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ABSTRACT. Let T be a symmetric statistic based on sample of size N drawn without
replacement from a finite population of size n, where n > N. Assuming that the
linear part of Hoeffding’s decomposition of T is nondegenerate we construct one term
Edgeworth expansion for the distribution function of 7" and prove the validity of the
expansion with the remainder O(1/N*) as N* — oo, where N* = min{N,n — N}.

1. INTRODUCTION AND RESULTS

1. Introduction. Given a set X = {zy1,...,z,}, let (X;,...,X,,) be a random
permutation of the ordered set (z1,...,z,), which is uniformly distributed over
the class of permutations. Let

T =t(Xy,...,XN)

denote a symmetric statistic of the first N observations Xi,..., Xy, where N < n.
That is, t is a real function defined on the class of all subsets {z; ,...,z;,} C X
of size N and we assume that t(x;, ,...,z;, ) is invariant under permutations of
its arguments. Since Xi,..., Xy represents a sample drawn without replacement
from the population X', we call T" a finite population symmetric statistic.

We shall consider statistics which are asymptotically normal when N* and n
tend to co. In the simplest case of linear statistics the asymptotic normality was
established by Erdés and Rényi (1959) under fairly general conditions. The rate
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in the Erdés-Rényi central limit theorem was studied by Bikelis (1972). Hoglund
(1978) proved the Berry—Esseen bound. An Edgeworth expansion was established
by Robinson (1978), see also Bickel and van Zwet (1978), Schneller (1989), Babu
and Bai (1996).

Asymptotic normality of nonlinear statistics was studied by Nandi and Sen (1963),
who proved a central limit theorem for U statistics. The accuracy of the normal
approximation of U statistics was studied by Zhao and Chen (1987, 1990), Kokic
and Weber (1990). A general Berry—Esseen bound for combinatorial multivariate
sampling statistics (including finite population U statistics) was established by
Bolthausen and Gotze (1993). Rao and Zhao (1994), Bloznelis (1999) constructed
Berry-Esseen bounds for Student’s ¢ statistic. One term asymptotic expansions
of nonlinear statistics, which can be approximated by smooth functions of (multi-
variate) sample means have been shown by Babu and Singh (1985), see also Babu
and Bai (1996). For U statistics of degree two one term Edgeworth expansions
were constructed by Kokic and Weber (1990). Bloznelis and Gotze (1999 a,b) es-
tablished the validity of one term Edgeworth expansion for U statistics of degree
two with remainders o(1/v/ N*) and O(1/N*). Since we shall often refer to the
papers Bloznelis and Gotze (1999 a,b,c) we abbreviate them as [BGa,b,c].

A second order asymptotic theory for general asymptotically normal symmetric
statistics of independent and identically distributed observations was developed in a
recent paper by Bentkus, Gotze and van Zwet (1997), which concludes a number of
previous investigations of particular statistics: Bickel (1974), Callaert and Janssen
(1978), Gotze (1979), Callaert, Janssen and Veraverbeke (1980), Serfling (1980),
Helmers (1982), Helmers and van Zwet (1982), van Zwet (1984), Bickel, Gétze
and van Zwet (1986), Lai and Wang (1993), etc., This theory is based on the
representation of symmetric statistics by sums of U statistics of increasing order via
Hoeffding’s decomposition. Another approach, see, e.g., Chibisov (1972), Pfanzagl
(1973), Bhattacharya and Ghosh (1978), which is based on Taylor expansions
of statistics in powers of the underlying i.i.d. observations, focuses on smooth
functions of observations.

In view of important classes of applications (jackknife histogram, see, Wu (1990),
Shao (1989), Booth and Hall (1993) and subsampling, see, Politis and Romano
(1994), Bertail (1997), Bickel, Gotze and van Zwet (1997)) we want to develop
in this paper a second order asymptotic theory similar to that of Bentkus, Gotze
and van Zwet (1997) for simple random samples drawn without replacement from
finite populations.

The starting point of our asymptotic analysis is the Hoeffding decomposition
(1.1) T =ET + Z g (X)) + Z g2 (X, X))+ ...

1<i<N 1<i<j<N

We shall assume that the linear part 5 g1(X;) is nondegenerate. That is, o2 > 0,
where 02 = Varg;(X;) > 0. In the case where, for large N*, the linear part
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dominates the statistic we can approximate the distribution of 7" by a normal
distribution, using the central limit theorem. Furthermore, the sum of the linear
and quadratic term,

U=ET+ Z g1(Xs) + Z 92(Xi. X;)
1<i<N 1<i<j<N

typically provides a sufficiently precise approximation to 7" so that one term Edge-
worth expansions for the distribution functions of T" and U are the same. There-
fore, in order to construct one term Edgeworth expansion of 7" we do not need
to evaluate all the summands of the decomposition (1.1), but (moments of) the
first few terms only. An advantage of such an approach is that it provides asymp-
totic expansions for an arbitrary symmetric finite population statistic 7' no matter
whether it is a smooth function of observations or not.

A simple calculation shows that the variance of the linear part satisfies

n—1

N
Var» gi(X;) =0’ ——, 1P=mnpg, p=N/n, q=1-p.
=1

Note that N*/2 < 72 < N*. We shall approximate the distribution function
F(z)=P{T <ET + o7z},

by the one term Edgeworth expansion

Glr) = B(x) — UTPOHIR g8 ()

where
a =0 Eg;(X1) and k= 0"7"Eg (X1, X2)g1(X1)g2(X2).

Here ®(z) denotes the standard normal distribution function, and ®©®) denotes
the third derivative of ®. The expressions for the functions g; and gs in (1.1) are
given by

n(Xi) = == E(T'| X,). T' =T — ET,
-2 -3 -1
92X, X)) = ——— ————— (E(T" | X;, X;) — —— (E(T"|X;) + E(T"|X;))).

those for gi, k = 3,..., N, are determined in [BGc].
In order to prove the validity of asymptotic approximations by smooth functions,
like G(z), one needs to impose appropriate smoothness conditions on the statistics
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involved. In the case of linear statistics this is a Cramér type condition, see (1.8)
below. Given a general nonlinear statistic 7' we approximate it by a U-statistic via
Hoeffding’s decomposition. Therefore, in addition to a Cramér type assumption

we need conditions which control the accuracy of such a stochastic expansion, cf.
Theorem A below.
2. Smoothness conditions. Introduce the difference operation

DT =t(Xy,...,X;,.... XN) —t(X1..... X} ..., XN), X)=Xngj,

where in the second summand X; has been replaced by X ; In addition, higher
order difference operations are defined recursively:

Divi2T = DI2(DIT),  DIvI=dsT = D= (Di(DIT)),. ...

