SPHERICAL ORBITS AND ABELIAN IDEALS

DMITRI PANYUSHEV AND GERHARD ROHRLE

0. INTRODUCTION

Let G be a connected reductive complex algebraic group with Lie algebra Lie G = g. Let
B be a Borel subgroup of G with unipotent radical B,. We denote the Lie algebra of B and
B, by b and b,, respectively. The group B acts on any ideal of b by means of the adjoint
representation.

After a preliminary section we study a relationship between spherical nilpotent orbits and
abelian ideals a of b, using the structure theory for these orbits from [10]. The principal
result of this section is that, for an abelian ideal a of b, any nilpotent orbit meeting a is a
spherical G—variety, see Theorem 2.3. As a consequence of this we obtain a short conceptual
proof of a finiteness theorem from [14]. Namely, for a parabolic subgroup P of G' and an
abelian ideal a of p = Lie P in the nilpotent radical p, = Lie P,, the group P operates on
a with finitely many orbits. The proof of this fact in [14] involved long and tedious case by
case considerations. We also prove a partial converse to the result just mentioned. Following
[4], we say that an ideal of b is ad—nilpotent whenever it consists of nilpotent elements. In
case (G is simply laced, we show that an ad-nilpotent ideal ¢ of b is abelian provided any
nilpotent orbit meeting ¢ is spherical, see Proposition 2.7.

In Section 3 we consider some properties of ad—nilpotent ideals of b. In Theorem 3.2 we
give a description of the normaliser of such ideals. This applies in particular to abelian ideals
of b. A remarkable theorem of D. Peterson asserts that the number of abelian ideals of b
equals 2", where r = rank g, see [8] or [4, Thm. 2.9]. We present an elementary proof of this
fact in case g is of type A, or C,. We also prove that the mapping a — Ng(a) is a one-to-one
correspondence between the set of abelian ideals a of b and the set of standard parabolic
subgroups of GG for these two series of simple Lie algebras; this fails in all other instances,
see Remark 3.4.

In Section 4 we study the set of maximal abelian ideals A,,,, of b. After recalling the
classification of A4, from [14] we prove the existence of a canonical bijection between A, 4.
and the set of long simple roots of g in Theorem 4.3 and discuss some properties of this map.
For instance, if ¢ is a long simple root and a, € A4 is the corresponding maximal ideal,
then the minimal number of generators of a, viewed as a b—module is equal to the number
of connected components of A\ {¢}, where A denotes the Dynkin diagram of g.

1. PRELIMINARIES

1.1.  We denote the Lie algebra of G by Lie G or g; likewise for subgroups of G. Let T" be
a fixed maximal torus in G and ¥ = V(@) the set of roots of G with respect to 7" and let
r = dim7T = rank G. Fix a Borel subgroup B of G containing 7" and let IT = {0y, 09, ...} be
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the set of simple roots of ¥ defined by B such that the positive integral span of II in ¥ is
U+ = W(B). The highest (long) root in ¥ is denoted by o = > n,o where the sum is taken
over the simple roots II. If all roots in ¥ are of the same length, they are all called long. A
subset of Ut is an ideal in U provided it is closed under addition by elements from ¥*. As
usual, we have the root space decomposition of g relative to T,

g:t®@ga

For a T—stable subspace h of g we denote its set of roots with respect to T" by ¥(h). We
may assume that each parabolic subgroup P of GG considered contains B, i.e. is standard.
For each a € ¥, we choose a nonzero root vector e, in g,.

Our basic reference concerning results on root system is [2|. Throughout, we use the
labelling of the Dynkin diagram of G (i.e. of 1I) as in [2]. We refer to [1] and [18] for
terminology and standard results on algebraic groups.

1.2. Let g = P g(i) be any Z-grading of g. The largest integer n so that g(n) # {0} is
called the height of the grading. In this context write W(i) instead of W(g(7)) for each i € Z.
It is well-known that g(0) is reductive, for instance, see [18]. By W (0) we denote the Weyl
group of g(0).

