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Abstract

By using the Poincaré type inequalities introduced in [28], estimate of
essential spectrum and eigenvalues is studied for self-adjoint operators on
Hilbert bundles. As applications to vector bundles over a (noncompact)
complete Riemannian manifold, some estimates of eigenvalues and the space-
dimension of L?-harmonic sections are obtained. In particular, some well-
known results in the Hodge theory for compact Riemannian manifolds are
extended.
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1 Introduction

Recall that the famous Hodge’s decomposition theorem provides a representation of
the de Rham cohomology by the space of harmonic forms over a compact Rieman-
nian manifold. Recently, some efforts have been made by Bueler [8] (for the heat
weighted Laplacian), Bueler-Prokhorenkov [9] (for some Gaussian type weighted
Hodge Laplacians on topologically tame manifolds), and Ahmed-Stroock [1] (for a
class of weighted Hodge Laplacians with ultracontractive semigroups), to establish
such a decomposition theorem on the space of (weighted) L?-forms over noncompact
Riemannian manifolds. A key step to do this is to show that 0 does not lie in the
essential spectrum of the corresponding weighted Hodge Laplacian (cf. Theorem
5.10 and Corollary 5.11 in [8]). This is one motivation for us to study the spectrum
for general weighted Hodge Laplacians.
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On the other hand, the essential spectrum of linear operators on a L2-space of
Hilbert valued functions are studied by the authors in [13, 28] using Poincaré type
inequalities (see (2.3) below). To study spectrum estimates on differential forms (or
more generally, vector bundles) over Riemannian manifolds, we first extend some
related results obtained in [13, 28] to Hilbert bundles. This is the main task in
section 2.

Next, in section 3 we study spectrum estimates on vector bundles over a com-
plete Riemannian manifold. We first present a semigroup comparison theorem (see
Theorem 3.1 below) which is essentially classical. By combining this theorem with
results obtained in section 2, one may pass problems on vector bundles to the corre-
sponding ones on the base manifold. Therefore, we are able to estimate eigenvalues
on vector bundles following the line of [29] where the same thing was done on the
base manifold, see Theorem 3.4 and Corollary 3.5 below. Moreover, we obtain some
estimates for the dimension of the space of L?-harmonic sections, see Theorem 3.3
and Corollarys 3.6 and 3.7. In particular, we extend (and improve in some sense)
Gromov’s theorem on the first Betti number (and a more general result by Berard,
Besson and Gallot [5]) to the present general framework with an explicit “n”, see
Corollary 3.7 and the paragraph before it for details.

Finally, we apply results obtained in section 3 to weighted Hodge Laplacians on
differential forms. In particular, we extend the above mentioned Gromov’s theorem
with an explicit “n” depending only on the dimension of the base manifold, see
Corollary 4.2 for details. Moreover, we obtain a Hodge type decomposition theorem
(see Theorem 4.3 below). As has been shown by Bueler and Prokhorenkov in [9] that,
there are examples for noncompact Riemannian manifolds such that this theorem
provides the Hodge’s representation of the de Rham cohomology (cf. (4.5) below).

2 Spectrum Estimates On Hilbert Bundles

Let (E, F, i) be a complete measure space, and H := {(H,, (-,-),) : © € E} a family
of separable real Hilbert spaces (i.e., a Hilbert bundle over F). Assume that there
is a (possibly finite) sequence {e;} C [[, .z Hs such that for p-a.e. z € E, {e;(x)}
is an orthonormal basis in H,. Set

el

M = {f € H H, : (f.e;) is F-measurable for all j},
RIS
where (f, e;)(x) := (f(x),e;(2)),. We call M the space of F-measurable sections of
H.

For p > 1, let L% (u) = {f € M :|f| € LP()}, where LP(u) denotes the LP-
space of real valued functions. As in usual, we denote p(u) = [ udp for u € L*(p)
and regard f = g in L% (u) provided f = g p-a.e. Then L% (u) is a Hilbert space
with the inner product (f, g)r2 ) = p((f, g)). We refer to [24] for more knowledge
on Hilbert bundles.

Recall that A C L%, (u) is said to be LP-uniformly integrable if



Jim sup{p([f["1qp>ny) : f € A} =0.

A linear operator P on L4 (p) is called LP-uniformly integrable if so is {Pf :
w(|fIP) < 1}. Moreover, denote by o(P) and oes(P), respectively, the spectrum
and the essential spectrum of a linear operator P.

Let (£,D(£)) be a positive definite symmetric closed from on L% (u), and let
P, and (L, D(L)) denote, respectively, the associated contraction semigroup and its
generator. It is well-known that L is self-adjoint on L% (p), and (c.f. [16] or [18])

E(f,9)=—n((f.Lg)), [eDE).geDL), (2.1)

%ﬁtf _LBf=PBLf t>0,feD) (2.2)

The first aim in this section is to study the essential spectrum of L by using the
following Poincaré type inequality:

n(f17) S rECf )+ BrInf1)?, feDE), r >, (2.3)

where ro > 0 is a constant and [ is a positive function defined on (rg,00). We
may assume that § in (2.3) is decreasing since the inequality remains true with 3
replaced by B(r) := inf{3(s) : s € (rg,r]} for r > ry. As have been shown in [28]
(also [13]) for H, = R that (2.3) extends known Poincaré-Sobolev type inequalities.
The relationship between oe(L) and (2.3) has already been worked out recently by
the authors in [13] for the case that H, is independent of x, see also [28] for diffusions
on manifolds. A key step of the study is the following lemma, which extends Lemma

3.1 in [13] and hence an earlier result due to Wu [30, 31].

Lemma 2.1. Assume that p is a probability measure and p > 1 is fived. Let P
be a bounded linear operator on Lh (u) with kernel p(x,y), i.e., for p-a.e. x,y €
E, p(xz,y) : H, — H, is a bounded linear operator such that

Pf(z) = /E P ) f@u(dy). | e D).

Suppose that for p-a.e. x € E, we have

Z </E Ip(ﬂf:,y)"@j(ﬂf)Iyu(dy))2 < 0o, (2.4)

where p(x,y)* is the adjoint operator of p(x,y). If {Pf : || fllec < 1} is LP-uniformly
integrable, then for any LP-uniformly integrable set A C Ly (n), P(A) :={Pf: [ €
A} is relatively compact in Ly (p).



