERATORS OF RINGEL-HALL
ALGEBRAS OF AFFINE QUIVERS

PuU ZHANG AND YING-BO ZHANG

ABSTRACT. Let H(A) be the Ringel-Hall algebra of A, where A is the path algebra of an arbitrary
affine quiver. For any d € Njj, we determine the number of minimal generators of H(A) of degree d;
and such systems of minimal generators can be explicitly written out.

1. Introduction

Let k£ denote the finite field with ¢ elements and A a finite-dimensional hereditary k-algebra,
with all simple A—modules S(1),---,S(n) up to isomorphism. Denote by A —mod the category of
finite-dimensional left A-modules, which is exactly the category of A-modules with finitely many
elements. The Grothendieck group Ky(A) of all finite A—modules modulo short exact sequences
can be identified with Z™, such that the image of S(i) in it is the i—th coordinate vector. For
M € A — mod, denote its isoclass by [M], and its image in K¢(A) by dimM which is called the
dimension vector of M.

Let R be the field of real numbers. By definition [R2] (see also [Mac], but only for discrete
valution rings), the Ringel-Hall algebra H(A) of A is a R-space with basis the set of isoclasses [M]
of all finite modules, with multiplication given by

[M]-[N]:= ) _girnlL]
(L]

where the structure constant gh n is the number of submodules V' of L such that V = N and
L/V = M. Then H(A) is an Njj-graded associative R-algebra with identity [0], where for d € Ng,
H(A)q is the R-space with basis

{[M]| dimM =d }.

In particular, H(A)o = R. Note that here we use the untwisted multiplication in H(A). However,
all considerations hold for the twisted one introduced in [R5].

By definition ([R3]) the composition algebra C(A) of A is the subalgebra of H(A) generated by all

isoclasses of simple A-modules [S(1)],--- ,[S(n)]. Ford = (dy,--- ,d,) € N§ withl =d;+---+dp,

let C(A)aq be the R-space spanned by all monomials [S(i1)]---[S(4)], such that the number of

occurrences of i in the sequence i1, -+ ,4; is exactly d; for 1 <i < n. Then C(A) = @PC(A)q is an
d

t-graded, R-subalgebra of H(A).
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Note that there is one-one correspondence between the types of a finite quivers () and the
symmetric generalized Cartan matrices A. By the work of Ringel and Green (see [R3] - [R7], [G]),
Ringel’s composition algebra C(kQ) is exactly the positive part of the Drinfeld-Jimbo quantized
algebra of type A (see [L]).

Also, given a quiver, by the work of Sevenhant and Van den Bergh one can construct the
corresponding Borcherds-Cartan matrix via Ringel-Hall algebra, the corresponding Borcherds form
B is exactly the symmetrization of the Ringel’s form as defined in 2.1 below. From this Borcherds-
Cartan matrix B one has the corresponding generalized Kac-Moody algebra (see [B]), and its
quantized enveloping algebra (see [Kang]). Then by [SV] the Ringel-Hall algebra H(kQ) is exactly
the positive part of the corresponding quantized generalized Kac-Moody algebra. It is proved in
[SV] that the degrees of the real simple roots of B are exactly the coordinate vectors; and if @ is
an affine quiver, the degrees of the imaginary simple roots are of form An, where A are positive
integers, and n is the minimal positive imaginary root of (). The aim of this paper is to determine
the number of the imaginary simple roots of degree An of B when @ is an affine quiver. By [SV]
this amounts to determine the number of homogeneous minimal generators of Ringel-Hall algebra
H(kQ) at degree An. We do this from the structure of H(kQ), using the representation theory of
kQ. As we are informed by Shi-Lin Yang that such a work was also done by Hua and Xiao in [HX],
with a completely different method. We also write out explicitly a system of minimal generators
of H(kQ).

2. Representations of affine quivers over finite fields

The aim of this section is to recall some basic points of the representation theory of affine quivers
over finite fields which is needed in this paper, from [DR], [ARS] and [R1]. Mainly, we need to
have the number of homogeneous quasi-simple modules with fixed dimension vector.

2.1. Throughout this section, let k& be a finite field with ¢ elements, A the path k-algebra of
an affine quiver @, i.e. @ is of type A4,, (n > 1),or D,, (n >4),or E,, (n=26,7,8), with arbitrary
orientation, except in the case of type A, (n > 1), we exclude an oriented cycle. Denote by n the
minimal positive imaginary root of A. If we want to emphasize the algebra A, then denote n by
ny.

Given two A-modules X,Y, define
(X,Y) = dimy Hom4(X,Y) — dimy Ext} (X, Y). 1)

By a simple homological argument it is clear that (X,Y’) depends only on dim4 X and dimy Y,
not on X and Y themselves, so, it can be bilinearly extended to Z™, where n is the number of
pairwise non-isomorphic simple A-modules. Denote by (—, —) the symmetric, bilinear form on Z"
given by

and by g4 the quadratic form on Z™ given by ga(x) = (x,x). Then ga(z) is positive semi-definite
but not positive definite, and { z € Z" | ga(z) = 0} = Zn, see [DR] and [R1].

Let 7 = DTr and 7! = TrD be the Auslander-Reiten translates (see, e.g. [ARS]). Then

7 = DExtY (=, A) and 7! = Ext!(D(4), —), where D = Homy(—, k). An indecomposable A-

module M is said to be preprojective (resp. preinjective) provided that there exists a positive

integer m such that 7™"(M) = 0 (resp. 7 ™(M) = 0), and to be regular for otherwise. An
2



arbitrary A-module X is said to be preprojective (resp. regular, preinjective) provided that every
indecomposable direct summand of X is so.

If P, R and [ are respectively preprojective, regular and preinjective modules, then there holds
the following nice property, which is frequently used for calculations in H(A) :

Hom (R, P) = Homu (I, P) = Homu (I, R) = 0 (3)

and
Exth (P, R) = ExtY (P, I) = Ext (R, I) = 0. (4)

Define the defect (M) of a module M to be the integer (n,dim M). Then by [DR] an inde-
composable module M is preprojective (resp. regular; preinjective) if and only if (M) < 0 (resp.
(M) =0; (M) >D0).

With indecomposables as vertices, and using irreducible maps between indecomposables to at-
tach arrows, we obtain the Auslander-Reiten quiver of A, see [ARS]. Then by the work of [DR],
the Auslader-Reiten quiver of A has one preprojective component, which consists of all indecom-
posable preprojective modules; one preinjective component, which consists of all indecomposable
preinjective modules; and all other components turn out to be “tubes”, which are of the form
T = ZAo/m, where m is called the rank of T, see [ARS, p. 287; R1, p.113]. If m = 1, then T is
called a homogeneous tube; and if otherwise, a non-homogeneous tube.

Note that indecomposable modules in different tubes have no non-zero homomorphisms and no
non-trivial extensions.

By [DR], the ranks of non-homogeneous tubes of A is completely determined by the type of
Q, except in the case of type A, (n > 1). Namely, type D,, (n > 4) has three non-homogeneous
tubes of ranks n — 2,2, 2 respectively; type E, (n = 6,7,8) has three non-homogeneous tubes of

ranks 2,3, n — 3 respectively. For type A, (n > 1), by iteratedly using reflections of quivers, we
can assume that @ has ni arrows going clockwise and ns arrows going anticlockwise. Then the
ranks of non-homogeneous tubes of A is completely determined by the pair (n1,n2),n1,n2 > 1.
Namely, if n; = ne = 1, then it is the Kornceker algebra and has no non-homogeneous tubes; if
ny > ny = 1, then A has a unique non-homogeneous tube of rank ni; if ny > no > 1, then A has
two non-homogeneous tubes of ranks n; and nso, respectively.