A grading is said to be standard if €,., g(7) is contained in b,. Any choice of a standard
parabolic subgroup P of G canonically defines a standard Z-grading of g as follows. Let
P = LP, be the Levi decomposition of P with standard Levi subgroup L. Let II(L) be the
set of simple roots of L. Define the function d : ¥ — Z by setting d(¢) := 0 if ¢ is in [I(L)
and d(o) :=1if o is in [T\ II(L), and extend d linearly to all of W. Then for i # 0 we define

g(i) == @ g and g(0) :=t® @ go. Thus we have g = P, g(i) and moreover, [ = g(0),

d(a)=1 d(a)=0
p=EPg(i), and p, = P g(i). Clearly, d(o) = Zaen(L) n, is the height of this grading.
i>0 i>0
2. ABELIAN IDEALS AND SPHERICAL ORBITS

A nilpotent orbit (conjugacy class) O in g is said to be spherical whenever it is a spherical
G—variety, that is B acts on it with an open orbit. Thus, by a fundamental theorem, due to
M. Brion [3] and E.B. Vinberg [16] independently, B acts on O with a finite number of orbits.
Since O is quasi-affine, it is spherical if and only if the algebra of polynomial functions C[O]
is a multiplicity free G—module [17].

The following characterisation of spherical nilpotent orbits can be found in [9, §3.1] and
[10, Thm. 3.2].

Theorem 2.1. Let O be a nilpotent orbit in g. The following statements are equivalent:
(i) O is spherical;
(i) (adx)* =0 for every z € O;
(ili) O contains a representative of the form e, + - - - + eq,, where {on, ..., op} T 1l is a set
of mutually orthogonal simple roots.

It is not hard to prove that the number ¢ in Theorem 2.1(iii) does not depend on the
choice of a representative for O. Also, the number of long and short roots among the a;’s is
an invariant of the orbit. This property means that a minimal Levi subalgebra of g meeting
O is the sum of t copies of sly. This subalgebra is unique up to conjugation. If {ay, ..., a;}
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consists of s short and [ long roots, then we say that O is of type sA; + 1A;. This notation
is consistent with the one used for denoting nilpotent orbits in the exceptional Lie algebras
[5, 6]. We also use this labelling for the classical Lie algebras.

The equivalence between parts (i) and (ii) of Theorem 2.1 is proved in [9, §3.1]. There it
is shown a priori that whenever (ad z)® = 0, then O is spherical and also when (adz)* # 0,
then O is not spherical. Case by case considerations are only required to show that O is
spherical if (adz)* = 0 and (ad )3 # 0 for every z € O.

Making use of Theorem 2.1, we set up a direct link between the abelian ideals in b and
spherical nilpotent orbits. It is easy to show that any abelian ideal a C b contains no
semisimple elements, that is a C b,. Therefore, such an a is completely determined by the
corresponding subset W(a) of V.

Proposition 2.2. Let a be an abelian ideal of b and let p; € Y(a) fori=1,...,4. Define
the operator Y : g — g by T := H?Zl ade,,. Then T = 0.

Proof. Since a is abelian, T does not depend on the ordering of the p;’s.

1. We first show that T annihilates the lowest weight space of g, i.e., Te_, = 0.
Assume this is not the case. Then [e,,,e_,] # 0 and hence (p;, 0) > 0 for each i (since
o is long). More precisely, (u;, 0¥) = 2 in case pu; = o and otherwise (u;, 0”) = 1. Since
Te_p € Gpiprttps a0d (—o+ 1 +- -+ g, 0¥) < 2, the only possibility is that (u;, 0¥) =1
for each 1 = 1,... ,4 and therefore we have —p + p; + - - - + pg = o; that is,

(1) 20= 11+ 4 pa

Observe also that ade,ade,, (e_,) # 0 for i # j and, since p; + p; is not a root, we have
0 — p; — p; € W. It follows from (1) that

> (o= pi—py) =60 —3(ur + -+ pg) = 0.
1<i<j<4
Therefore, the set {o — p1; — p;};; contains a positive root. Without loss, we may suppose
that 0 — py — e € WF. Then o — py = (0 — p1 — p2) + po € ¥(a), since a is an ideal in b.
Thus both, p; and o — p; are in ¥(a) contradicting the fact that a is abelian. Consequently,
we have Te_, = 0, as claimed.

2. Here we show that Ye, = 0 for all remaining v € ¥ U {0}. (If v = 0, then e, stands
for an arbitrary element in t.) We argue by induction on the sum of the coefficients of the
simple roots of the difference v — (—o) = > _k,o (0 € 1), i.e., on Y _k,. The case when
this sum is zero is just the one studied in part 1 above. Suppose that e, = [e,, x|, where
o € I and either = e, for some 7' € ¥ (such an equality exists provided vy # —p), or, in
the case v = ¢ is simple, we may choose a suitable element x € t that satisfies this relation.
By T; we denote the operator corresponding to the quadruple of roots where p; is replaced
by ;i +o. (If p; +0 ¢ ¥, then T; = 0.) One checks that

