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ABSTRACT. The purpose of this paper is to develop general techniques to prove
that diffusions associated with Dirichlet forms on multiple configuration spaces
T'g (i.e., particle spaces with possibly several particles at the same point) live
on the so-called “simple” configuration space I' (i.e., particle spaces with at
most one particle at a point). Here E is a metric space. Our results can be
considered as a completion of our previous paper [24] where we constructed
diffusions on multiple configuration spaces I'r using Dirichlet forms theory.
Indeed, all processes constructed in [24] live in fact on I'g as follows from the
results of this paper. We discuss in particular detail the case where E is the
free loop space over R%, where R? is equipped with a non-trivial Riemannian
metric. This case is of relevance for continuous systems in quantum statistical
physics.
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In [24], among other things, the authors extended the work initiated in [28, 37],
providing a complete proof that for a large class of Dirichlet forms with square field
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operator there exist associated diffusions on the multiple configuration space I'g
(i.e. the particle space over E with possibly several particles at the same point; see
Sect. 2 below for the exact definition of T'z), with E being an arbitrary complete
separable metric space.

In particular, the authors discussed two typical examples arising from statistical
mechanics: First, the case where £ = X with X being a complete Riemannian
manifold, and second, the case E = L(R?) with £(R?) being the free loop space
over R?, equipped with a general elliptic metric.

The argument used in [24] is to show that if T'g is given a suitable completely
metrizable topology (which is the vague topology in case E is locally compact,
cf. [24, Sect. 3] and Sect. 2 below), then under very general assumptions said
Dirichlet forms are quasi-regular on ' in the sense of [23, 7]. Therefore, by the
main result in [23, 7] (see also [25]), one obtains the corresponding diffusions on
T'g. For a detailed discussion, see Sect. 4 of [24].

However, since the above methods rely on the completeness of the metric space
' one can only locate the diffusion on the multiple configuration space I'z instead
of the usual (from the point of view of physics more natural) “simple” configuration
space I'g (i.e. the particle space over E with at most one particle at a point), which
in general is not complete. However, it has been proved in [33] that, if E = R?,
then under mild conditions the set T'g \ I'g is exceptional in the sense of Dirichlet
forms (see [23]), and hence the corresponding diffusion lives in fact on the “simple”
configuration space I'g.

The present paper aims at extending the results in [33]. We shall develop a
general method based on the idea in [33] to show that for any given complete sep-
arable metric space E as base space, no matter if it is finite or infinite dimensional,
the set 'y \ I'y is exceptional with respect to the Dirichlet forms discussed in [24]
and, consequently, the diffusions constructed there are in fact living on the “simple”
configuration space I'g.

In particular, for E being a Riemannian manifold or the free loop space as
in the situation of the two main examples discussed in [24], we can locate the
corresponding diffusions on I'g, as required in models of statistical mechanics.

The organization of this paper is as follows:

In Section 2 we review the topology and the metric p introduced in [24] on Tg.

In Section 3 we present a condition for a probability measure p on the Borel
o-field B(T'g) (w.r.t the p—topology) on T'g, implying that (g \Tr) = 0 (cf.
Theorem 3.1 below).

In Section 4 we prove our main result, i.e. that under quite weak, easy to
check conditions Ty \ 'z is even exceptional w.r.t. the corresponding Dirichlet
form defined in [24] (see Theorem 4.3 below).

The application to the free loop space mentioned above is discussed in the
concluding Section 5.

2. {Ej}-vague topology for the multiple configuration space I'g

For the convenience of the reader, we start with a review of the topology on
T'p introduced in [24]. On the way we also fix some notations for later.

In what follows, let (E, p) be a separable metric space with Borel o—field B(E).
For a set A C E and any € > 0, we set

A®:={z € E|p(z,A) <e}.
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We call {Ej}r>1 an exhausting sequence, if {Ey} is an increasing sequence of open
setsin F, such that | J,~, Ex = E. {Ej}r>1 will be called a well-ezhausting sequence
if, in addition, there exists a sequence {dy } r>1 of strictly positive numbers such that

(2.1) E* C Epy1 VkeN

Let {Er}r>1 be an exhausting sequence. We shall write v € M ({E,}) if  is
a positive measure on B(E) and y(Ey) < oo for all k € N.