Note that all regular modules form an extension-closed abelian subcategory of A — mod, the
simple objects in this subcategory will be called quasi-simple modules; any indecomposable regular
module M is regular uniserial, and hence M is uniquely determined by its quasi-socle and quasi-
length, and also by its quasi-top and quasi-length.

An indecomposable module M is called a stone provided Ext114 (M, M) = 0. Any indecomposable
non-regular module is a stone; there are no stones in a homogeneous tube; and an indecomposable
M in a non-homogeneous tube of rank m is a stone if and only if the quasi-length of M is less
than m. Note that the endomophism algebra of a stone is always the base field k; and that the
existence of a stone with a fixed dimension vector does not depend on the base field, see [HHKU].

Any indecomposable M in a tube T of rank m has the property 7™ (M) = M; and dim M is
a multiple of n if and only if either m = 1, or m > 2 and the quasi-length of M is a multiple
of m; if E is a quasi-simple in T, then E; = 7¢(FE),1 < i < m, are the all quasi-simples in T’
the dimension vectors of the all quasi-simples in non-homogeneous tubes have been listed in [DR]
Tables; in particular, the sum of dimension vectors of the all quasi-simples in a non-homogeneous
tube is n.



Thus, we are interested in the number of homogeneous quasi-simples with fixed dimension vector
An, where )\ is an arbitrary positive integer.

2.2. We need the perpendicular category introduced by Geigle - Lenzing in [GL], and Schofield
in [S].

Let X be a stone, i.e. an indecomposable A-module M with Ext} (M, M) = 0. Recall the
perpendicular category X is the full subcategory of A — mod given by

X+ ={MeA—mod| Homa(X, M) =0 = Ext} (X, M) }. (5)

Then X is equivalent to B — mod, with B again a path algebra of n — 1 simple modules, where
n is the number of simple A-modules. Note that the embedding functor B — mod — A — mod is
exact and induces the isomorphisms on both Hom and Ext.

Lemma. Let X be an A-stone, and B the path algebra with B — mod equivalent to X+. Let
S1,++ ,Sm be the all pairwise non-isomorphic simple B-modules.

(i) If M € X+ with dimp M = (d1,--- ,dy). Then

dimyg M =dydimy S1 + -+ - + dp, dimy Sy, (6)
In particular, if M,N € X+ with dimp M = dimp N, then dimy M = dim N.
(i) If both A and B are tame, then

ng =nydimg S; + - +n,, dimy S, (7)

where ng = (N1, , Ny ).

(iii) If both A and B are tame, and M € X, then dimp M = Ang if and only if dimy M =
)\nA.

Proof. (i) This follows from the definition of dimension vectors.

(ii) Since both A and B are tame, it follows that X is regular. Let X € T, where T is a
non-homogeneous tube of A. Choose an indecomposable regular B-module N with dimp N = npg.
Then N is also indecomposable regular as an A-module, and

qa(dimy N) = dimy Hom4 (N, N) — dim Ext’, (N, N)
= dimy Homp (N, N) — dimy, Ext (N, N)
= ¢p(dimp N) = ¢p(np) = 0,
it follows that dim 4 N = An4 for some positive integer .
Now choose an indecomposable regular A-module M with dims M =n4 and M € X, It is

easy to see that such an M exists. Again we have dimp M = tnpg for some positive integer t.
Then by (i) we have

ny =dimyg N =ni;dimy Sy +--- + nypdimy Sy,

and

ng =dimyg M =t(n;dimg S1+ -+ + ny,dimy Sp,) = tAng,
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therefore t = A = 1.

(iii) If dimp M = Anp, then dimg M = Any4 by (i) and (i7). Conversely, if dimg M = Ang4,
then dimp M = tnp for some positive integer t. Again by (i) and (i7) we get A=¢. B

2.3. Denote by ¢ (A) the number of homogeneous quasi-simple A—modules X with dimy4 X =
Any. This number is of course well known, but it seems that a proof is not easy available in
literature.

Let T' a non-homogeneous tube of A, and E be a quasi-simple stone in 7" with E+ equivalent
to B-mod.

Lemma. (i) If rank(T) > 2, then tx(A) = tA(B) for any positive integer A.
(i) If rank(T) = 2, then

t)\(B), A# L
tA(4) =
t1(B) — 1, A=1.

Proof. Note that any homogeneous quasi-simple A-module X with dims X = Any4 is a homo-
geneous quasi-simple B-module, with dimp X = Anpg by Lemma 2.2(iii). Other possible homoge-
neous quasi-simple B-modules have to be in T' as A-modules; however, if rank(7") = m > 2, then
those indecomposable modules in 7" which belong to E+ form a non-homogeneous tube T” of B
with rank(7”) = m — 1. This proves (7).

Let X be a homogeneous quasi-simple B-module with dimp X = Ang. Then dims4 X = Any4 by
Lemma 2.2(iii). Such an X is not a homogeneous quasi-simple A-module if and only if rank(7T") = 2,
A =1, and as an indecomposable A-module X is in 7" with quasi-top E and quasi-length 2. In
particular, such an X is unique. This completes (7). W

Denote by K the Kronecker k-algebra, i.e. K is the path k-algebra of the quiver

1. — -2,

Corollary 2.4. We have tx\(A) = tx(K) for A #1; and

q, A of type A, 1y, m1 > 1;
t(A) =9 g—1,  Aoftype Apmynyy, main2 > 1;
q-—2, A of type D,,, or E,.

Proof. The assertion follows from Lemma 2.3, by iteratedly using perpendicular reductions. It

is clear that ¢1(K) = ¢ + 1. Note that from type A, 1y (n1 > 1) to K, we need several times
of perpendicular reductions using quasi-simple modules in the tube of rank > 2, together with
one time perpendicular reduction using quasi-simple modules in the tube of rank 2; from type

Ay na) (n1 > mng > 1) to K, we need several times of perpendicular reductions using quasi-simple
modules in tubes of rank > 2, together with two times perpendicular reductions using quasi-simple
5



modules in tubes of rank 2; and that from types D, and FE, to K, we need several times of
perpendicular reductions using quasi-simple modules in tubes of rank > 2, together with three
times perpendicular reductions using quasi-simple modules in tubes of rank 2. W

2.5. In this subsection we will determine ¢ (K'), the number of homogeneous quasi-simple
K-modules with dimension vector (A, \), where K is the Kronecker algebra over k. It is clear that
t1(K) = ¢+ 1, so, we assume A > 2 in the following.

Denote by N(g, A) the number of monic irreducible polynomials of degree A over the field of ¢
elements. Then we have the well known formula due to Gauss:

N =3 3w ©

S

where p is the Mébius function, i.e. u(1) =1, u(n) = 0 if n has a square factor, and p(n) = (—1)
if n =p1---ps, p; distinct primes.

Lemma. If A > 2, then tA(K) = N(q,\).