4
Te,=le,, Ta]+ ZTNC-
i=1
By induction assumption for the operators T and Y;, we have YT = 0 and T; z = 0. Thus
Te, =0, as desired. O

Theorem 2.3. If a is an abelian ideal in b, then any G-orbit meeting a is spherical and
G-a is the closure of a spherical nilpotent orbit.
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Proof. If x = Y e,, € a, then (adz)* is the sum of operators of the form described in
Proposition 2.2. Therefore, (ad 2)* = 0, and thus G-z is spherical, by Theorem 2.1. Because
G-a is irreducible and the number of nilpotent orbits is finite, G-a is the closure of a single
nilpotent orbit. O

Corollary 2.4. Let a be an abelian ideal in b. Then B has finitely many orbits in a.

Proof. The desired finiteness follows readily from Theorem 2.3 and the finiteness property
for spherical varieties. O

We obtain [14, Thm. 1.1] as an immediate consequence of Corollary 2.4:

Corollary 2.5. Let P be a parabolic subgroup of G and let a be an abelian ideal of p in p,,.
Then P acts on a with finitely many orbits.

Proof. Observe that a C p, C b, is also an ideal of b. Thus, by Corollary 2.4, B acts on a
with a finite number of orbits and thus, so does P. O

Remarks 2.6. The particular case when a is in the centre of p, is well-known. Then the
action factors through a Levi subgroup of P. Here the finiteness follows from a result of E.B.
Vinberg [15, §2] (see also V.G. Kac [7] or R.W. Richardson [12, §3]).

Observe that for abelian P-invariant sub-factors in p,, the analogous statement of Corol-
lary 2.5 is false in general. Indeed, this fact is the basis for constructing entire families of
parabolic subgroups which admit an infinite number of orbits on p,, e.g., see [11] and [13].
Examples in this context also show that a parabolic subgroup may have an infinite number
of orbits on ideals in p,, of nilpotency class two.

Corollary 2.5 was first proved in [14] in a long case by case analysis. More specifically,
it was shown in loc. cit. that for A a closed normal unipotent subgroup of P the number
of P—orbits on A is finite provided A is abelian; the proof in loc. cit. is valid in arbitrary
characteristic.

Example. Abelian ideals of b are readily constructed by means of gradings. Let g = @ g(4)
be a standard Z-grading of g of height d. Define m := [d/2]+1 and set a := ,.,, g(¢). Then
a is an abelian ideal of b. Obviously, m is the least possible value ensuring that @, g(i) is
abelian. Therefore, any nilpotent orbit in g meeting a is spherical. In the context of gradings
this can be derived by a shorter argument than the one used in the proof of Proposition 2.2.
For, let x be in a. As the components of = have degree at least m, we have

(adz)'g(j) € €D a(i) = {0}
>j+4m
for each j € Z. Consequently, (adx)* = 0 on all of g.

We close this section with a partial converse to Theorem 2.3.

Proposition 2.7. Suppose G is simply laced. Let ¢ be an ad nilpotent ideal of b such that
any nilpotent orbit meeting ¢ is spherical. Then ¢ is abelian.

Proof. Suppose ¢ is not abelian. Then there exist o, 3,7 € ¥(c) so that [e,, es] = e5. By
the assumption on G, the roots a and [ span a subsystem of ¥ of type A,. Let H be the
corresponding simple subgroup of G of type Ay. Then z := e, + ep is regular nilpotent in b.
By direct matrix calculation, one obtains (adyz)* # 0. Consequently, (adx)* # 0 on all of
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g. It follows from Theorem 2.1 that the corresponding nilpotent orbit in g is not spherical,
a contradiction. O

It is worth noting that Proposition 2.7 is false if G has two root lengths. For instance, let
G be of type C, (r > 2) and let P be the stabilizer of the 1-dimensional space g,. Then P
is parabolic and p, is the Heisenberg Lie algebra of dimension 2r — 1, which is not abelian.
We have, however, (adz)* = 0 for all x € p,.

3. THE NORMALISER OF AN ABELIAN IDEAL AND PETERSON’S THEOREM

In his recent article [8], B. Kostant gives an account of a remarkable theorem of D. Peterson
to the effect that the number of all abelian ideals of b is equal to 2", see also [4, Thm. 2.9].
In this section we give an elementary proof of this equality in case g is of type A, or C,.
We show that for g of type A, or C, the mapping a — Ng(a) establishes a one-to-one
correspondence between A, the set of abelian ideals of b, and the set of standard parabolic
subgroups of G; thus in particular, #.A4 = 2".