In general, for any exhausting sequence {Aj}r>1, we can always find a well-
exhausting sequence {Ej }>1, such that M ({A4}) C M({Ex}) (cf.[24, Lemma 3.4]).
In particular, if By = E for all k > 1, we write M(E) instead of M ({E;}).
That is, M(E) is the family of all finite positive measures on B(E). For any
B(E)-measurable function f on E and any positive measure v on B(E) we write
f(v) :== [, f d, provided the integral makes sense. For A € B(E) and £ > 0 we set

(2.2) gac(z) == Tz (e —p(z,A) Ne), z€E,
and define for v1,v2 € M(E)
23 () = sup {[gac(n) — gac()| |4 € B(E).e > 0}

Then py is a separable metric on M(E) and the pp—topology coincides with the
topology of weak convergence on M(E). Moreover, pg is complete on M(E) if p is
complete on E (cf. [24, Thm. 3.2]).

In what follows, we fix a well exhausting sequence {E} };>:. For example, Ej, =
{z € E|p(z,20) < k} for some fixed point o € E. We shall write f € Co({Ex})
if f € Cy(E) (Cp(E) := the set of all bounded continuous functions on E) and
supp[f] C Ei for some k € N. Note that if f € Co({Ex}), then f(v) is well-defined
for all v € M({E}). Let 7,7, € M({Ex}), n > 1. We shall say that (,)n>1
converges to v {Ey}—vaguely, if

(2.4) [flm) = F(v)| — 0 Vf € Co({Ex}).

If E is locally compact and E}, is relatively compact for all k, then M ({Ek}) is
exactly the family of all positive Radon measures on E and { E}, }-vague convergence
coincides with the usual vague convergence for Radon measures. In this case, there
is a complete separable metric (Kallenberg metric) on M ({E}}) which induces the
topology of vague convergence. Unfortunately, the Kallenberg metric does not work
very well for non-locally compact spaces FE.

Nevertheless, we proved in [24] that there always exists a separable metric p
on M({Ey}), inducing the topology of {Ej}—-vague convergence. We now give a
short description of p.

Let {0r}r>1 be a sequence of positive numbers so that (2.1) holds. We set
(cf. (2.2)) ¢ (x) = Egp, 5, (z) and define for 1,72 € M({E}),

(2.5) p(1,72) =sup2~* (1 A o (k- 71, b - ’Yz))-
k>1

THEOREM 2.1. (cf. [24, Thm. 3.6]) (M ({Ex}),p) is a separable metric space.
The induced topology is the topology of {Ey}-vague convergence. Moreover, p is a
complete metric on M({Ey}) if p is complete on E.
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Set N = NU {0,00} and denote by 'y := I'p({Ey}) the set of elements v €
M({Ex}) for which y(A) € N for all A € B(E). Denote by 'z the subset of I'g
consisting of all y such that y({z}) < 1for all z € E. Then we have for all y € '
that

v= Y {z})es,

TESuppy

where &, denotes the Dirac measure in = and suppy := {z € E|v({z}) > 0} is
countable. Similarly, for all v € ', we have

= Y e

T ESUpPpP Y

['g is called the multiple configuration space over E (relative to {Ey}), while I'g is
the (simple) configuration space over E. It is known that g is a closed subset of
M({Ey}) in the p—topology (cf. [24, Prop. 3.9]) and I'g is a G5 subset of T'g with
respect to the p—topology (cf. [24, Prop. 3.10]).