It is easy to see that the difference operations are symmetric, i.e., DI172T =
D721 T | etc. Given k < N* write

(Sj = 5J(T) = E(TZ(j_l)]DjT)Z, ]DjT = D1’27m7jTa 1<y <k

Using the notation

Uk(T) = Z gk:(Xila-”ink)
1<iy <-<ig <N

we can write (1.1) as follows

(1.2) T =ET + Uy (T) + - + Un(T).

Theorem A. (/[BGc¢]) For 1<k < N*, we have

(1.3) T=ET+U(T)+--+Ui(T)+ Ry,  with ER: <7 2k"Dg .

Assume that the population size n — oo and the sample size N increases so that
N* — oco. If 02 remains bounded away from zero and

(1.4) lim sup d3 < oo

Theorem A implies the relation T = U + Op(77!) thus, showing that up to errors
of the second order T'/7 and U/ are asymptotically equivalent.
Recall Cramér’s (C) condition for the distribution Fz of a random variable Z,

(C) sup |[Eexp{itZ}| < 1, for some 0> 0.
|t]>é
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Usually, see, e.g., Petrov (1975), this smoothness condition is imposed in addition
to the moment conditions in order to establish the validity of asymptotic expan-
sions with remainders O(N~—*/2) and o(N~=%/2), k = 2,3,..., for the distribution
function of the sum of N independent observations from a distribution Fz. In our
situation the condition (C) is too stringent. We shall use a modification of (C)
which is applicable to random variables assuming a finite number of values only.
For Z = 07 1g1(X1), we assume that p > 0, where

p:=1—sup{|Eexp{itZ}|: b1/0s < [|t| < 7}.
Here b; is a small absolute constant (one may choose, e.g., by = 0.001) and
Or=0""Elg(X1)[*,  m =0T Elg(X1, X2)|f, k=234

Other modifications of Cramér’s (C) condition which are applicable to discrete
random variables were considered by Albers, Bickel and van Zwet (1976), Robinson
(1978) and [BG a|, where relations between these conditions are discussed.

3. Results. Write ( = 0727%Eg2 (X1, X2, X3).
Theorem 1.1. There exists an absolute constant ¢ > 0 such that

(1.5) A= sup|F(z) — Gz)| < 5 Daxote 4o o

oER 72 02 2 g2p2 "

For U-statistics of arbitrary but fixed degree k

(16) Z h(Xl'l,... ,Xik),

1<i < <ipg <N

where h is a real symmetric function defined on k-subsets of X', we have a stronger
result.

Theorem 1.2. There exist an absolute constant ¢ > 0 and a constant c(k) > 0
depending only on k such that

¢ Patm c(k) 43
(1.7) A< — p

T2

T o2 p? )

Since the absolute constants are not specified Theorems 1.1 and 1.2 should be
viewed as asymptotic results.

Assume that the population size n — oo and the sample size N increases so
that N* — oo. In particular, 7 — oo. In those models where B4, 74 and ( + 04
(respectively d3) remain bounded and

(1.8) liminf p >0
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Theorem 1.1 (respectively Theorem 1.2) provides the bound A = O(772). Since
N*/2 < 72 < N* this yields A = O(1/N*).

Note that this bound is obtained without any additional assumption on p and q.
This fact is important for applications, like subsampling, where p or ¢ may tend
to zero as n — 0.

The bound of order O(772) for the remainder is unimprovable, because the next
term of the Edgeworth expansion, at least for linear statistics, is of order O(772),
see Robinson (1978).

An expansion of the probability P{T < ET +o7z} in powers of 7~ would be the
most natural choice of asymptotics. We invoke two simple arguments supporting
this choice. Firstly, 72 is proportional to the variance of the linear part. Secondly,
the number of observations N does not longer determine the scale of 7' in the
case where samples are drawn without replacement since the statistic effectively
depends on N*(~ 72) observations. Indeed, it was shown in [BGc] that, for
N > n — N, we have almost surely

(1.9) T=T", T =ET+U(T*)+ -+ Un-(T"),
where we denote

1<i <<, <N*

That is, T' effectively depends on N* = n — N observations X7,..., X . only.

The bounds of Theorems 1.1 and 1.2 are optimal in the sense that it is impos-
sible to approximate F' by a continuous differentiable function, like G, with the
remainder o(7~2), if no additional smoothness condition apart from (1.8) is im-
posed. Already for U statistics of degree two, Cramér’s condition (1.8) together
with moment conditions of arbitrary order do not suffice to establish the approxi-
mation of order o(72). This fact is demonstrated by means of a counter example
in Bentkus, Gotze and van Zwet (1997) in the i.i.d. situation, and it is inherited
by finite population statistics. See [BG a] for detailed discussions.

Note that the bound (1.5) involves moments (of nonlinear parts) which are higher
than those which are necessary to define expansions. Thus, in an optimal depen-
dence on moments one would like to replace v4 + ¢ + d4/02 by 2 + d3/0? in the
remainder.

In order to apply our results to particular classes of statistics one has to estimate
moments d3 or d4 of differences D37 or D, T'. For U statistics and smooth functions
of sample means this problem is easy and routine, see [BG c]. Some applications
of our results to resampling procedures are considered in [BG c].

In the case where n — oo and N remains fixed the simple random sample model
approaches the ii.d. situation. We have 7 — V/N, p — 0, ¢ — 1. Replacing
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7, p and ¢ by VN, 0 and 1 respectively we obtain from G the one term Edge-
worth expansion for the distribution function of symmetric statistic based on i.i.d.
observations, which was constructed in Bentkus, Gotze and van Zwet (1997).
The remaining part of the paper is organized as follows. In Section 2 we prove
Theorems 1.1 and 1.2. In the proof we use a “data dependent smoothing tech-
nique” first introduced in Bentkus, Gotze and van Zwet (1997) and expansions of
characteristic functions. Expansions of characteristic functions are present sepa-
rately in Section 3. Section 4 collects auxiliary combinatorial lemmas. Lemma 4.2
of this section may be of independent interest.