An ideal of b is said to be ad—nilpotent whenever it contains no semisimple elements, or,
equivalently, it is contained in b,. Let ¢ be an ad-nilpotent ideal of b. A root v € W¥(c) is
said to be a generator of U(c) (or of ¢), if y — o & W(c) for all o € II. The set of generators
of ¢ is denoted by T'.. It is easily seen that I'. = W(c) \ (¥(c) + ¥*) and that the root
vectors e, v € I'c form a minimal set of generators of the b-module ¢. Write P, := Ng(c)
for the normaliser of ¢ in G. Since P, contains B, it is a standard parabolic subgroup of G.
So, in order to specify P, one merely has to indicate the simple roots of the standard Levi
subgroup of P..

Lemma 3.1. Let 8 € V' and o,0" € Il with o # o'. Suppose 3 — 0,3 — o' € Wt. Then,
either =040, or B —oc—0o' € ¥T.

Proof. Suppose B # o + ¢'. It is enough to prove that (8 — o,0") > 0 or (8 —o’,0) > 0.
Note that (¢,0") <0.

1. Assume that {3, 0,0’} contains a long root. If, say, # or o is long, then (5,0) > 0 and
thus (8 —o',0) > 0.

2. Assume that ¥ has roots of different lengths and that 3,0, and ¢’ are short. The
presence of two distinct short simple roots already implies that g is not of type G5. Then the
ratio of the squares of the different root lengths equals 2 and the hypothesis of the lemma
implies that (5,0) > 0 and (3, 0’) > 0. Thus, if neither of the desired inequalities is satisfied,
we obtain (3,0) = (8,0") = (0,0") = 0. Therefore, (5 — 0,58 —0') = (8,8) > 0. Whence,
o — o' €V, a contradiction. a

Next we present a characterisation of the normaliser of an arbitrary ad nilpotent ideal of
b.

Theorem 3.2. Let ¢ be an ad—nilpotent ideal of b and L. the standard Levi subgroup of P..
Then a simple root o belongs to 1I(L,) if and only if v — o is not a root for all v € T',.

Proof. By definition of T', the necessity of the given condition on the differences v — o is
obvious. The other implication can be restated in terms of ¥(c) as follows:
Suppose 3 € W(c)\ T and 8 — o € T\ U(c). Then there exists a v € T'c such
that v — o € ¥+ U {0}.

Since B € I, there exists a ¢’ € Il such that g, = §— o’ € U(c). It follows from Lemma 3.1
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that 3 —o — o’ € T U{0}. Clearly, 3 — o — o' € ¥(c). Hence if 5; € I, then we are done.
If not, we continue inductively with 5y in place of 3. Iterating this procedure, we eventually
obtain a generator (3 € I'c with the desired property. O

Theorem 3.3. Let G be of type A, or C,.. Then the map a — P, yields a one-to-one corre-
spondence between the set of abelian ideals of b and the set of standard parabolic subgroups
of G. In particular, the number of abelian ideals of b equals 2".

Proof. (1) g = sl,41.

We assume that b is the set of all upper-triangular (r 4+ 1) x (7 + 1) matrices. An arbitrary
ad-nilpotent ideal in b is then represented by a Young diagram above the main diagonal, as
shown in Figure 1.

FIGURE 1. An abelian ideal in A,

Such a diagram is completely determined by the coordinates of its southwest corners, say
(11,91)s - - - (i, Jx). Then we obviously have i} < iy < -+ < i and j; < jo < «-+ < Jg. It is
easy to see that the ideal in question is abelian if and only if the diagram fits in a rectangle
of size (r+1—1i)xi for some ¢ € {1,...,r}. In terms of the indices of the corners this means
that i, < j;. Consequently, there is a one-to-one correspondence between the abelian ideals
of b and the subsets of {1,2,...,7 + 1} of even cardinality. The well-known equality
SEO
= 2k
then proves Peterson’s theorem in this instance. [It is easily seen that the number of maximal
abelian ideals containing the given one equals j; —ij. In Figure 1 (where r+1 = 12, i, = 4,
and j; = 6) the dashed lines represent the two maximal abelian ideals containing the depicted
one. |

The roots corresponding to the corners of the diagram are nothing but the generators of
the ideal. We use the standard notation and numeration for the simple roots of sl,.,; so that
0, = € — €41, for i = 1,...,r. The root corresponding to (7,7) is o ;) = oi + -+ + 0j_1.
Therefore, the only simple roots of g that can be subtracted from oy; ;) are o; and o;_;.
Thus, it follows from Theorem 3.2 that, given an abelian ideal as above, the simple roots
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that do not belong to I1(L,) have the indices i1,...,i,j1 — L,...,jx — 1. This determines
the normaliser of the ideal. Note that precisely when j; = i + 1, an odd number of simple
roots is excluded. Clearly, this procedure can be reversed so that we obtain a bijection.
Formally, let m; < --- < my be the indices of the simple roots in II \ TI(L,). Then the
coordinates of the corners of the respective diagram are (my, Mydyy+ 1), (mo, Mydy o+ 1),...,

and (m[%],md +1).