Proof. We shall use the following Bourbaki theorem (see page 112 in [7]): a bounded
set in the dual space B’ of a separable Banach space B is compact and metrisable
w.r.t. the weak topology o(B’, B). If P(A) is not relatively compact in L% (u), then
there exist € > 0 and a sequence { f,};2; C A such that ||Pf, — P fiullre .y =€ n#
m. Since P is bounded and A is LP-uniformly integrable, we may take K > 0 such
that

|Pfox — Plmxlle ) =>€/2, n#m, (2.5)

where f, x = fal{f.<x}.- We fix a version of f, for each n, and let F’ be the
p-completion of the o-field o({(f. k,¢e;) : n,j > 1}) which is p-separable. Let

{f € H H, : (f,e;) is F'-measurable for all j > 1} C M.

zelE

Let L% (u)" be defined as L% (u) for F' and M’ in place of F and M respec-
tively, which is separable since F' is p-separable. For f € Li; (1) let u(f|F') =
> (S, e)|F')ej, where p(-|F') is the conditional expectation w.r.t. p under
F'. By Bourbaki theorem with B = LL(u)’, there exists f € L$(u) such that
Jnixe — [ weakly for some n; 1 oo, i.e., for any g € L (1)’, one has u({fn. x,g)) —
w({f,g)). Noting that for any g € L} (n) and any f' € L¥(pn)’, one has u((f’,g)) =

u((u(g|F"), £1)), we obtain pu((fu,x,9)) — n({f.g)) for all g € Ly (p). Then for
p-a.e. x,

IPf(@) = Pfusc(@)lz = D_(Puicf (@) = Pf(x). e5(2));

—Z(/m ﬂmmmwmmwﬁ

< (K+111)"Y (/mwyexﬂwmwf.

By (2.4) and the dominated convergence theorem, we obtain, for p-a.e. x,

Jim [Pf(x) = Pfo e }jhmﬁbﬁh = f.p(,)"ej(x)))* = 0.

Since {|Pfn, k[P : ¢ > 1} is uniformly integrable and p is a probability measure,
Pfn.xc — Pf in L% (n). This is a contradiction to (2.5). O

Directly following an argument in [13], we obtain the following result. We present
below a complete proof of this result for completeness.

Theorem 2.2. Assume that ju is a probability measure. If oes(—L) C |rg ", 00) for
some ro > 0, then (2.3) holds for some B € C(rq, 00). Com)ereply if P, hae kernel
satisfying (2.4) for each t > 0, then (2.3) implies 0es(—1L) C [rg*, 00).
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Proof. For any r > 1o, let r1 = 2(r + 7q). If 0ess(—L) C [ry ", 00), then oes(—L) N
0,771) = 0. Let A\g < Ay --- < A, be all the eigenvalues of —L (including multiplic-
ity) satisfying \; <77, and {fo,--- , fn,} the corresponding normalized eigenfunc-
tions. Let H, = spn{fo,- -, fn.}, we have H, = Q,.(L% (1)), where Q, = Orl_l dE,
and {E) : A > 0} is the resolution of the identity of —L. For any f € D(L),

let g = Q.(f) and h = f —g. We have g = 31" Ou((f fz>)fz € D(L) and hence
h € D(L). Observing that h = f 1 d E\f and hence p(|h]?) f A(f, Exf) 1z,

we obtain

p([hf*) <1 /OOO A, Bxf) 2 = —rinl(f LE)) = mE(S, f). (2.6)

Next, since H, is a finite-dimensional space, £1(r) 1= supg,gen, ZEIZI;Q € [1,00). We
have

p(lgl*) < Bu(r)u(lgl)*. (2.7)

Let e, = m, and let ¢, > 0 be the smallest constant such that z(| f;|* 155 e01)

<é&p t=0,--+,n.. Then

u(lgl) < Zu (fis ) S (Crﬂ(|f|)+M(|<fvfi>|1{|fi|20r}))

1=

< (1 +ne)erp((f]) + (1 +ne)Veru( F?).

Therefore, (2.7) implies

pllgl?) < 261(r) (1 +ne) e f17) + 261 (r) (1 + ne) il £1)*.
Combining this with (2.6), we obtain

ulIF17) < miE(f, f) +260(r) (L + )2l £1)? + 280(r) (L + ) Perp|f17).
This proves (2.3) with 5 € C(ry, 00) such that

201(r) (1 4+ n.)*cir 4B (r)(1 + ny)?cr
1 B o+ T

B(r) =

Next, assume that P, has kernel and (2.3) holds. Assume that there exists
A€ [0,751) M oes(—L). Let 71 > 7o be such that 1A < 1 and take

1—7rA e_”‘t(l — )\7“1)}
2\/§r1 ’ 20155(7“1)

5:min{



which is positive. By Weyl’s criterion (see [21], Theorem VIL.12 and comments on
page 264), there exists a sequence {f,} C D(L) such that || fal[12,) = 1. p((fn: fin)) =
0 for n # m, and

For any m,n > 1, we have h(s) := || P(fo — fin) — € (fo — fin)||% w <8520
H
By (2.8),

h/(S) - 2<<ps - e_ks)(fn - fm)* (psz + )\e_ks)(fn - fm)>L§{(p)
= _2)‘h(5) + 2<(ps - ei)\s)(fn - fm)a ps()‘ + j’)(fn - fm)>L§I(,u)

< 4ey/h(s) < 16e.

Then

1P = Sty = € o = Fnlliy o = 1B = Fin) = € (fr = S |22, 0

2 e_/\t||fn — meL;I(I‘) — v/ 16¢t.
(2.9)

Next, by (2.3) and (2.8), for n # m we have

2= |fa — fullZz g < T1a({fa = fons L(fin = f))) + Bro)llfa = finllZy,
= 200+ (o = Fons (LX) (o = ) + B o = FinllZs
< 2r A+ 2V2rie + B(r1)|| fo — fm||i}{(u)-

This implies

2(1 — 7)) — 2v/2re -7\
| fn — meL}H(M) > \/ () > B0y n # m. (2.10)

Combining (2.9) with (2.10), we obtain

- — A
IPi(fo = o)Lty = € 15(7:1) — V16t > 0 (2.11)

for any n # m. Since {f, :n > 1} is Ll-uniformly integrable, by Lemma 2.1 there
exists n; | oo such that ||P(fn, — fa;)llL1,) — 0, which is a contradiction to
(2.11). O



Next, we turn to study the discrete eigenvalues estimation for L. Let A =
inf 0ess(—L), and set inf() = co. Assume that o(—L) N [0.X) # 0, where o(— L)
denotes the spectrum of — L. We list all elgenvalues of —L (including multiplicity)
in [0,\) as follows: A} < Ay < -+- <\, < -+ We will follow the line of [29] where
the eigenvalues estimation was studied on real—valued function spaces.