2. PROOFS

The section consists of two parts. In the first part we collect some facts about
Hoeffding’s decomposition of finite population statistics. The second part contains
proofs of Theorems 1.1 and 1.2.

We shall assume without loss of generality that ET' = 0. For k = 1,2,...., we
write Q = {1,...,k} and Qf = Qn \ Q.

1. Hoeffding’s decomnposition (1.2) was studied by Zhao and Chen (1990) in the
case of finite population U statistics and by [BG c¢] in the case of general symmetric
finite population statistics.

Given A = {iy,..., i} CQy, with 1 <7 < N, and B = {j1,...,js} C §,, write

TA :g'r(Xila"' 7Xir)7 E(TA|B) :E(TA|XJ '7st)7

19"

and put Ty = 0. Using this notation we can rewrite (1.2) as follows,

T= Y Ta=U(T)+--+Un(T), Uj(T)= >  Ta 1<j<N
AEQN ACQn, |Al=g

It is easy to show that in the case of U-statistic of degree k, 2 < k < N, see (1.6),
we have U;(T') = 0, for j > k. An important property of the decomposition is that

(2.1) E(T4|B) =0, for A, B CQ,, suchthat |B|<|A|<N.
Note that (2.1) implies EU;(T)U;(T) = 0, for ¢ # j. Therefore, the random
variables U;(T') and U;(T) are uncorrelated unless ¢ = j. For A,B C , with
1<j=]A|=|B| <N and k = |AN B|, denote

0? = ETi Sk = ETATB.

Using (2.1) it is easy to show, see e.g., [BG ¢|, that

AN —1
(2.2) Sip = (—1)j—k<7;:]i> 02, 0<k<j<N.
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2. Proofs of Theorems 1.1 and 1.2. We shall assume that o2 = 772,

By C,c,co,c1,... we denote positive absolute constants. Given two numbers
a,b >0, we write a < bif a < c¢b. The expression exp{iz} is abbreviated by e{z}.
Given a complex function A defined on R, we write || H(x)|| = sup,cg |H(z)|. In

the proofs it is more convenient to deal with 4 rather than with p, where
§=1—sup{Ecos(tgi(X1)+5): s €R, by7/p3 < |t| < 7%}

It is easy to show, see [BGa], that p <.
We may and shall assume that for sufficiently small ¢y,

(2.3) Ba < coT2, Yo < coT282, §72BInT < ¢or.
Indeed, if (2.3) fails, the bounds (1.5) and (1.7) follow from the inequalities
F(z)<1 and G(z)| <14+ 77} i/2_|_721/2)‘

Note that the first inequality in (2.3) implies that 7 is sufficiently large.

Proof of Theorem 1.1. Write T' = Us + Rz, where Us = U1 (T') + U2(T) + Us(T).
A Slutzky type argument gives

A <A+ 26 (@) + PRy > 72},

where, by (2.3), |G (x)]] < 1 and where A’ = ||P{lUs < z} — G(z)|| satisfies, by
(17)
A < T2p7 (B + Q)

Finally, invoking the inequality,
P{Rg Z ’7'_2} S 64 = 7'_254/0'2,

see (1.3), we obtain (1.5)

Proof of Theorem 1.2. A typical proof of the validity of an asymptotic expansion
for probabilities consists of two main steps: Esseen’s smoothing lemma and ex-
pansions of characteristic functions. We follow the same line of argument, but
instead of the traditional Esseen smoothing lemma we use the “data depending
smoothing”, procedure introduced by Bentkus, G6tze and van Zwet (1997). This
a somewhat more sophisticated smoothing technique allows to obtain the optimal
rate O(72) for a non-linear statistic, like (1.1), assuming a Cramér type condition
on the linear part only.

In view of (1.9) it suffices to prove the theorem in the case where N < n/2. We
shall assume that N < n/2. Hence, we have 72 < N < 272 in what follows.
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During the proof we skip some technical steps and refer to [BG a|, where detailed
calculations for these steps are given in the simple case of U-statistics of degree
two.

Let m denote the integer closest to the number 8§~'In7. Due to (2.3),
10 <m < N/2. Split T =V + W, where

V= > Ts, W = > Tg,

BCQnN, BNQ,,, #0 BCQn,BNQ,,=0
m N
V= Vit A+ Y+ Zm,  Vi=Ta+&+0mi  &G= Y. Tugy
i=1 J=m+1
Here we denote
(2.4) A= > Tp,  Zpm= > Tg,
BCQm, |B|=2 BCQy, |BNQ,, |>3
Y, = Z TB. N = Z Tp.
BCQn, |BNQ,, |=2,|B|>3 BCQn,BNQ,,={i},|B|>3

Write T = 37, V; + W and denote Fy(z) = P{T < z}. We have T =T + R,
where R = A,,, + Yy, + Z,,. Given € = 62772, a Slutzky type argument gives

A<AFe|GO@ |+ PR 2 ) A= [Fa) - G,
By Chebyshev’s inequality, (4.1) and the inequality E|A,,[]3 < mGE|T{172}|3,

83/0% + 3
242

P{R| > ¢} <P{|An| > =} +P{[Yu| > =} +P{|Zu| > T} <

Finally, by (2.3), |GV (z)|] < 1. We obtain A < Ay + 772572(1 + 83/0% + 73).
Therefore, in order to prove (1.7), it remains to bound A;.

Smoothing. Let A = (Ay,...,A,) be a random permutation of (z1,...,z,) uni-
formly distributed over the class of permutations. Write » = [(N + m)/2] and
denote Zy = {m+1,..., N} . Jo={l.....n}\Zp. J1 = JoU{m+1,...,r} and
Jo=ToU{r+1,..., N}. Define (random) subpopulations A; = {Ax. k € J;},
¢t =20,1,2, and let A} be a random variable uniformly distributed in A;.