(2) g= 5p2r‘
Choose a basis for a 2r dimensional vector space so that the skew-symmetric non-degenerate
bilinear form has the matrix PJ ‘é , Where J is the r X r matrix with 1’s along the

second main diagonal. Then b is the set of all symplectic upper-triangular matrices and the

0 O
where M is any r X r matrix that is symmetric relative to the secondary diagonal. Here

U(tpes) = {6 +¢ | 1 <i,5 <r} It then follows that an arbitrary abelian ideal a of b
is represented by a Young diagram that fits in the square of size r and is symmetric with
respect to the secondary diagonal, see Figure 2. Notice that here j increases from right to
left.

unique maximal abelian ideal a,,,, in b is represented by the matrices of the form ( 0 M ),

jl e 1

21 ................ } *.4__1

Zk .....................................

FIGURE 2. An abelian ideal in C,

Such a diagram is entirely determined by its corners on and above the secondary diagonal.
The coordinates (i, j1),. .., (i, ji) of these corners satisfy i; < iy < -+ < i < Jp < jp1 <

- < j1. Hence a diagram with k corners determines a subset of {1,...,r} of cardinality
either 2k—1 or 2k. This establishes a one-to-one correspondence between the abelian ideals
of b and the subsets of {1,...,r}, thereby proving Peterson’s theorem in this instance.

The generator of ¥(a) corresponding to the corner (4, j) is 0(; j) := €;+¢;. The only simple
roots of g that can be subtracted from oy; jy are o; and ;. These two simple roots coincide
only if ¢ = 7; this however may happen for at most one corner. Thus, according to Theorem
3.2, the simple roots of g that do not belong to I1(L,) have the 1nd1ces Ulseveslhoy Jhy -y J1-
Clearly, the procedure can be reversed, i.e., any subset of {1,...,7} unlquely determines a
Young diagram of the required shape. For a subset of cardinality m, the resulting diagram
has [(m + 1)/2] corners on and above the secondary diagonal. O
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Arguing in the same fashion as in Theorem 3.3, one can enumerate the abelian ideals of
b for g of type B, or D, as well. However, we omit the arguments, as they are considerably
less transparent.

Remark 3.4. The statement of Theorem 3.3 is not true in case GG is not of type A, or C.
Here we present some counterexamples.

1. Let G be of type B, for r > 3. Set 8 =01+ ...+ 0, and ' = 3+ 0,. Consider the
ideals a and a’ of b whose sets of generators are I'y = {8} and I'y = {’}, respectively. Since
ht(p) = 2r — 1 and ht(83) = r, both ideals are abelian. Using Theorem 3.2, it is easily seen
that P, = Py, this is the standard parabolic subgroup of GG of semisimple rank » — 2 whose
simple roots have labels 2,...,r — 1.

2. Let G be of type D, forr > 4. Set B =01+ ...+ 0,1,y =01+ ...+ 0p_2 + 0O,
and = 0,_5 + 0,_1 + 0,. Define two abelian ideals a and a’ of b with generating sets
['y={B,7,0} and 'y = {5, 6}, respectively. One checks that P, = Py, this is the standard
parabolic subgroup of G with simple roots II\ {oy, 0,-1,0,} (cf. Table 1 below).

3. Our counterexamples for the exceptional Lie algebras admit a uniform presentation. In
each of these cases the highest root p is fundamental, with a unique simple root ¢* such that
o — o* € Ut. Moreover, there exists a unique simple root a adjacent to ¢* in the Dynkin
diagram of G. Let a be the 2—dimensional abelian ideal g,_,+ @ g,. Then I'y = {0 — 0*}.
Let a’ be the maximal abelian ideal attached to o*, according to the bijection of Theorem
4.3. Then I'y consists of a single root indicated below. Using Theorem 3.2, one finds that
P, = Py; this is the maximal parabolic subgroup of G with TI(L) = IT\ {a}. The generators
of the ideals a and a’ and the simple root a are given as follows:

E6 E7 ES F4 G2
r, 12?21 13121321 2425431 1342 31
Iy 01?10 12?100 01?2221 1220 21
o 00(1)00 018000 0080010 0100 10

4. MAXIMAL ABELIAN IDEALS

4.1.  Throughout this section suppose that G is simple. We recall the classification of the
maximal abelian ideals of b from [14] and record it in Tables 1 and 2 below.

