ON THE TRACE OF ALGEBRAIC INTEGERS OF SMALL HEIGHT

Arturas Dubickas

Abstract. We give an upper bound for the modulus of the first non—zero trace among natural powers
of an algebraic integer of small house. An upper bound for this power is obtained for Pisot and Salem
numbers. Although the house of these is not at all small, the similar bounds for the first non—zero trace
are also established. Finally, we give an upper bound for the trace of an algebraic number with the

Mahler measure bounded above by the square root of the degree.
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1. Introduction.
Let a be an algebraic integer of degree d > 2 with the minimal polynomial
¢+ a1z 4 ag_ix+ag = (r—a1)...(x— aq)

over the rationals. There are various inequalities between different heights of algebraic
numbers. For instance, we have

(d+1)""? < H(a)/M(a) <2,

where H(a) = maxigr<d|ar| and M(a) = HZ:1 max{1, |ag|} is the Mahler measure
of an algebraic integer a .

Mignotte [10] was the first to show that the second inequality can be improved if the
Mahler measure is small and the degree d is large. His result was only slightly strength-
ened in [2] and [7], and it is known to be not far from being sharp (see e.g. [1]). If,

for instance, M () < d* then H(a) < dMV4/2 where A >0 and d is sufficiently
large (see [7]). Clearly, the Mahler measure for algebraic integers is bounded above by

the dth power of the house, namely, M («) < wd, where |a| = max;<pca|ax|. The
above inequality for heights can, therefore, be rewritten in terms of the “small” house.
But in any case it remains subexponential in d. Indeed, it is known [16] that if « is a
non—cyclotomic algebraic number of degree d then

M(O&)>1+W

Consequently, we cannot get the inequality better than H(«) < dV4? for the height
of non—cyclotomic «.

The upper bound for the modulus of the coefficient a,, in case when n is small
is much better than the one for the maximal in absolute value coefficient a,, where
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la¢| = H(a) = maxj<r<d |ak| . The reason for that is very simple. In 1950, Erdos and
Turdn [8] proved that the roots of the polynomial of small height are in some sense
uniformly distributed: there is a “right” number of roots of such a polynomial in every
angle of the complex plane with vertex at the origin. The versions of this statement
with the height being replaced by the Mahler measure were later given by Mignotte
[11], Bilu [4], and by the author [5], [6].

In this paper, we investigate the case when a,, is the first non-zero coefficient in
the minimal polynomial. To be precise, let (for an algebraic integer o) n = n(a) be
the smallest positive integer n so that a, = a,(a) #0.

Set S (a) = 2221 ap* for the sum over the mth powers of conjugates of «.
From the Newton identities, we deduce that the trace of o is zero for every k in the
range 1 < k < n = n(a). Consequently, S,, = —na,, . Since |S,| < d|a| , we obtain
the inequality

— N

d|af
an(0)| < .
an(@)] <

Here, the equality holds for every algebraic integer of the form a = exp{my/—1/2V},
where N is a positive integer. Indeed, the minimal polynomial for such « is 22" 11 ,
and its house is equal to 1, since a is cyclotomic. Also, n = n(a) = 2 = d, so that
both sides in the above inequality are equal to 1. Throughout this paper, we reserve
this notation y/—1 for the imaginary unit in the upper half-plane. Below, we shall
refer to this inequality for |a,| as to the “trivial inequality”.

The trivial inequality is not sharp if « is not cyclotomic. Below we will show that
for some « the quantity on the right—hand side of the trivial inequality can be replaced
essentially by +/d/n .

This paper is organized as follows. In the next section we give our results. In
Section 3 we present some already known (or in some cases well-known) lemmas. The
proofs are given in the final section.
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2. Results.

The folowing theorem strengthens the trivial inequality for small n in the case
when the roots of the minimal polynomial are all in the annulus d='/¢ < |z| < d'/9.