We assume that X; = Aj, for j € Zy and given A;, j € 7y, the observations
X1,..., Xy, are drawn without replacement from Ay. Write

A1) =E(e{tT}| Xpni1,---. XN), Fy(t) = Ee{tT},
H=N§/(32¢7' N (01 +03)+1), 0, = E*jv;(AY)], i=1,2,
vifa)= Y gala. Ay), vla)= Y gl A).

r+1<5<N m+1<7<r
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Here, for f: X — R, we denote E*f(Af) = |7;|7' X0 ,c7. f(A))

We are going to apply the “data depending smoothing”. In order to bound A; we
construct upper bounds for Fi(z+) — G(z) and G(x) — Fy(xz—), for every = € R.
Here Fy(z+) (respectively Fi(z—)) denotes the right (respectively the left) side
limit of F; at point . We have, see Bentkus, Gotze and van Zwet (1997),

I = %H_l/Re{—mt}Kl(%)fl(t)dt,

dt

I = i V.P. /Re{—a:t}l(}(%)(fl(t) — G(t)) -

I = - V.P./Re{—xt}(Kg(%) —1)G(t)%.

Here V.P. denotes Cauchy’s principal value, G denotes the Fourier-Stieltjes trans-
form of G,

Ki(s) =T{Js| <1} (1=|s]) and Ka(s) = L{js| <1} ((1—[s]) 75 cot(ms)+s|).
In order to prove an upper bound for F;(z+) — G(z) we show that

(2.6) EIL| + |E(L + I3)| < 7726 2(Bs + 74 + c(k)d3/0?).

To get the analogous bound for G(z) — Fy(xz—) we apply (2.5) to the distribution
function of —7'. In the remaining part of the proof we verify (2.6).
Let us prove (2.6). Introduce the subsets Z; C R,

Zl = {|t| S Hl}, ZQ = {Hl S |t| S H}, where H1 = blT/ﬁg.
Obvious decompositions yield, see [BG a],

|E(L + )| < |J1| +EJa + J5+ R, |EL| < |EJs| + EJ5; + R,

Jq :/ ef—tzy =GO g, :/ AL g
Z t 2, |]

IG(t)] f1(t) |f1(2)]
J; = — dt Jy = —tx) ——=dt, Js = = dt,
’ /|t|>H1 It] ’ ! /21 e{—te} H / ° /22 H /

with R = EH?H—2. The bounds J3 < 772(84 +72) and R < §72772(1 4+ 7,) are
proved in [BGa]. Furthermore, note that .J; < .J;. Therefore, in order to prove
(2.6) it suffices to show that

14 v +53/02
1252

Ba + 83

T2

Ba + va + c(k)d3 /o
252 .

(2.7) ElL < EJs| <« |J1| <
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The bound for EJy. Given t denote I; = I{|t|E*|n.m(Af)| < 0/16}, where
N () = E(Nm.1|X1 =z, Xony1,. .., Xn). The identity f1(t) = Lef1(¢)+(1—1¢) f1(2)

combined with the inequalities
1— 1, < 1626722 (B* [ (A3)])° < 1625 22E* 2, (A7)

yields Jo < Js 1 + Jo 2, where

Ja1 :/ I |]citlﬂ| dt  and  Jpp =1626"E ), (A H”.
2

Invoking the inequality EE*n2 (Af) < N—383/02, which follows from (4.1), by
symmetry, and using the bound H < NJ we obtain EJz 2 < 77283/02.

In order to bound EJ; ; we proceed as in proof of the inequality (3.12) in [BGal.
The only and minor modification of this proof is related to the new nonlinear term
Tm,i = Nm(X;). Namely, one should replace v(a) = v1(a) +v2(a) by 9(a) = v(a) +
Nm(a) everywhere in the proof of (3.12), ibidem, and use the bound E*|t 7,,,(Af)| <
§/16 when estimating E*(14 2u2(Ag)) in (3.17), ibidem. Indeed, this bound holds
on the event {Il; # 0}. The further steps of the proof of (3.12) ibidem given in
[BG a] can be adopted without any change and in this way we obtain the bound
E.Jo1 < f33/N? thus completing the proof of (2.7).

The bound for E.J4. Define J4 in the same way as .Jy, but with f;(¢) replaced by
fl(t) = B(e{tU} | Iy), where U = U — A,,,. The identity T—U = Ry — Y, — Z,,, in
comblnatlon with the inequality |e{z} — e{y}| < |z —y| yields |EJy — EJj| < R,
where

R=H{EH 'E(|R; — Y — Znl| | To)
< HYEH )2 [(BR)Y + (BY2)'? + (BZ2)?),

by Cauchy—Schwartz. It follows from (1.3), (4.1) and the last inequality of (2.3)
that [...] < 7_25_15§/2/0. Invoking the inequality EH 2 < N72572(1 + 72),
see (5.1) in [BGal, we obtain R < 7_25_2(1 + 53/02 + 72). Finally, invoking the
bound |EJ}| < N71672(1 + 72), see bound for Els in (3.20) ibidem, we obtain
(2.7) for E.J,.

The bound for Ji. Given a Borel set B C R and an integrable complex function

f.owrite Zg(f) = [zt f(t)dt
In order to prove the (2.7) for Jy it suffices to show that

(2.8) Zz, (Fy — F)| < 772072(1 + 12 + 83/02),  F(t) = Ee{tT},
(2.9) I Zz, (F — )| < 77267(Ba + 74 + c(k)d3/0”).
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The proof of (2.9) is given in Section 3. Note that this is the only step in the proof
where we use the assumption that 7' is an U-statistic. It remains to show (2.8).
Write F) (t) =Ee{t(T — A, — Y., — Z,,)} and expand the exponent in powers of
it(Y, + Z,) and then in powers of itA,,. We get

|Fy(t) — F(t) — f(t)| < EtY,,| + E[tZ,,| + Et?A?

m?

£(t) = Ee{tT}itA,,.

Furthermore, the identity 7' — U = Ry combined with the mean value theorem

yields |f(t) — g(t)] < Et?|A,, Rz|, where g(t) = Ee{tU}itA,,. Therefore,
Tz, (F1—F)| < |Zz,(9)|+R, R =2HE|Y,,|+2H)|Z,,|+H{EA},+H{E|A,, Ry.

Combining Holder’s inequality with (4.1), (1.3) and the inequality
EA2 < m?N=3q,, see (5.3) in [BG a], we obtain

R« 7_25_2(1 + 7 + 53/02).
Finally, invoking the bound

m

2>N‘3/2(1 +792) K NTHT2(1+70),

2, < (

see the bound for I;5, below (3.38) ibidem, we obtain (2.8) thus, completing the
proof of the theorem.