Theorem 4.1. Every mazximal abelian ideal of Lie B = b is listed in Tables 1 and 2.

The fact that each ideal a listed in these tables is abelian follows from the observation
that the sum of any two roots in ¥(a) is not a root, because it exceeds o in some coefficient.
The fact that each of these ideals is maximal among the abelian ones and that this list is
complete consists of a detailed case by case analysis.

The proof of Theorem 4.1 from [14], involving case by case considerations, is rather un-
satisfactory. It would be very desirable to have a uniform proof of this result.

We are going to explain the various pieces of notation in Tables 1 and 2 associated to each
maximal abelian ideal a of b. In the second column we specify the set of generators I', for
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K I, | P | dima [di| oo | Oa
A, o (1<i<r) o; i(r—i+1) | 1 o; min{i, r—i+1}A;
B, ol o1 2r—11 1 o1 /~11
Bi,vi 3<i<r) 01,0 | (dr+12—5i+2)/2 | 3 Oi_1 A+ [%]Al
C, o, o, (P+r)/2| 1] o | [glA(r=2[5) A,
D, o1 o1 2r—211 o1 24,
oy 1/0, o, 1/0, (r’=r)/2| 1 | 0, 1/0, [Z]A;
Bivi (3<1<r—2) o1, 0; (4r—5i+i%)/2 | 3 Oi_1 (1+ [%])Al
B,7v,0 | 01,0,_1,0, (r’=3r+6)/2| 3 | 0,9 (1+[5])As

TABLE 1. The maximal abelian ideals a of Borel subalgebras for classical g.

a. The simple roots o; are labeled as in [2]. We abbreviate some roots as follows: in type B,
set B =01+---+0; and y; = 0;_1 + 20; + - - - + 20,, where 2 < ¢ < r. Similarly, for type D,
we define 3; =01+ ---+o0; and v; =0, 1 + 20, + -+ 20, o+ 0, 1+ o, for 3<i < r—2,
also B - 67’—2 +Oopr_1, Y = ﬁr—? + oy, and § = Op—2+ Op_1 + Op.

The normalizer of a in GG is a parabolic subgroup of GG, since it contains B. In the third
column of the tables we indicate the standard Levi subgroup L, of P, :== Ng(a) by listing
the complementary simple roots 1T\ TI(L,).

In the next two columns we list dima and d, := d(p), the height of the grading afforded
by P,, see (1.2), respectively.

It follows from Theorem 4.1 that the number of maximal abelian ideals of b equals the
number of long simple roots of G. In Section 4.2 we define a canonical bijection between
these two sets. The simple root o, corresponding to a under this bijection is indicated in
column 6 of the tables.

Since a is an irreducible subvariety of b,, there exists a unique nilpotent orbit O, such
that O, N a is dense in a. In the last column of Table 2 we present the label of O, following
the labelling of the nilpotent classes according to E.B. Dynkin [6], see also [5].

Using the description of P, furnished in the third column in Tables 1 and 2, the height
d, = d(p) of the grading afforded by P, is readily determined. Note that d, is always odd
and for m = [dq/2] + 1 we have a = @,,, 9(¢). According to Theorem 2.3, the orbit O4

is always spherical. If the label of O, is sA; + [A;, then the sum s + [ is the number ¢
from Theorem 2.1(iii). It is also possible to determine the labelling of the weighted Dynkin
diagram defining O,.

4.2. By Theorem 4.1, the number of maximal abelian ideals equals the number of long
simple roots of g. This numerical coincidence suggests that there should exist a canonical
one-to-one correspondence between these two sets. We show that this correspondence can
be obtained in an axiomatic way. It is presented in column 6 of Tables 1 and 2.