Lemma 2.3. Let X and {\,} be as in above. Assume that P, has kernel py(z,y)
and there exists | € N such that dim H, = [, p-a.e. x. Let {f;} be the family of
normalized eigenfunctions for {\;}. We have

l/ 1Bt (o) | 2ppe(dy) = A"thIQ (2.12)
FE

for anyn < ##{i: N < A}

Proof. Let x € E be such that [ =dimH, and {e;(z)} is an orthonormal basis in
H,. Forany 1 <7 </, let

n

9i(y) =Y (filz).e;(@)fily), ye€E.

=1

We have

n ! !
S A P) € S Pgine ) = 3 [ Gl )y 0).eio))onlay

j=1"F
1/2
( [ 1patel opudy) (anjny ) -

The proof is completed by noting that

Z ||gj||L2 (n) = ZZ fl,ej () = Z |fil* ()

=1 =1

O

Theorem 2.4. In the situation of Lemma 2.3 and assume that p is a probability
measure. If there exits t > 0 such that

C(t) = /E Il )l udouldy) < o0

then 0ess(L) = 0 and hence X = oo, equivalently, (2.3) holds for ro = 0 and some
B € C(0,00) by Theorem 2.2. Moreover,

n > 1
n

C(t)’ -

Consequently, #{i : \; < X} <I1C(t)eM for each \ > 0.

1
A, >~ 1o
=1 %0m
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Proof. 1f C(t) < oo, then If’t/g is L?-uniformly integrable. By Lemma 2.1, ]5t/2 is
compact and hence oes(L) = (). Next, by (2.12) we obtain [C(t) > ne !, O

Obviously, to apply Theorems 2.2 and 2.4, one has to study the existence of the
heat kernel for P, and then to estimate it. A convenient way to do so is to compare P,
with a semigroup on L?(u). This trick has been widely used in spectrum geometry,
especially, in the study of spectrum on differential forms over compact manifolds, see
for instance [3, 4] and references therein. The next result is implied by Theorem 16
in [6] (see also [23] for related results), and the final one is a result on the existence
of heat kernels for operators on L% (p).

Theorem 2.5. Let (€, D(E)) be a symmetric closed from on L?(u) which is bounded
from below. Assume that the associated semigroup P is positivity preserving. Then
the following two statements are equivalent:

(1) [P < PS| for all t >0 and f € L3 ().

(2) If f € D(E) one has |f| € D(E), and E(|f|,19]) < |E(f, 9)| for all f,g in a core

Proposition 2.6. Assume that p is a probability measure. Let P be a bounded
linear operator on L% (p), and p a nonnegative measurable function on E x E such
that

Pu— / p(c, y)uly) u(dy)

provides a bounded linear operator P on L*(p). If 1 := #{e;} < oo and |Pf| < P|f|
for any f € L% (1), then P has kernel j satisfying ||p(x, y)|lop < Ip(z, 7).

If in addition that E is a metric space and for each x € E, p(z,-) and p(zx,-) are
continuous and locally bounded on the support of p, i.e., for any y in the support of p
and any unit w € H, there exists e € M with e(y) = w such that in a neighborhood
of y, one has le| = 1 and p(x,-)e(-),p(x,-) are bounded and continuous. Then

15(z, y)lop < p(2,9)-

Proof. For any 4,7 € N with 7,7 <[, let 4% be a set function on F x F defined by

P (A) = /A (e;(x), f’(lA(w)ej)(x))wu(dx), Ae FxF,

where Ay = {z € E : thereexists y € E such that (z,y) € A} and A(z) =
{y € E : (z,y) € A}. Since P is bounded, it is easy to check that ¥ is a signed
measure. Moreover, by Jordan’s decomposition theorem and that [P f| < P|f| for
any f € L*(u), we have |u¥| := (u)* + (1)~ < pu x p. Then p is absolutely
continuous w.r.t. X p with density p¥ satisfying [p¥| < p. Define p(z,y) : H, — H,
by

Bla.y)w =Y p(z.y)w ey)elr), weH,

1,7=1



It is easy to check that ||p(z,y)|l,, < Ip(z,y) for any z,y € E and p is a kernel of
P. Indeed, for any f,g € L% (i), we have

(9P 13,0 = Z /E<p(<f7 ej)e;), (g, eieq)du
ZJZ_ ..
=Y [ treised o asy)
=Y [ el e)@ntaond)

2,j=1

N <9’/Eﬁ("y)f(y)u(dy)kz(m'

Next, let the additional conditions hold. For x € E, y in the support of p and
any w € H, with |w|, = 1, let e € M be such that e(y) = w, l[e| = 1 and p(z, -)e(-)
and p(z,-) are bounded and continuous in a neighborhood N, of y. Let {f,} be a
sequence of nonnegative continuous functions with supports contained in N, such
that f,u — 9, weakly as n — co. We have

\ /E Bz, )e() ful2)uldz)| = |B(fue)(@)], < Pfa(x) = [E Pz, 2) ful2)u(d2).

By letting n — oo, we obtain |p(z,y)w|. < p(x,y). Therefore ||p|l,, < p since we
may take p(z,-) = 0 outside of the support of p. O

3 Vector Bundles Over Riemannian Manifolds

Let M be a d-dimensional connected complete Riemannian manifold, and 2 a [-
dimensional Riemannian vector bundle over M. Let M and I'(2) denote, respec-
tively, the Borel-measurable and smooth sections of 2. Moreover, let I'y(€2) consist
of all elements in T'(§2) with compact support. Let {X;} be a locally normal frame,
and Vi, the usual covariant derivative along X,;. Then the horizontal Laplacian
reads O = Z?Zl V%, which is naturally defined on I'(2). Let p(dz) = eV dx for
some V € C?(M), where dz denotes the Riemannian volume element. We note that
for each o € M, there exists {e;}}_; C M such that {e;(x)} is an orthonormal basis
in (2, for each x € E, and e; is smooth outside of the cut-locus of o for each j.
Consider the operator

L=0+Vyy - R,

where R is a symmetric measurable endomorphism of Q such that (L,To(f)) is

essentially self-adjoint on L3(u) (note that in this case H, = Q,), and L is negative



definite, i.e., u((f, Lf>) 0 for all f € T'y(2). Let (L, D(L)) be the unique self-
adjoint extension of (L,To(2)) which is negative definite too. Let
R(z) = inf{(Rw,w), 1w € Q, |w| =1}, =z € M.