Theorem 1. Suppose that « is an algebraic integer of degree d so that

max{|al,|1/a]} < d*/%.

lan] < 4 /dlogd
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If n=n(a) <d/(2logd) then




Clearly, the trivial inequality might give stronger bound than that of Theorem 1
provided that |a| is very small, say, if |a| < 1+¢/d with some absolute positive constant
c. But there are not too many of such numbers except for the cyclotomic ones. In fact,
the conjecture of Schinzel and Zassenhaus [12] asserts that there are none of these for
some c¢. Presumably (see the conjecture of Boyd [3]), it is enough to take ¢ = 1/3
(even something smaller than that) to claim that there are only cyclotomic numbers for
which this bound (now |a| < 14 1/(3d)) is true. With the conditions of the theorem,
the trivial inequality, in general, gives only the bound |a,| < e'/2d/n. The latter
expression is greater than 4./(dlogd)/n for all n in the range n < (1/6)+/d/logd.

The number n(a) is clearly bounded above by d. If a is non—cyclotomic then
this inequality is strict. Therefore, n(a) < d — 1. If, in addition, « is reciprocal (so
that 1/« is a conjugate to « ) then n(a) < d/2. In some cases n(«) is bounded above
by a smaller quantity. The next statement is a sample of this kind of results. We recall
that an algebraic integer 6 > 1 is called a Pisot number if all its remaining conjugates
(if any) all lie strictly inside the unit circle |z| < 1. Also, an algebraic integer o > 1 of
degree > 4 is called a Salem number if it is conjugate to 1/0 and has all its remaining
conjugates on the unit circle |z| =1.

Proposition. If 6 is a Pisot number of degree d > 2 then n(0) < 4logd. If o
is a Salem number of degree d > 4 then n(c) < (1/2)(log(3d))*. Furthemore, in the
latter case, for every € > 0 there is a d(g) so that if d > d(¢) then

(logd)*
n(o) < (5 + €)W.

Although Salem numbers do not satisfy the condition of Theorem 1, for them we
can get a bound on the modulus of a, similar to that of Theorem 1.

Theorem 2. Let o be a Salem number of degree d > 4. Then

4| < 6o dlog(3d)
n 9

where n =n(o).

Which values can the trace of the Salem number attain ? It can certainly be
equal to —1. An estimate for the number of Salem numbers of trace —1 was recently
obtained by Smyth [15]. He showed that the cardinality of the set of those Salem
numbers of degree d which have trace —1 is greater than cd(loglogd)™2 with some
absolute positive constant c.

Recall the formulas for the trace Trace(a) = S1(«), and for the Weil height h(a) =
(1/d)log M (). In our final theorem we establish an upper bound for the trace of an
algebraic number of small height.



Theorem 3. Let ¢ > 0 and let a be an algebraic number of the Mahler measure
M(«) < Vd. Then, for every sufficiently large d, we have

| Trace(a)] _ 1 1/3—¢
U S .
7 sgt h(a)

Theorem 3 is, in fact, a direct corollary of the results on the discrepancy of ar-
guments of roots of integer polynomials in the interval [0,27). The power 1/3 (and
some extra power of logarithm) of the Weil height for the discrepancy was obtained, for
instance, by Mignotte [11], and by the author [6].

3. Lemmas.

Lemma 1. Let z; = Qle\/__l“’l,zg = gge\/__l‘”, ce 2D = QDe\/__l‘PD be D com-
plex numbers in the annulus 1/¢ < [2] < 0. Set 0(z) = [[1cicj<plzi — 2|, and
A(2) = [Ticicp |2l - Then

oo —om . D

m
m=1 k=1

2
< —2logd(2) + D*logo — Dlog (0 — 1/0) + (D — 1) log A(2).

See [5] for the proof.

Lemma 2. (Siegel [13].) Let 6 be a Pisot number. Then 6 > 6y, where 6y =
1.32... (which is a Pisot number itself) is the only positive root of the polynomial
22—z 1.

