

MAHLER MEASURES CLOSE TO AN INTEGER


Artūras Dubickas


Abstract. We prove that the Mahler measure of an algebraic number cannot be too close to an integer,


unless we have equality. The examples of certain Pisot numbers show that the respective inequality is


sharp up to a constant. All cases when the measure is equal to the integer are described in terms of


the minimal polynomials.


1 Introduction


Let α be an algebraic number of degree d with minimal polynomial


adz
d + . . . + a1z + a0 ∈ Z[z],


and conjugates α1, α2, . . . , αd (with α one of these) labelled so that


|α1| > |α2| > . . . > |αk| > 1 > |αk+1| > . . . > |αd|.


Here, k ∈ {0, 1, 2, . . . , d} with k = 0 if the house of α , namely |α| = max16j6d |αj| ,
is less than or equal to 1. Which values can the Mahler measure of α ,


M(α) = ad


k
∏


j=1


|αj|,


take? Clearly,
β = M(α) = ±adα1α2 . . . αk


is a real algebraic integer greater than or equal to 1. By Kronecker’s theorem [12],
β = 1 if and only if α is a root of unity. Lehmer [13] asked whether β is bounded
away from 1 if α is not a root of unity.


Theorem A (d’aprés Boyd [4]). If β = M(α) then every conjugate of β (other than
β itself) either lies in the annulus β−1 < |z| < β or is equal to ±β−1 .


In Boyd’s theorem [4] there is an additional requirement for α to be an algebraic
integer, but his proof remains the same for an arbitrary algebraic number.


Proof Let θ be an automorphism of a suitable normal extension of Q containing all
conjugates of α (and so those of β ) which maps β → β′ . Then


β′ = θ(β) = θ(±adα1 . . . αk) = ±adα
′


1 . . . α′


k.
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The modulus of the right–hand side in the above equality is strictly less than β , because
the sets {α′


1, . . . , α
′


k} and {α1, . . . , αk} are distinct. Thus, |β′| > β . This part of the
theorem was also proved by Adler and Marcus [1].


On the other hand, we have


|β′| = ad|α′


1 . . . α′


k| =
∣


∣


∣


ada0


adα′


k+1
. . . α′


d


∣


∣


∣
>


ad|a0|
M(α)


> β−1.


The inequalities are equalities if {α′


k+1
, . . . , α′


d} = {α1, . . . , αk} and ad = |a0| = 1 .
Thus, there is no more than one β′ on the circle |z| = β−1 . Furthemore, if there is
just one then it is real. The proof of Theorem A is now completed. �


Except for Theorem A, which gives necessary, but not sufficient condition on a
number to be a measure, not too much is known about the set of measures β = M(α) .
The exception here are the lower bounds on M(α) , where α is a non–cyclotomic, in
terms of d (see e.g. the older reviews of Boyd [3], Waldschmidt [22], and the new books
of Everest and Ward [11] and of Waldschmidt [23] for such and some other results). In
addition to these, Boyd [5] showed that β = M(α) can be non–reciprocal for reciprocal
α . For example, if α is a root of z6 + z5 + 2z4 + 3z3 + 2z2 + z + 1 then β = M(α) is
non–reciprocal, as it has minimal polynomial z3 − z2 − z − 1 .


In Sections 2 and 3, we investigate how close M(α) can be to a real algebraic
number γ > 1 . The straightforward estimates on the resultant give sharp bounds for
the distance between the integer and the measure. In our final Section 4, we give some
examples where for quadratic numbers γ the equation M(α) = γ has some unexpected
solutions (in α ).


2 Results


Let α be an algebraic number of degree d . Suppose β = M(α) is of degree D , and let
γ be an algebraic number of degree n with cn as the leading coefficient of its minimal
polynomial. Set


r(γ) = log
(


2ncn|γ|
n)


.


With this notation, we can give our first statement.


Theorem 1 For any real algebraic number γ > 1 and any algebraic number α , we
have M(α) = γ or


log |M(α) − γ| > −Dr(γ).


Taking γ = 1 , and using the bound D < 2d , Theorem 1 gives only the weak lower


bound M(α) > 1 + 2−2
d


in Lehmer’s problem. For Salem numbers, we have D = d ,
and so this gives a stronger bound α > 1 + 2−d , which is still very weak compared
to the best known logarithmic bounds [7], [14], [21]. Recall that a Salem number is a
reciprocal algebraic integer σ > 1 such that its conjugates, except for two, namely σ
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itself and 1/σ , are all on the unit circle |z| = 1 . For other integers γ = m , where
m ∈ {2, 3, . . .} , we have the following statement, elucidating the equality M(α) = m .