Proof. Recall that K — mod can be identified with the category K, whose object is a quartet
M = (K™, «, B, k™), where a, 8 : k™ —— k™ are k-linear maps. For two objects M; =
(K™, ay, By, k™) and My = (K™2, ag, (2, k™), the morphism set Homy (M7, M3) is defined to
be the set of the pairs f = (f1, f2), where f1: k™ — k™2 and f2 : k™ — k" are k-linear
maps, such that (we write the composition of morphisms from left to right)

fla2 = 061f27 f1ﬂ2 = 51f2-

Such a morphism f = (fi, f2) is an isomorphism of K-modules if and only if both f; and fy are
invertible.

Note that M1 D M2 = (kml D k‘m2, o1 D a2, ﬁl D ﬂg, k™ (S5} k‘n2)

Now, let M be an indecomposable K-module of dimension vector (A, \). Then M is of the form
M = (k*, a, 3, k). Let rank(a) = r. Then we have invertible A x \ matrices g; and g such

that g1ags = (IOT 8), where I,. is the r x r identity matrix. It easy to see that M is isomorphic

to the K-module (k*, (Ig 8) , 91892, k), via the isomorphism (g1, g2). It follows that we
. x (L. O N
can assume that M is of the form M = (k*, 0 0 B, k).

Case (i): = A. In this case, let ¢ be the rational canonical form of 3, and h be a A x A
invertible matrix such that hBh~! = ¢g. Then it is easy to see that M is isomorphic to the K-module

(k/\v IA) 9, k‘A)

via the isomorphism (h~1, h~1). Since M is indecomposable, it follows that g has to be an indecom-
posable matrix, and that g has to be invertible. Thus, ¢ is the companion matrix of a polynomial
(¢(x))? of degree \, where ¢(x) is a monic irreducible polynomial in k[z], and d is a positive factor
of A\, and if deg(¢(x)) = 1, then ¢(x) # x (see, e.g. [FIS], Theorems 6.11 and 6.13). Therefore, we
can identify M with the K-module given by the pair

(k[z]/((¢(x))*), id, m, k[z]/((6(x)")) (9)
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where m : k[z]/(¢(x)?) — k[z]/(¢(x)?) is the k-map given by m(a) = ax, where z is the coset
x + (¢(x)?). Since g is the companion matrix of a polynomial (¢(x))¢ of degree ), it is easy to see
m coincides with g.

Using this presentation of M we can easily see that Endx M = k[z]/((¢(z))?).
In fact, and endmorphism in Endx M is of the form (f, f), where f is completely determined
by f(1), i.e. we have

f(xz):f(l)xz) 1217)‘_1

It follows that Endg M is a field if and only if d = 1. In this case, Endx M = k[z]/(¢(x)) and
hence [Endx M : k] = deg(¢p(x)) = A, where dimg M = A(1,1).

Notice that if ¢1(x) and ¢a(x) are different monic irreducible polynomials of degree A in
klz], then the corresponding modules M; = (k[z]/(¢1(x)), id, m, k[z]/(¢1(x))) and My =
(k[z]/(¢=2(x)), id, m, k[z]/(¢p2(x))) are not isomorphic. In this way we have already obtained
N(g,X\) homogeneous quasi-simple K-modules of dimension vector (A, A). In the next case, we
shall see that this is the complete list of homogeneous quasi-simples of dimension vector (A, A).

Case (ii): 7 < A. Since A > 2 and M is indecomposable, it follows that » > 1. Let M be
given by the pair

I, 0
=@ (5 0) e

where g = (31 32) is a A X XA matrix and g; is a r X r matrix.
3 g4

We want to prove that Endg M is not a field, and hence M is not a homogeneous quasi-simple
K-module. For this purpose, consider the pair f = (f1, f2) of A X A matrices, where

(0 g 0 0
f1—(0 g4>’ (93 94)'

Then it is easy to see f = (f1, f2) € Endgx M, namely, there hold the following equalities:
0 g2\ (I O\ _y_ (I 0\ (0 0},
0 ga 0 0 0 0 g3 g4)’
0 92\ (91 92\ _ (9298 9294\ _ (91 92\ (0O O
0 94 g3 94 9493 9494 g3 94 g3 91)°

It is clear that f is not an automorphism of K —module M; and since M is indecomposable, it
follows that g2 and g3 cannot be zero simultaneously, and hence f # 0.
This completes the proof. B

From the proof of Lemma 2.5 Case (i), and using Lemma 2.2(iii) we see the following

Corollary 2.6. Let E be a homogeneous quasi-simple A-module of dimension vector \na. Then
End4 E is the field with [Endg E : k] = A.

By Corollary 2.4 and Lemma 2.5, we get the following
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Theorem 2.7. Let tx\(A) be the number of homogeneous quasi-simple A-modules of dimension
vector An. Then

tx(A) = N(g,A), A>1

and
q+1, A of type A(1,1);
qs A of type A, 1y, m1>1;

t1(A) =
q-—1, A of type A(ny nays m1,n2 > 1

q—2, A of type Bn, or En.

Since N(g,\) > 1 for all ¢ and A, and since N(q,\) = 1 if and only if ¢ = X = 2, we see the
following

Corollary 2.8. (i) tx(A)=04if and only if \=1,q =2, and A is of type Bn or lN?n
(i) tax(A) =1 if and only if one of the following cases occurs

(a) A=1, ¢g=3, A of type lN)n or Z?n;
(b) )\ = 17 q= 27 A Of typ@ Z(nl,n2)7 niy, N2 Z 21
(¢) A=gq=2.

(iii) In the remaining cases we have ty(A) > 2.

Corollary 2.9. Let n be the number of vertices in an affine quiver Q, and A = kQ. For d € Ny,
denote by iqa(Q,q) the number of indecomposable A-modules with dimension vector d. Then we
have

S N(g,s)+n—1, d=\n;

s|A
Zd(Q7q) - 1; qA(d') = 15
0, otherwise.

Proof. If d is the dimension vector of an indecomposable A-module, then we have either d = An
for some positive integer A, or g4(d) = 1; and if g4(d) = 1, then there is a unique indecomposable
with dimension vector d, see [K] Theorem 1, p.79. If d = An, then the formula follows from
Theorem 2.7 together with by counting the number of indecomposables with dimension vector An
in non-homogeneous tubes (of course, this need to use [DR] Tables). B
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Remark 2.10. (i) Notice that the number n — 1 in Corollary is exactly the rank of the
(symmetric) generalized Cartan matrix of Q.

(ii) Using Euler @-function, one can rewrite the number > N(q, s) as
s|A

> Nas =5 X o) (10)

S
s|A s|A

where () is the number of positive integers < A which are relatively prime to .
In fact, it is well known that (see e.g. [J])

o) =3 s u(). (11)

It follows that

N
=
=
&
Il
g
®w | =
N
=
i
Q@.

s|A s|A

I
>| =
| > &

V3
=

—~
Ul ®»
SN—

(=)

QU

s|A d|s

=LY (X 2 )

d|X\ 575\%

by(1) 1 Ay od

3. The space Bq(A)

3.1. Let A be a finite-dimensional algebra over a finite field, with Kq(A) = Z", H(A) and C(A)
be the Ringel-Hall algebra and Ringel’s composition algebra of A, respectively. For 0 # d € Ny,
define

Ba(A)= Y H(ALH(A), € H(A) 1)
z+y=d;z,y#0
and Bg := R[0]. Denote by

B(A) = @5 Ba(A).
d
Then B(A) is an Njj-graded, proper subalgebra of H(A).

