CENTRAL EXTENSIONS AND NILPOTENCE OF MALTSEV THEORIES

MAMUKA JIBLADZE AND TEIMURAZ PIRASHVILI

ABSTRACT. Relationship is clarified between the notions of linear extension of algebraic theories,
and central extension, in the sense of commutator calculus, of their models. Varieties of algebras
turn out to be nilpotent Maltsev precisely when their theories may be obtained as results of
iterated linear extensions by bifunctors from the so called abelian theories. The latter theories
are described; they are slightly more general than theories of modules over a ring.

INTRODUCTION

There is a well understood generalization of the commutator calculus from groups or Lie algebras
to much more general varieties of universal algebras (the initial idea is contained in [S]; a maximally
exhaustive treatment is probably [FM]). In particular there is a notion of abelian (linear) and
nilpotent varieties, generalizing the ones for groups and algebras.

Taking the point of view of category theory enables one to make more apparent the invariant
properties of the commutator calculus, i. e. properties which do not depend on a particular choice
of basic operations for the algebras of the variety. A good example of such approach is [Pe]. From
this viewpoint, it is natural to represent varieties by the gadgets called finitary algebraic theories
(see [L]); these are essentially just categories conisiting of finite cartesian powers of a single object.
Considering theories leads to another natural definition for nilpotence of varieties, using the notion
of linear extension of a category, in the sense of [BW]. Such definition is inherent in [JP], where it
is proved that algebraic theories corresponding to the varieties of nilpotent groups (resp. algebras)
of nilpotence class n fit into towers of linear extensions of length n by certain bifunctors, starting
from abelian, or linear, theories, i. e. theories of modules over some ring. See also [Pi].

It is the aim of this note to prove that these approaches are equivalent for a particular important
class of varieties/theories — the s. c. Maltsev ones. I. e., a Maltsev variety is nilpotent of class
n in the sense of commutator calculus if and only if the corresponding theory can be obtained
by n-fold linear extensions of particular “simple” type, starting from an abelian Maltsev theory.
In a section by the first author, abelian Maltsev theories and linear extensions between them are
described.

Concerning notation: throughout the paper, it is of set-theoretic style, as is by now usual
in category theory. For example, for a morphism f : G — H between internal groups in a
category with products, an expression like f(z + y) might mean composite of f with +(z,y), for
variable morphisms z,y : X — G, with + : G x G — G being the group operation. Or, for a
congruence on an object A, i. e. a parallel pair (a;,a2) : R = A such that the resulting map
(a1(=),az2(=)) : hom(X, R) — hom(X, A) x hom(X, A) is an equivalence relation for any X, we
might use notation xRy or  ~g y, or just  ~ y for morphisms z,y : X — A such that (z,y)
factors through R.

1. LINEAR EXTENSIONS AS TORSORS

The central concept of this paper is that of a principal G-object or G-torsor, or torsor under
G, for an internal group G in a category C with finite products. It is a G-object T which satisfies
two conditions; the first condition is that the morphism (action, projection) : G xT — T x T is
an isomorphism. The second condition says that 7' has global support and may have different
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meanings, depending on exactness properties of C. In this paper this condition usually means
that T xT =3 T — 1 is a coequalizer.

The first condition is often expressed equationally, using a “subtraction” map —: T xT — G,
namely the composite of the above isomorphism and the projection G x T — G. It is easy to see
that the condition is equivalent to requiring two identities

(9+z) -z =y,
(z-y+y==
forg: X - G, z,y : X —» T. In fact the whole torsor structure can be expressed by requiring

that the morphism m : T x T x T — T given by m(z,y,2) = (z —y) + 2z be an associative Maltsev
operation, in the following sense:

1.1. Definition. A morphism m : T xT xT — T is called a Maltsev operation on T if it satisfies
m(z,y,y) =& =m(y,y, ).
It is called associative if one has
m(u,v,m(z,y,z)) = m(m(u,v,),y, z)

and commutative if m(z,y,z) = m(z,y, ).

Note for future reference:

1.2. Lemma. Any associative Maltsev operation m satisfies
m(u,v,m(x,y,2)) = m(u,m(y,z,v), 2).
Proof. For readability, denote m(z,y, z) = ¢ — y + z. We thus have
r—yt+ty=r=y—-y+zx
and
u—v+(z—y+2)=@w—-v+z)—y+=2
We can thus save parentheses and denote the latter expression by u —v + x — y + 2. One then has
u—v+r—y+z
=u—(y—z+v)+{y—z+v)—v+z—-—y+z
=u—(y—z+v)+y—z+v—v+z—y+2)
=u—(y—z+v)+2.

One has the following (well known, in various guises) fact:

1.3. Proposition. Let C be a category with coequalizers of congruences and finite products,
which commute (that is, coequalizer of a product of diagrams is product of their coequalizers).
Then there is a torsor structure on an object T iff it has global support and there is an as-
sociative Maltsev operation on T. In fact there is a one-to-one correspondence between such
structures. Moreover commutative Maltsev operations correspond to structures of torsors under
abelian groups.

Proof. Given a torsor structure, the Maltsev conditions for m(z,y,2) = (z — y) + 2 are just the
two identities above. As for associativity, it means

(u—v)+((z—y)+2)=(((u—-—v)+2)—y)+2z
which follows easily from
(9+2)—y=@+({z-y)+y)—y=((g+@@-y)+y)—y=9+(@@—y).
If moreover the group is commutative, one has

-y +z=@-y+@E-y+ty=c-y+@E-y) +y=(2—y) +z
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Conversely, for an associative Maltsev operation m on T', the relation

($ay) ~ (m(waya Z), Z)
is a congruence on T xT. Indeed, it is reflexive since (m(z,y,y),y) = (z,y), symmetric since
(m(z,y,2),2) ~ (m(m(z,y,2),2,9),y) = (m(z,y,m(z,2,9)),y) = (2,y), and transitive since
(m(m(z,y, 2),2,t),t) = (m(z,y,m(z,2,t)),t) = (m(z,y,t),t). Let G be the coequalizer, and
let —: T xT — G be the quotient map. Since (m(z,z,y),y) = (y,y), one has (z,z) ~ (y,v), i. e.
x — ¢ =y —y. In particular, taking for z,y the projections T'x T — T we get a map from their
coequalizer to G, i. e. a global element 0 : 1 — G, by the global support condition on 7. Addition
on G is defined by (x —y) + (2 —t) = m(x,y, z) — t which is legitimate since cartesian product
of two coequalizers is a coequalizer in our category. Then additive inverse of x — y is y — x, and
the action of G on T is given by (z — y) + z = m(z,y,2). It is straightforward to verify all the
remaining identities. |

So torsors in such categories determine (at least one of) their own groups. In view of this,
objects equipped with an associative Maltsev operation will be also referred to as torsors. In the
literature they are also known as herds.

1.4. Definition. A morphism p : £ — B in a category C with products is called an abelian
extension, or simply abelian, if it admits a structure of a torsor in C/B, for some internal abelian
group in C/B. If furthermore the group has the form B*(A4) = (B x A — B), for some internal
abelian group A in C, then the morphism is called central extension.

So in view of 1.3, a morphism p : E — B in a sufficiently nice category is an abelian extension iff
it is coequalizer of its own kernel pair £ x g E =3 E, and there is an associative Maltsev operation
E xgp ExgE — E over B. As for central extensions, one has another omnipresent fact:

1.5. Proposition. A morphismp: E — B in C/B is a torsor under a constant group B*(G), for
some group G in C, if and only if the corresponding Maltsev operation m : Exg ExgpE — E
extends to an associative Maltsev operation E xp Ex E — E, with pm(z,y,z) = pz for any
(z,y,2) : X > ExpEXE.

Proof. If the group is B*(@), then the action can be written as + : G X E = (BxG)xpE = E,
and the subtraction is given by (p,—) : E xp E — B x G for some map — : E xg E — G. Thus
(x —y) + z is defined for px = py and any z. Moreover using p(g + x) = pz, all the identities are
proved in exactly the same way as in 1.3.

Conversely if m as above is given, we construct the group G as quotient of E x g E by (z,y) ~
(m(z,y, 2),2) again, with (z,y) : X - ExpFE and any z : X — E. That is, we coequalize the
maps (z,y, 2) —= (z,y) and (z,y, 2) = (m(z,y, 2), 2) from E xp E x E to E xp E. This then gives
themaps +: G X E — E and — : E xg E — G just as in 1.3, satisfying the required identities. H

Terminology in 1.4 above is motivated by one important case, when C is the slice V/B of some
variety V of universal algebras over one of its objects B. Then the object p : E — B of V/B
having global support simply means that p is surjective. It is well known that this notion of torsor
gives various kinds of extensions of universal algebras. For example, when V is the variety of
groups, then for any internal group G in V /B there is a B-module M such that G is isomorphic
to the projection B x M — B of the semidirect product of B with M, the group structure given by
homomorphisms (+: (BXM) xp(BXM) - BxM,—:BxM — BxM,0: B— BxM) with
((b,z1), (b,z2)) — (b, 1 + x2), (b, z) — (b,—x), b — (b, 0) respectively. Furthermore a G-torsor is
the same as a short exact sequence

with i(p(e)z) = e + i(x) — e, the action (B X M) xg E — E being given by ((b,z),¢e) — i(x) + e.
Similarly when V is the variety of Lie rings, an internal group in V/B amounts to a B-module
M, and a torsor under this group to an extension 0 - M — E — B — 0; when V is the variety
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of associative algebras with unit, one gets bimodules and singular extensions, etc. Note that in all
these cases torsors under constant groups, i. e. internal groups in V/B represented by projections
B x G — B for an internal group G in 'V, correspond to central extensions of B.