Theorem 2 Suppose m > 2 is a positive integer, and let α be an algebraic number
such that M(α) is of degree D . Then either M(α) = m , and so one of the following
is true:
(i) the extreme coefficients of the minimal polynomial of α are m and ±m , and its


roots are all on |z| = 1 ;
(ii) the extreme coefficients of the minimal polynomial of α are q (where q is one of


the numbers 1, 2, . . . , m − 1 ) and ±m , and its roots are all in |z| > 1 ;
(iii) α−1 is as in (ii),


or we have the inequality log |M(α) − m| > −D log(2m) .


The inequality of Theorem 2 is sharp up to a constant. To show this, we first recall
an old result of Perron [16].


Theorem B The integer polynomial f(z) = zd + ad−1z
d−1 + . . . + a1z + a0 , a0 6= 0 ,


is irreducible if |ad−1| > 1 + |ad−2| + . . . + |a1| + |a0| .
In modern terms, one can easily show that this is the case, since f(z) defines


a ± Pisot number. Recall that an algebraic integer σ > 1 is a Pisot number if its
remaining conjugates (if any) are all strictly inside the unit circle.


Proof On the unit circle |z| = 1 we have |zd+ad−2z
d−2+. . .+a1z+a0| < |−ad−1z


d−1| .
By Rouchés Theorem, f(z) has d − 1 zeros strictly inside the unit circle |z| < 1 . As
the product of all roots is equal to (−1)da0 , the remaining root is outside the unit
circle |z| > 1 , and is, therefore, real. Thus, f(z) is irreducible for otherwise it has a
monic integral factor all of whose roots lie inside the unit circle, which is impossible. �


Selmer [17] noted that Perron’s result of 1907 can sometimes be extended if in
Theorem B we have equality. If, for instance, ad−1 = 1 + ad−2 + . . . + a1 + a0 then
f(z)/(z − 1) is irreducible.


Set


P (d, m; z) = zd − (m − 1)(zd−1 + zd−2 . . . + z + 1).


We proved in [9] that among all integer polynomials of height at most m and of degree at
most d the polynomial P (d, m+1; z) has a root closest to an integer. We now show that
P (d, m; z) is also irreducible and defines a Pisot number. Because P (d, m; z)(z − 1) =
zd+1 − mzd + m − 1 , we will deduce the irreducibility as in Theorem B.


Theorem 3 For every pair of integers d, m , where d, m > 2 , the polynomial P (d, m; z)
is irreducible and defines a Pisot number σ(d, m) such that


m − m − 1


md−1
< σ(d, m) < m − m − 1


md
.
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Note that for σ = σ(d, m) we have M(σ) = σ and D = d . Thus, by Theorem 3,
the lower bound −D log(2m) in Theorem 2 cannot be replaced by −(D − 2) log m .


3 Proofs


Proof of Theorem 1 The resultant of β = M(α) and γ ,


R(β, γ) = cD
n


∏


(βu − γv),


where the product is taken over every pair (u, v) with 1 6 u 6 D , 1 6 v 6 n , is at
least 1 in absolute value if β 6= γ . Every term in the product is bounded above, by
Theorem A, as folows:


|βu − γv| 6 |βu| + |γv| 6 β + |γ|.


Using this bound for all but one pair (u, v) , we obtain the inequality


1 6 |β − γ|cD
n


(


β + |γ|
)Dn−1


.


In case β 6 |γ| the right–hand side here is less than |β−γ| exp{Dr(γ)} , and Theorem
1 follows immediately.


Assume |γ| < β and |β − γ| 6 exp{−Dr(γ)} . It follows that


β 6 |γ|+ exp{−Dr(γ)} 6 |γ|+ exp{−Dr(γ)}.


Then


1 6 exp{−Dr(γ)}cD
n


(


2|γ|+ exp{−Dr(γ)}
)Dn−1


=
1


2|γ|


(


1 +
1


2|γ| exp{Dr(γ)}


)Dn−1


.


To obtain a contradiction, it suffices to show that


(


1 +
1


2|γ| exp{Dr(γ)}


)Dn−1


< 2|γ|.