The spaces Ba(A) are closely related to minimal homogeneous generators of H(A), hence we
will make a detailed investigation on them.

Let e;,i =1,--- ,n, be the coordinate vectors. Then by definition we have Be, = 0,7 =1,--- ,n.
Also, it is clear by definition that for d # e;,7 =1, -+ ,n, there holds

C(A)a & Ba(A) & H(A)a, (2)

and



Lemma. Bq4(A)=H(A)q for alld #e;,i=1,---,n, if and only if C(A) = H(A).

In the rest of this section, let A be the path k-algebra of an affine quiver (), where k is a finite
field of ¢ elements. Denote by n the minimal positive imaginary root of A, and n the number of
vertices of Q).

3.2. Ford € Ky(A) =Z", define the following element in H(A) :

ry = Y [M], where M runs over all regular modules with dim M = d.
(M]

Note that this is a finite sum since k is a finite field. If there are no regular modules M with
dim M = d, then set r, := 0. Set r, := [0].

In [Z1] Theorem 1, we have proved that rq € C(A) for all d. Let 7 denote the subalgebra of
H(A) generated by all elements r, with d € Ny. Then 7 is the R-space spanned by all products
Tq, **"Ta,» wheredi, -, d,, € Ng, and m € Nj.

Let P and Z denote the subalgebra of H(A) generated by indecomposable preprojectives and by
indecomposable preinjectives, respectively. Then P (resp. Z) has a basis [P] (resp. [I]), where P
(resp. I) runs over all preprojective (resp. preinjective) modules. Let P -7 -Z be the R-subspace of
H(A) spanned by all products [P]-ry ---7r, - [I], where P (resp. I) runs over the preprojectives
(resp. preinjectives), dj,--- ,dy, € Nij, and m € Nj.

We need the following structure theorem proved in [Z3].

Theorem. We have C(A)=P-T-I=P®,T®,T.

Remark. The proof of this theorem in [Z3] used the existence of a homogeneous quasi-simple
with dimension vector n, i.e. t1(A4) # 0. Anyway, if 1 (A) = 0, then we can replace a homogeneous
quasi-simple with dimension vector n by a homogeneous quasi-simple with dimension vector 2n,
since t3(A) # 0 by Corollary 2.8, and then the proof in [Z3] still holds.

3.3. Terminologies: Let T be a tube of A, and M an A-module. By M € T we mean that
every indecomposable direct summand of M belongs to T'.
Let z = Y ¢, [M] € H(A).
[M]

If cpr # 0, then [M] is said to be a term of x with coefficient ¢,, .

If [M] is a term of z, and M is indecomposable, then [M] is said to be an indecomposable term
of x.

If [M] is a term of x, and M € T, then [M] is said to be a T—term of =.

Define the regular part of x to be

r(z) := Z ey | M]. (3)

M is regular

Define the T-part of x to be

re(e) = 3 e, [M]. (4)

MeT

For d € N}, denote by r,(T) the T-part of r_, i.e.

r (1) = %4:} [M], where M runs over all modules in 7" with dim M = d. (5)
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Lemma 3.4. Let z € H(A)aq, where d # e;, i =1,--- ,n. Then there holds

xz —r(z) € Ba(A).
In particular, © € Ba(A) if and only if r(x) € Ba(A).

Proof. Note that any term of @ — r(x) is of the form [P @ R @ I], such that at least one of P
and I is not zero, where P, R, are respectively preprojective, regular, and preinjective. Since
[P®R@ I = [P]-[R]-[I], it follows that if any two of P, R and I are not zero module, then
[POR&I € Bq(A). f R=0=1, then [P] € C(A)q & Ba(A) sinced # e;,i=1,--- ,n. Similarly
for the case P =0 = R. Thus, z — r(x) € Ba(A).

Lemma 3.5. Let x € H(A)a, where d #e;, i =1,--- ,n. Then there holds
(i)
r(@) — Y r.(x) € Ba(A).
tube T’
In particular, x € Ba(A) if and only if > r,.(x) € Ba(A); and if r,.(z) € B4(A) for all tube
tube T
T, then x € B4(A).
(i)
Z r,(T') € Ba(A).

tube T

Proof. Note that any term of r(x) — Y. r.(x) is of the form [R; & Ry], where both Ry and Ry
tube T
are non-zero regular modules, such that R; € T for some tube 7', but Ry has no direct summands

in T. Therefore [R; ® Rz2] = [R1] - [Rz], and hence (i) follows.
Ifd+#e;i=1,---,n, then r, € C(A)q & B4(A), and hence (i) follows from (). H

3.6. Let X,Y be non-zero A-modules. Consider the regular part 7([X] - [Y]). Let X =
PRI, Y =P &R &I, with P, P/ preprojective; R, R’ regular; and I, I’ preinjective. Thus

(X]- Y] =[P]-[R]- 1] - [P - [RT] - [1'),
it follows that if P # 0, or I’ # 0, then r([X] - [Y]) = 0. Now assume P = 0 = I’. Then by
comparing defects we see
r((X]- YD) = r((R] - (1] - [P - [R']) = [R) - (1] - [P]) - [R').

While by Theorem in 3.2 we have [I] - [P'] € C(A) = P-T -Z and r([I] - [P']) € T, it follows
that if R =0 = R/, then r([X] - [Y]) = r([I] - [P’]) is of the form

r([X]-[Y]) = CT gim X +dimy T Z Cayooa,Tay " Ta,
>2
with di + -+ +d; = dim X + dimY, and ¢,¢, ., € R; and that if R # 0, or R’ # 0, then
r([X]-[Y]) is of the form ) ¢,, [M]-[N], where M, N are non-zero regular modules and c,, , € R.
11



This proves the following

Lemma. Let X,Y be non-zero A-modules. Then the reqular part r([X]-[Y]) is of the form

T([X] ' [Y]) = €T gim X +dim v + Z Cm,N [M] ) [N] (6)

where M, N are non-zero reqular modules with dim M +dim N = dim X+dimY, andc,c,, , € R.

Since Be;, = 0fori = 1,--- ,n, the following result gives a description of the all spaces Ba(4),d €
N§. Note that the expressions (7) and (8) will be very useful in §5 and §6.

Theorem 3.7. Let © € H(A)a, where d # e;, i =1,--- ,n. Then the following are equivalent
(i) = € Ba(4);
(i) r(z) € Ba(A);
(i) r(x) is of the following form

r(x) = ery + ) ey n[M] - [N] (7)
where M, N are non-zero reqular modules with dim M + dim N =d, and c,c,, , € R.

(iv) There exists a ¢ € R such that for every tube T of A, r.(x) is of the following form

Tr (CL‘) =Cry (T) + ZCM,N [M] . [N] (8)
where M, N are non-zero modules in T with dim M +dim N =d, and c,, , € R.
In particular, if r(x) =0, then = € Bq(A).

Proof. The implication (i) = (i) follows from Lemma 3.4.