Another situation where torsors are important for us arises from a small category B, with C
the full subcategory Cat /B of the slice Cat/B of categories over B, consisting of those functors
p: E — B which are identity on objects. In this case the global support condition is that p is full,
i. e. surjective on morphisms. The resulting notion turns then out to be equivalent to the notion
of linear extension of categories, which we now recall.

For a small category B, let B# denote the category called twisted arrow category of B in [M],
and the category of factorizations of B in [BW]. Objects of B# are morphisms of B, whereas
homgy (b, b') consists of pairs (by,bs) with bbby = b'. A natural system on B with values in a
category C is a functor D : B#¥ — C. It is thus a collection of C-objects (D). x -y of C, indexed
by morphisms of B, together with C-morphisms b1( ) : Dy = Dy,p and ( )by : Dy — Dy, for
all composable morphisms by, b, b2 in B, such that certain evident diagrams commute. In other
words, one must have

(b1b2)z3 = bi(bazs),
(b122)b3 = b1 (z2b3),
(wlbz)bg =T (b2b3)

bs. bo b
for any composable ——2—% and any x; : X — Dj,.

We will use the following notion from [BW]: for a natural system D on a category B with values
in abelian groups, a linear extension of B by D is an object of Cat/ B, i. e. a functor P:E — B
that is identity on objects, together with transitive and effective actions Dy x P~1(b) — P~1(b),
(z,e) » x+e, forall b: X - Y in B, such that for any composable morphisms e;, es in E and
any x; € Dp(,), i = 1,2, one has

(z1 + e1)(z2 + e2) = (w1 P(ez) + Pe1)x2) + erea.

An example of a linear extension by a natural system D is given by the trivial linear extension
Bx D with homp,p (X,Y) = [],.x_,y Db, composition zxy = x1bs+ by for 1 € Dy, , x5 € Dy,,
identities 0 € Dy, , X € B, and the actions Dy x Dy — Dy, given by the group law in Dj.

For natural systems D of abelian groups, there are cohomology groups H*(B; D) of B with
coefficients in D, having the usual properties, such that H?(B; D) classifies linear extensions of B
by D. See [BW].

1.6. Proposition. For any small category B, assigning to a natural system D on B the trivial
extension Bx D — B determines an equivalence between the category of natural systems of abelian
groups on B and the category of internal abelian groups in Cat/B. Moreover linear extensions of
B are the same as torsors in Cat/ B, i. e. those objects which, as morphisms in Cat, are abelian
in the sense of 1.4; more precisely, for any natural system D on B linear extensions of B by D are
in one-to-one correspondence with (B x D — B)-torsors in Cat/B.

Proof. The group structure on B x D is given as follows: the zero is the functor B — Bx D which
sends a morphism b : X — Y to 0 € Dy. The addition functor (B x D) xg(B x D) — B x D
is given by addition in the groups D; and similarly for inverses. Conversely, any abelian group
P: A — Bin Cat/B determines a natural system with D, = P~1(b). These correspondences are
evidently functorial and can be easily checked to define mutually inverse equivalences.

Similarly, given any linear extension E — B, of B by a natural system D, its transitive and
effective actions combine into a functor (B x D) xgE — E which can be checked to form a B x D-
torsor. And conversely, any torsor furnishes the required action for a linear extension. |

In particular, linear extensions can be defined in terms of the subtraction map. One sees easily
that the corresponding identities are

(o) €162 — 616'2 = P(e1)(e2 — 6'2); €1€2 — 6'162 = (e1 — 6'1)P(€2);
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for P(e;) = P(e}), i = 1,2. In view of 1.3 and 1.6, linear extensions can be also defined in terms
of commutative associative Maltsev operations, without mentioning any natural system. Namely,
linear extension structures on an object E — B of Cat/ B with global support are in one-to-one
correspondence with functors E xgE xgE — E over B which are commutative associative Maltsev
operations.

There is another context in which natural systems arise as internal abelian groups.

1.7. Proposition. For any B, there is an equivalence of categories
Ab(Cat/B) = Ab(Set®" *2/homg),

i. e. the category of natural systems of abelian groups on B is equivalent to the category of internal
abelian groups in the slice over homp of the category of set-valued bifunctors on B. Under this
equivalence, the inclusion

homy, : Ab(Set®” *B) - Ab(Set® *®/homg)

of constant internal groups, carrying D to the projection homp x D — hompg, becomes identified
with the inclusion into natural systems, carrying a bifunctor D : B°® x B — Ab to the natural
system with Dy.x_,yv = D(X,Y). [ |

This (as well as 1.6, in fact) is a consequence of general facts from [BJT] (see 1.5 and 4.11
there).

We will call the particular natural systems arising, as above, from bifunctors untwisted, and
linear extensions by them simple.

Thus natural systems on B can be identified with (trivial) linear extensions of homp in Set®" ¥ B
in the sense of 1.4, and moreover untwisted natural systems correspond to trivial central extensions
in that category. A natural question then arises — what should be analog of 1.5 in this context,
that is, which torsors in Cat/ B correspond to simple linear extensions under the equivalence of
1.6. The answer is given by the following

1.8. Proposition. Let P : E — B be a full functor bijective on objects, with a torsor structure
in Cat/ B given by the functor m : ExgExgE — E over E. Then, the linear extension corre-
sponding to it by 1.6 is simple if and only if m can be extended to a collection of commutative
associative Maltsev operations

mx,y : homg(X,Y) x  homg(X,Y) x homg(X,Y) — homg(X,Y),
homz (X,Y)

such that
P(mX,Y(f17f27f)) = P(f)

and

ng,Y(flafZa f) = mX,Z(gfl;ng,gf), mX,Y(fla f2af)h = mT,Y(flha f2h;fh)
for any fi, fo, f € homg(X,Y) with P(f1) = P(f2) and any g € homg(Y, Z), h € homg(T, X).

Proof. The “only if” part follows since as soon as one has a linear extension by a bifunctor D,
all the groups Dy, Dy are naturally identified for any b,b' € homp(X,Y’). Hence one can define
mx,y(fi, fo, ) = (f1 — f2) + f by identifying fi — fo € Dp(y,) with the corresponding element
of Dp(sy. The above identities then follow easily from the corresponding identities for linear
extensions.

For the “if” part, let D be the natural system of abelian groups corresponding to P according to
1.3 and 1.6. Thus for b € homg(X,Y"), elements of Dy have the form f; — fo, with P(f1) = P(f2) =
b, and fi — fo determines the same element as m(f1, f2, f) — f, for any other f with P(f) = b.
Then using the mx y above we can define a collection of isomorphisms ¢y, p(s) : Dy — Dp(y) for
f € homg(X,Y), b € homp(X,Y), via

o,p(p) (f1 = f2) = mx,y (f1, fo, f) = [.

This is correctly defined since mx,y (m(f1, fo, f3), f3, f) = mx,v(f1, f2, f) by associativity and
Maltsev identity. And it does not really depend on f. Indeed for any other f' with P(f') = P(Jf)
one has, by the same identities, m(mx.y (f1, f2, f), f, f') = mx v (f1, f2, f'). But this is the same
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as mx.y(fi, f2, f) — f = mx,y(f1, f2, f') — f' — recall (from the proof of 1.3 that m(g, f, f') = ¢'
is equivalent to g — f = ¢’ — f' as soon as P(f) = P(g9) = P(f') = P(g').
Furthermore,
p,p = identityp,,

as mx,y(fi, f2, ) — f = m(fr, f2, f) = f = fr — fa for P(f1) = P(f2) = P(f), and
Db 6" Pb,b" = Pb,b"

as mox,y M,y (1, for ), £, £7) = £ = mox,y (fu, fo, £7) = £ for P(f1) = P(f2) = b, P(f') = ¥,
P(f") =b".

Finally forany a: Y — Z, b,b' : X - Y in B, and any fi, fo with P(f;) = P(f2) = b one has,
using the equations (e) above:

apep (f1 — f2) = almx,y (f1, f2, [) = ) = gmx z(f1, fo, [) — 9f
=mx,z(9f1,9f2,9f) — 9f = Pav,ar (9.1 — 9f2) = Pab,er (a(f1 — f2))
for any g with P(g) = a, and similarly, for any ¢: T — X in B,

(o, (f1 = f2))e = @pepre((fr — f2)o).