Let A := A(g) be the Dynkin diagram of g. We identify the nodes of A with the simple
roots IT of g and write A? for the Dynkin diagram which is obtained from A by removing o €
IT together with the edges linked to it. By mo(A?) we denote the set of connected components
of A% and by A? = J, A7 for ¢ € my(A7) the decomposition of A? into its components. We
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‘ G ‘ Iy ‘ P, ‘ dima ‘ doa| 04 ‘ Oq
Es 01/06 o1/0¢ | 16 1 | oy/06 2A
01210 oy, 11 3 P 3A;
11110, 01221 o,05| 13 |3 o3 3A,
01111, 12210 03,06 | 13 | 3 1o 3A;
11(1)11, 01211, 11210 | 071, 04, Og 12 ) 04 3A,
E, o7 or| 27 |1 o7 [3A4])"
122100 os| 17 | 3| oy [BA,)
012210 o5 | 20 | 3| o9 34,
001111, 123210 09,07 | 22 3 06 4A,
012221, 122110 03,06 18 |5 03 [BA;]
012111, 12:{210 04,07 | 20 5) o5 4A,
012211, 122210, 122111 | O3, 05, 07 19 7 04 4A,
Eq 0122221 or| 29 |3 oy 3A;
1232100 oo | 36 3 01 4A,
1233210 o5 | 34 5 09 4A;
11%2221, 234213210 o1,07 | 30 5) o7 4A,
1222221, 134213210 o3, 07| 31 7 06 4A,
1233321, 1232210 09,06 | 34 7 03 4A,
121;2221, 12%3210 04,07 | 32 9 o5 4A,
1233221, 1282221, 1288210 | O3, 05, 07 33 | 11| o4 4A,
Fy 1220 P 8 3 o1 {l} + Ay
1221,0122 09,04 9 5 os | A1+ 4
Go 21 o| 3 [3| o A

TABLE 2. The maximal abelian ideals a of Borel subalgebras for exceptional g.

write W7 for the root system corresponding to AZ and o7 for the highest (long) root in W7
for each c. Observe that if we consider the standard grading of g corresponding to o € II,
then, using the previous notation, we have ¥(0) = L. V7.

Let II, denote the set of long simple roots and A, the set of all maximal abelian ideals in
b. Associated with any a € A,.., we have the following data: the set of generators I'y C U
and the height d, of the grading determined by P, = Ng(a). The following observation
giving a more precise form for the equality #11;, = #A4,,.. is indicative for our construction.
Recall the decomposition of g as the sum of simple roots ¢ = > n,o from (1.1). The number
of times a fixed integer occurs as the value for d,, as a varies over A,,,., equals the number
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of times it occurs as the expression 2n, — 1, as ¢ runs through II,. Therefore, it is just to
require that the sought after bijection

w : Hf — Ama:rv 0= ¢(0) =: 4o,

does satisfy the condition d,, = 2n, — 1 for each o € Il,.

Ideally, starting with a long simple root, an explicit a priori procedure should yield the
corresponding maximal abelian ideal. Indeed, we are able to state such a construction when
ny, < 2. It is worth noting that this is sufficient to cover all classical instances.

The case when n, = 1 is straightforward. Here the simple root o (which is always long)
determines a grading g = g(—1) ® g(0) @ g(1), and we merely set a, = g(1). It is easily seen
that g(1) is a maximal abelian ideal. Notice that in this case a, is the nilpotent radical of
the parabolic subalgebra corresponding to o and I'y, = {o}.

The case n, = 2 is the subject of the following theorem.

Theorem 4.2. Let o € 1l such that n, = 2. Let g = @?:_29(2') be the corresponding
Z—grading. Let e be a highest weight vector in the g(0)—module g(1). Then we have

(i) a5 :=[e,, 9(0)] @ g(2) is an abelian ideal in b;
(i) Ty = {4 — f | ¢ € 10(A%)}; in particular, #T, = #mo(A%);
(ili) a, is mazimal and d,, = 3.

Proof. (i) Notice that o and « are the lowest and highest weight in the g(0)-module g(1),
respectively. It follows that « is W (0)—conjugate to o and therefore v is long.

It is easily seen that a, is an ideal of b in b,. Set V = [e,, g(0)]. Clearly, a, is abelian
if and only if [V, V] = {0}; that is, if g, pe € ¥(V), then py + po is not a root. By the
definition of V', we have u; = v — ; for some 5; € ¥(0)* U {0}, i = 1,2. We distinguish
various possibilities for 4, and (.

(a) ﬂl 7é 0, 62 = 0:

Since 7 is long and v # (1, we have (v,7) > (v, 51). Therefore, (7,7 — 1) > 0 and hence
Y+ (v —051) € V.

(b) B1 # 0, B # 0:

Since + is long, the condition v — 8; € ¥ means that (v, ;) > 0 and then (v, 5;) = %(7, v),
1 = 1,2. Therefore, we have

(*) (v =B, B2) = %(% v) = (B1, B2) > 0, since By # (2, and

() (v = Bi,v = B2) = (B1, Ba).
(b1) At least one of 3; and (s, say (s, is long.