3. EXPANSIONS

In order to prove (2.9) we shall show that

B4+ va + c(k)d3/o?
72482 ’

(31) I (F-G)<R, Ip(F-G)<R. R=

where By = {|t| < ¢1} and By = {¢1 < |t| < Hy} and where the constant ¢; will
be specified later.
The first inequality of (3.1) follows from the bounds

32) Ip, (F—Fy)<R and Ip (Fy—G) <R,  Fy(t)=Ee{tU},

where the first bound of (3.2) follows from the inequalities | F () — Fyr(t)| < E[tRa|
and E|Ry| < (ER2)'/2 and (1.3). The second bound of (3.2) is proved in [BG a],
formula (4.1)

In order to prove the second inequality of (3.1) we write the characteristic function

F(t) in Erdés-Rényi (1959) form, see (3.4) below. Let v = (v1,...,vs) be iid.
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Bernoulli random variables independent of (X7,...,X,,) and having probabilities
P{v1 =1} = p and P{r; = 0} = q. Observe, that the conditional distribution of

T = E Tavy, where vy = H Vi,
ACQn i€A

given the event £ = {S, = N}, where S, = v1 + -+ + v, coincides with the

distribution of T'. Therefore, F can be written as follows

(3.3) F(t) = A /M Ee{tT* + 77 's(S, — N)}ds, AL =27P{E) .

— 7T

Using (2.1) it is easy to show that, for 1 < k < N, almost surely

Yo Tavi= Y. Qa  Qa=Tava, va=][wi—p).

ACQ,, |Al=k ACQn, |Al=k i€A
Therefore, almost surely, t7* + 77 1s(S, — N) = S + tQ, where
S=3 8, Si=(Ty+7's)vi—p), Q= > Qa-
i=1 ACQ,,2<|A|I<KN

Substituting this identity in (3.3), we obtain
(3.4) F(t) = /\/ Ee{S +tQlds.

In view of (3.4), the second inequality of (3.1) follows from the inequalities

(3.5) / /\/ |E e{S +tQ} — (h1 + ha)|ds &« R,
teB., |s|<m T l#

- d
(3.6) / |)\/ (h1 + hp)ds — G(t))| 2 <R,
teB, |s|<mT Il

hl = Ee{S}, hg = i3 (Z)EG{S:; + -+ Sn}V, V = tQ{Lg}Sng.

The inequality (3.6) is obtained by combining the proof of the analogous bound
in the i.i.d. situation, see Lemma 6.1 of Bentkus, G6tze and van Zwet(1997), with

the proof of the Berry—Esseen bound for finite population sample means given in
Hoglund (1978), see also [BGa].
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It remains to prove (3.5). Let f(s,t) and g(s,t) denote two complex functions.
In order to reduce the notations we write f < R if

dt T
/ - / F(s.)lds < R
B —TT

and write f ~ g if f — g < R. In view of the inequality A < /27, see Hoglund
(1978), the bound (3.5) is equivalent to the relation Ee{S + tQ} ~ hy + ho.

Let us prove (3.5). In what follows assume t € By and |s| < 77. Given s,t write
u = s2 +t2 and let m be the integer closest to the number 62nu_1 In u, where the
constant ¢y will be specified later. We shall choose ¢; and ¢z so that 10 < m < n/2.
Split

(37) Q=K+L+W+Y+2Z  K=(+p (=D ¢ p= u

1<j<m,

Cj = Z QAa My = Z QA7

AN, ={j},|A|=2

L= Y  Qa

ACQm, |Al=2

Z= Y Qa

| AN, [>3

AN, ={s}, |A[23

Y= >  Qa

|ANQ =2, | A>3

W = > Qa,

AN, =0, |A|>2

and denote fi = Ee{S +t(K + W)} and fo = Ee{S +t(K + W)}itL.
In order to prove Eexp{S +tQ} ~ h; + he we shall show that

(3.8) Ee{S +tQ} ~ f1 + fa,

(39) f2 ~ h37 h3

(3.10)

We first introduce some notation.

f1 ~ h1+ hy — hs.

3 (7;)E e{S5 + - + Sn}V,

Given a sum v = v; + --- + v we denote

vg = ZjeB v;, for B C Q. Given B C (,, we write E(B) to denote the conditional
expectation given all the random variables, but v;, j € B. For D C €1,,, denote

Yp = |E(p)e{Sp}|,

Zp = |E(pye{Sp + t(p}|,

Ip=10{sp>c3'},

where s»p = 72|D|1 ZjeD C3(X;), with ((a) = Zﬂ:m_H g2(a, X;)(vj — p), satis-

fies

(3.11) E(xp|X:, X;) < 7272,

EGAP X, X)) < 77395, Vij € QO \ D.
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Proceeding as in proof of Lemma 5.4 in [BGa], see also formulas (4.9), (4.10)
ibidem, for every D C €,,, with cardinality |D| > m/4, we can construct a
random variable Fp depending only on X, ¢ € D, such that

(312) YDSIFD, ZDS]ID—I—]FD, E(FZD ’X” Xj)SC’LL_QO, VZ,_}EQ\D,

almost surely. In this step, i.e. in the proof of (3.12), the constants ¢1,ce and c3
are specified, see [BG a]. Here we only mention that ¢; and ¢y are choosen so that
the inequality 10 < m < n/2 holds as well.

Split 2, = QL UN2 UQ3 | where Q! , i = 1,2, 3 are disjoint consecutive intervals
with cardinalities |Q |~ m/3 For < 7, let ©; ; denote the set of all pairs {I,r}
such that [ € Q% , r € Q) and [ < r.

Proof of (3.8). Expanding the exponent in powers of itZ and invoking (3.19) we
get Ee{S +itQ} = f3 + R, where fs =Ee{S+ (K + L+ W +Y)} and where

IR| < E|tZ| < [t{(EZ3)M? < |t (k) a2 2 w6l 2o~ 1r—2 < R,
Furthermore, expanding in powers of it(L +Y') we obtain

fs=h+fatfatR, f1=Ee{S +t(K + W)}itY,
|R| <« tzE(L + Y) < t2u 2 1n? ’U,’T_Z(")/g + ¢ (k)53/02) < R.

In the last step we invoked (3.20) and used the identity EL? = (g‘ ) p??7 0y, We
obtain Ee{S +tQ} ~ fi1 + fo + fa.