We thus have constructed an isomorphism of the natural system D with the one obtained from
the bifunctor D, where

D(X,Y) = b b/~

bEhomy(X,Y)

with ~ being the equivalence relation identifying any « € Dj, with ¢ (2) € Dy, for all b,b' €
homg(X,Y). [ |

2. THEORIES

Recollections on algebraic theories. Everywhere in the sequel, Set will denote the category
of sets. The opposite of its full subcategory with finite sets {1,...,n} (n > 0) as objects, will be
denoted S. Its objects will be redenoted by X° = 1, X! = X (the generator), X2, X3 ... , and
the morphisms from S(X", X) by z1, ..., Tn.-

A finitary algebraic theory, or simply theory, is a small category T equipped with a functor
S — T which is identity on objects and preserves finite products. This functor will be usually
suppressed from the notations, and objects and morphisms of S will be identified with their images
under it — an usual abuse of notation with algebras.

A model of a theory T in a category C is a finite product preserving functor from T to C. These
functors and their natural transformations form the category of models T-mod(C). For C = Set,
this will be abbreviated to just T-mod. Since representable functors preserve any available limits,
there is a full embedding It : T°? — T-mod.

A model M of T is in fact nothing but an object M (X) with operations upsr : M(X)™ - M (X)
for each element of v € homy(X™, X), satisfying identities prescribed by category structure of
T. By this reason, elements of T(n) = homt(X™, X) will be called n-ary operations of T. Thus
for any theory T, the category T-mod is a variety of universal algebras. In particular, T-mod
is an exact category, regular epis are exactly surjective maps, etc. Conversely, for any variety V,
the opposite of the category of the algebras freely generated by the sets {1,...,n}, n > 0, is an
algebraic theory, whose category of models is equivalent to V.

A morphism of theories T — T is a model of TV in T which respects the structure functors
from S. So by definition, S is the initial object of the category Theories of finitary algebraic
theories. For every morphism of theories F' : T' — T, the induced forgetful functor “compose with
F”, Up : T-mod — T’-mod, has a left adjoint, which we again denote by F', with the adjunction
unit 7 : Identity — (=) := UpF and counit ¢ : FUr — Identity. In particular, for T = S, the
corresponding adjoint pair will be denoted T(—) : Set 2 T-mod : Ur; models in the image of
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T(—) are free. The notation is justified by the fact that these left adjoints are compatible with
the above embeddings in the sense that for any F' : T' — T, the square

o —E o op

T’-mod N T-mod

commutes, so taking T’ = S, the Yoneda embedding It identifies T°P with the full subcategory of
T-mod consisting of free models generated by objects of S, i. e. by finite cardinals. Moreover note
that the functor Uy is representable by the free model on one generator, Up(M) = hom(T(1), M)
for any T-model M. So in the sequel, we will interchangeably use notation T(n) for homy(X™, X),
for IT(X™) and for T({1,...,n}).

We note for future reference the following (doubtlessly well known) fact:

2.1. Proposition. A morphism of theories P : T — T is a full functor if and only if each
v : M — Mp is surjective. In this case, Up is full and faithful, and the corresponding full
replete image of T-mod under Up is a subvariety of T'-mod, i. e. a full subcategory closed under
subobjects, products and homomorphic images. Moreover, for any surjection ¢ : M — N in
T'-mod, the square

M —ts> N

-k

Mp —Z> Np

is pushout.

Proof. Consider the maps homt/(X" X) — homr(X", X), n > 0, induced by P. These are
surjective iff P is full, and can be identified with T'-homomorphisms P, : It/(n) — It(n), namely
with Urimpi(n) : Up'T'(n) = Ur(T'(n)p) = UrT(n). Thus P is full iff nr.(,) is surjective for each
n.

Next consider a free T'-model T'(S), for some set S. Then for any (s1,...,85) : {1,...,n} = S
there is a commutative square

T'(n) T'(81,...,8n)

lnT'(") lnT'(S)
T(81,---,8n)
T(n) ————T(5),

T'(S)

so the homomorphism 77/(s) is given by colimit of a filtered diagram of homomorphisms of the
form nyiny. As each of these homomorphisms is surjective, nr(s) is surjective too iff P is full.
Finally for any model M one chooses a surjective homomorphism ¢ : T'(S) - M. Both P and Up
preserve surjections: the former — since surjections are precisely coequalizers, and since P, being
a left adjoint, preserves them; and the latter — since it commutes with the forgetful functors to
sets. Thus napq = gpnri(s) is surjective, so all ny’s are surjective iff P is full.

Now by adjunction, nUp is a split mono, with left inverse Upe. In our case nUp is also
componentwise surjective, so these natural transformations are mutually inverse isomorphisms.
As Up obviously reflects isomorphisms, it follows that € is an isomorphism, i. e. Up is full and
faithful.

Next, consider a mono i : M »— Up(N). Its composite with the isomorphism 7y, (ny is mono
again. On the other hand 7y, (nyi = UpP(i)nar, s0 1 is also mono. As it is surjective, it is thus
an isomorphism, i. e. M also belongs to the replete image of Up.
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Now to show that the image of Up is also closed under quotients, suppose given a surjective
homomorphism ¢ : Up(N) - M in T'-mod. For M to belong to the image of Up, for any u,u’
in T'(n) with P,(u) = P,(u'), the maps M (u), M(u') : M(X™) — M(X) must be equal. In
fact since the P, are surjective, this condition is also sufficient. But M (u)g(X™) = ¢(X)N(u) =
g(X)N(u') = M(u')g(X™), and since ¢ is surjective, M (u) = M (u’').

Finally, let us prove the pushout property of the square above. Indeed, given homomorphisms
h:N —= N',r: Mp — N' with hg = rqu, one has Im(h) = Im(hg) = Im(rny) = Im(g). The
image of Up is closed under quotients, as we just proved, so any quotient of Mp = UpP(M) is
(isomorphic to) Up of something. In particular so is Im(h), and by adjunction h factors through
N, via some h'. Then h'qp = r since their composites with the epi 7y, are easily seen to be
equal. [ ]

Remark. In fact, conditions of the above proposition are interrelated: it follows, for example,
from 3.1 in [JK], that the image of Up is closed under subobjects iff 5 is surjective, and under
quotients iff the indicated squares are pushouts.

Extensions of theories. Since for a theory T the category Theories/T is a subcategory of
Cat/ T, closed under finite products, internal groups and torsors in Theories/T are particular
groups and torsors in Cat/ T, hence by 1.6 they can be considered as particular natural sys-
tems and linear extensions over T. It is easy to identify the property of natural systems which
distinguishes these particular ones (see [JP]):

2.2. Definition. A natural system D on a category with finite products T is said to be cartesian
if for any product diagram p; : X; x...xX,, = X;,i=1,..,nand any f: X — X x...x X,
the maps p;( ) : Dy — Dp, ¢, 4 =1,...,n also form a product diagram.

The equivalence of 1.7 restricted to cartesian natural systems yields

2.3. Proposition. The category of cartesian natural systems of sets on a theory T is equivalent
to the category
T-mod(Set™ ") /I,
with untwisted cartesian natural systems corresponding to objects in the image of
I% : T-mod(Set™) - T-mod(Set™ ™) /Ir.

Proof. Indeed, looking at the equivalence in 1.7 one sees that the category of cartesian natural
systems of sets on a small category with finite products T is equivalent to the full subcategory of
Set™”xT /homt on those natural transformations p : B — homr for which the natural system
given by b — p~1(b) is cartesian. But it is straightforward to check that this happens iff B
preserves finite products in the second variable. Thus when T is a theory this means that for any
fixed object X™, the functor B(X™,—) is a model of T. So cartesian natural systems correspond
to the full subcategory (T-mod)”™” = T-mod(Set™ ") of (Set™)T™ = Set™™ *T = (Set™™)T. m

2.4. Corollary. Every linear extension P : T — Tg of the theory Tg of (left) modules over a
ring R is simple.

Proof. The category Tgr-mod = R-mod is abelian, hence so is 'JI‘R—mod(SetT??p) = (Tg-mod)"x;
but as it is well known, for any additive category A, and any of its objects A, the functors

A2 A (A) —AT > Ab(A/A)
are equivalences of categories. In our case this gives that every object of Ab((Tg-mod)Tx /It ) is
isomorphic to a projection It , x T' — It for some T : T(l’;f — Tgr-mod. Translating this fact along
the equivalence of 1.7 one obtains that any cartesian abelian natural system on Tg is isomorphic to
one of the form Dy xm_, x» = Homg(R™, T(X™)), for some functor T' : T3 — R-mod. Evidently
this is an untwisted natural system. |
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One has (cf. [JP], (6.1))

2.5. Proposition. A natural system of abelian groups D on a category with finite products T
is cartesian iff for any linear extension P : T' — T of T by D, the category T' also has finite
products, and P preserves them. |

In particular, linear extensions of an algebraic theory T by a cartesian natural system D are
morphisms of theories, and equivalence classes of such extensions form an abelian group isomorphic
to H2(T; D).

There are lots of examples of linear extensions of theories in [JP]. Let us mention those which
we will encounter in this paper.