(i) = (4i1): if r(x) € Bq(A), then we can write

T‘(.’L‘) = ZCX,Y[X] ' [Y]v

where X,Y are non-zero modules with dim X + dimY = d, and ¢, € R. Now, taking the
regular parts from the both sides of the preceeding equality, and then using Lemma in 3.6, we see
that r(z) is of the following form

r(@) =r(r(2) =) exyr([X]- [Y]) = erg + ) ey n[M]-[N],
where M, N are non-zero regular modules with dim M +dim N =d, and ¢, ¢,, , € R.
(#91) = (iv): this follows from by taking the T-parts from the both sides of (7).
(iv) = (4): if there exists a ¢ € R such that for every tube of A, r.(x) is of the form (8),

then
Z r.(z)=c Z r (T)+y
tube T tube T
with y € Bq(A). While Y r,(T) € Bq(A) by Lemma 3.5 (ii), hence r(z) € Bq(A) by Lemma

tube

3.5(i), therefore, € Bq(A) by Lemma 3.4. W
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3.8. Remark. (i)  As pointed out by Sevenhant and Van den Bergh in [SV], the
imaginary simple roots of H(A) is of the form An, where X is a positive integer, that is to say, if
d#e;,i=1,---,n, and if Bq(A) # H(A)a, then d = An. Therefore, Theorem 3.7 is only used
for =An.

(ii) Let # € H(A)xn- As pointed out in Lemma 3.5, if r,.(x) € Ban(A) for any tube T, then
x € Ban(A). But, the converse is not true.

For example, let K be the Kronecker algebra, and Ny,---, Ngy1 be the all indecomposable
modules of dimension vector (1,1). Then r,, = > [Ni] € C(A)u1,1) € B1,1)(A), but every
1<i<q+1

[Ni] & B1,1)(A)-

4. Ringel-Hall algebras of tubes

Throughout this section, A is an arbitrary tame hereditary algebra over a finite field k, with
minimal positive imaginary root n.

4.1. Let T be an arbitrary tube of A. Denote by H(I") the subspace of H(A) with basis
{[M]| M €T }. Then H(T) is also an Nj-graded algebra with homogeneous component H(T')q
being the space with basis { [M] | M € T,dimM = d }. Denote by Bq(T) the the following
subspace of Bq(A) N H(T)a:

Ba(T)= Y H(T)x H(T),. (1)

z+y=d;z,y#0

Note that by Remark 3.8(ii), z € Byn(A) does not imply rr(x) € Ban(T). The motivation of
introducing the spaces Bq(T') is the following. Let x € H(T)xn. We want to reduce the criterion
of © € Ban(A) to the one of € By, (T'). The advantage of this reduction is that, for the Ringel -
Hall multiplication inside a tube, more combinatorial techniques could be used, and the work [DR]
and [R1] can be used more efficiently; especially, in [R4] the structure of H(7T') has been extensively
studied for non-homogeneous tube T'. As we will see in Theorem 5.2, this idea works.

The aim of this section is to study the Ringel-Hall algebras of tubes, for application in the next
section. The main results are Proposition 4.6, Corollary 4.10 and Lemma 4.11.

4.2, Notations. We fix the following notations throughout this section.

Let T be a tube. If rank(T) = m > 2, then by Fi,---, E, we denote the all quasi-simples
in T with 7(E;) = Ei11,1 < i <m —1, and 7(E,,) = E1; and by E;(j) the indecomposable in
T with quasi-length j and quasi-top E;. Thus E; = E;(1); and E;(m),i = 1,--- ,m, are the all
indecomposables of quasi-length m in 7. Then we have

dim Ey(m) + - -- + dim E,,(m) = gn (2)

where g is a positive integer with 1 < g < 3. This integer g is called the tier number of A, see [DR]
or [M]; in particular, if A is the path algebra of an affine quiver, then g = 1, see [DR] Tables.

Let z,xq,--- ,2; € H(A). We say that x is generated by x1,--- , x4, provided that z is a R-
combination of some products with all divisors being in { x1,--- ,2; }. A subset of H(A) is said
to be generated by x1,--- , z¢, provided that every element in it can be generated by z1,--- , ;.

We need the following
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Lemma 4.3. ([GP]) (i) H(A) is generated by the isoclasses of all indecomposable A-modules.
(ii) H(T) is generated by the isoclasses of all indecomposables in tube T.

Lemma 4.4. Let T be a non-homogeneous tube of rank m, and M be an indecomposable in T
with quasi-length Am, where X\ is a positive integer. Let N be an arbitrary indecomposable in T
with quasi-length Am, say, N = 7°(M). Then

[N] € i[M] + Bagn(T). ®3)

Proof. Denote by L the (unique) maximal regular submodule of M, and by E the quasi-top of M.
Since dimy, Exty (E,L) = 1 = dimy Ext}(L, E) and Homa(L,E) = 0 = Homu(FE, L), it follows
that

(E]-[L] = [M]+[Ee L]

and

[L]-[E] = [r(M)] + [E @ L].
It follows that

[r(M)] = [M] + [L] - [E] = [E] - [L] € [M] + Bxgn(T),

and hence the assertion follows by repeating this process. l

Lemma 4.5. Let T be a non-homogeneous tube with rank m, and d € N§.

(i) If d < gn, where the partial order in Z" is defined pointwisely, then H(T)q is generated by
[El]a MR [Em]

(i) Let L be an indecomposable in T with quasi-length Am + 1, where X is a positive integer,
and 1 <1< m—1. Let N denote the indecomposable regular submodule of L with quasi-length \m.
Then

[L] = [L/N]-[N] = [N]-[L/N].

In particular, [L] € Baim .(T).

Proof. The first assertion follows from Lemma 4.3 and a direct calculation, see [Z3] Theorem 1.1 for
a proof. Here we only prove (ii). By the Auslander-Reiten quiver we have dimy, Ext’ (L/N, N) = 1,
Ext4(N,L/N) =0, and Homy4(N,L/N) = 0= Hom4(L/N,N), it follows that

[L/N]-[N]=[L]+[N & L/N];  [N]-[L/N]=[N&L/N]. ®

Proposition 4.6. Let T be a non-homogeneous tube with rank m, g the tier number of A, and
X an arbitrary positive integer. Then H(T )xgn is generated by

[E1]> T [Em]) [Ml]v R [Mkfl]a [MA]a

where M = My is an arbitrary indecomposable in T with quasi-length Am, and M; is the indecom-
posable reqular submodule of M with quasi-length im, 1 <i < \.

In particular, we have
14



H(T)an = R[M)] + Bxn(T). (4)

Proof.  Use induction on A. If A = 1, then the assertion follows from Lemmas 4.4 and 4.5(i).
Let A > 1. By Lemma 4.3, H(T')xgn is generated by the isoclasses indecomposable modules in T,
therefore, it suffices to prove that [N] can be generated by [F1],- -, [Em], [Ma], -, [Mx_1], [MA].
where N is an arbitrary indecomposable module in T" with quasi-length Am. While by Lemma 4.4,
it suffices to prove that Bygn(T') is generated by [E1],--- , [Ep]. [M],- -+, [Mx_1]. This reduce to
prove [L] can be generated by [E1], -+, [Em], [M1],- -, [Ma_1], for any indecomposable module in
T with dim L < Agn. This follows from Lemmas 4.5, 4.4 and induction. W

Note that we have the dual of Proposition 4.6, i.e. H(T)xgn is generated by

[El}v R [Em]v [Nl]a Tt [Nkfl]v [N/\]a

where N = N, is an arbitrary indecomposable in T with quasi-length Am, and N; is the indecom-
posable regular quotient of N with quasi-length im, 1 <1i < A,

4.7. The following lemma has been proved in [ZZ], see also [Z4].

Lemma. Let T be a non-homogeneous tube of rank m, and N be an arbitrary indecomposable
module in T with quasi-length m. Then

[N] ¢ Bgn(T),

where g is the tier number of A.