Then 7 — (5 is long as well. Since v — 3, € ¥(1) and B, € ¥(0)*, we have v — 31 # (2 and
hence (v — By, B2) < (B2, B2) = (7,7). It then follows from the equality in (x) that (5, B2) >
—~1(3,7) and, consequently, (8, B) > 0. Now using (), we obtain (v — 81) + (v — %) & ,
since v — [, is long.

(be) Both B; and (5 are short.
Then |(B1,5:)] < 3(81,61) < 3(7,7) and () shows that (y — 8;,02) > 0. Therefore,
v — [y — P is aroot in W(1). Since 7 is long and (v, 3;) = %(7,7) for i = 1,2, we conclude
that (v — 81 — B2,7) = 0 and therefore, (v — 5 — B2) + v € V.

(i) Using the notation of part (i), we have ¥(a,) = U(V)UW¥(2). First we show that none
of the generators in 'y lies in W(2). For this end, it suffices to show that the lowest weight
9 in U(2), is not a generator. (Recall that g(2) is an irreducible g(0)-module and therefore §
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is uniquely determined in W(2).) Since § — o is a root (in W(1)), it is enough to show that it
lies in W(V'). Because - is the highest weight in W(1), we see that v+ o is a root, and hence
(v,0) < 0. Since ¥(3) is empty, v+ 0 is not a root. Thus, (v,d) > 0 and then (v, —0o) > 0.
This implies that v — (6 — o) is a root lying in ¥(0)*. By the very construction of V', this
means 0 — o € ¥(V), as desired.

Now we consider the elements of U(V'). Let wy be the longest element in W(0). Then
wy(07) = —o7? for each ¢ € my(A7) and wy(o) = . Since g7 is the highest root in W7 (but
not in W), we have o7 + o0 € U. Hence wy(07 + o) = v — 07 is also a root. According to
the construction of part (i), the corresponding root space lies in a,. Moreover, since {07 }.
are clearly the maximal possible elements of ¥(0)* that can be subtracted from =, i.e., that
{y—07}. are the elements of ¥ (V') of minimal height, we obtain {y—07}. C I'y,. On the other
hand, suppose 7 — u € U(V), where p € W(0)" \ {07}.. Then p € W7 for some ¢ € mp(A7)
and hence ¢ — u is a sum of positive roots from W7 and so is (y — ) — (v — ¢7) = 07 — p.
Therefore, v —pu & Ty, .

(iii) Using the information in Tables 1 and 2 this is readily verified. O

Utilising Proposition 4.2, we can describe the map v in all classical cases. In the following
theorem we axiomatise the properties of this mapping. Whenever ¢ is fundamental (this
refers to all simple Lie algebras except for those of type A, and C,.) there is a unique simple
root o* such that (o,0*) # 0, see [2]. Observe that o* is always long.

Theorem 4.3. There is a unique bijection 1 : Il — A (60 := ¥(0)) satisfying the
following conditions:
1. do, = 2n, — 1.
Ifn, =1, then I'y, = {0}.
If n, = 2, then a, is defined as in Proposition 4.2.
#Io, = #mo(A7) provided g is not of type A,.
Suppose o is fundamental. Then for any sequence (c*, a, B, ...) of simple roots, adjacent
in A (and mutually distinct), we have dima,« < dima, < dimag < .. ..

G N

Proof. The proof consists of a case by case argument. One only needs to exploit the second
and fifth columns in Tables 1 and 2. The resulting correspondence is presented in Figures 3
and 4 where we label each node o € II, with dim a,. O

Observe that conditions 4 and 5 follow from the first three for B,., D,., Eg, and F}. In fact,
condition 5 is required only to construct ¥ for E; and Eg.

In the diagrams in Figures 3 and 4 the marked node indicates the one corresponding to
the simple root o*. Because there is a unique long simple root in C, and G, these cases are
omitted.
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Institute Oberwolfach supported by the Volkswagen Stiftung (“Research in Pairs” at Ober-
wolfach). It is a great pleasure to thank the members of the Institute for their hospitality.
Part of this paper was written during a visit of the first author with the SFB 343 “Diskrete
Strukturen in der Mathematik” at the University of Bielefeld. We are grateful to the SFB 343
for its support. Also, the first author was supported in part by R.F.F.I Grant Ne 98-01-00598.
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FIGURE 3. The function o — dim a, in the classical cases.
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FI1GURE 4. The function o — dima, in the exceptional cases.
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