2.6. Examples.

1. Consider the functor from theories to monoids given by T — homt(X, X). This functor has a
full and faithful right adjoint assigning to a monoid M, the theory T; of M-sets. Thus the category
of monoids can be identified with a full subcategory of Theories closed under limits there. In
particular, groups, torsors, herds, natural systems, linear extensions, etc. of monoids (considered
as categories with one object) can be identified with those of the corresponding theories. In
other words, a morphism of theories P : Ty — Tjs induced by a homomorphism of monoids
p: N — M is a linear extension iff p, considered as a functor between categories with one object,
is a linear extension —i. e. p is an abelian extension in the category of monoids. The corresponding
natural system on M consists of abelian groups D, for « in M, and actions z(—) : Dy — Dy,
(—)y : Dy = Dy, It can be also considered as an “M-graded M-M-bimodule”. The corresponding
extensions of theories are simple iff all the D, are equal.

2. Any homomorphism of rings p : S — R gives rise to a morphism P : Tg — Tg from the theory
of (left) S-modules to that of R-modules. This morphism is a linear extension iff p is a singular
extension, i. e. Ker(p) = B is a square zero ideal in S. In [JP], an isomorphism is obtained

H*(Tg; Dp) = H*(R; B)
from the group of (simple) linear extensions of Tg by the bifunctor given by

Dp(X™, X*) = HomR_mod(']I‘R(k),B%']I‘R(n)) = (B®™)k,
to the second MacLane cohomology group of R with coefficients in B.

3. It is proved in [JP] that for each n there is a linear extension from the theory of (n + 1)-
nilpotent groups to that of n-nilpotent ones; similarly for groups replaced by Lie rings, associative
rings without unit, or associative commutative rings without unit.

4. For a left module M over a ring R, let M /(R-mod) be the coslice category of modules under
M, with objects of the form M — N and obvious commutative triangles as morphisms. Let
P : M/(R-mod) — R-mod be the functor sending f : M — N to Coker(f). It has a right adjoint
Up given by Up(N) = 0: M — N. It is then easy to see that this adjoint pair is induced by
a morphism of theories P : Tg,pr — Tg, where Tg as is the opposite of the full subcategory of
M /(R-mod) on objects of the form (1,0) : M — M @ R™ for n > 0. In particular, M/(R-mod)
is equivalent to Tg;s-mod.

Now this P in fact presents Tg;ar as a trivial linear extension of Tg, by the bifunctor Hys given

by composition
op

T(}}p % TR projection) TR TR> (R—mod)"p Hompg(—,

My Ab,
that is,

Hp (X", X*) = Hompg(RF, M) = M*.
Indeed, the trivial extension P : Ty % Hy; — Tg can be easily calculated; one has

homr sy, (X", X*) = Homg (R, M @ R™).
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One can represent the latter group also as
1,0 1,0
hom uz/ (r-moay (M =2 M @ R*, M 1% M @ R™),

which is precisely homr,, ,,(X™, X*).

The Maltsev case. A Maltsev theory is a theory T for which there is a Maltsev operation on the
generating object X. The corresponding variety, i. e. the category of models, will be also called
Maltsev in this case. It is a classical result of Maltsev that such varieties are precisely those in
which join of congruences coincides with their composition.

2.7. Proposition. Let a morphism of theories P : T' — T be a linear extension of T by a natural
system D. If T is a Maltsev theory, then T’ is also Maltsev.

Proof. We will prove that for any m : X® — X in T’ such that P(m) is Maltsev, there is a Maltsev
m': X3 —» X with M(m') = P(m).

Let z1, %2, ... : X™ — X be the projections. Now P(m(z1, z2,22)) = P(x1) and P(m(z1, 21, %2))
= P(=z3), so since P is a T'x D-torsor, the elements z, —m(z1, T2, T3) € Dy, and £ —m(z1, 1, T2) €
D,, are defined. Denoting by z : X — X the identity, let

m' = (2 —m(x1,71,72)) (71, P(M)) + (m(z, z,7) — ) P(M) + (11 — m(x1, T2, T2)) (P (M), 23) +m.

One then has

m/(z1,1,2)
= (z2 —m(z1,71,22)) (71, T2) + (M(, 2, 2) — )22 + (T1 — M(21, T2, 72)) (T2, T2) + M(21, 21, T2)

= (z2 —m(x1, 21, 22)) + (M(22, T2, 22) — 22) + (T2 — M(22,22,22)) + Mm(z1,21,22) = 22

and

ml(wl;x2;$2)
= (w2 —m(z1,71,22)) (71, 1) + (M(, 2, 2) — )71 + (T1 — M(21, T2, 22)) (21, T2) + m(21, T2, T2)

= (21 — m(z1,21,21)) + (Mm(z1, 21, 21) — 21) + (21 — m(z1, T2, 2)) + M(T1, T2, T2) = 271

3. COMMUTATORS AND NILPOTENCE

Commutator calculus has been extended to general varieties of algebraic systems by several
people — first by J. D. H. Smith [S] for Maltsev varieties, then extended to more general cases by
Gumm, Hagemann and Herrmann, McKenzie and others (see [FM] for precise information). For
our paper, categorical reformulation of the commutator calculus given in [Pe] is most suitable. Let
us recall it briefly.

In a category with kernel pairs and coequalizers one may generate from any pair of mor-
phisms X =3 M a congruence on M, as the kernel pair of the coequalizer of this pair. In
particular, given two congruences p',p" : R = M and ¢',¢" : S = M, one denotes by 7',r" :
Apg,s — R the congruence on R defined to be the kernel pair of the coequalizer of the morphisms
(diagonal)q',(diagonal)g¢” : S = R. Also let R' = R be the kernel pair of p’. Then in [Pe], the
commutator [R,S] is defined to be the image under p” of the intersection Ag g N R'. It is then
proved in [Pe] that this agrees with the definition of commutators from [FM] at least for Maltsev
varieties, so in particular all the properties of the commutators from [FM] hold.

Let us give another equivalent construction of the commutator in Maltsev varieties.
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3.1. Proposition. In a Maltsev variety V, let two equivalence relations R, S on an object A be
given. Let pr,s : RU4 S — A be induced by ((z,y) — z) : R - A and ((z,y) = y) : S = A, and
let gr,s : RUa S — RM4 S be induced by the morphisms ((z,y) — ((z,y),(y,y))) : R — RMa S
and ((z,y) — ((z,z),(x,y))) : S — RM4 S. Then, there is a pushout square

RL]AS%A

1) l i
RM4 S —25 A/[R, S]

Proof. Observe that R4 S consists of elements of the form ((z,y), (y,2)) with (z,y) € R and
(y,2) € S. Let m be any Maltsev operation in our variety, then

((z,9), (y,2))

((z,9): (¥, %), (¥, 9).m((¥,9), (¥, 9), (¥,2)))
m(((z,9), (¥, 9)), ((¥:9), (¥, 9)), (¥, v), (¥, 2)))
m(qR sir(2,Y),qr,s0(Y,Y), qr,sis(y, 2))
ar,sm(ir(,y),i(y,9),is(y,2)),

(m

where ig, is are the canonical coproduct inclusions and i stands for any of them.

This shows first of all that gg s is surjective, so if one forms a pushout square as above, one
gets for the right vertical map the quotient A — A/T for some congruence T on A. More-
over it follows that the induced homomorphism R M4 S — A/T in this pushout maps any
element ((z,y),(y,2)) = qr,sm(ir(z,y),i(y,y),is(y,2z)) to the T-equivalence class of the el-
ement pr,sm(ir(,Y),4(y,y),is(y,z)), which equals m(pr,sir(z,y),Pr,si(Yy,Y),Pr,sis(y,2)) =
m(z,y, 2).

It follows that one has a commutative diagram

RU4s S z A
lQR’S //m////i
RMs8° AJT

R/T |_|A/T S/T Pr/T,S/T

- 7
—
—
—
qr/T,S/T —
) —
— m
—
—

R/Tl_lA/TS/T ’

where dashed lines denote maps which are not necessarily homomorphisms. Indeed, we just showed
that the triangle
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commutes; whereas the parallelogram

R/TNar /T

commutes simply because A - A/T is a homomorphism.

Now () shows that composing the map m : R/T M4,r S/T — A/T with a surjective homo-
morphism RUa S - R/T Ny r S/T produces a homomorphism R U4 S — A/T. It then follows
that m : R/T Ma/7 S/T — A/T is a homomorphism too. Thus by 3.2 R/T and S/T centralize
each other,i. e. [R,S]CT.