As Dn − 1 < 2Dn 6 exp{Dr(γ)} , the left–hand side here is at most exp{1/(2|γ|)} .
The latter is less than 2|γ| in the range |γ| > γ > 1 , which completes the proof of
Theorem 1. �


Proof of Theorem 2 Note that r(m) = log(2m) if m is a positive integer. If
M(α) 6= m , the inequality log |M(α)− m| > −D log(2m) follows from Theorem 1. So
it suffices to show that if M(α) = m then one of the alternatives (i)–(iii) takes place.


Suppose now that M(α) = m , where α is of degree d , with k conjugates outside
the unit circle, and ad = q as the leading coefficient of its minimal polynomial. We
have


α1α2 . . . αk = ±m/q.
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Let us map α1 to the conjugate α′


1 of the minimal absolute value (the Galois group
of Q(α1, . . . , αd) is transitive). We then obtain the equality


α′


1α
′


2 . . . α′


k = ±m/q.


If, however, 0 < k < d then the modulus of the left–hand side here is smaller than
m/q , a contradiction. Thus k = 0 or k = d . In the first case, q = m and all
conjugates of α are in the circle |z| 6 1 . Suppose we have at least one on the unit
circle, say |α1| = 1 . Then α is reciprocal, thus all conjugates of α are on the unit
circle, and we have the alternative (i). If all conjugates are smaller than 1 in absolute
value, we obtain the alternative (iii).


In the second case, namely if k = d , the product on the left–hand α1 . . . αd is the
norm of α . It is equal to (−1)da0/q . Thus a0 = ±m . Since all conjugates are now
strictly outside the unit circle, the alternative (ii) takes place. �


An alternative way to prove Theorem 2 is to use the inequality on the Weil log-
arithmic height h(α1α2) 6 h(α1) + h(α2) (see e.g. Property 3.3 and Lemma 3.10 in
[23]). Recall that h(α) = (1/d) logM(α) .


Proof of Theorem 3 We will consider the polynomial f(z) = P (d, m; z)(z − 1) =
zd+1 − mzd + m − 1, or, more precisely, its reciprocal


g(z) = zd+1f(1/z) = (m − 1)zd+1 − mz + 1.


As m < (m − 1)(d + 1) , for every sufficiently small positive number ε , the inequality
|(m − 1)zd+1 + 1| < |mz| is true on the circle |z| = 1 − ε . The polynomial g(z) ,
therefore, has exactly one root strictly inside the unit circle |z| < 1 .


Suppose α is a root of g(z) on the unit circle. From the equality of the moduli
|(m− 1)αd+1 +1| = |mα| = m , we deduce that α = exp{2πiu/(d+1)} with an integer
u . Then α =


(


(m− 1)αd+1 + 1
)


/m = 1 , and so α = 1 is the only root of g(z) on the
unit circle. The remaining d − 1 roots of g(z) , therefore, are all strictly outside the
unit circle. We deduce from all this that g(z)/(z − 1) is irreducible, for otherwise its
factor g1(z) has all roots outside the unit circle, which is impossible. Thus, P (d, m; z)
is irreducible and defines a Pisot number up to a sign. It is, in fact, the Pisot number,
because P (d, m; 1) < 0 and P (d, m; m) > 0 , so P (d, m; z) has a root in the interval
(1, m) .


It remains to prove that this root σ in (1, m) is in the smaller interval, as claimed
in Theorem 3. Indeed, note first that the sign of P (d, m; z) and that of f(z) =
(z − m)zd + m − 1 are the same for every real z > 1 . We have


f(m − (m − 1)m−d) = (m − 1)
(


1 − (1 − (m − 1)m−d−1)d
)


> 0.


Also,
f(m − (m − 1)m1−d) = −(m − 1)


(


m(1 − (m − 1)m−d)d − 1
)


.


It is negative if
1


m1/d
+


m − 1


md
< 1.
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The latter is equivalent to (m1/d − 1)/m1/d > (m − 1)/md . Since m1/d > 1 , this
follows from


md > dm >
d


∑


u=1


mu/d =
m1/d(m − 1)


m1/d − 1
.


The proof of Theorem 3 is now completed, because P (d, m; z) has a root in the interval
(m − (m − 1)m1−d, m − (m − 1)m−d) . �


4 Examples


Suppose we are given a real algebraic integer β , of degree D , with conjugates as in
Theorem A, such that the set of solutions of the equation


M(α) = β


(in α ) is non–empty. The problem of describing all solutions of this equation seems
to be very difficult. There is almost nothing known about this except for Kronecker’s
theorem [12] stating that the only cyclotomic numbers are the solutions to M(α) = 1 .
In case D = 1 , M(α) 6= r for the rational non–integer numbers r , by Theorem
A. Clearly, this is also the case with r non–positive. If, however, β = m > 1 , the
alternatives (i)–(iii) in Theorem 2 yield a kind of a semisolution to this problem. Even
the simplest alternative (i) does not give too much information about the solutions,
as the set of unit–circular numbers was not extensively studied. In [10] we call unit–
circular those algebraic numbers with norm ±1 . These are the only numbers with m
as the leading coefficient of their minimal polynomials, which satisfy (i).