We assume that R € L (dz) and there exists C' > 0 such that u(|Vul?)+ p(Ru?) >
—Cp(u?) for all u € C5°(M). Then the following form is closable and let (£, D(€))
denote its closure (see e.g. Corollary VI.1.28 in [16]):

E(u,v) = pu((Vu, Vo)) + p(Ruv), u,v e Cy°(M).

Be careful that the boundedness from below of (£, C§°(M)) does not imply that
of R, see e.g. Remark 2.4 in [19]. Let (L,D(L)) be the smallest closed extension
(i.e., the Friedrichs extension) of (A + VV — R, C§°(M)) (which is self-adjoint by
Theorem VI.2.6 in [16]), and PtE the corresponding strongly continuous semigroup.

Theorem 3.1. Let {x; : t > 0} be the diffusion process generated by A + VV on
M. We have

21 < A =2 { 1 e | - /OtE(ws)dSH, ferdp, ()

where the second formula holds provided the right-hand side is well-defined. Conse-
quently, Py and PtE have smooth kernels.

Proof. We need only to prove the first inequality in (3.1) since the second equality
is known as Feyman-Kac formula. By Theorem 2.5, it suffices to show that for any

frg € To(Q) with (f, 9) 13 () = p([f] - [9])), one has

E(f,9)l = E( ], la)- (3.2)

Since (f.g) < |] - g]. we have (f,g) = |f| - |g] and hence f =12 on {|g| > 0}. By

Kato’s inequality, we have |V|g|| < |Vyg| for all g € T'4(Q2), cf. Lemma VI.31 in [4]
and its proof. Moreover, since any order derivatives of g are zero on {|g| = 0}, we
obtain

E(f,9) = —n((f.Lg)) = —p((f, (O+ Vov)g)) + n(RIf] - |g])
=p 1{|g|>o}<V%,Vg>> + p(R|f] - |g])

= (100 || |||V9| >+ 5#(Laai>01 V(110 (9- 9)) + p(EIf] - lg])

> (oo LY (1 (VL 11} + w19

lgl’
= n((VISL VIgh) + w(BIf] - 1gl) = EUF1 1gD-
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Therefore (3.2) holds.

Finally, since N2, D(L") C T'(Q) and N3, D((A + VV — R)") C C=(M), by
the argument in the proof of Theorem 5.2.1 in [10], we conclude that P, and PtE
have smooth kernels. O

From now on, we let P? denote the diffusion semigroup generated by A + VV,
and p?(z,y) its kernel w.r.t. p which is positive since M is connected. Denote by
b(L) the dimension of the L-harmonic space H(L) := {f € D(L L) : Lf =0}. It
is well-known by Hodge’s theory, when M is compact and L is the minus Hodge
Laplacian on differential p-forms, that b(i) coincides with the p-th Betti number.
Moreover, let A and {\;} be as in the last section.

A direct application of Theorem 3.1 is to establish the inequality (2.3) for £ from
a known inequality for £. We refer to [28] for criteria of such inequalities for the
Dirichlet form associated by PJ.

Corollary 3.2. Assume that R > —c for some ¢ > 0. if there exist 11 € [0,¢7")
and a positive function [y defined on (ry,00) such that

p®) < rp(|Vul?) + Bu(r)u(lul)®, 7>, u e CF (M), (3.3)
then (2.3) holds for ro =11/(1 — cry) and
. Gi(s) . 1
ﬁ(r)flnf{l_cs g <s<r/\c}, r > ).

Proof. For any f € I'o(€2), by Theorem 3.1 we have

p(IB 1) < e u((PIFDP), t=0.
Therefore, by (2.1) and (2.2)

E(f.f) = —55 (PSP li=o
1d o2t (( PO 2 2
> =2 S (PRI, = HVIAIP) = i),
The proof is completed by combining this with (3.3). O

Now we study the number b(L) by using Theorem 3.1.
Theorem 3.3. (1) We have b(L) = 0 provided either inf o(R — A —VV) >0 or

lim, /M E” exp [—2 /0 t E(xs)ds]u(dx) ~0. (3.4)

(2) Assume that p is a probability measure. If R >0, then b(L) < l. Moreover, for

any f € H(L), |f] is constant.

(3) Assume that R is bounded from below. We have A > inf ogs(—(A + VV) + R).

C’on sequently, let p(x) be the Riemannian distance between x and a fized point o €
M, if 6 :=1lim,  R+infoe(—A—VV) >0, then X > § > 0 and hence b(L) < oo.

I==p—o0

11



Proof. (1) Let f € H(L). If inf o(—A —VV +R) > 0, then |f| = |P.f| < P f| — 0
as t — oo, hence f = 0. Next, Theorem 3.1 implies

(517 = WP < 5F) [ 2 exp {— 2 [ tﬁ(m]u(dx).

Then f = 0 provided (3.4) holds.

(2) For fixed n < b(L), let {f1, -+, fu} € H(L) be an orthonormal family. If
R > 0, by Proposition 2.6 and Theorem 3.1 we have |p:(x,y)|lop < pY(z,y). Then
by Lemma 2.3, for any compact set B C M there holds

_Z/B|fi|2dué l/Bp?(x;af)u(dw), t>0. (3.5)

We now intend to show that p?(x,x) | 1 as ¢ | oo for all z € M. Observing that

pt z,7) / |th/2 (y)p(dy) <0,

then p?(x, x) is decreasmg in t. Next, noting that the Dirichlet form for A + VYV is
irreducible since M is connected, we have ||Pu — p(u)||r2(,) — 0 as t — oo for any
u € L?(u) (see e.g. the Appendix in [2]). For fix x € M, letting u(y) = p(z,y), we
obtain

1w — ()l 2y = 1((Plga (5 2) = 1)%) = Py (@, 2) = L.
Therefore p,(x,z) — 1 as t — 0o. Now by first letting ¢ — oo and then B — M,
we obtain from (3.5) that n < I, hence b(L) < [ since n is arbitrary. Moreover, for
f € H(L), we have

[fl(2)* = |PefI(2)* < pay(e. 2)u(|f]7).
By letting ¢ — oo we obtain | f|(x)? < u(|f|?) and hence | f|? = u(|f]?), p-a.e.