Conversely, since R/[R,S] and S/[R,S] centralize each other, there is a homomorphism m :
(R/[R,S]) Nayr,s1 (S/[R,S]) = A/[R,S] as in 3.2. Composing it with the product of quotient
maps RMa S — (R/[R,S]) Na/r,s) (S/[R,S]) gives a homomorphism mpg s, and to say that it
fits in a commutative square as () above is precisely the same as to say that m satisfies the
Maltsev identities. This shows that there is a homomorphism A/T — A/[R,S] under A, i. e. that
T C[R,S]. n

If [R,S] = Aps (the smallest congruence diagonal: M — M?), then the congruences R and S
are said to centralize each other. In fact, [R, S] is the smallest among those congruences T on M
for which the congruences R/T and S/T (on M/T) centralize each other. A congruence R on M is
called abelian if it centralizes itself, i. e. [R, R] = Ay, and central if it is centralized by the largest
congruence Vs (the identity: M2 »— M?), i. e. [V, R] = Apr. The center ((M) of M is the
largest central congruence; it always exists (in fact more generally for any R and S always exists the
largest congruence T' with [T, R] < S). One then defines, generalizing the usual notions, a central
series for a model M to be a chain of congruences Ay = Ry < Ry < ... < R, = V) such that
for all ¢ one has R;11/R; < ((M/R;) (equivalently, [V, Rit1] € R;), i. e. Riy1/R; is a central
congruence on M/R;. A model is called abelian if ((M) = Vs (equivalently, [V, Var] = Anr)
and n stage nilpotent, or just m-nilpotent, if it has a central series of length n. This happens iff
either the upper central series Ay = (O(M) < (H(M) € ¢3(M) < ... ends with ("(M) = Vs or
the lower central series Vyy = TO(M) > TY (M) > T'?(M) > ... ends with T"(M) = Ayy; here,
CPHM) /MM = ((M/¢M(M)) and T (M) = [V, T™(M)]. Just as in the case of groups,
algebras, etc., the I'™ are functorial (and the (™ are not). A theory is called n-nilpotent (abelian
for n = 1) if all of its models are.

In fact all we have to know about commutators is the following fact, which is crucial for what
follows:

3.2. Proposition. Congruences R and S on a model M of a Maltsev theory centralize each other
if and only if there is a homomorphism m from the submodel

RMm S = {(2,y,2) € M?|(z,y) € R, (y,2) € S}

of M?® to M which satisfies xSm(x,y,2)Rz for any zRySz and is Maltsev, i. e. m(z,y,y) =
for any xRy, and m(y,y,z) = z for any ySz. Then restriction of any Maltsev operation p of
the theory to that submodel coincides with this homomorphism, is associative and commutative.
More precisely, p(u,v,p(x,y, 2)) = p(p(u,v,x),y,z) holds if uRv, ySz, and either vSz or xRy,
while p(z,y, z) = p(z,y, ) holds for any zRySz.

Proof. The first statement can be found in [Pe], see Lemma 2.11 there; we only prove the second
(the proof is essentially the same as in [J]).
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Take any Maltsev operation p. Then homomorphicity of m means

m(p(.’lfl,.’IJ2,$3),p(y1,y2,y3),p(21,252,23)) :p(m(.’L'l,yl,Zl),m(.TQ,yQ,22),m($3,y3,23)),
for any z;Ry;Sz; (i = 1,2,3). Taking here y; = 21 = x2 = ya = 2o = x3 = y3 then gives
m(x1,Y2,23) = p(x1,Y2,23) for any 1 Ry2Sz3. Now for any uRv, RySz one has

p(u7 U?.p(:l") y7 Z)) = p(m(u7 U? U)? m(U7 U7 U)7 m(:l"7 y7 Z))
= m(p(u7 U7 ':C)7p(v7 U7 y)?.p(U) U’ Z)) = m(p(u7 v? w)? y7 z) = p(p(u7 v? -Z.), y7 Z),
and similarly for uRvSz, ySz. Whereas taking any zRySz,

p(z,y,7) = p(m(y,y,2), m(y,y,y), m(z,y,y))
=m(p(y,y,2),p(¥,9,9),p(2,9,9)) = m(z,y,2) = p(z,y, 2).
u

3.3. Corollary. A congruence R on a model M of a Maltsev theory T is abelian if and only if
the morphism M — M /R is an abelian extension in the sense of 1.4. Furthermore R is central if
and only if M — M/R is (the trivial case M = & excluded).

Proof. The first statement is immediate by 1.3 and 3.2, and the second by 1.5. |

In fact, this is a special case of a statement which deals with arbitrary R, S centralizing each
other. This requires generalizing herd structures to s. c¢. herdoids; see [Pe].

3.4. Corollary. A congruence R on a non-empty model M of a Maltsev theory T is central if and
only if there is an internal abelian group A in T-mod, an action of A on M, and an isomorphism
¢ : R — Ax M fitting in the commutative triangle

R\
Q| M x M

%ction, action)

Ax M.
Proof. This follows easily from 3.3, in view of 1.5. |

Since linear, respectively simple, extensions of a theory T by cartesian natural systems (resp.
bifunctors) are, by 1.6, none other than abelian, resp. central, objects of Theories/T, one might
expect that they are related to abelian, resp. central, extensions in T-mod. For Maltsev theories,
a link between these notions is provided by

3.5. Theorem. For a morphism P : T' — T of Maltsev theories, the following conditions are
equivalent:

i) P is a linear (respectively, simple) extension;

ii) for all T'-models M the homomorphisms nyr : M — Mp are abelian (respectively, central)

extensions in T'-mod and, moreover, the following condition is satisfied:
{ for any Maltsev operation p in T', any u,v : T'(n) — T'(k) in T'-mod with P(u) = P(v),
and any x,y € T'(n) with 9y () (x) = 9r/(n)(y), one has
p(u(z),v(z),v(y)) = u(y).

Proof.

i) = ii):

By 1.6, the morphism P is a linear extension if and only if it is full and there is a functor m :
T' x7 T x7 T" — T' over T' which is a commutative associative Maltsev operation in Theories/T.

Identifying T' with the opposite of the category of finitely generated free models via the Yoneda
embedding, the action of m on hom(X™, X) may be viewed as a commutative associative Maltsev
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operations my, : T'(n) X1 (n) T'(n) X1 (n) T'(n) = T'(n) over T(n). Now functoriality of m means
under the above identification that for any u, v, w € homr.mea(T'(n), T'(k)) ~ T'(k)™ with P(u) =
P(v) = P(w), and any z,y,2 € homt.moa(T'(i), T'(n)) ~ T'(n)! with P(z) = P(y) = P(z) one
has

(o) mé (uz, vy, wz) = mP(u,v,w)m’ (z,y, 2).
This then shows that each m,, is a homomorphism: taking ¢ =1 and = y = 2 in (o) gives
my(uz, ve, wz) = mg(u,v,w)m,(z,x,2) = mj(u,v,w)x
which, in terms of T' again, means
Mg (z(ur, ey ug), (U1, ey U ), T(W1, ey wi)) = (Mg (U1, V1, W1), eeey Mg (U, Uy, Why)).

So nr1(n) is a linear extension, and my, coincides with the restriction of any Maltsev operation on
T'(n). If moreover P is simple, then, as in 1.5, this m,, is defined on T'(n) X, T'(n) x T'(n),
and 7y, is central.

Now taking i =1, v = w and z = y in (o) gives

mk(u(w)av($)7v(z)) = mg(u7v7v)mn(x7x7z) = U(Z),

which, since the m’s coincide with the restrictions of Maltsev operations, gives <.

Now for a general free model T'(S), the homomorphism #r:(g) is a colimit of a filtered diagram
of those of the form nr/(,), just as in the proof of 2.1. Since filtered colimits commute with finite
limits and are created by the forgetful functors, it follows that the collection of the m,, on the T'(n)
over T(n) give rise to one ms on T'(S) over T(S), so nr(s) is abelian, resp. central, whenever all
the 7y are.

Finally, consider any T'-model M. Let us choose a surjective homomorphism ¢ : T'(S) - M, so
that M = T'(S)/Ru for some congruence Rys on T'(S). By 2.1, both nr(5) and s are surjective,
so also T(S) = T'(S)/Rr, Mp = T'(S)/R, for certain congruences Ry, R, with Ry; C R. In fact,
the pushout condition from 2.1 shows that R = Rjs V Ry in the lattice of congruences on T'(S).
And since T’ is Maltsev, in fact R = RpsoRy. Thus for any uy,us,--- € T'(S), one has u; Rus R . ..
iff uy Ryrvr Rrus Rpyva Ry - - ., for some vy, vs,.... We then conclude that for any z1,z2,--- € M,
one has ny(z1) = nu(x2) = ... iff there are u; € T'(S) with z; = ¢q(u;) (¢ = 1,2,...) and
sy (u1) = nrys) (u) = ...