Lemma 3. Let o be a Salem number of degree d. Then logo > 2(log(3d)) 3.
Furthemore, for every € > 0 there is a d(e) so that if d > d(e) then

logo > (g —€

; )<10g10gd)3.

logd

The bounds of Lemma 3 are in fact true for the Mahler measure of every non—
cyclotomic algebraic integer. For Salem numbers, we have M (o) = 0. The first in-
equality of Lemma 3 was proved by Voutier [16], whereas the second is due to Louboutin
[9]. Also, Lemma 2 is now a consequence of a more general lower bound of Smyth [14]
for the Mahler measure of the non-reciprocal algebraic numbers.

Lemma 4. Suppose we are given u numbers yi,...,y, all greater than or equal
to 1. If the product of these is m then their sum is at most v — 1+ m .
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Indeed, if in the maximal sum there are numbers vy and 3y’ so that 1 <y < ¢/,
then on replacing them by 1 and yy’ we would increase the sum, because

y+y <1l+uyy'.
The maximal sum, therefore, contains u — 1 numbers equal to 1.
4. Proofs.

Proof of Theorem 1. We take o = d'/¢ and apply Lemma 1 for D = d and
zx = ap,, where 1 < k < d. Since A(2) < 0%, 1/(0—1/0) < 1/(2loge) < d, and
because of d(«) is bounded below by 1 (as the square root of the discriminant of « ),
the right—hand side expression in Lemma 1 is less than

(2d? — d)log o 4 dlogd < 3dlogd.
Set L, = Zﬁzl(ak/|ozk|)m . From Lemma 1 we now obtain that
L2, < 3md*™/4dlogd

for every positive integer m . In particular, this inequality holds for m =n = n(a) <
d/(2logd) , so that

1Sn(a)| < |Ln| +d(ja] = 1) < \/3endlogd + 2(v/e — 1)nlogd,

as €* — 1 < 2z(y/e — 1) for all x in the interval 0 < x < 1/2. This is less than

4+/ndlogd , because
L _ ( 4—+/3e )2
2~ \ae—1) -
This completes the proof of Theorem 1, because as it was noticed earlier we have the

equality |a,| = |Sn(a)|/n.

Proof of Proposition. Suppose 6 is a Pisot number of degree d so that n = n(0) >
4logd > 2. Since ai(0) =0 for every 1 < k < n, we obtain that S,,_1(6) = 0. As the
other conjugates of # are all less than 1 in absolute value, we deduce that 7 ! < d—1.
Thus, on applying Lemma 2, we obtain the inequality

(n—1)loghy < (n—1)logh < log(d —1).
Consequently, as 1/logfy < 3.6 and because of n is an integer, we deduce that
n < [3.6log(d — 1)] + 1.

Here, [...] stands for the integral part. The right—hand side in the last inequality is
clearly less than 4logd for d > 13, because for such d one has 1 < 0.4logd. For d in
the range 2 < d < 12 one also can easily verify that the inequality [3.6log(d—1)]+1 <
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4logd is true. Thus, n < 4logd, contrary to our assumption. The first statement of
the proposition is, therefore, established.

For the second, assume that o is a Salem number of degree d, d > 4, so that
n=n(o) = (1/2)(log(3d))* > 19. Then, as above, we deduce the inequality

(n—1)logo < log(d—1).
By Lemma 3, logo is greater than 2(log(3d))~3. We obtain, therefore,
(1/2)(log(3d))* < n < [(1/2)(log(3d))*logd] + 1.

The last expression is less than (1/2)(log(3d))* for every d > 4, a contradiction. This
proves the second statement of the proposition.
We postpone the proof of the final (third) statement in the proposition to some-

where in the proof of Theorem 2, as we need a more subtle upper bound for ¢! in

terms of d.

Proof of Theorem 2. There is no loss of generality neither for Theorem 2 nor for
the final statement of the proposition to assume that o < d. Indeed, if o > d then

Si(o) >0 —(d—1) >0,
and so n(o) = 1. The inequality
la1(o)] = |S1(0)|<o+d—1<20

is stronger than required for Theorem 2. Also, as for such o we have n(c) = 1, the
upper bound in the third statement of the proposition is true.