(3) We note that by Donnely-Li’s decomposition principle [11], we have O'ess(]:) =
Oess(L| ge) for any compact domain B, where L|g. denotes the operator L on B°
with Dirichlet boundary conditions. Although their proof in [11] is only given for
the Laplacian for functions, but it works also for our present case. Indeed, let
{fa}22, € D(L) be such that u(|fa]?) = 1 and E(f, fn) < ¢ for some ¢; > 0 and
all n > 1, we have sup,, #(]V f,]?) < oo since R is bounded from below. Moreover,
since V' is locally bounded, we obtain sup,, [, |V fu|*dz < oo. Therefore {1pf,}
is relatively compact on L% (u) (note that suppf, C B and V is bounded on B).
Hence Donnely-Li’s argument applies.

By the above decomposition principle, we have

inf Ges(—(A + VV) + R) = lim inf o([—(A + VV) + R]|s¢)

n—oo

and the same formula holds for L in place of —(A + VV) 4+ R. Then the proof
is completed by (3.2) and noting that info([—(A + VV) + R)]|p:) > infp. R +
info(—(A+VV)|ge). O
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We remark that half part of Theorem 3.3 (1), i.e. info(R— A —VV) > 0
implies b(L) = 0, is already known by Elworthy and Rosenberg [12] for differential
forms. Moreover, as is well-known in Hodge’s theory, Theorem 3.3 (2) is optimal
in the sense that there exist examples such that b(i) = [ and R > 0, for instance,
the Betti numbers on torus (see e.g. [14]). Finally, Donnley-Li’s decomposition
principle has become an efficient tool for estimating inf o (—A — VV'), we refer to
[17] and references therein for details. Also, one may estimate this quantity by using
functional inequalities according to Theorem 2.2. In particular, if p is a probability
measure and PP is uniformly integrable in L?(1), then by Lemma 2.1 (see also [13])
inf gess(—A — VV) = 0.

We now study the estimates of A, and then use the basic estimate (3.6) below

to obtain more estimates of b(L).

Theorem 3.4. Assume that pu is a probability measure and R > —c for some ¢ € R.
If P (x, ) is integrable w.r.t. p for somet >0, then A\ = oo and

ne~¢t

1
Ap, > sup - lo , n>1. 3.6
o £ U [ Pz, ) pu(de) (30

In the case that p(z,x) is not integrable, let o5, = p({z : pX(x,x) > s}). If there
exist some positive [ defined on (0,00) such that

u(w?) < ru(IVa?) + B)u(ul)’, v >0, ue CE(M). (3.7)

Then \ = oo and

—ct

1 nee 1
2 " — |l —cr— :
Ap > sup { (t log " ) A ililo) . [1—cr —28(r) (e + 6s4)]

(3.8)
g€ (0,1),s,t> 0}.

Especially, if (3.7) holds for B(r) = exp[a(1+779)] for some a > 0 and § > 1, one
has A\, > M[logn — 0]7)° for some \,0 >0 and all n > 1.

Proof. The first assertion follows from Theorem 2.4 by noting that in the present
case we have |[py/2|op < pg/Q (z,y)e/? according to Proposition 2.6 and Theorem 3.1.

Next, if (3.7) holds then A = oo according to Theorem 2.2 and Theorem 3.3 (3). If
(3.7) holds for B(r) = exp|a (1 +r~1/%)] for some a > 0 and § > 1, by Corollary 5.12
in [28] (in which V € C*°(M) is assumed, but the argument there works also for
V € C*(M)), we have p?(x,2) < exp[A(1 + ¢t~+/=Y] for some A > 0 and all ¢ > 0.
Then the last assertion follows from (3.6).

It reminds to prove (3.8). The proof is essentially taken from [29]. Let Ay, =
{z: p?(z,x) < s}. By (2.12) we obtain

13



e_/\nt Z 1As,t|fi|2 < leCtp?('v ')1As,t < leCtS'
i=1
This implies

ne

1 < 1
Dl = s (39)
=1

1
> -1
)\n_t Og{ls

provided p(14,,]fi|?) = ¢ for all 1 <4 < n. On the other hand, if there exists 7 such
that p(1a,,|f;|*) < e, we have

p(Fi)? = ((Las LA + n(lac [ i) < 2(e + 850
Combining this with (3.7), we obtain

L= u(lfil?) S ru(IVIIP) + B p( fi)? < rE(fis fi) + er +28(r)(e + b)
=r\i+ocr+208(r)(e+dst), r>0.

Therefore 1
A =X >sup=[1—cr —28(r)(e + 6,4)]
r>0 T
Combining this with (3.9) we obtain (3.8). O

To estimate p)(x, z), we assume

(Ric — Hessy)(X, X) > —K|X|>, X €TM, (3.10)

for some K > 0. By the dimension-free Harnack inequality obtained in [26], we have

[Pou(a)]? < PO (y) exp [ff(—y}(} ferr(u, t>0, (311

where p(z,y) denotes the Riemannian distance between x and y. Then for any u
with pu(u?) = 1, we have

K(p(z) +1)?

1> [Pt(}ZU(a:)Pu(BO(T)) exp [— T ], r>0,t>0, (3.12)

where 0 € M is a fixed point, p(z) := p(o,x) and B,(r) is the geodesic ball with
center o and radius r. Taking u(y) = p?/2 (x,y)/\/PY(x,x), we obtain

L [K(p(m) +r)?

p?(x,x)§M<B<r)) | oKt ], r>0,t>0,ze M. (3.13)

Therefore, there exists ¢, ca > 0 such that As; D {z: p(x) < ¢1y/logs — o} for all
s> 1.

14



Corollary 3.5. Assume that u is a probability measure and (3.10) holds. If R > —c
and (3.7) holds, then

Ap > sup {(logmelC>Asupl[l—cr—Qﬂ(T)(5+u(p>01\/@—02))}}

e€(0,1),5>1 r>0 T

for some c1,co > 0 and all n > 1. Consequently, if in addition (3.7) holds for
B(r) = expla(l + r=%)] for some a,6 > 0, then A\, > A([logn — 0]*)° for some
A0 >0 and alln > 1.