3. Measures not charging 'y \ I'g

Let B (I:‘ £) be the Borel ofield of T (w.r.t. p) and u be a probability measure
on (I'g, B(T'g)). We always assume that

(1) [ vBou) <o WheN
T
Note that if we define

(3.1) ot (A4) = / V(A) p(dy), € B(E),

then (u.1) is equivalent to saying that o# € M({E}y}). Below we fix a measure
o € M({Ex}). For the discussion of closability of pre-Dirichlet forms on T'f, in
[24] we imposed the following assumption (u.o) on p with respect to o:

(n.0) There exists a B(T'g) ® B(E)-measurable function p : Ty x E — Ry such
that for all B(T'g) ® B(E)—measurable functions h: ' x E — R4

/ / h(y, 2) Y(de) p(dy) = / / h(y + £, 2)p(y, 7) 0(de) ().
I'e JE e JE

There are many examples for which conditions (u.1) and (u.o) are satisfied.
Here we mention three situations which have been discussed in [24].

1. Poisson measures: B ~
Let 0 € M({Ex}) and p := 7, be the Poisson measure on (I'g, B(T'g)) with

intensity o, i.e. T, is the unique probability measure on (['g, B('g)) such
that

(3.2) / e’ 1, (dy) = exp { / (ef —1) da} Vf e Co({Er}).

Then it is well-known that j := 7, satisfies conditions (u.1) (since o# = o)
and (p.o) with p(vy,z) = 1 for all x € E, v € T'g. Condition (u.o) is just
the so-called Mecke identity (cf. [26, Satz 3.1]) in this case.
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2. Mixed Poisson measures:
Mixed Poisson measures on 'y are defined by

(33) n= A Tzo /\(dz)a

where 7., is a Poisson measure with intensity zo and A is a probability
measure on (Ry, B(R;)) such that

(3.4) /R 2\(dz) < oo.

It is easy to check that a mixed Poisson measure p satisfies (p.1) and (p.0).
3. Gibbs measures:
A more general class of measures satisfying (u.1) and (u.0) are Gibbs mea-
sures, for which we refer to [12, Sect. 6] and [30, Sect. 6] for the definition and
a detailed discussion. Here we only mention that the above mixed Poisson
measures are in fact special canonical Gibbs measures with zero potentials.
In quantum statistical mechanics (mixed) Poisson measures are equilibrium
measures for random particles that act independently (“free case”) while
Gibbs measures are equilibrium measures for random particles that interact
via potential functions (“interaction case”).
For our purpose, we would like to point out that in the situations of (1) and
(2), and in some cases of situation (3),' the measure y on (Ig,B(Tg)) has the
following property (u.o.1) relative to the “downstairs” measure o.

(n.0.1): For each k € N, there exists a constant Cj, such that
/ uw(dy) < Cro(B)® VB € B(E), B C By,
{y(B)22}

The remainder of this section is devoted to proving the following result:

THEOREM 3.1. If (E,B(E)) is a measurable Lusin space (e.g. (E,p) is com-
plete) and o({z}) =0 for all x € E, then (p.0.1) implies that u(Cg \Tg) = 0.

Before proving the above theorem, we introduce more concepts and notations,
also to be used in subsequent sections.

Let A be a Borel subset of E. We say that F(A) is a finite Borel covering of
A (abbreviated FBC) if F(A) is a finite family of Borel subsets of A such that A
is the union of these subsets. The number of non-empty Borel subsets in F(A) is
denoted by |3” (A)|

Let {ffn(A)}neN be a sequence of FBC of A. We shall write B € {F,(A)} if
for any n € N there exists a Borel set B,, € F,(A) such that B C B,,.

Let F1(A) and F5(A) be two FBCs of A. We write F1(A4) < Fa(A) if |F1(4)| <
|3’2(A)| and for each By € F2(A) there exists By € F1(A) such that Bs C By.

For any measure v we denote the associated outer measure by v*.

As we shall see, the following lemma implies Theorem 3.1.