It remains to prove that f; < R. To this aim we show that f4 ~ f5 and f5 < R,
where f5 = Ee{S+t((+W)}itY. By the mean value theorem | f4 — f5| < Et?|Y .
Furthermore, by Cauchy Schwartz and (3.20), (3.21),

Et?|Yu| < 2(BY)YV2(Ep?)? < ey (k)yu™2 32 ur=453/0° < R.

Therefore, fy ~ f5. In order to prove f5 < R we split f5 = >, . <j<s fi; and
show that f; ; < R, for every i < j. Here f; ; are defined in the same way as
f5, but with Y replaced by Y; ;, with Y; ; denoting the sum of all )4 such that
ANQy, € Q, ;. Given i,j choose r from Q3 \ {i,j} and note that the random
variable Y; ; and the sequence {v;, [ € Q7 } are independent. Therefore, by (3.12),

[fig| < [HEZgy Vi < [EI(EZE, )*(EY2)Y? < |t|(EF,;, +Exq; )2 (EYZ)Y2.

Note that the bound (3.20) applies to EYfJ as well. This bound in combination
with (3.12) and (3.11) implies f; ; < R thus completing the proof of (3.8).
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Proof of (3.9). Write fs = Ee{S +t(¢ + Wy)}itL, where W, denotes the sum of
all Q4 such that ANQ,, =0 and |A| = 2. It is shown in formula (4.15) of [BG a]
that f6 ~ hg.

Let us prove fy ~ fg. By the mean value theorem, fr| < t?E|Lu|, where
fr =Ee{S +t(¢ + W)}itL. Invoking (3.21) and the bound EL? < m2p?q®7= 0,
we obtain t?E|Lu| < R, by Cauchy-Schwartz. Hence, fo ~ fr.

It remains to show fr ~ fg. Split

Z fii and fr= Z i

1<i<5<3 1<i<;<3

were f; . (respectively f* ) is defined in the same way as fg (respectively fr), but
with L Iepld(,ed by L ZAeQ Q4. It suffices to prove f ~ [, for every
i <j. Given i < j, choose r € Q3 \ {i,j} and write

(3.13) fl*J =Ee{S+t((+Wy+ Wl)}itL«ivj? Wi = Z Qa.
ANQ,,=0, A>3

Expanding the exponent in powers of itW; we obtain f; = fl(,j + t2R, where
\R| < EZqr |L; ;W1| < Ry + Ry, Ry =EFqr |L; ;jW1|, Ry = Elqr [L; ;W1],
by (3.12). Furthermore, by Cauchy-Schwartz,
(3.14) R <EW?EL? F, | R; <EW{EL; ;Io. <EWJEL] jxq;
Fix {i1,i2} € Q; ;. By symmetry, (3.12) and (3.11),
(3.15) EL?;FS, = | ,0* " Egs (Xy,, X, E(Fg, i1, i2) < 772"y,

(3.16) EL?J%Q:” =|Q; P’I*Eg (X, X, VE(qr i1, i2) < w2 1n? uT 2.

Here we estimated |, ;| < m? and m?p?¢* < 7*u™2 In®u <« 7. Tt follows from
(3.14), (3.15), (3.16) and (3.22) that t?R < R. We obtain f/; ~ f thus proving

fr~ fe.
Proof of (3.10). Expanding in powers of ity we obtain

fi=fo+ fio+ R, fo=Ee{S+t((+ W)}, fio=Ee{S+1t(+W)}itu,

where |R| <212 < R, by (3.21).
Let us show fi19 < R. We now split 11 = pj + p3 +p13, where pf = pg; . It suffices
to prove f = Ee{S+t((+W)}itu; < R, for 1 <j < 3. Given j, fix r € Q3 \ {j}.
By (3.12) and Cauchy—Schwartz,

7] < HEZqy 5] < [HI(E(uH)?) V2 (BF, + Esqy”)'/2.
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Note that (3.21) holds for ] as well. This bound in combination with (3.11) and
the last inequality of (3.12) gives f © < R. Hence, we obtain fa ~ fo. Furthermore,
proceeding as in proof of (4.35) in [BG al, we get

(317) fg ~ fll + f12, f11 == Ee{S —|—tW}, f12 - EE{S —|—tW}ZtC

In the next step we shall show that

(3.18)  fi1~ fi3. fiz~ fia, fis=Ee{S+tWy}, fia=Ee{S+tWy}it(.

Recall that W = Wy + Wy, where W, and W are defined in the proof of (3.9)
above. It follows from (3.17) and (3.18) that fi ~ fi3 + fi4. Invoking the relation
f13 + f1a ~ h1 + ho — h3, see (4.36), (4.37) ibidem, we obtain (3.10). We complete
the proof of (3.10) by verifying (3.18).

Expanding in powers of itW7 we get f11 = fi3+ R, where |R| < EYq, [tW1] <R,
by Cauchy—Schwartz, (3.12) and (3.22). In order to prove fi2 ~ fi4 split Q,, =
Vi U Va, where Vi N V2 = () with cardinality |V;| &~ m/2, for ¢ = 1,2, and write
¢ = (v, +(v,- Expanding in powers of itWy, we get fio = fia+ R(1) + R(2), where
|R(;)| < Et*|Wily;[Yq,\v;- Fix r € V1. By Cauchy-Schwartz and symmetry,

R[> <EPEWTEC, Y, = CEWT|Vi|(n — m)p**Egy (X, Xn)E(Y,|X,, X)
& 12776720,
by (3.22) and (3.12). We have R(;) < R. The same bound holds for R, as well.
The proof of (3.10) is complete.
Lemma 3.1. Assume that T s a U—statistic of degree k. Then
(3.19) EZ? < ci(k)ym3p3¢® 77063072,
(3.20) EY? < ¢;(k)ym*p?? 77803/ 02,
(3.21) Ep? < ¢ (k)ympqr=%65/0?,
(3.22) EW? < 177%93/0%,

where Y, Z and p are defined in (3.7) and Wy is defined in (3.13).
Proof of Lemma 3.1. Given a random variable Q3 = )~ 44, Q4, where H is some
class of subsets H = {A C Q,,, 2 < |A| < N}, write

&1(Qu) = 05 *(pg) ™ Var( > QA),

AeH, |Al=]
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2
J

unless A = B, we have EQ3, = Z;V:Q &(Qu)r’e’ 0;2-. Therefore, in order to prove
EQ3, < ¢(H)771%;5/0? it suffices to show that