Proof. By Theorem 3.4, it suffices to check the second assertion for 6 € (0,1]. By
Corollary 6.3 in [28], there exists aj,as > 0 such that u(p > c1y/logs — cg) <

aq exp [ —as(log s)V/9] for all s > 1. Then the proof is completed by some simple
calculations. O

We come back to estimate b(L) by using (3.6).

Corollary 3.6. Assume that p is a probability measure and R > —c for some c € R.
We have

b(L) < 11>1£ eCtl/Mp?(x,:c)u(dx). (3.14)
If (3.10) holds, then
- , le“t o K(p(z) +r)? .
b(L) S AT /M p[ 1 — o Kt }“(d ) (3:15)

In particular, if M is compact with diameter D, we have

t>0

b(L) < linf exp [ -+ ct} (3.16)

Proof. Assume that the right-hand side of (3.14) is finite, by Theorem 3.3 one has
A = oo and hence b(L) < oco. Let n = b(L), we have A\, = 0. Then (3.14) follows
from (3.6). Moreover (3.15) follows from (3.14) and (3.13). If M is compact, by
(3.11) we obtain p?(z,z) < exp [%}, therefore we obtain (3.16). O

We note that (3.16) does not imply the famous Gromov type result: there exists
n > 0 such that if D*inf R > —n then b(L) < I. This result was first proved by
Gromov for the first Betti number for compact M with some n depending only on d,
using geometric method (cf. [15]). A complete proof of this result for V' = 0, with
some 7 depending only on [, KD? and d, was given by Berard, Besson and Gallot
[5] by using a heat kernel comparison deduced from isoperimetric inequalities, We
present below a different proof by using the a gradient estimate obtained in [25], with
an explicit 1 depending only on [ and K D?. As a consequence of our next result,
we obtain the Gromov’s theorem in the next section with an explicit n depending
on d, see Corollary 4.2.
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Corollary 3.7. Assume that M is compact with diameter D. Let K > 0 be such
that (3.10) holds. Put

[+1
= su lo
g t>%)) 1+t gl(1+4itexp[KD2(%+ 1_e}KD2)])
- 1 o l+1
~ 1+ 1lexp[KD2(1/8 + 1/(1 — e KD?)] ST 1/4

If D*inf R > —n, then b(L) < I.

Proof. Let @ € M be fixed. For any y € M, let u(y) = pY.(x,y). We have
Pheyn (¥, ®) = Pheu(y). From the proof of Corollary 3.5 we see that [jufle <

exp [l_fngg}. By Theorem 4.4 in [25] with A = 0, we obtain

KD? b )
exp |:1—6_KD2:|/0 exp[Kr*/8]dr

Vb (- DI W) < 1o

1 1 1
< 2(— 7) .
= 4Dt P lKD SR ]

Since [, Phag 1) (Y, 2)p(dy) = 1, there exists y € M such that phs,, ) (y,2) < 1.
We obtain

1 1 1
pOD2(t+1)(I,.I‘) <1+ Eexp |:KD2 <§ + m)} .

If D?inf R > —n, then there exist ¢, > 0 and € > 0 such that

. 1 [+1
D?>inf R > e — lo
TEE T P el KDL L))
1 [+1

> e — log .
to+1 lfMpDQ(HtO)(x,x)u(dx)

By this and (3.15) we obtain

1
Z+T<l+1.

Therefore b(L) < [ since b(L) € Z,. Finally, taking ¢t = lexp[KD?/8 + KD?/(1 —
eKP*)], we obtain the desired lower bound of 7. O

b([:) < le—a(l—i—to)

Finally, we present below three simple examples to illustrate our results obtained
in this section.
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Example 3.1. Let M be noncompact and p is a probability measure. If there
exists a > 0 such that lim,_..(A + VV)p < —a, where the limit is taken outside of
the cut-locus of o, and lim, . . R > —a?/4, then 0 ¢ 0ess(L) and hence b(L) < oo.
Indeed (see e.g. (2.8) in [27]), we have lim, . info(—(A + VV)|p,n)e) > a?/4.
By Donnely-Li’s decomposition principle [11], we have inf oess(—(A + VV)) > o?/4.

Therefore, by Theorem 3.3 (3), 0 ¢ 0ess(L) provided lim, R > —a?/4.

p— 00

Example 3.2. Let M be noncompact with Ricci curvature bounded from below,
and 0 > 1 a constant. Let V = —ap for some o > 0 with p € C°°(M) such that p’—p
is bounded and p is a probability measure, where p is as in above. The existence of
p is guaranteed by a classical approximation theorem and the volume comparison
theorem. By Corollary 2.5 in [28], (3.7) holds with 3(r) = exple; (1 + r~%/20-1])]
for some ¢; > 0. Therefore by Theorem 3.4, if R is bounded from below, then there
exist A, 0 > 0 such that

A > M[logn — 0]7)20-D/6 >, (3.17)

provided § > 2. If in addition (3.10) holds, then (3.17) holds for all 6 > 1.

Example 3.3. Let M be compact. We have p?(x,z) < a(1+t~%2) for some a > 0.
By Theorem 3.4 we obtain A, > A[n?? — @] for some \,0 > 0 and all n > 1. This
is sharp in the order of n according to the known asymptotic estimates obtained in
120] for V = 0.

4 Applications to Weighted Hodge Laplacians

In this section, we apply results obtained in section 3 to weighted Hodge Laplacians
on differential forms. Throughout this section, we fix p € [0,d]NZ,, and let 2 = A?
be the bundle of p-forms. Then [ = p!(%p)!. Let A = d;d + dd;,, where d, is the
adjoint of the exterior derivative d on L3, (p). We have (see [8]) d = § — iyy and
hence

AP = AP — Lgy = —0 — Lyy + R, (4.1)

where AP := dd + dé and R denote, respectively, the usual Hodge Laplacian and
the curvature operator on p-forms, [0 is the horizontal (negative) Laplacian as in
section 3, and Lx = dix + ixd is the Lie differentiation in the direction X. The
formula (4.1) was obtained in [8] for the case that M is oriented, and it remains true
in general by passing to the oriented double cover of M. Moreover, (A7 T'o(A?)) is
essentially self-adjoint, see e.g. page 692 in [8].