LEMMA 3.2. Let A be a Borel subset of Er and {ff"(A)}keN a sequence of
FBCs of A. Suppose that the following conditions hold:
1. |Fn(A)| — 00 as n — oo;

le.g. for the class of grand canonical Gibbs measures which appear in classical statistical
mechanics of continuous systems, such as Ruelle measures, see [34, 30] and references therein
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2. There exists a constant a, such that
(3.5) |"J'"n(A)|a(B) <a VBeZF,(A).
Then (u.0.1) implies
(3.6) u*{fy €elg | v*(B) > 2 for some B € {S'n(A)}} =0.

PROOF. For any N € N, we have by (u.0.1) and (3.5)

w {7 €Tr|v"(B) > 2 for some B € {F.(4)} ]

< ,u{'y €Ty ‘7(BNj) > 2 for some By; € ’J'”N(A)}

[Fn(A)| _ [Fn(A)] .
< Z p{y € T |7v(Bn;) > 2} < Cy Z o(Bn;)® < a’Cr|Fn(A)|
j=1 j=1

where Fn(A) = {BN]-}1 <j<IFn(A))" Hence, the assertion follows from assumption
(1). O

PrROOF OF THEOREM 3.1. We only need to show that for any k € N

(3.7) p*{y €Tg|v({z}) >2for some z € By} =0

Since E) is a Borel subset of a Polish space, we can find a Borel isomorphism
J: Ep — S C [0,1]. Let m be the image measure of U|Ek on (S,B(S)). Then
m is generated by a right continuous increasing function F : [0,1] — [0, oo[ with
F(0) = 0. Due to the fact that o({z}) = 0 for all z € E, we have that F(t) is
continuous in t. For any n € N, we can find 0 = tg < t; <tz < --- < ta» =1, such
that F(t;) — F(tj—1) = 2 "0 (Ey) for all 1 < j < 2". Let By; := J ' (SN[tj_1,5])
and F,(Eg) = {Byn; |1 < j < 2"}. Then {F,(Es)}, . satisfies 3.2(1) and (3.5),
and (3.7) follows from Lemma 3.2. O

REMARK 3.3. We emphasize that in case p is the Poisson measure or in case
E =R? and p is a Gibbs measure, the assertion of Theorem 3.1 is well-known (see
e.g. [4] and references therein).

4. Dirichlet forms with exceptional set ['y \Te

Let ¢ and o be as before. In this section we assume that a quasi-regular
Dirichlet form (T, D(EM)) is given on L*(T'g, p). Since our main concern are the
Dirichlet forms discussed in [24], we always assume that (€', D(E")) is of square
field operator type. More precisely, we assume that there is a positive definite
symmetric bilinear map (square field operator) ST : D(ET) x D(EY) — LY (Tg, 1)
such that

(4.1) EV(F,G) = / ST(F,G) u(dy) VF,G e D(EY)
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and the chain rule holds, i.e. if Fy,...,Fy,G1,...,GN € D(EY), ¢, € Ci°(RY),
then for all y e I'g

(42) SF(SD(Fla5FN)7¢(G133GN))(7)

N
=Y 3ip(FR,....,Fn)04(Gh,-..,Gn) ST (F;, G;)(7)

ij=1
Below, we shall denote ST (F, F) by ST(F) for F € D(ED).

REMARK 4.1.
1. We emphasize that all the Dirichlet forms discussed in [24] satisfy (4.1) and
(4.2).
2. The square field operator S with (4.1) and (4.2) has also the following
properties which will be used later. For a proof, we refer to [32].
(a) F,G € D(EY) implies FVG,F AG € D(EY) and
SC(FVG)<SY(F)Vv ST (@) pae.

(4.3) SYFAG) < ST(F)vST(@) pae.

(b) (strong local property) If F' € D(ET) and F is constant p—a.e. on an
open set U C I'g, then
(4.4) ST(F)=0 p-ae. onU.