Anyway, we cannot prove the following conjecture:

Conjecture. LetT be a non-homogeneous tube of rank m, and N be an arbitrary indecomposable
module in T with quasi-length Am, where X is a positive integer. Then

[N] ¢ Bagn(T).

We include in Appendix a proof of this conjecture in case m = A = 2, by direct computations.

Corollary 4.8. Let T be a non-homogeneous tube of rank m. Denote by
s1(T) = Z[N], where N runs over indecomposable modules in T with quasi-length m.

Then

51(T) ¢ Byn(T').
Proof. Let N be an indecomposable in T" with quasi-length m. Then by Lemma 4.4 we have

51(T) = [N] + [T(N)] +--- + [7"H(N)]
m2 —m+2

€(l+1+-4+m—1)[N]+ Bgu(T) = 5

[N]+ Bgn(T),

and hence the assertion follows from Lamma 4.7. B
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4.9. Denote by X, be the symmetric group of degree m. Let ¢ = (12---m) € %,,. For
[E’il (]1)] e [Elt(]t)] € H(T)a where 1 < il; T ait <m;t=> ]-;jla to 7jm > 1. Define

o([Bi, ()] -+ [Ei, (G1)]) = [Eoiy) ()] - - [Ea(iy) (30)))- (5)

We introduce the following element in H(1")gn:

=D o (B] - [Bugl - [Bujir () (6)

1<i,j<m

Thus

tpn= 3 OB [Bul) + (B [Bna] [En s @) + -

1<i<m

+ 0 ([B1] - [Brj] - [Em—jrr (D) + -+ + o' ([Br(m))]).
Notice that by definition we have

c,n =51(T)+z, with z € Byn(T). (7)

gn

Recall that by 7, (T') we denote the sum of the isoclasses of the all modules in 7" with dimension
vector gn, see 3.3.

Lemma. Let T be a non-homogeneous tube of rank m. Then there holds the following
Cyn = mr, (T). (8)

Proof. Let M be an arbitrary module in T with dim M = gn. Since dim F,--- ,dim F,, are
Z-linear independent (see [DR] Tables, or [R1] p.146), it follows that M can be uniquely written
as

M = E;j(v1) © Eity, (v2) @+ @ By, 40, (v5) (*)
with vy,---,v; > 1, 5 > 1, and v1 +--- + v; = m. We take the low indices modulo m. Thus
Ei+’l)1+"'+vj—1(vj) = E’i*vj (Uj :

We claim that [M] is a term of cgn with coefficients m, and hence the assertion follows.

In fact, by the presentation (x) of M, we can easily analyse the types of filtritions of M from the
Auslander-Reiten quiver. Note that ¢, is a sum of m? monomials. Those monomials in which [M]
is a term are exactly the following monomials (this can be seen geometrically from the structure
of a tube):

16



[Ei] - [Biyo,—1] -+ ([Bicy;] -+ [Bica]) = 0" H([EA] -+ [Em)),
[Ei]- - [Biyv,—1] - ([Bico,] - [Bizs] - [Ei2(2)]) = 0" ' ([E1] -+ [Em—2] - [Em—1(2)]),

S

[Bi] -+ [ Bigor—1] -+ ([Bimo; (v7)]) = 0" ([ E1] - [Brer, ] - (B 41(07)])3

[Eiug] -+ [Bica] - ([Bimvy ;1) - By 1)) = 0" H([EL] - - [Em]),
[Bi o]+ [Bia] - ((Bimoy ;1) [Bimvy 3] By 2(2)]) = 0 H(B1] -+ [Br 2] - [Em1(2)]),

[Biv;]- [Bia] - ([Biy vy, (v-0)]) = 0" ([EA] - [Brm ;] - [Brmv 11 (05-1)));

[Eitv,] - [Bigo, tvam1] - ([Ei] -+ [Bigo, 1)) = " H([EL] - [En),
[Bito,] [Eigv, tvaa1] - (Ei] -+ [Bigo,—3] - [Bigo, —2(2)]) = "7 7 ([Br] -+ [Bina] - [Em—1(2))).

[Bito,] - [Bigvy4va—] - (Bl (01)]) = " 7B - [Biesy] - (B, 1(01)))-

Altother we have vj +vj_1 + -+ v; = m such monomials. Note that the coefficients of [M] in
every monomial in the preceeding list are 1, since Homa(E;, E;) = 0 for ¢ # j. This proves that
[M] is a term of ¢, with coefficients m. B

Corollary 4.10.  Letr, (T) be as in 4.9. Then
7y (T) ¢ Byn(T).

Proof. By the relation (7) in Lemma 4.9 and Corollary 4.8 we see that ¢, ¢ Byn(T'), and hence
the assertion follows from Lemma in 4.9. W

Now, we consider homogeneous tubes.
Lemma 4.11. Let T be a homogeneous tube with quasi-simple E and dim E = sn, and M an
indecomposable module in T, then we have
H(T)dimM = R[M] D BdimM(T)- (10)
Proof. Denote by M; the indecomposable in T" with quasi-length i. Let dim M = Asn. Thus,
M; = FE and M = M,.

Let P(\) be the set of partitions of A. A partition p of A is denoted by p = (A]* - -+ A{""), i.e.
17



’I’Ll)\1+"'+nt)\t:)\; 0<)\1<"'<)\t; nl,---,nt>0; t > 0.

For every partition p = (AT*--- A}'t) € P(N), set

[M(p)] = [M}} ©--- @ My!] € H(T)rsm,

and
my = [Mx, " -« [Ma,]™ € H(T)asn-

Then
{[M(p)] |peP()}

is a basis of H(T)xsn. Since H(T') is a commutative algebra (see [M] p.183, or [Z2]), and since every
isoclass of a module in T is generated by isoclasses of indecomposable modules in 7" by Lemma
4.3, it follows that

Bysn(T) = the space spanned by m,, p € P(A), p # (\);

and that
{my | peP()) }

is a generating system of H(T)xspand hence also a basis of H(T)sn. In particular we have

H(T)aim . = Rmy) @ the space spanned by m,,, p € P()), p # (A)
=R[M]® Bxsn(T).- 1

5.  REDUCTION FROM Bjn(A) TO Bn(T)

From now on, we keep the assumption that A is the path algebra of an affine quiver over a finite
field k£ of ¢ elements.

Let x € H(T)aq. The aim of this section is to reduce the criterion of # € B4q(A) to the one
of x € Ba(T), see Theorem 5.2, this is crucial for applying results in §4 to count the number of
minimal generators of degree An of H(A).

Lemma 5.1. Let E be a homogeneous quasi-simple A-module with dim E = \n. Then

[E] € Bxn(A).

Proof. Otherwise, by Theorem 3.7(iii) there exists non-zero regular modules M, N with dim M +
dim N = An, and ¢, ¢, , € R, such that

[E] = cry, + Z CM,N[M] - [N] (1)

Since E is quasi-simple, it follows that [E] is not a term of )" ¢,,  [M]-[N]; but [E] is a term of
r,,, and hence by comparing the coefficients of [E] in the both sides of (1) we get ¢ = 1. This forces
ta(A) =1 in the sense of 2.3, i.e. F has to be the unique homogeneous quasi-simple A-module with
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dim E = An (otherwise, let E’ be a homognenous quasi-simple with dim £’ = An and E’ % E.
Then by comparing the coefficients of [E’] in the two sides of (1) we get the contradiction ¢ = 0).