32) 4@urd <oz, azm= (TN (TN (7))

if 02 > 0 and put é;(Q3) = 0 otherwise. Since Q4 and @ p are uncorrelated

and make use of (A.23). Note that for U statistics of degree k we have j < k.
Let us prove (3.19). A simple calculation shows that, for m < n/2,

=3

. m n—m - o

é(2)=> <j —k>< L ) <m’n? 7 < ey (k)ym’p* = ¢*e(Z3),
k=0

where the last inequality holds for 3 < j < k, with some constant ¢;(k). In view
of (3.23), we obtain (3.19).
The proof of (3.20), (3.21) and (3.22) is almost the same. We have

m=(3)(D) w=e(7). o= ()

and therefore,
éj(Y) < m2n? =2, éi(p) < mnd L, ej(Wy) < n.

r, T, T2

Finally, invoking the inequality m™n?~"p/q? < ci1(k)m"p"q"72C~"e;(Z3), for
r =0,1,2, we obtain (3.22), (3.21), (3.20).

4. COMBINATORIAL LEMMAS

Here we construct bounds for the second moments of the random variables defined
in (2.4) above.

Lemma 4.1. Assume that 100 < N < n/2. Given 3 <m < N and i € Q,,, we
have

(4.1) EY? « N73m?ss, EZ? <« N~*m%s3, En,, ; < N7%83.

As a by-product of the proof of Lemma 4.1 we obtain a formula for the sums
(4.2), see Lemma 4.2 below, which might be of independent interest.

Let us first introduce some notation. Write Qf = Qn \ Q. Introduce the following
random variables

S=> Ta=U(S)+ - +Un(S). UiS)= Y  Ta 1<j<N,
AEH AEH, |Al=]
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where #H denotes a class of subsets A C ,,, with |A| < N. Observe, that, by
(2.1), the random variables U;(S) and U;(S) are uncorrelated unless ¢ = j. In
particular, we have

ES?= Y EUX(S)= > €S0 €(S):=EUS)o;>.
1<G<N 1<G<N

If 0? =0, we put €;(5) = 0. For non-negative integers k, s, t, u denote

42) (s tu) = %(-1)“’“(2) (i) (v y k) T useniih

v=0

and put 7i(s,t,u) = 0, for u < s At + k. Recall that s At = min{s,t} and,
for z € R, (?) = [z]./r!, if the integer > 0, and (?) = 0, for » < 0. Here
[z], = z(x —1)---(z —r + 1), for 7 > 0, and [z]p = 1. In particular, for non-
negative integers s < v, we have (f}) =0

Proof of Lemma 4.1. The proof consists of two steps, (4.3) and (4.4),

(4.3) EzZ2 < mPEZ], EY? <« Nm*EZZ, En,,; < N’EZ3,
(44) EZ; < N™*6,  for N >100.

Proof of (4.3). Let us show that, for 3 < j < N,

w9 o= (3o o= () (520)(G22)

By symmetry,

N_3 (7=3)A(N )

EUJZ(Zg):(j_3>ETQjUj(Z3), ETo,U;(Z3) = Z(:) Mys;

where M, = (Nv_j) (j ;3) counts the summands T4 of the sum U;(Z3) satisfying
|ANQ;| = j—v. Invoking (2.2), we obtain ETq,U;(Zs) = r0(j —3, N —j,n—j)a3,
thus proving the first part of (4.5). For the second part use (4.24).

Let us prove the first inequality of (4.3). Write Z,,, = Z3 4+ D4+ - - - + D,,,, where

Dy, = Zj, — Zy_1. By the inequality (a3 + -+ +ax)? < k(a? +--- + a3),

EZZ < (m—2)(EZ; +ED; +--- + ED2).
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Now (4.3) follows from the inequalities ED? <« k*EZZ, 4 < k < m. To prove
these inequalities we show that, for 4 <k <m and 3 <j <N,

(4.6) e;j(Dy) < k*e;(Z3),

Observe, that e;(Dy) = 0, for N —k + 3 < j < N, by the definition of Dj. In
the case where 3 < j < N — k + 3, the inequalities (4.6) follow from the relations
(4.8), (4.9) and (4.11), which we shall prove below.

We have

(4.7) Dy, = Z Z TAu{k}UB-

ACQy_,,|Al=2 BCQS

Given j, the sum (4.7) has (kgl) (];]__:f ) different summands T'4y(xyup, such that

AU{k}UB| =j. Fix By C Qf with |By| = 7 — 3 and denote Ag = Qs U{k} U By.
k
By symmetry

(4.8) EU2(Dy) = (k N 1) (Jj - ;) BT, U;(Dy).

In the next step we show that

49 ELWUD0 = (L) + 206 -3 + (5 7 ) 2ali)) 2

where we denote L;(j) = r;(j —3,x,n —j), where Kk = N —k — j + 3. To this aim
split U;(Dy) = Wy + W1 + Wa, where

Wi= Y Y Tavgyus Ai={ACW1:|A] =2, [AN,| = 2—i},
A€A; BCQE,|B|=5j—3

and write ET4 U;(Dy) = ET 4, Wy + ET4,W1 + ET4,W5. Note that (4.9) follows

form the identities
(4.10) ET4,W; = |A;|Li(j)o;, i=0,1,2,

which we are going to prove. Denote Hy = {1.2}, H; = {1,3}, Hy = {3.4}. By
symmetry, for ¢ =0, 1,2,

(1—3)Ak

ET4,W; = |A;|ET4, > Tu,uus = Al D> My sjjvi
BCQg, |Bl=j—3 v=0
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Here M, = (* )(]US) counts those subsets B C §f such that |BN By| =j —3 —v.
Invoking (2.2) we obtain (4.10).
We complete the proof of (4.6), by showing that, for 3 < j < N —k + 3,

(4.11) Li(j) = (Zj ]‘)|L(J)|/e](z3)<<1 i=0,1,2.

To evaluate the ratio L(j) we use the expression (4.5) for e;(Z3) and invoke the
formulas (4.26). Simple calculations yield

L,(.): [N —E]j—s [n—N—l—k—S _H zr yr+k—-3
0 [n — NJ;_s [N —3];- Yr Tp+k—3"

where we denote ., = N —k —r and y, =n— N —r. Now L{(j) < 1 follows from
the inequalities =, < y,, which are consequences of the inequality N < n/2.