3. With the above assumption, by [23, Thms. IV.3.5 and V.1.11] we know that
(cf. [24, Thm. 4.13]) there exists a conservative (strong Markov) diffusion
process

M = (Q, F, (Fo)e205 (0:)20, (Xi)120, (Py)er )

on T'g (cf. [15]), which is properly associated with (€7, D(EV)), i.e. for all
(u—versions of) F € L*(Tg, ) and all ¢ > 0, the function

(4.5) Y s pF(y) = / F(X))dP,, 7€ Tk,
Q

is an £'' —quasi-continuous p—version of etHu , where H 5 is the generator of
(EY,D(EY)) (cf. [28, Sect. 1.2]). M is unique up to p-equivalence (cf. [23,
Sect. IV.6]). In particular, M is y—symmetric (i.e. [ GpFdu = [ Fp,Gdp
for all F,G : 'y — R, B(I'g)-measurable) and has p as an invariant
measure.

We now impose some further restrictions on p (relative to o) and (€', D(EY))
as follows.

(u.0.2): For each k € N, there exists a constant Cy, such that
[ AB)ud) < Cro(BY VB e B(E),B C By
{r(B)=>2}

(EF.1): Let A € B(E). If A% C E,‘z’“ for some k € N and € > 0, then g4, €
D(EY) and

ST (gae)(v) < A2€£k(x)2'y(dx) j-a.e.,
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where & is a measurable function on E, such that
My = sup &(z)? < oc.
weE,‘i"
REMARK 4.2.
1. Clearly, all Poisson measures satisfy (u.0.2). If (3.4) is strengthened by

(4.6) /R 22 Mdz) < oo,

then the mixed Poisson measures in Situation (2) of Sect. 3 satisfy (p.0.2).
Also, in some cases of Situation (3) of Sect.3, e.g. in the case of Ruelle
measures, (p.0.2) is fulfilled.

2. If (E, p) is complete and if (€7, D(ET)) satisfies Condition (Q), specified in
Sect. 4 of [24], then it follows from [24, Cond. (S.1) (in Sect. 1), Lem. 4.10
and Prop. 4.6], that (€7, D(ET)) satisfies (€7.1). We refer to [24] and Sect. 5
below for concrete examples.

THEOREM 4.3. Let A be a Borel subset of Ey, and {Fn(A)},  be a sequence
of FBCs of A. Suppose that

(4.7 Fn(A) < Frg1(A) for alln € N and |‘3”n(A)| — 00 as N — 0

and that there exists a decreasing sequence of numbers {e(n)}nen C 0, %’“[ and a
constant o > 0, such that

(4.8) inf, £(n)?|Fn(4)| > 0,
(4.9) 1Fn(A)|o(B*™) <a VB e T, (A).

Then, under conditions (1.0.2) and (E'.1), we have that
{’y el ‘ v*(B) > 2 for some B € {?H(A)}}
is E¥ —exceptional.

PROOF. Let ¥ be a smooth increasing function on R, such that ¢ (t) = 0 for
all t < 3 and ¢(t) = 1 for all ¢ > 2. Let Fn(A) = {By; |1 < j < |Fn(A4)|}. For
each n € N we define

Pnj (7) = (E(n)_l + ]-)anj,s(n) (’7)7 an € ?TL(A)7
and
uni (7) == ¥(eni (7)), 1<34 < |Fn(4)],
|Fn (A)]

un(y) =\ uni(y)-

j=1
By Theorem 2.1 ¢,; is continuous in . Hence, u,; is continuous in . We note
that un;(y) = 1 if v(Bpj) > 2 and unj(y) = 0 if ¢,;(y) < 2. Thus, by (4.4) and
(EF.1) we have
S (ung) (1) < Mill'lloo ((m) ™" + 1)

< Mi|[¢)'||oo ((n)F + 1)

2
V(B ™)1, 521 ()

2 2e(n)
V(Bni " )1{7:7(333(@)22}(7) p-a.e.
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Furthermore, u, () is continuous in vy and
(4.10) un(y) =1 if  sup;y(Bp;) > 2
(4.11) up(y) =0 if sup; pni(y) < %