We then define the Maltsev operation mp; : M X M X prp, M — M over Mp (respectively
M X1, M x M — M for simple P) by mp(z1, 2, 23) = gms(ug,us,u3), for some (u1,us,us) in
T'(S) x1(s) T'(S) x1(5) T'(S) (respectively, in T'(S) x1(5) T'(S) x T'(S)) with g(u;) = 2; — which
exist by the preceding argument. This is legitimate since for any other choice v; one would have
v;iRprug, hence mg(vy,va,v3) Ryyms(ug, us,uz). This since Ry is a submodel of T'(S)2?, while
mg, by 3.2, coincides with the restriction of any Maltsev operation. Homomorphicity, Maltsev
identities, associativity and commutativity of m s now follow from those of mg.

i) = i):
By 1.3, 1.6, and 1.8, to prove that P is a linear (resp., simple) extension, it suffices to construct
a family of commutative associative Maltsev operations, denoted (u,v,w) = u — v + w, from

homp: (X", X¥) x homy/(X™, X¥) X homp/(X™, X*)
homrp (X", Xk) homr(X™, X*)
— respectively, from

homp (X", X*) X homrp (X", X*) x homr (X7, X*)
homr(X™,X%)

— to homp/(X™, X*), which define a functor P x P x P — P over T in Theories/T, (resp., and
also satisfy the conditions as in 1.8). For that, choose some Maltsev operation p € homy (X3, X),
and put

U—v+w= (p(ulavlawl)a "‘7p(uk7vk7wk))7
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for any @ = (uy,...,ug),? = (V1,.0; V%), W = (w1,...,w;) € homp(X™, X*). Functoriality then
amounts to

p(ut, vo,ww) = p(up(d, v, w), vp(a, v, w), wp(d, v, w)),
for u,v,w € homy/(X*, X) and 4,?,® as above, whenever P(&) = P(v) = P(w) and P(u) =
P(v) = P(w). Whereas the conditions from 1.8 become

u(p(ula v17w1)7 "‘7p(uk7 Uk, wk)) = p(quﬁ uv, uu_J) and p(ua v, w)ﬂ = p(uﬂa Vi, ’UJ’I_L),
if P(u) = P(v) and P(u) = P(v).
Let us use the Yoneda embedding to identify homy/(X?, X7) with T'(i)?. Then, what we have
to prove is this: for any uw,v,w € T'(k) and any homomorphisms @, 7, w : ']I"(k) — T'(n), the

equality
p(u(u),v(v), w(w)) = p(a(p(u, v, w)), v(p(u, v, w)), w(p(u, v, w)))
holds whenever P(u) = P(v) = P(w) and nyi(n)(u) = 0yi(n) (V) = N11(n) (w) (resp., also
p(u,v,w)(u) = p(a(u), o(u), w(u)),
(p(u,v,w)) = p(u(u), u(v), a(w)),

U
when P(@) = P(v) and nr(n) (1) = nr/(n) (v))-
The functoriality condition, using that @, v, w are homomorphisms and hence commute with
the operation p, is equivalent to

p(u(u), v(v), w(w)) = p(p(a(w), u(v), u(w)), p(v(u),v(v), v(w)), p(w(u), w(v), w(w))).
Now recall that for the given elements p is a commutative associative Maltsev homomorphism, so,
switching to additive notation and using 1.2, the equality in question becomes

a(u) — o(v) + w(w) = a(u) — a(v) + @(w) — 5(w) + 5(v) — 9(u) + W(u) — (V) + B(w).
Let us replace @(u) — 9(v) + w(w) by @(u) — 9(v) + v(v) — v(v) + w(w) and then substitute, using
07

in the first occurrence and

a(u)—(0(w) — a(w) +a(v)) + o(v)—(w(v) —w(u)+(u))+ o(w)
=da(u) —u(v)+ u(w) —o(w) +9(v) —v(u) +w(u) —w(v) +o(w)
=a(u) —aw)+ a(w)—(v(u) —ov(v) +0(w)) + w(u) — w(v) +w(w),

as required.
As for the last two equalities, the first is trivial, and the second follows since @ is a homomor-
phism. |

Outside the realm of Maltsev theories there exist linear extensions P : T' — T such that not
all the 7’s are abelian.

Example. Let M be the multiplicative monoid {1,0},i.e. 1-1=1,1-0=0-1 = 0-0 = 0. Consider
the natural system D on it, in the sense explained in 2.6.1, given by Dy =0, Do = Z/2Z ® Z/27Z,
with 0(z,y) = (y,y) and (z,y)0 = (0,0) for (z,y) € Do. Then the trivial linear extension
of M by D is the monoid M x D = {(1,0)} U {(0,(0,0)), (0,(0, 1)), (0, (1,0)), 0, (1, 1))}, with
(17 0) (07 (may)) = (05 (.’L‘, y))(la 0) = (07 (may)) and (05 (.’L', y))(oa (mla yl)) = (07 (x,y)0+0(x’, yl)) =
0, (y',y"))- For brevity, let us redenote this as M x D = {1,00,10,01,11}, so that 1 is the unit
and

00-00=10-00=01-00=11-00=00-10=10-10=01-10=11-10 =00,
00-01=10-01=01-01=11-01=00-11=10-11=01-11=11-11 = 11.
As in 2.6.1, D extends uniquely to a natural system on Tps in such a way that the morphism

P : Tprpwp = Tur, induced by the projection M x D — M, is the trivial linear extension by that
system. Now let S = {1,%0,01,11} = M % D/(00 ~ 10) be the M x D-set obtained by identifying
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00 and 10 in M x D, acting on itself from the left via -; then clearly Sp = (M x D)p = M,
with ng(1) = 1 and 5g(x0) = ns(01) = ns(11) = 0. Suppose 7ns is abelian. Then there exsists a
Maltsev operation m : S X S Xpr S — S over M. Since it must be a morphism of M x D-sets,
one must have in particular 10 - m(x0,01,11) = m(10 - x0,10 - 01,10 - 11) = m(x0,11,11) = *0.
This is only possible if m(*0,01,11) = *0. Then m cannot be associative, since this would imply
11 = m(11, %0, ¥0) = m(11,m(x0, 01, 11), x0) = m(11, 11, m(01, =0, x0)) = 01.

On the other hand, if all the n’s are abelian, the morphism of (non-Maltsev) theories can still
fail to be a linear extension — consider the morphism S. — 1 from the theory of pointed sets
to the terminal theory. Clearly for any non-empty set S the map S — 1 is abelian, as S can
be equipped with an abelian group structure. But S. itself clearly cannot have any functorial
Maltsev operation m : S. X;11S. x;1S. — S. since m(f, g, h)m(f',g',h') = m(ff', gg', hh') implies
that ee’ = m(e,1,1)m(1,1,¢') =m(e,1,e') =m(1,1,e)Ym(e,1,1) = €'e for any endomorphisms of
any object, while S. has noncommutative endomorphism monoids.

3.6. Corollary. Let P : T" — T be a morphism of Maltsev theories such that for each M
in T'-mod the morphism ny : M — Mp is a central extension and moreover the subvariety
Up(T-mod) of T'-mod contains all abelian T'-models. Then P is a simple linear extension.

Proof. In view of the previous theorem we just have to check the condition <. It is true in more
generality, in fact: let u,v : M' — M be any homomorphisms in T"-mod with P(u) = P(v), and let
z,y € M' be any elements with na (z) = nar (y). We thus have (u,v) : M' — Ry = M Xp M.
Then by 3.4 we know that there is an action A(M)x M — M of an internal abelian group
A(M) on M and an isomorphism Ry = A(M) x M. Thus (u,v) give rise to a homomorphism
u—v: M'" — A(M). Now obviously any internal abelian group in T'-mod is an abelian model of T,
so by hypothesis A(M) belongs to the image of Up; hence u — v factors through 7, and we obtain
(u—v)(z) = (u—v)(y). Using now the action of A(M), 3.4 gives u(z) —v(z)+2z =u(y) —v(y) + 2
for any z in M, in particular taking z = v(y) gives ¢. |

Remark. It is easy to identify the corresponding bifunctor on T: one can show that it is given
by
D(X™, X*) = homr.moa(T(k), A(T'(n))) = A(T'(n))".

3.7. Corollary. A theory T is n-nilpotent Maltsev if and only if there is a tower of simple linear
extensions of theories

T=T,—->T,1—..—>T

where T, is an abelian Maltsev theory.

Proof. Fix a theory T and some n, and let T(,) be the theory with

homr,,, (X*, X') = homr.moa(T())/T™(T()), T(k) /T™(T(k))).
It is easy to see that there is a bijection

homy-mea (M, N/T™(N)) = homrmoea(M/T" (M), N/T"(N))

for any models M, N, hence it follows that T(,) is an n stage nilpotent theory and that sending
a model M to M/T™(M) restricts to a morphism of theories P : T — T(,). Moreover all models
in the image of Up are n-nilpotent, and for any M the morphism 7y, : M — Mp is the quotient
gn(M) : M — M/T™"(M).

Now suppose T is itself (n + 1)-nilpotent and Maltsev; then, the above construction gives a
morphism of theories T — T,, whose structure maps homt(X*, X!) — homr (X*, X!) coincide
with ¢,(T(k))! : T(k)! - (T(k)/T"(T(k)))!, with g, as above. The fact that T(k) is (n + 1)-
nilpotent means according to 3.3 that ¢, is a central extension in the sense of 1.4. Thus, 3.6 shows
that T — T,, is a simple linear extension. By induction, one thus gets the “only if” part.
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For the “if” part, suppose we are given a simple linear extension P : T — T,, of theories, and
T,, is n-nilpotent and Maltsev. Then by 2.7 T is also Maltsev. Furthermore by 3.5, for any T-
model M the homomorphism 7,7 : M — Mp is a central extension, hence a quotient by a central
congruence, by 3.3. Since P(M) is n-nilpotent, it follows that M is (n + 1)-nilpotent. [ |

Remark. Let us also note in this connection that any nilpotent (in fact, also solvable) variety
with modular congruence lattices is Maltsev — see 10.1 in [G].