The proof of (4.11) for ¢ = 1,2 is similar, but somewhat more involved, because
the expression (4.26) for L;(j ) becomes more complex, for i =1, 2.

Let us prove the second inequality of (4.3). To this aim we shall show that

(4.12) €j(Ym) < ]\7771,46]-(Z3)7 3<j<N.

Note that €;(Y,,) = 0, for j > N —m + 2, by the definition of Y,,. Let us prove
(4.12), for 3 < j < N —m+ 2. Given j, fix By C Q¢,, with |By| = j — 2. By
syminetry,

(4.13) EU?(Y,,) = (Z) (J\; , )ETQQUBOU (Vi)

Proceeding as in the proof of (4.9) above, we obtain

(414 BTaunUi(V) = (L) + 2m =211 + (" ) 1ali)) 2

where L;(j) =r;(j —2,N —m —j+2,n—j), for i = 0,1, 2. Furthermore, arguing
as in proof of (4.11) we show that, for 3 <j <N —m + 2,

N_
(4.15) ( i 72”) Li(j) < Nej(Zs), for i=0,1,2.

Now (4.12) follows from (4.13), (4.14) and (4.15).
In order to prove the last inequality of (4.3) we shall show that, for 3 < j < N,

(4.16) ej(Nm.i) < N?ej(Z3).
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Note that e;(n,.;) =0, for j > N —m + 1, by the definition of 7,, ;. Let us prove
(4.16), for 3 < j < N —m+ 1. Given j, fix By C Qf,, with |By| = j — 1. By
syminetry,

N —m
2
(4.17) EU; (1m.i) = ( )

i1 )ET{i}UBng(nm,i)-

Denote Kk = N —m — 53 + 1. A direct calculation shows that
(71— Ak

J—1\(r . N o
ETy08,Uj(m.i) = Z ( ) ( )Sj,j—v =ro(j — L.k,n — j)oj,

v v
v=0

where in the last step we invoke (2.2). Furthermore, proceeding as in the proof of
(4.11) we obtain

N —
(4.18) ( j_1n>7"0(j—1,/‘£,7’b—j) < N?%¢;(Z3).

Now (4.16) follows from (4.17) and (4.18).

Proof of (4.4). Note that the inequality N < n/2 implies 72 > N/2. Therefore,
in order to prove (4.4) it suffices to show that EZZ < E(ID3T)2. For this purpose
we show that

(4.19) ej(Zg) < ej(DgT), 3<j3<N.
Let us evaluate e;(ID3T"). Denoting Ly = ri(j — 3, N — j,n — j) we have

(4.20) e;(D3T) = (N _33) (8Lg — 24L; + 24Ly — 8L3).

To verify (4.20) write Q3¢ = Q3 and Q3 = {l',... ., K} U{k +1,...,3}, for
k=1,2,3, where i/ = N + i. By symmetry,

(4.21) EU? (D3T) = 8My — 24M; + 24M, — 8Ms,

M, =EVVi, Vi= >, To,,us

Again, by symmetry, we get M) = (];[__3? ) ETq, V). Invoking (2.2) we obtain

G=9AN=) o N
ETQ]Vk = Z < > < ’ >Sj,j—'v—k: = Lkag

v v
v=0
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Therefore, M), = (];[__??) Lo and now (4.20) follows from (4.21).
In view of (4.5) and (4.20) we can write
(4.22) e;(DsT) = 8(1 — W)e;(Z3), W = (3Ly — 3L2 + L3)/ L.
Invoking the formulas (4.26) for Ly, we find that
W < Wi + W, W1 =3A1, —345,+ A3;5. Wy =1245, + 1843,

where A}, = Ay.,/Lo and where the coefficients Ay, are given by (4.26). A

simple analysis shows that W; < ¢4 < 1 and Wy <« N1, Therefore, for large N
(calculations show that N > 100 suffice) we have W < ¢5 < 1, for 3 < j < N.
Now (4.19) follows from (4.22).

In the remaining part of the section we evaluate the sum

=B ()()(5)

v=0

Using the identity, see Feller (1968) Chapter II,

(4.23) 3 -1y (Z) (“;”) = (Z:j) a.t,u€{0,1,2,...}.

v

Zhao and Chen (1990) showed that
—1
(4.24) ro(s,t,u) = <u B S) <u> , u>sAt.

4 i
Given k =0,1,2,...,let [(k,r), 0 < r < k, denote the coefficients of the expansion
(4.25) [z + klp = Uk k)][z]k + Uk, & — D)[z]p—1 + - + 1(k,0)[z]o, r € R.
Lemma 4.2. Let k,s,t,u € {0,1,2,...}. Foru>sAt+k, we have

k
(4.26) (s tou) = Ukor)(=1)"TF Ay,
r=0
where Ay, = (u=s= k=t = blsl[t], ,foru>s+t+k—r, and Ay, =0

(u—s—t—k+r)lul
otherunse.

Clearly, the numbers [(7, j) can be expressed by Stirling numbers. A direct cal-
culation shows that

10,0)=1, I(1,0)=1, I(1,1)=1, 1(2.0)=2, §(2.1)=4, 1(2,2)=1,
1(3,0) =6, (3,1)=18, [(3,2)=9, [(3,3) =1.
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Proof of Lemma 5.1. Write a = s At and b = sV t. We have

(4.27) s, t,u) = i:(—1)'v+k (z) M,, where M, = (Z) (v j: k) N

v=0

A simple calculation shows that

L u—k\""
M=ot (U e sty = (U F) et

u—k—a a

Invoking the expansion (4.25), for the function v — [v + k], we obtain an expres-
sion for M,. Substituting this expression in (4.27) we get

ssto) = o) Uk IS, S = 31 Blmamics

r=0 v=0
We complete the proof of (4.26) by showing that, for 0 < r < k,

u—b—Fk

a—rT

z) s, = o (M) e (M0 e =

Note that [v], = 0, for v < r. For r < v < b, we have [U]TC);) = [b]'r<b_r)-

o
Therefore, denoting v' = v — r, we can write

ST::Sf(_lqu+qmr<b;r)(u;;ﬁ;tr;d).

v'=0

Finally, invoking (4.23) we obtain the first identity of (4.28). The second identity
is trivial.
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