Moreover, by (4.3) we have

ST (un) < My (e(n)™" +1)° sup; [7(353("’)1{7:7(33?"))22}(7)]
|Fn (A)]

ng(e(n)—1+1)2 Z ,Y(Biz("))1{7:7(333(,,))22}(7) p-a.e.
j=1

Therefore, by (4.1) and (p.0.2) we have

|r7t (4)]
EY (un,un) < My (e(n Z Cro( 25(") ,

which, together with (4.8) and (4.9), implies that

(4.12) sup E' (tn, un) < 00.
neN

By (4.7) and the fact that {e(n)},>1 is decreasing, it is easy to see that for every
v € Ty the limit ueo(7y) := lim,_ oo un(y) exists. Then by a standard argument
(cf. [32]), we conclude from (4.12) that ue is £' —quasi-continuous. On the other
hand, since

|Fn(A)]
Tp\ {sup;on; <2} C U (v [7(BE™) > 2},

we obtain by (4.11) and (p.0.2)

|Frn(A)] I’J" (A)]

/ un(y) p(dy) < / . Un Z Cro(B 2s(n)
Te j=1 (B ")22}

Thus, by (4.9) and (4.7), we conclude that u, — 0 in L2(FE,u). Therefore, by
quasi-regularity we must have us, = 0 E'—q.e. In particular,

(4.13) {7 €TE|ux(y) =1} is ' —exceptional.

Now let v € T be such that y*(B) > 2 for some B € {F,(A)}. Then for any
n € N, there exists B,, € F,(A), such that v(B,,) > v*(B) > 2 and hence, by (4.10)
Uoo(7Y) = un(y) = 1. Therefore,

{7 ely ‘7*(3) > 2 for some B € {ffn(A)}} C {us =1}
and the desired conclusion follows from (4.13). O

COROLLARY 4.4. Suppose that for each k € N, there exists a sequence {f}”n(Ek)}
of FBCs of Ey satisfying (4.7)—(4.9). Then under conditions (p.0.2) and (EF.1)
Tg \ g is EM —exceptional and hence, by [23, Prop. IV.5.30] the diffusion process
M, specified in Remark 4.1(3), lives on the simple configuration space I'g.

neN
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PrOOF. Note that in the situation of Theorem 4.3, if z € A, then {z} €
{Fn(A)}. Hence, the assertion of Theorem 4.3 implies in particular that AN (T'g \
r E) is ET—exceptional. Consequently, in the situation of this corollary we have that

keN

is £''—exceptional. O

5. The free loop space as base space E

In this section, we discuss in detail the construction of diffusions on the “simple”
configuration space over the free loop space. For the convenience of the reader, we
start by recalling the framework of [6] (see also [24]).

Let g = (gi;) be a uniformly elliptic Riemannian metric with bounded deriva-
tives over R? and

-

d 1
A, = (detg) _528(37,[ det g)* g* %]

i=1

the corresponding Laplacian. Let p;(z,v), =,y € R?, t > 0, be the associated heat
kernel with respect to the Riemannian volume element. Let W (R?) denote the set of
all continuous paths w : [0,1] — R? and let L(R?) := {w € W(R?) |w(0) = w(1)},
i.e. L(R?) is the free loop space over R?. Let PP be the law of the bridge defined
on {w € L(R?) |w(0) = w(1) = =}, coming from the diffusion on R? generated by
Ay and let

(5.1) o= /prl(a:,:z:) dz

be the Bismut/Hpegh—Krohn measure on L£(R?), which is o—finite, but not finite.
We consider £(R?) equipped with the Borel o—algebra B(L(R?)) coming from the
uniform norm || - ||o on £(R?), which makes it a Banach space.