4. ABELIAN THEORIES

We finish with some information on the structure of abelian Maltsev theories and linear ex-
tensions between them. We will first deal with abelian theories without constants, i. e. nullary
operations. Abelian theories with constants are much simpler and will be treated in the end.

It follows from 3.2 that a model A of a Maltsev theory is abelian iff there is a homomorphism
m : A% — A satisfying the Maltsev identities, and then any Maltsev operation on A coincides with
m, is commutative and associative. It will be convenient to fix such an operation throughout and
denote it by m(z,y, 2) = & +, 2. Thus all models of an abelian theory are abelian herds, and all
of their operations are homomorphisms of abelian herds. To describe such theories, we need the
following notions.

4.1. Definition. A left linear form consists of an associative ring R with unit, a left R-module
M, and a homomorphism 0 : M — R of left R-modules.
In fact usually we will omit the word “left”, as it is customary with modules.

4.2. Definition. An affinity over a linear form 0 : M — R is an abelian herd A together with
maps Rx Ax A — A and M x A — A, denoted, respectively, (r,a,b) — r,b and (z,a) — @q(z),
such that the following identities hold:
e For each a € A, the operations (—) +, (—) and (—),(—) turn A into a left R-module (with
zero a), and ¢, into a module homomorphism. In other words, for any a,b,c,d € A, r,s € R,
z,y € M one has

b+a(c+od) = (b+ac) +ad,

a+,b=0,
b+,c=c+qb,
b—yb=a,

To(b+a€) =rab+qTac,

(r+ 8)eb =7rab+, sab,
1,b=0,

Ta(84b) = (rs)ab,

Pa(@ +y) = ¢al@) +a Pa(y),
©a(rT) = Tapa(T),

where we have denoted b —, ¢ = b+, ((—1)40).
e (“Coordinate change”.) These structures are related by the identities

btac=((b=ad)+4(c—qga)) +ad,
rab=re(b—ga)+qad,
*) P () = ¢a(@) +4 (1 — 07)ad’.
A homomorphism between affinities A, A’ is a map f : A — A’ preserving all this, i. e. satisfying
fla+bc) = fla) +5u) flo),
F(rad) =r5a) f(b),
f(pa(@)) = ¢1(a) (@)-



18 MAMUKA JIBLADZE AND TEIMURAZ PIRASHVILI

Obviously the category J-aff of affinities over a linear form 9 is the category of models of a
suitable abelian theory Ty. Here is an explicit description of this theory.

4.3. Proposition. The theory Ty of affinities over 0 : M — R can be described as follows:

oz, n = 0;

homTa(Xn7X)= {Manl n>0

The projections ag,a1,a2,... : X™ — X are given, respectively, by the elements (0,0,0,...),
0,1,0,...), (0,0,1,...), ...; and, composition is given by

(Z‘,’l‘l,T2, ) (<$07307t07 ) ’ <$17Slat17 ) ) <$27 S2,t2, ) ) ) = <ml7sl7tl7 ) ’

where

!

=z + (1-90(x))ze + ri(x1 — zo) + r2(z2 — o) + ...,
"= (1-0(x))so + ri(s1 — s0) + ra(s2 — s0) + ...,
t = (]. — 6(.(13))t0 + Tl(tl — t()) + 7'2(t2 — to) + ..,

Proof. Take as basic operations the ternary (—) +(_) (=), the family of binaries r(_)(—) indexed
by 7 € R, and unaries ¢(_)(x) indexed by z € M. Using the above identities, one can write any
composite of these operations in the form

(z,7,8,...) (a,b,¢,...) = @o(x) +4 Tab+q SaC+q -

in a unique way. The rest is straightforward verification. |

Define now a morphism of left linear forms from d : M — Rto & : M' — R’ to be an
equivariant homomorphism, i. e. a pair (f : R = R',g: M — M') of additive maps such that the
obvious square commutes, that f is a unital ring homomorphism, and that g(rz) = f(r)g(z) holds
for any r € R, z € M. This clearly defines the category Lf of left linear forms. We then have

4.4. Theorem. The category of abelian Maltsev theories without nullary operations is equivalent
to the category Lf of left linear forms.

Proof. Define the functor T(_) : Lf — Theories by sending an object 9 of Lf to the corresponding
theory Tp described above in 4.3. It is clear from that description that any morphism in Lf
determines a morphism of the corresponding theories.

Conversely, given an abelian Maltsev theory T, define the left linear form dr : Mt — Rr
as follows: let Mt be the set of all unary operations of T, with the abelian group structure
given by = + y = m(z,id,y), where m is the Maltsev operation of T. Let Rt be the set of
conver binary operations of T, i. e. those binary operations r satisfying the identity r(a,a) = a.
Define the ring structure on it by taking zero 0 to be the first projection, unit 1 the second
projection, addition to be r + s = m(r, 0, s), additive inverse —r = m(0,r,0), and multiplication
(rs)(a,b) = r(a, s(a,b)). Let Ry act on My via (rz)(a) = r(a,z(a)), and let the crossing Mt — Ry
be (Orz)(a,b) = m(x(a), z(b),b). It is then straightforward to check that this defines a left linear
form, that any morphism of theories gives rise to a morphism in Lf in a functorial way, and that
if one starts from a theory of the form Ty, then one recovers the original 0 back. Finally for the
second way round, observe that for any operation u : X™ — X in an abelian theory, with n > 0,
one has

u(a,b,c,...)=u(a+ga+q+a+q-,a+ob+sa+s -, a+tqa+sc+q,...)

(
u(a a,a, ) +u(a,a,a,...) u(a7 ba a, ) +u(a,a,a,...) u(a7 a, ¢, ) +u(a,a,a,...) Tt

(a a, a, ) +a (a +u(a,a,a,...) u(aa b7 a, )) +a (a +u(a,a,a,...) u(a7 a, ¢, )) +ao
( ) (a,b)—|—as(a,c)+a---,
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with = in Myt and r,s, ... in Ry. This implies easily that including My and Ry in T extends to an
isomorphism of theories from Ty, to T. |

Remark. Construction of the ring Rt from an abelian Maltsev theory T is obviously well known
to universal algebraists, in a slightly different context — see e. g. [C]. It is in fact closely related
to the classical coordinatization construction for geometries. The reader might consult, e. g. [G]
or [FM] for that.

Using our description, we can now find out what kind of linear extensions exist between abelian
theories. Indeed, since the Maltsev operation in abelian theories is unique, they are clearly closed
under arbitrary finite limits, hence 4.4 together with 1.6 implies that abelian linear extensions of
an abelian theory T can be identified with torsors under internal abelian groups in Lf/dr. Thus
we just have to describe torsors under a linear form 0 : M — R. Consider one such, given by

Cob

B> § —Zs R

Now by 1.3 we know that this torsor is equipped with a herd structure in Lf/d. Thus we have a
Maltsev homomorphism m : 8’ x50' x50 — 0’ over 9; then, by an argument just as in 3.2, both
in N and S one has

m(a:,y,z) = m(x _y+y7y _y+yay —y+Z) = m(x,y,y) _m(yayay) +m(y7y7z) =z —y—|—Z
Thus it follows that (p,q) above is a torsor iff this map is a homomorphism. One sees easily
that this happens iff B2 = BK = 0. In such case, B becomes naturally an R-R-bimodule, K
a left R-module, and restriction § of ' to it — a module homomorphism, via rb = sb, br = bs,
rk = sk,forany b€ B, k € K, r € R and s € S with p(s) = r. Moreover there is an R-module
homomorphism B®r M — K, denoted (b,m) — b-m, given by b-m = bn for any n € N with
g(n) = m. It clearly satisfies §(b-m) = bd(m). On the whole, one gets a structure which can be
described by

4.5. Definition. For a left linear form 0 : M — R, a 0-bimodule consists of an R-R-bimodule B,
a left R-module K, and R-linear maps 6 : K — B and - : BQr M — K satisfying §(b-m) = bOm
for any b € B, m € M. It will be denoted §" = (B®r M — K — B).

Examples of such 8-bimodules include R®g M =2 M — R, i.e. 0 itself, (B&r M — BRr R =
B = B), for any R-R-bimodule B, which we denote C(B), and 0 -+ K — 0 for any left R-module
K, which we denote K1].