Now let tx(A) = 1. Then according to Corollary 2.8(ii) we have A =2 or A = 1.

If A = 2, then we divide it into two situations. First, if ¢1(A) # 0, then let E' be a homogeneous
quasi-simple module with dim £/ = n. Let L be the (homogeneous) indecomposable with quasi-
socle E’ and dim L = 2n. Then both [L] and [E’ @ E'] are terms of ran, with coefficient 1. But,
since E’ is a homogeneous quasi-simple, it follows that products [M]-[N] in the right hand of (1),
such that [L] or [E' & E’] is a term of [M] - [N], is unique and has to be [E'] - [E’]. Note that

[E]- [E = [L] + (¢ + DIE' © E].

Then by comparing the coefficients of [L] and [E’@® L’] in the both sides of (1) we get a contradiction

0=1+4c¢_, _,, and 0=1+4(¢+1)c

E' E/ E' E'"

Second, if t1(A) = 0, then A is of type Bn or En by Corollary 2.8(i), and hence A has a tube T
of rank 2. Taking the T-part in the both sides of (1), and noticing that if M, N are regular, then
[M] - [N] has a T—term if and only if M, N € T, we then get

where r, (T) = > [N] with N running over all modules in 7" with dim N = 2n. This means
750 (T) € Ban(T'), which contradicts Corollary 7.2 below.

If X = 1, then A is not the Kronecker algebra since ¢1(A) = 1, and then there exists a non-
homogeneous tube T”. Taking the T’-part in the both sides of (1), and noticing that if M, N are
regular, then [M] - [N] has a T'—term if and only if M, N € T’, we then get

—Ta (T/) = ZCM,N [M] : [N]v

where r_(T’") = > [N] with N running over all modules in 77 with dim N = n. This means
r (T") € Bu(T"), which contradicts Corollary 4.10. W

Theorem 5.2. For any tube T of A, and any positive integer X\, there holds

B)\H(T) = BAn(A) N H(T)/\n (2)

Proof.  Let 0 # 2 € Ban(A) N H(T)xn- Then by Theorem 3.7(iii) we have

r=r(@) =cry + ey o [M] - [N] (3)
where M, N are non-zero regular modules with dim M +dim N = An, and ¢, ¢,, y € R.

First, assume that ¢)(A) # 0, i.e. there exists a homogeneous quasi-simple £ with dim E = An.
It is easy to see that [E] is not a term of x: otherwise, E € T" and then T is a homogeneous tube;
since F is the quasi-simple in T with dim F = An, it follows that = a[F] with a # 0. But by
Lemma 5.1 we have [E] ¢ Ban(A).
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Thus, by comparing the coefficients of [E] in the both sides of (3) we get ¢ = 0. Now, taking
the T-part in the both sides of (3), and noticing that if M, N are regular, then [M] - [N] has a
T—term if and only if M, N € T, we then get

T = ZCM,N[M] ' [N]v

and hence x € By (T).

Second, if t5(A) = 0, then A = 1 and A is of type Bn or E‘n by Corollary 2.8(i), and hence A
has a non-homogeneous tube T” such that T # T'. Taking the T'-part in the both sides of (3), we
then get

er (T") € Bu(T');
by Corollary 4.10 this forces ¢ = 0, and then = € B,(T). R

By Lemma 4.11 and Theorem 5.2 we have

Corollary 5.3. Let T be a homogeneous tube and M an arbitrary indecomposable module in T .
Then

[M] & Baim pm(A).
6. HOMOGENEOUS MINIMAL GENERATORS OF H(A)

The aim of this section is to count the number of minimal generators of degree An of H(A), see
Theorem 6.3; and then we can write out systems of minimal generators of the Ringel-Hall algebras
of affine quivers explicitly, see Theorem 6.4.

6.1. Let X\ be a positive integer.

Let T1(X\) denote the set of homogeneous tubes T, such that the quasi-simple module of T" has
dimension vector sn with s|A\.

For T € Ty1()), define Nx(T) to be the unique indecomposable module in 7 with dimension
vector An. Note that the quasi-length of Ny (T') is %

Let T2(\) denote the set of non-homogeneous tubes T', which contains an indecomposable M
with quasi-length Am, such that [M] ¢ By, (T), where m is the rank of T. Note that for T' € Ty
we have [N] € Bxy(T'), where N is an arbitrary indecomposable in T' with quasi-length Am, by
Lemma 4.4.

For T € Ty(\), define Nx(T') to be a fixed (but can be arbitrary) indecomposable module in T
with quasi-length Am, where m is the rank of T'. Note that dim N, (T") = An.

Set T(A) = T1(\) UTa(A). Let T € T(A). Recall that we have denoted r, (T) by the sum of
the isoclasses of all modules in T" with dimension vector An. Then by Proposition 4.6 and Lemma
4.11, we can write

Tsa(T) = e (DNA(T)] + 2 (1)

where ¢, (T) € R, x € Byn(T). Since [Nx(T')] ¢ Ban(T) by Lemma 4.11 and by our choice of
T € Ty, it follows that such a number ¢, (T') is unique.
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Now we introduce the following element in H(A)xp:

b= D e (T)NAT)): (2)

TET(N)

Note that b, # 0 for any positive integer. One can see this as following: take a homogeneous
tube T with quasi-simple E such that dim £ = An. By Corollary 2.8 such a tube T exists. Then
7. (') = [E], and then by definition we have ¢, (T) = 1.

Lemma 6.2. Let A be a positive integer. Let V) denote the R-space with basis the set of elements
[NA(T)] as defined above, where T € T(X). Then we have

(i)
'H(A))m =W\ + B)\H(A). (3)
(i1)

Va N Ban(A) = Rb, . (4)

(i)
dimg Vo = 14> N(g,5) + [T2(N)] —m (5)
s|A
where N (q, s) is the number of monic irreducible polynomials of degree s over the field of q elements,
and m is the number of non-homogeneous tubes.
Proof. (i) This follows from Proposition 4.6 and Lemma 4.11.
(i) Let x = > a,[Na(T)]. By Theorem 3.7(iv), 2 € Ban(A4) if and only if there exists a

TET(N) 7
¢ € R such that for every tube T of A, r,. () is of the following form

Tp (I) = CT)\n(T) + Z CM,N[M] ! [N]

where M, N are non-zero modules in 7" with dim M +dim N = An, and ¢,, , € R. Since for non-
homogeneous tube T with T' ¢ T2 (\) we have H(T)xn = Ban(T), it follows from the expression
(1) that € Ban(A) if and only if there exists a ¢ € R such that for 7' € T(X) there holds:

T'r (1") =ar [NA(T)] = Cl'yn (T) +y
ce, (T)[NA(T)] + =,

for some y,z € Ban(T). Since [NA(T)] ¢ Ban(A) by Corollary 5.3 and our choice of Ta(X), it
follows that x € Ban(A) if and only if a, = cc, (T) for T € T(N), i.e. z =cb, .