The tangent space T,,L(R?) at a loop w € L(R?) was introduced in [19] as
the space of periodical vector fields X;(w) = 7 (w)h(t), t € [0,1], along w. Here,
7 denotes the stochastic parallel transport with respect to o associated with the
Levi-Civita connection of (R?, g) and h belongs to the linear space H,, consisting
of all absolutely continuous maps h : [0,1] — T,,)R? = R%, such that

(5.2) (B, h)wo) : —/0 Gu(o) (W' (8), 1'(s)) ds+/0 |h(s)|2ds<oo

and satisfying the holonomy condition 71 (w)h(1) = h(0) (cf. [19] for details). Note
that if we consider £(R?) as continuous maps from S! to R?, this notion is invariant
under rotations of S and (5.2) induces an inner product on 7T, £L(R?), which turns
it into a Hilbert space. _

Below, we shall also need the Hilbert space T,,L(R?) (D T,,£(R?)) with inner
product ( , )m, which is constructed analogously, but without the holonomy con-
dition, i.e. H, is replaced by H, which denotes the linear space of all absolutely
continuous maps h : [0,1] — T,)R? = R? satisfying (5.2). We note that by
the uniform ellipticity of g, H is indeed independent of w € £(R?) and the norms
I Mooy = ( )ifa)» w € L(R?), are all equivalent.
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Let FC§° denote the linear span of the set of all functions u : L(R?) — R,
such that there exist k € N, f € C§°((RY)*¥), t4,...,tx € [0,1] with

(5.3) u(w) = f(wltr),...,w(tr)), w € LRY).
Note that FCg° is dense in L?(0) := (real)L? (E(Rd),a). Let FC*, FCs° be
defined correspondingly with C* ((R?)¥), Cp° ((R%)*) replacing C§° ((R?)*).

We define the directional derivative of u € FC*, u as in (5.3) at w € L(R?)
with respect to X (w) € T,,L(R?) by

Ohu(w) := dxu(w de )y e w(tn)) Xe: (w)
(5.4)

k
=2 . a0 (Vif (@(t), - w(tn)), 7 (@)h(t:)),

where h € H with X (w) = (1(w)h(t)), clo.y] and Vi resp. d; denotes the gradient
(with respect to g) resp. the differential relative to the i’th coordinate of f. We

extend Jy, to all of FC* by linearity. Note that if we consider u as a function on
W (R?), then

, w€ L(RY).

s=0

(5.5) Oxu(w) = C%u(w + sX (w))

Hence, Oxu is well-defined by (5.4) (i.e. independent of the special representation
of u).

Let for u € FC™ and w € £(R?), Du(w) be the unique element in H, such that
(Du(w),h)w(o) = Opu(w) for all h € H and let Du(w) be its othogonal projection
(w.rt. (, )w(o)) onto H,.

Since H is separable and consists of continuous functions on [0, 1], it follows by
the construction of the stochastic parallel transport that there exists N € B(L(R?))
with ¢(IN) = 0, such that both Du(w) and Du(w) are defined for all w € N¢ and
all u € FC®. Moreover, the map w — Du(w) is measurable (cf. [24, Sect. 2.4.2]
for a detailed proof).

For u € FC*, we have that for all w € N¢

(5.6) HD“(“’)HM(O) < ||ﬁu(w)Hw(0)
and if u(w) = f(w(s1),...,w(sk)), then for all w € N¢
k
(5.7) l~)u(w)(s) = Z G(s,58i)Ts, (w)*lvif(w(sl), o, w(sk)),

where G is Green’s function of —5722 + 1 with Neumann boundary conditions on
[0,1],i.e

(58) G(S,t) _ 2(626_ 1) (€t+5_1 + el—(t+3) + e|t—s|—1 + el—|t—3|)_

For u,v € FC* define
(5.9) S(u,v)(w) = (Du(w),Dv(w))w(O), w € L(RY).
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We now set E := L(R?), equipped with the metric p induced by the Banach

norm || - ||eo- For & > 1 let Uy be the open hypercube | — 5, 5[ of R, and define
open subsets of E by
(5.10) By :={w € E|w(0) € U }.

Then {Ey};>1 is a well exhausting sequence with &, = 3 for all k (cf. (2.1)). Let

Ig := Te({Ek}) be as specified in Sect. 2 and let p be a Poisson measure or a
mixed Poisson measure on T'g, specified by (3.3) and (3.4) with o being the Bismut
measure as specified in (5.1).