It is easy to show that also conversely, internal groups in Lf /0 are determined by d-bimodules ¢’
as above, and that as soon as the map (z,y, 2) =  —y + 2z is a homomorphism from &' x5 9’ x40’
to 8" over 9, then there is a torsor structure on §' under the corresponding group. We summarize
this as follows:

4.6. Proposition. For a left linear form 0 : M — R, internal groups in Lf/0 are in one-to-
one correspondence with 0-bimodules. Moreover the underlying linear form of the corresponding
group is 60 : K& M — B® R, with multiplicative structure (b,r)(b',r") = (br' + rb',rr'),
(b,7)(k,m) = (b-m + rk,rm). Torsors under this group are in one-to-one correspondence with
diagrams such as (E) above, where B — S — R is a singular extension, i. e. the ideal i(B)
has zero multiplication in S and the induced R-R-bimodule structure coincides with the original
one, and moreover i(B)j(K) = 0, the induced R-module structure on K is the original one, i. e.
j(p(s)k) = sj(k), and finally, the induced action B®gr M — K coincides with the original one,
i e. j(b-q(n)) =1i(b)n. |
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Translating now all of the above from Lf to abelian theories, we conclude

4.7. Proposition. For a left linear form 0 : M — R, each internal group A = (60 — 0) in
Lf /0 corresponding to the 0-bimodule 6 = (B®r M — K — B) as above, gives rise to a natural
system D# on the corresponding abelian theory Tg. Explicitly, one has

— ‘K'@anl7

(Z,r1,0ey 1)

with actions given by restricting those in 4.3 for Tsg s to K®@B"  C (K® M) x(B® R)™ L.
A natural system on Ty is of this form iff all linear extensions by it are again abelian theories.
|

In view of this, we will in what follows identify internal groups A in Lf/0 with 8-bimodules and
with the corresponding natural systems D on Ty. In particular, equivalence classes of extensions
of Ty by D4 form, by [JP], an abelian group isomorphic to H2(Tg; D4), which we can as well
denote H*>(M — R; B®r M — K — B), or just by H?(0;d").

Now from [JP] we know that any short exact sequence ¢’ — §° — ¢" induces the exact sequence

0— H°8;6") — ... > HY(8;8") = H*(8;8') —» H*(0;6) — H*(0;0") — ...

which one can use to reduce investigation of cohomologies, in particular linear extensions by a
0-bimodule, to those by more “elementary” ones. In particular, observing the diagrams

Ker(d) — K —— Im(J)

T

and
Im(§) > B Coker(9)
B _ B —_— O,

one sees that there are short exact sequences of 0-bimodules of the form K'[1] — ¢ — ¢ and
v — C(B) - K"[1], so that linear extensions by any § can be described in terms of those by
bimodules of the form K[1] and C(B).

Before dealing with these, just let us make a note about lower cohomologies — they can be
expressed using derivations similarly to Hochschild cohomology.

4.8. Definition. The group Der(9;d°) of derivations of a linear form d : M — R with values
in a O-bimodule §" = (B®g M — K — B) consists of pairs of abelian group homomorphisms
(d:R— B,V : M — K) satistying

do = 6V,
d(rs) = d(r)s + rd(s),
V(rm) = d(r)m +rV(m),

under pointwise addition. Its subgroup Ider(9;d’) consists of inner derivations ad(k) = (dg, Vi)
for k € K, defined by

dp(r) =7r6(k) — d(k)r, Vi(m)=0(m)k— (k) -m.

Then by analogy with well known classical facts, 4.7 and 4.10 of [JP] readily gives
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4.9. Proposition. For a linear form 8 : M — R and a 0-bimodule §" = (B®g M — K — B),
one has an exact sequence
0— H°(8;0) = K 2% Der(9;6) — H*(9;5) — 0.
In other words, there are isomorphisms
H%(Tp;8) =2 {ce K|Vm € M (dm)c = (dc) -m}

and
H'(Tp;6) = Der(8;6)/ Ider(8;8").

Now for C(B), one has

4.10. Proposition. For a linear form 0 : M — R and an R-R-bimodule B, there is an isomor-
phism

H2(T5;C(B)) = H*(R; B),
the latter being the MacLane cohomology group.

Proof. Observe the diagram

I

It shows that the right hand square is pullback, so that the upper row is completely determined
by the lower one. Thus forgetting the upper row defines an isomorphism, with the inverse which
assigns to a singular extension of R by B the pullback as above. |

Thus one arrives at a well studied situation here. As for the K[1] case, we have
4.11. Proposition. For a linear form 0 : M — R and a left R-module K, there is an isomorphism
H?(Tg; K[1]) = Exth(M, K).

Proof. This is obvious from the diagram

K * M
l op lf)
0 — R —— R.

But moreover the diagram

Ker(0) =— M — Im(9)

ok

R

0 — R

shows that Ty is itself a linear extension of a theory corresponding to the linear form of type
a — R, where a is a left ideal in R, by a natural system corresponding to an (a — R)-bimodule
of the form K[1]. And this is clearly the end: one obviously has
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4.12. Proposition. An abelian theory without constants cannot be represented nontrivially as
a linear extension of another theory if and only if it is of the type T4, g, for the left linear form
determined by a left ideal a in a ring R which does not have any nontrivial square zero two-sided
ideals.

Proof. The only nontrivial remark to make here is that for any square zero two-sided ideal b — R,
one gets an extension

¢ a a/t
b R R/b
for any left ideal € with ba C€C bNa. |

Finally, consider an abelian theory T with constants. It has a largest subtheory Ty without
constants, obtained from T by removing all morphisms 1 — X™ for n > 0. The constants of T
will then reappear in Ty as pseudoconstants, that is, those unary operations p : X — X satisfying
the identity p(a) = p(b). Conversely, if a theory without constants is obtained nontrivially in such
way, it must have some pseudoconstants.

We know by 4.4 that Tg = Ty for some linear form 0 : M — R. Now pseudoconstants in Ty
correspond to elements p of M satisfying the identity ¢, (p) = @s(p) (with a, b as variables). Using
the identity (x) from 4.2 this gives (1—9p).b = a, i. . (9p),b = b for any a, b in any affinity. Then
taking a = (0,0), b = (0,1) in M x R gives dp = 1. Now clearly there is a p € M with dp =1
if and only if 9 is surjective, in which case it is split by o(r) = rp. Thus in this case our linear
form is isomorphic to (projection): Ker(9) ® R — R. Let us fix one such p. We then may declare
{p+to|to € K} to be the set of pseudoconstants corresponding to nullary operations, where K is
either empty or any R-submodule of Ker(d). All choices will give equivalent categories of models,
the only difference being that for K = @ the empty set is also allowed as a model. Each other
model A shall then have at least one element a, and value of the unary operation p on A at a will
then be ¢, (p), which does not depend on a as we just saw. Denoting this element by 04 fixes a
canonical R-module structure on each non-empty model. Moreover each element of M becomes
uniquely written as m = k + rp with r € R and k € Ker(9), s0 @,(m) = @u(k) + 7, i. e. @, is
completely determined by its restriction to Ker(9d). Moreover by (*) of 4.2 it is determined by ¢g ,
alone. We see that, ignoring the possible empty model, the category Ts-mod is equivalent to the
coslice (Ker 0)/R-mod. We thus have proved:

4.13. Proposition. An abelian theory has at least one pseudoconstant if and only if the category
of its models is equivalent to the category K/(R-mod) of left R-modules under K, for some ring
R and an R-module K, with the possible difference that the empty set is another model. |

Now observing 2.6.4 we conclude

4.14. Corollary. Any abelian theory with constants is isomorphic to T,k (defined in 2.6.4) for
some ring R and left R-module K. |

Concerning linear extensions one observes that by 2.6.4, any theory with constants Tg;x is a
trivial simple linear extension of Tg by the bifunctor constructed there. Also observe that in any
linear extension TV — T of abelian theories one has constants if and only if the other does.

On the other hand, a description similar to 4.13 is in fact possible for categories of models of
abelian theories without constants too. For any left linear form 0 : M — R, denote (temporarily)
by O-aff’ the following category: objects are R-module homomorphisms f : M — N; a morphism
from f': M — N'to f : M — N is apair (g,n), where g : N' — N is an R-module homomorphism



CENTRAL EXTENSIONS AND NILPOTENCE OF MALTSEV THEORIES 23

and n € N is an element such that f(z) — gf'(z) = d(z)n holds for all z € M. Composition is
given by (g,n)(g',n") = (9g9’,n + g(n')), and identities have form (id,0). Equivalently, one might
M

define objects as commutative triangles

0 Re N

Action

R

and morphisms as commutative diagrams

M
ReN —R6N

NN

4.15. Proposition. The category Tg-mod is equivalent to O-aff’ with an extra initial object
added.

in R-mod. One then has

Proof. Define a functor 9-aff’ — 9-aff as follows: for f : M — N, define an affinity structure on
Nbya+pyec=a—b+e,rob=(1—r)a+rb, and p,(z) = f(x)+(1—0x)a. And to a morphism (g,n)
assign the homomorphism of affinities N’ — N given by n' — n + g(n'). It is straightforward to
check that this defines a full and faithful functor. Moreover any nonempty affinity is isomorphic
to one in the image of this functor — just choose an element and use it as zero to define a module
structure and a homomorphism from M according to the affinity identities. ]

This allows to give an example, which looks pleasantly familiar:

Example. Fix a field k, and let the category of cycles be defined as follows. Objects are pairs
((V,d), c), where (V, d) is a differential k-vector space and ¢ € V is a cycle, i. e. dc = 0. A morphism
from ((V,d),c) to ((V',d'),c') is a pair (¢, z), where ¢ : V — V' is a k-linear differential map and
z € V' an element with ¢’ — ¢(c) = dz. With the evident identities and composition this forms a
category which is clearly of the form Ts-mod, for the linear form 0 : ek[e] — k[e], where € is an
indeterminate element with 2 = 0.

Now obviously this example admits a linear extension structure over T}, since ek[e] is a square
zero ideal. But of course 4.12 provides lots of similar (less cute) examples without this property.
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