(iii) Let m be the number of non-homogeneous tubes of A, and t,(A) be the number of
homogeneous quasi-simples with dimension vector sn. Then by Theorem 2.7 we have
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dimg V = |T1 ()| + |T2(N)]

= 3 ta(A) + [Ta(V)

s|A

=m+t(A)+ D Ngs) +(T2(N)] - m)

s|A,s>1
=14+q+ Y  N(gs)+(|T2(N)|—m)
s|A,s>1
=1+4Y N(gs)+(T2(A)] —m). m

s|A

The following theorem determines the number of minimal generators of H(A) of degree An.

Theorem 6.3. Let d € Nj. Then we have

1, d=e;, i=1,---,n;
codimg Bg(A) = { > N(q,s) — (m —|T2(XN)]), d=An, X a positive integer;

s|A

0, otherwise,

where N (q, s) is the number of monic irreducible polynomials of degree s over the field of q elements,
and m is the number of non-homogeneous tubes, and To(\) is defined in 6.1.

In particular, Bq(A) = Ha(A) if and only ifd # An, # e;,i=1,--- ,n

Proof. Ifd=e;,i=1,---,n, then Bq(A) =0 by definition, and dimg H(A)q = 1.

Ifd # An,# e;,i = 1,--- ,n, then Bq(A) = H(A)aq. This is a consequence of Proposition 3.2
in [SV]. Here we would like to include an argument using Ringel-Hall multiplication: in fact we
only need to prove [M] € Ba(A) for indecomposable M in T with dim M = d, where T is an
arbitrary non-homogeneous tube. This follows from Lemma 4.5, and the fact that the isoclasses
of quasi-simples in T belong to C(A) (see [Z1]).

Assume d = An. Then by Lemma 6.2 we have

codimg Bd(A) = dimg V) — dimR(V)\ N B)\n(A)) = ZN((], S) + |T2</\)| —m. B
s|A

Remark. (i) Note that the number m — |T2()\)]| is zero if and only if Conjecture in 4.7 is
true.

(ii) For the Kronecker algebra K, this number is of course zero since m = 0; for type /Nl(nhl)
(n1 > 2), m —|T2(N\)| is 0 or 1; for type ;l(mm) (n1,n2 > 2) we have 0 < m — |T2(\)] < 2; and
for types Dy, (n >4) and E,, (n =6,7,8) we have 0 < m — |Tz(\)| < 3.

(iii) In general, codimg By, (A) are not divisible by ¢. In the notation in [SV], that is to say,
the cardinality of set
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{ieI™| deg 6; = An }
is not divisible by gq.
6.4. Let [S(i)],i = 1,---,n, be the isoclasses of all simple A-modules. For each positive

integer A, choose an arbitrary tube 77 € T(X) such that ¢, (I”) # 0. Consider the subspace Wy of
V with basis the set

{IMD]TeT®), T#T"}. (6)
Then
[NA(T")] € Wx + Ban(A)
and
b, & Wa.
and hence by Lemma 6.2(i)(ii) we have
H(A))\n =W\® B)\H(A). (7)

This proves the following

Theorem. Keep the notations above, the set
G={[SM|1<i<n}u [J{INMD]ITeTM), T#T"} (8)
A

is a system of minimal generators of H(A).

By Theorem 6.3 and §1 (10) we have
Corollary 6.5. Let K be the Kronecker k-algebra. Then we have

1, d=e;, i=1,2;

codimg Bg(K) = S e(2) ¢®, d=(\A), A a positive integer;

s|A

>|=

0, otherwise

where @ is the Fuler function.

6.6. Let [S(1)] and [S(2)] be the isoclasses of the two simple K-modules. For each positive
integer A, let T be an fixed homogeneous tube such that the quasi-simple of T has dimension
vector (A, A). Asin 6.1, let T(\) denote the set of homogeneous tubes T', such that the quasi-simple
module of 7" has dimension vector (s, s) with s|); and for T' € T()), let N»(7") denote the (unique)
indecomposable in T with dim Ny (T') = (A, A). Then by Theorem 6.4 we have

Corollary. The set

G={[SMWL [S@] }u [J{ NN [ TeTM), T#Tx} 9)
A
is a system of minimal generators of H(K).
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7. APPENDIX

Lemma 7.1. Let T be a tube with rank(T) = 2, and L an indecomposable in T with dim L = 2¢gn.
Then [L] ¢ Bagn(T).

Proof. Denote by L' = 7L, where 7 is the Auslander-Reiten translate. Let E1, E» be the quasi-
simple modules in T" with Hom4 (L, E1) # 0. Let Ny (resp. M;) denote the indecomposable in T
of quasi-length 2 (resp. 3) and Hom4 (N1, E1) # 0 (resp. Homa (M1, E1) # 0). Set N3 = 7N7 and
TM; = Ms. Then dimg H(T)2gn = 10, and with a basis (we fix the following order)

[L]a [Ll]a [Ml@EZ] [M2@E1}7 [N12]a [N22]7 [N1®E1®E2]7[NQ@El@EQ]a[Ef@ES]a [Nl@NQ]‘

Let d; = 2¢gn — dim F;, i = 1,2. Then by the dual of Proposition 4.6 we have

Bagn(T) = [Er] - H(T)a, + [E2] - H(T)a, + [N1] - H(T)n,

It follows that Bagn(T') is spanned by the following 11 elements

[Er] - [My] = [L] + [M2 © En], (1)

[Fa] - [My] = [L'] + [My @ By, (2)

[Er] - [N2 @ Eo] = [My @ E] + [N1 @ No] + [N2 © By @ B, (3)
[E2] - [N1® Er] = [Ma @ Eq] + [N1 @ Na] + [N1 @ Ey @ Es], (4)
[E1] - [N1® Eo] = (q + 1)[N7] + q[N1 & E1 & Ea], (5)

[Ba] - [N @ Er] = (g + 1)[N3] + q[N> & B1 @ B, (6)
[Br] - [Br @ B3] = [N1@ By @ B + (¢ + 1)[Ef @ E3], (7)
[Es] - [E} @ Eo] = [N2 @ By @ E»] + (¢ + 1)[Ef @ E3], (8)
[N1] - [N1] = [Z] + (¢ + D[N, (9)

[N1] - [E1 @ Es] = [M1 @ E3) + ¢q[N1 & Ey @ Es], (10)

[N1] - [N2] = (¢ — 1)[M:1 @ Es] + ¢[N1 @ No). (11)

But by a direct calculation we know that the rank of these 11 elements is 9. It follows that
Bagn(T) # H(T)2gn, and [L] ¢ Bagn(T). W

24



Corollary 7.2.  Let T be a tube with rank(T') = 2. Then r,, (T) ¢ Bagn(T'), where r,,, (T) is
the sum of the isoclasses of all modules in T with dimension vector 2gn.

Proof. By Lemma 4.4 we have

[L') € [L] + Bagn(T);
by (1) and (2) we have

(M2 @ Er], [Mi @ Ea] € —[L]+ Bagn(T);

similarly we have

[N?], [N3] e —q—[L]+Bzgn(T);

1
(N1 @ Ey1 @ Ep], [Na®E1 @ E3 € E[L]+B2gn(T);

-1
[N, © Vo € —qq [L] + Baga(T);
1
E?®F)le ———[L] + Bogn(T
[ 1 2] q(q+1)[] 29( )
It follows that
q
T) € ——[L]+ Boyn(T),
Togu (1) € q—i—l[ ]+ Bagn(T)

and hence r,  (T) ¢ Bagn(T) by Lemma 7.1. H
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