Define D to be the linear span of the set of all functions u : E — R of the
type specified in (5.3), but with ¢; = 0. We now lift S to the following space
D' := FF C°(D) of functions on the configuration space I'g:

(5.11) D' := FL'Cee(D)
= {g((fl,-),...,(fn,-)) ‘n EN, fi ..., fn€D, g€ cg°(R")}

We Eleﬁne for F = gF((fl;');---;(fna')):G = gG((Ql;');"')(QWa')) € DF and
v€Tlg
(5.12) SY(F,G)(v)

= Zaz f17 5. (fna )) JgG(<917’7>7"'7<gm7’7)) <S(f17g1)7’7>

1 j=

—_

i

and SY(F) := SY(F,F). It has been proved in [24] that S' is well-defined on
DY x D', i.e. ST(F,G) is independent of the representations of F, G used on the
right hand side of (5.12). See Sect. 1.3 of [24], where the well-definedness was

discussed in a general context.
We now define £T(F, Q) for F,G € D' by

(5.13) EN(F,G) := g SY(F,G)(v) u(dy).
Fact. (EY,DY) is closable on L*(Tg, ), and the closure (EY,D(EY)) is a

quasi-regular, local and conservative Dirichlet form on L? (f E, u). Therefore, there
erists a conservative diffusion process

(5.14) M = (2, F, (Fo)iz0, (X)iz0, (Py)yers)
onTg.

We refer to [24] for the detailed proof of the above fact. Applying Theorem 4.3,
we have the following result.

THEOREM b.1. Suppose that d > 2 and p is a Poisson measure or a mized
Poisson measure satisfying (4.6). Then Ty \ T'p is ' —exceptional. Therefore, the
diffusion process M|, as specified in (5.14), can be constructed in such a way that it
lives on I'g. More precisely, there is a version of M (up to u—equivalence, cf. [23,
Sect. IV.6]), such that

(5.15) P,{X, €T forallt >0} =1 Vy€eTg.
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PrOOF. The last assertion is a direct consequence of the first one (cf. [23,
Prop. IV.5.30]). Therefore, we shall concentrate on showing that I'g \ T'g is £F-
exceptional.

Note that in our situation (u.c.2) and (EL.1) are satisfied by Remark 4.2.

For fixed k € N, we divide Uy =] — 3, 5[ into 277 hypercubes of equal size, i.e.
the length of each side of the hypercubes is equal to 5. Denote the corresponding
closed hypercubes by Apj, 1 < j < 29" and define a ﬁnlte Borel covermg Fn(Ek)
of Ey by Tp(E) = {Bm|1 < j < 29} with By = {w € E; |w(0) € Ay},
1< j <2 Clearly, {F,.(Ek)}, . is a sequence of FBCs of Ej, satisfying (4.7).
Next, we take e(n) := 27", n e N. Then (4.8) holds, because d > 2. Let

ap = sup |detg| z) p1(z, ).
€Uk 41

Then one can easily calculate from (5.1) that

o(B2™M) < ag (k27" 4+ 2772) T < a2 (k + 4)°
and consequently, (4.9) is satisfied. Since k € N is arbitrary, it follows from Corol-
lary 4.4 that T'p \ ['p is £' —exceptional. O

We have in fact proved the following stronger result.
PROPOSITION 5.2. In the situation of Theorem 5.1, we have that
{’7 €lp | v(Ls le)) > 2 for some z € Rd} is ET —exceptional,
where Lo (R?) = {w € L(R?) |w(0) = z}.
PROOF. By Theorem 4.3 and the above proof it follows that
(5.16) {’y elp ‘ ~*(B) > 2 for some B € {.‘}'"n(Ek)}} is T -exceptional.
Realizing that £,(R?) € {F,(Ey)} for all z € Ej, we obtain the assertion. O
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