Let {E;}9_, be a locally normal frame with dual {w;} C A'. We have, for any
differential form ¢,
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d d
ivvdd = > ipvmym (@i A V) = Vovre — > (VV, Ew; A (ig, Vi),

i,j=1 i,j=1
d d
digyg = Hessy (E;, Ej)w; A (ig,0) + Y _(VV, Ej)wi A (ig, Vi,0).
i,j=1 i,j=1

Therefore

d
LVV = Z HQSSV(Ei, Ej)wi A iEj + VVV = HeSSV + VVV-

ij=1

Combining this with (4.1), we obtain

Al = -0 —Vygy + R — Hessy. (4.2)
Theorem 4.1. All results in section 3 hold true for Q = A?, L = —Al,R=TR —

Hessy and | = m.

Recall that the Gromov’s theorem mentioned in the last section says that for
compact M, = A' and V = 0, there exists a positive n depending only on d
such that D?inf R > —n implies b(L) < d. The following result extends the above
Gromov’s theorem with an explicit  depending only on d. We remark that when
M is compact, b(—APr) is equal to the p-th Betti number, see Theorem 5.2 in [§]
(note that [8] treated the case that V' € C°°(M), but arguments given there work
also for V€ C%(M)). Hence Corollary 3.7 and Corollary 4.2 below improve the
corresponding results on Betti numbers mentioned right before Corollary 3.7, in the
sense that (in particular when R is not constant) one may choose a nice V such that

R — Hessy has a lower bound bigger than that of R.

Corollary 4.2. For the case where Q = A', we have R = Ric — Hessy and [ = d.

if
log[(d+1)/(d+1/4)]

1+d(l+dL)dos

D?*inf R > —
then b(—A)) < d.

Proof. Let n be defined in Corollary 3.7, we have n < log ‘%1. If —-KD? :=
D?*inf R > —n then KD? < log %! and hence

logl(d+1)/(d+1/4)] _log[(d+1)/(d+1/4)] _

1+dexp[(log (L +14+d)]  L+d(1+d1)H9/s

Therefore, if D?inf R > —n' then D*inf R > —n and hence b(—=A ;) < d by Corollary
3.6. O
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We remark that in the situation of Corollary 4.2, for any n > d there exist
examples with big enough K D? such that b(z) > n. Moreover, the above Gromov’s
theorem does not hold with D? replacing by the volume of M. See e.g. pages
138 139 in [4] for details.

Let ((d;,)?,D((d},)?))) and (d?, D(d?)) denote, respectively, the operators dj, and
d on L3,(p) with domains. Let C7°P := N2, D((AF)"). By Theorem 5.3 in [8],
g:jo’p C I'(AP). Let d|geow (rvesp. dj|ceor) denote the restriction of d (resp. dj,) on

0,p
e

Theorem 4.3. Let R = R—Hessy. If either inf o(~A—-VV+R) > 0 orlim, . R >
SUP Oess (A + VV), then imdP~ is closed and

Lo (1) = im(d )P p(agypry @ im d? ™ pap-1) @ ker AP | par),

CEOJ) = lm d;|CﬁO,P+1 @ 1m d|Cﬁo,p71 EB kerAfAD(Az), (43)
ker dp|'D(dp) ~ kerd|CEo,p

112

ker AP - ’
erAl|par) imdP ey imd|gees

Proof. By Theorem 3.1 and Theorem 3.3 (3), each condition in Theorem 4.3 im-
plies 0 € 0ess(A7). Then the proof is completed by some classical results (see e.g.
Theorem 5.10, Corollary 5.11 in [8], and Corollary 10 in [9]). O

To compare Theorem 4.3 with the corresponding result obtained by Ahmed and
Stroock [1], we present the following corollary.

Corollary 4.4. Assume that p is a probability measure and R is bounded from
below. If there exists positive U € C?*(M) such that U + V is bounded, {U < N} is
compact for each N > 0, |VU| — 0o as U — oo, and

AU
VU
Then oes(A + VV) =0 and hence (4.3) holds.
Proof. We have

limU_m

1. (4.4)

(A = VU)eV =c[AU — |[VU|* +¢|VUPleY, > 0.

If (4.4) holds, then there exists ¢ € (0,1) such that AU — (1 — ¢)|VU|*> — —o0 as
U — oo. By the proof of Theorem 1.2 in [26] (or the paragraph after it), we have

Vul2e~Ud
inf{fz‘j| uZL_edex 0 ue C(M),u=0on{U < n}}
M

> 5li]réf [(1—¢)|VU]* — AU] — o0
as n — oo. Since U + V is bounded, we have inf o(—(A 4+ VV)|{ysn}) — o0 as

n — o0o. Therefore ges(A+ VV) = 0 by Donnely-Li’s decomposition principle. The
proof is completed by Theorem 4.3. O
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Under several conditions, Theorem 5.1 in [1] provides the following decompo-
sition: for any ¢ € T(A?) N Lyp(p) with d%¢ € IA3,-1(p), there exists a unique
1 € kerAb|par) such that ¢ —n = d& for some & € T(AP")N L3, (p). This decom-
position is implied by (4.3) (e.g. the first formula). Their conditions (e.g. (1.1), part

of (2.8) and (4.4) in [1]) imply that MUHOOWA—UU'Q < 0, hence Corollary 4.4 applies.

Note that their conditions are strong enough to imply the ultracontractivity of P;, so
all L2~ harmonic forms there are bounded. We refer to [22] for some general criteria
of ultracontractivity for semigroups on manifolds.

We remark that for noncompact “topologically tame” manifolds (see Definition
10.1 in [8]), [9] constructed an example for V' such that oe(AZ) = () and kerAr =
HY rham» the p-th de Rham cohomology, and hence results in Theorem 4.3 hold.
More precisely, let M = My U (Ui M;) be a connected Riemannian manifold, where
My is a compact domain, M; is isometrically diffeomorphic to (0, 00) x @Q; (with the
product metric) with a compact manifold Q; for each i, and FE; N E; = (). Therefore
the curvature operator on forms is bounded. Let p be the distance function from M,
ie. p(z) =rforx=(r,q) € E; = (0,00) xQ;. Let V € C°(M) such that V = —cp?
outside a neighborhood of M, and p is a probability measure. By Proposition 6 and
Theorem 15 in [9], one has

ker d|F(Ap)

ker A7 = (4.5)

im d|F(Ap71) '

Moreover, Theorem 2 in [9] says that oes(AF) = 0. Actually, by Corollary 3.3 in

28] and the proof of Corollary 2.5 in [28], P? is hyperbounded and hence so is P; by
Theorem 3.1. Consequently, by Corollary 3.3 in [28], (3.8) holds for 3(r) = exp|a(1+
r~1)] for some o > 0. Then it follows from Corollary 3.5 that A, > Alogn — 6]* for
some A, € >0 and all n > 1.