Problem Suppose β > 1 is a real quadratic algebraic number. Find all α such that
M(α) = β .


For a given algebraic number α , we consider the following sequence:


|α| 6 M(α) 6 M
(


M(α)
)


6 M
(


M(M(α))
)


6 . . . ,


where A0 = |α| , A1 = M(α) , and An+1 = M(An) for n ∈ {1, 2, 3, . . .} . Suppose
that α is neither zero nor a root of unity. For a “generic” algebraic number α the
sequence An tends to ∞ as n → ∞ . For some α , say for every α of degree at most
3, the sequence is bounded. Clearly, if An+1 = An with n > 0 then An is either a
Pisot or a Salem number, and so the Am with m > n are all equal to An . As in the
famous 3x + 1 problem, we say that α has the stopping time n if n is the smallest
non–negative integer so that Am = An for m > n .


Fact If α has stopping time zero then it is either a root of unity or a conjugate of a
Pisot or Salem number.


It is not at all clear how to describe all algebraic numbers with stopping time one.
Note first that the numbers (±σ)1/u with σ a Pisot or Salem number and with an
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integer u such that |u| > 2 all belong to this set. Clearly, this set also contains every
algebraic number with m > 2 described by alternatives (i)–(iii). It also contains the
algebraic integers with conjugates on two circles described by the author and Smyth
in [10], as the measures of these are either Pisot or Salem numbers. In case of Salem
numbers we called them Salem half–norms. For example, the measure of the Salem
half–norm with minimal polynomial


z16 + 2z15 + z14 − 2z13 − 4z12 − 2z11 + 3z10 + 5z9 + 3z8 + z7 − z5 − z4 − z3 + z2 + z + 1


is equal to σ4
0 = 1.91445 . . . , where σ0 = 1.17628 . . . solves the Lehmer equation


z10 + z9 − z7 − z6 − z5 − z4 − z3 + z + 1 = 0 . Boyd [5], Theorem 2, showed that there
are some other reciprocal numbers with the Pisot numbers as their Mahler measures.
These are constructed by taking a product of half conjugates of a Pisot unit and are,
therefore, in this sense Pisot half–norms.


In the latter two cases the Pisot or Salem numbers obtained are natural powers
of other Pisot and Salem numbers. Is there a Salem (or a Pisot) number σ of degree
> 2 which is not a natural power of another Salem (Pisot) number, and such that
M(α) = σ has some other solutions in α as those described above? In his thesis [20],
Smyth showed that if σ1 solves z3 = z + 1 then the only non–reciprocal solutions of
M(α) = σ1 are α = (±σ1)


1/u . The number σ1 is the smallest Pisot number (Siegel
[18]) and the smallest measure for non–reciprocal algebraic numbers (Smyth [19]). If,
however, α is a non–reciprocal which is not of this form then M(α) > σ1 + 10−4


(Smyth [19]). This was later improved by the author [8] to M(α) > σ1 + 10−3 . The
computations of Boyd [2], [6] and of Mossinghoff [15] show that there no other solutions
to the equation M(α) = σ0 , except for α = (±σ0)


1/u , in α of degree at most 64.
If σ is a reciprocal quadratic unit, and so a Pisot number, then M(α) = σ has


some other solutions than those described above. These, for example, can be the totally


real quartic units. Let us take, for instance, α =
(


(11+2
√


30)(2+
√


3)
)1/2


. Its Mahler


measure is 11 + 2
√


30 . This is not a natural power of any other Pisot number. More
generally, a solution of the equation


z4 + 1 + (2 + u + v)z2 =
√


(u + 2)(v + 2)(z3 + 1),


where u , v are two positive integers such that say u > v > 2 and (u + 2)(v + 2)
is a perfect square, has the Mahler measure


(


u +
√


u2 − 4
)


/2 , which is a reciprocal
quadratic unit. We conclude with the following question.


Question Suppose n > 2 . Is there an algebraic number α with stopping time n ?
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