On applying Lemma 3, with ¢ = e'/¢ | to the D = d —2 conjugates of ¢ lying on
the unit circle we obtain that the right—hand side is equal to

—2logd(0) +d — 2 — dlog(e'/? — et/

This is less than
—2log (o) + d + dlog(d/2).

The square root of the discriminant of ¢ is now equal to

s0)o ) II |0 o0tz — o),

3<i<d

where o; are the conjugates of o on the unit circle. As every term in the product is
less than 20 X 2 = 40, we obtain the inequality

1 < 6(0)4% 20971,
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thus —2logd(o) < 2(d—2)log4+2(d —1)logo . The right-hand side of the expression
in Lemma 1 is, therefore, less than

2dlog4 + 2dlogd + d + dlog(d/2) < 3dlog(3d).
Hence, for every positive integer m , we deduce from Lemma 1 the following inequality:
1S (0) — 0™ — 7™ < 3me?™/ ddlog(3d).

We refer to it below as to the “main” inequality.

We now deduce the final statement in the proposition on applying the main in-
equality to m =n — 1. Clearly, S,_1(c) = 0. Also, by the second statement of the
proposition, n < 4logd. It follows that

0" | < 4V/dlog d

for all d sufficiently large. By taking logs, and by using the asymptotic lower bound
for logo as in Lemma 3, we obtain the final statement in the proposition as required.

In order to conclude the proof of Theorem 2, we first apply the main inequality for
m=n < d/2. It is easy to see that

|Sp(0)| < o™ + 07" + 34/ndlog(3d).

The main inequality for m =n — 1 > 1 implies that

o™l o7 < 34/(n — 1)dlog(3d),

and so

o" + 0" < o™+ 07" < 30+/ndlog(3d).
|Sn(0)] < 3(0 + 1)y/ndlog(3d) < 60+/ndlog(3d),

and Theorem 2 follows from the identity |a,(o)| = |S.(o)|/n.

Finally,

Proof of Theorem 3. There is no loss of generality to assume that « is a non—
cyclotomic, for otherwise the theorem is trivial: the trace of the cyclotomic number is
either 0 or +1. This also explains why we do need the extra summand 1/d in the
theorem: the Weil height of the cyclotomic number is equal to 0.

Let us fix the numbers a and p = 2h(a)2/3*45 . Suppose that the conjugates of
Q,say Qi,...,Qn, all lie in the annulus e # < |z| < e# | so that the remaining ones,
namely o,,11,...,aq, are all outside the annulus Let also © and v of the latter ones
be strictly outside and strictly inside the unit circle, respectively. We have

2log M (a) =log M () +log M (1/c0) = up + v = (d — m) .

Thus, d —m < (2/p) log M () .



We now combine the inequalities (10), (16) in [6] with the inequality

||@||—maxH)z——\ exp{dh(a)/*=5}

2| <1

(the latter follows from the results of [6]). We obtain that
Li(a)? < e®(m?pu—mlog(2p) +4pum(d—m)+2(d—1)log M (o) +2d(d—m)h(a)/375¢).

Here,
Z o]

and compared to [6] the roles of d and n now belong to m and d, respectively.
Note that u > d~'/* for d sufficiently large (see the remark after Lemma 3).
Substituting p, the upper bound for d —m, and the trivial bound m < d, we deduce
that
Li(a)? < 5d?h(a)?/3—4

for d sufficiently large. Note that
1>k — Li(a)| < m(e" — 1) < 3dh(a)?/* 4,

and, as M () < v/d, by Lemma 4,

d
| Z apl <v+u—14Ma) <
k=m+1

2log M ()

. + M(a) < dh(a)'/3.

It follows that
|T&"ace(0z)| < dh(a)1/3 + |L1(a)| + 3dh(0[)2/3_4€.

We see that the right—hand side in the above inequality is less than
dh(a)Y? 4+ 3dh(a)'/?72%¢ 4 3dh(a)¥/374 < dh(a)'/3~¢

for all d sufficiently large. The proof of Theorem 3 is now completed.
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