Finally we present below an example to illustrate Theorem 4.3.

Example 4.1. Let M be noncompact with a pole o, and p the Riemannian distance
function from o. Assume that the Ricci curvature is bounded from below by —K
for some K > 0, and the sectional curvatures are nonpositive. Take V € C?(M)
such that V = —c1p° + ¢, outside of a neighborhood of o, where ¢; > 0,6 > 1 and
co € R such that p is a probability measure. By Hessian comparison theorem we
have lim p_}ooHess,V > 0. Moreover, by Laplacian comparison theorem, Ep_}ooLp <

K(d —1) — c;. Then, by Examples 3.1 and 3.2, we have 0 ¢ 0es(A?) and hence
(4.3) holds according to the proof of Theorem 4.3, provided any one of the following
two conditions is fulfilled:

(1) 6 > 1 and R is bounded from below.
(2) 6=1andlim, R >—1(c;— V/Ed=1)".

== p—o0lX

Acknowledgment. The authors would like to thank Professor M. Rockner for
helps.

20



References

1]

2]

8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

Z. M. Ahmed and D. W. Stroock, A Hodge theory for some non-compact man-
ifolds, 2000 preprint.

S. Albeverio, Y. G. Kondratiev and M. Rockner, Ergodicity of L?-semigroups
and extremality of Gibbs states, J. Funct. Anal. 144(1997), 394-423.

P. H. Bérard, From vanishing theorems to estimating theorems: the Bochner
technique revisited, Bulletin Amer. Math. Soc. 19(1988), 372-406.

P. H. Bérard, Spectral Geometry: Direct and Inverse Problems, Lecture Notes
in Math. 1207, Springer-Verlag, Berlin, 1986.

P. H. Bérard, G. Besson and S. Gallot, Sur une inégalité isopérimétrique qui
généralise celle de P. Lévy-Gromov, Invent. Math. 80(1985), 295-308.

G. Besson, On symmetrization, Appendix A for [4], Lecture Notes in Math.
1207, Springer-Verlag, Berlin, 1986.

N. Bourbaki, Espaces Vectoriels Topologiques (Livere V), Chapter I1I-V, Her-
mann, Paris 1955.

E. L. Bueler, The heat kernel weighted Hodge Laplacian on noncompact mani-
folds, Trans. Amer. Math. Soc. 351(1999), 683-714.

E. L. Bueler and 1. Prokhorenkov, Hodge theory and cohomology with compact
supports, MSRI Preprint # 1998-026.

E. B. Davies, Heat Kernels And Spectral Theory, Cambridge Univ. Press, 1989.

H. Donnely and P. Li, Pure point spectrum and negative curvature for noncom-
pact manifolds, Duke Math. J. 46(1979), 497-503.

K. D. Elworthy and S. Rosenberg, Generalized Bochner theorems and the spec-
trum of complete manifolds, Acta Appl. Math. 12(1988), 1-33.

F. Z. Gong and F. Y. Wang, Functional inequalities for uniformly integrable
semigroups and applications, SFB-343 preprint 99-80, Bielefeld.

M. Gromov, Curvature, diameter, and Betti numbers, Comm. Math. Helvetici
56(1981), 179-195.

M. Gromov, J. Lafontaine and P. Pansu, Structures Metriques pour les Varietes
Riemanniennes, Cedic-Fernand Nathan, Paris, 1981.

T. Kato, Perturbation Theory for Linear Operators, Second Edition, Springer-
Verlag, Berlin, 1976.

H. Kumura, On the essential spectrum of the Laplacian on complete manifolds,
J. Math. Soc. Japan 49(1997), 1-14.

21



[18]

[19]

[20]

[23]

[24]
[25]

[20]

[27]

28]

[29]

[30]

[31]

7. M. Ma and M. Rockner, Introduction to Theory of (Non-symmetric) Dirichlet
Forms, Springer-Verlag, Berlin, 1992.

G. Metafune and D. Pallara, Discreteness of the spectrum for some differential
operators with unbounded coefficients in R™, 1999 preprint.

S. Minakshi-Sundaram and A. Pleijel, Some properties of the eigenfunctions
of the Laplace-operator on Riemannian manifolds, Canad. J. Math. 1(1949),
242-256.

M. Reed and B. Simon, Methods of Modern Mathematical Physics, I: Functional
Analysis, Academic Press, New York, 1980.

M. Réckner and F. Y. Wang, Supercontractivity and ultracontractivity for (non-
symmetric) diffusion semigroups on manifolds, a revised version of SFB-343
preprint 99-088, Bielefeld.

I. Shigekawa, LP contraction semigroups for vector valued functions, J. Funct.
Anal. 147(1997), 69-108.

M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, Berlin, 1979.

F. Y. Wang, On estimation of logarithmic Sobolev constant and gradient esti-
mates of heat semigroups, Probab. Theory Rel. Fields 108(1997), 87-101.

F. Y. Wang, Logarithmic Sobolev inequalities on noncompact Riemannian man-
ifolds, Probability Theory Relat. Fields 109(1997), 417-424.

F. Y. Wang, Fxistence of the spectral gap for elliptic operators, Arkiv For
Matematik 37(1999), 395-407.

F. Y. Wang, Functional inequalities for empty essential spectrum, J. Funct.
Anal. 170(2000), 219-245.

F. Y. Wang, Estimates of semigroups and eigenvalues using functional inequal-
ities, SFB-343 preprint 99-125, Bielefeld.

L. M. Wu, Large deviations for Markov processes under superboundedness, C.
R. Acad. Sci. Paris Série I 324(1995), 777-782.

L. M. Wu, Uniformly integrable operators and large deviations for Markov pro-
cesses, J. Funct. Anal. 172(2000),301-376.

Fu-Zhou Gong: Institute of Applied Mathematics, Academy of Mathematics and
System Science, Chinese Academy of Science, Beijing 100080, P. R. China. E-mail:
fzgong@amath4.amt.ac.cn

Feng-Yu Wang: Department of Mathematics, Beijing Normal University, Beijing
100875, P. R. China. E-mail: wangfy@bnu.edu.cn

22



