Twisted Diagrams

T. HUTTEMANN and O. RONDIGS

We introduce generalized diagram categories, construct KAN exten-
sions, and establish various model category structures. Using these,
we define “homotopy sheaves” and show that a twisted diagram is a
homotopy sheaf if and only if it gives rise to a “sheaf in the homotopy
category”.
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1. Introduction

One often encounters constructions which look like diagrams in some category but
cannot be described with that formalism. A prominent example is the notion of (naive)
spectra, a sequence of pointed spaces Xg, X1, ... and structure maps ¥X,, — X,,11.
This almost determines a diagram indexed over N (regarded as a category), and in fact
can be described by a “twisted diagram” with “twists” given by iterated suspension
functors. Another example is the category of quasi-coherent sheaves on projective
spaces as defined in [Hii]. The new formalism also applies, as a special case, to diagram
categories in the usual sense (i.e., functor categories).

This paper is divided into three parts. §§ 2 4 are devoted to the definition of
twisted diagrams and the development of basic machinery. In §§ 5-8 we prove the
existence of several QUILLEN closed model category structures on categories of twisted
diagrams. This part is based on model category structures for diagram categories as in
[Ho]. Finally, in § 9 we propose definitions of sheaves and homotopy sheaves and show
how they are related.

Required prerequisites are elementary category theory as presented in [ML] and
basic model category theory ([DS] or [Ho]).

A special case of the results on model structures has been used by the first author
to study the algebraic K-theory of projective spaces ([Hii]). Twisted diagrams and their
model structures also appear implicitly in [HKVWW]. As the authors learned recently,
HirscHOWITZ and SIMPSON obtained related results ([HS]).

The authors have to thank M. BRUN for helpful comments and suggestions. All
diagrams were typeset with P. TAYLOR’s macro package [T].

2. Basic Definitions
Let Z be a small category. It will serve as the index category for our diagrams.
Definition 2.1. An adjunction bundle B = (C, F, U) over I, or Z-bundle, consists of

the following data:
e for each object i € T a category C;,
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e for each morphism o: ¢ — j in 7 a pair of adjoint functors F, : C; — C; and
U,: C; — C; (with F, being the left adjoint),
such that U determines a functor Z°° —— Clat, i.e., Ujq, = Id¢,, and for each pair of

composable arrows i 2 7 s k, the equality U,o, = U, oU; holds. In addition, we
require Fig, = Id¢,. The properties of adjunctions guarantee that there is a canonical
isomorphism F.., & F, o F, (which will be referred to as uniqueness isomorphism),
since both functors are left adjoint to U o, = U, o U, ([ML, IV.1, corollary 1, p. 83]).

Example 2.2. Any category C gives rise to a trivial Z-bundle with C; = C for all 4,

and all adjunctions being the identity adjunction.

Example 2.3. (The projective line.)
If M is a monoid, denote by M-k Top, the category of pointed, compactly gener-
ated topological spaces having a basepoint-preserving action of M. A map of monoids

f: M —— M’ determines an adjoint functor pair

-]/V\[M’: M-kTop, — M'-kTop,: Ry

with Ry being restriction along f, and - Aas M’ being its left adjoint (inducing up). The
integers Z form a monoid under addition, and we have submonoids N (non-negative

integers) and N_ (non-positive integers). Hence we can form the adjunction bundle

Pl oover T = (+ —— 0 L —), consisting of the categories N -k Top,, Z-kTop,

and N_-kTop,, and the adjoint pairs “inducing up” and “restriction” along the inclu-
sions N, CZ and N_ C Z.

Definition 2.4. (Inverse image of bundles.)

Given a functor ®: Z —— J and a J-bundle & = (D, G, V), we define the
inverse image of B under ®, denoted *B, to be the Z-bundle (C, F, U) given by
Ci = D@(i), U, = V<I>(i) and F; := G<I>(z)

If &: 7 — J is the inclusion of a subcategory, we write 3|7 instead of ¢*B and
call the resulting Z-bundle the restriction of B to 7.

Forming inverse images is functorial, i.e., id;® = B and (¢ 0 0)*® = ©*¢*B. The
inverse image of a trivial bundle is a trivial bundle.

Definition 2.5. (Morphisms of bundles.)

Suppose ¥ = (C, F, U) and & = (D, G, V) are Z-bundles. An Z-morphism
W: Y —— B consists of two families of functors p;: C; —— D; and A\;: D; —— C;
where i ranges over the objects of Z such that A; is left adjoint to p;, and such that for
each morphism o: ¢ — j in Z we have V, o p; = p; o U,.

Given an Z-bundle ¥ and a J-bundle B, a morphism of bundles =: d — B is a
pair = = (&, ¥) where &: Z — J is a functor and ¥ : I —— &*B is an Z-morphism
of Z-bundles.
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Definition 2.6. (Twisted diagrams.)
Let B be an adjunction bundle over Z. A twisted diagram Y with coefficients in B
consists of the following data:
e for each object ¢ € 7 an object Y; € C;,
e for each morphism o: i — jin Z a map ¢’ : Y; — U,(Y;) in C;

such that Y behaves like a functor, i.e., yibdv = idy, and y2., = U, (y2) oy’ for each pair

i —» j — k of composable arrows in Z. (A reformulation using the left adjoints
will be given below.)

A map f:Y —— Z of twisted diagrams is a collection of maps f;: Y, —— Z;
in C;, one for each object ¢ € Z, such that for each morphism o:¢ —— j in Z the
equality U,(f;) o yz = zg o f; holds. (A reformulation using the left adjoints will be
given below.) The category of twisted diagrams and their maps is denoted Tw (Z,®).

For each of the structure maps yg: Y; —— U,(Y;) there is a corresponding ad-
joint map yf: F,(Y;) — Y;. The idea is to think of the (meaningless) symbol
Yo: Y; —o— Y, as a kind of “structure map” having two incarnations as a b-type
map (a morphism in C;) and a §-type map (a morphism in C;).

The definition of twisted diagrams does not make explicit use of the left adjoints
provided by the adjunction bundle. However, the properties of adjunctions will play a

crucial réle for the discussion of limits and colimits in Tw (Z,®).

Example 2.7.

(1) If ® is a trivial Z-bundle (2.2), we recover the usual functor category: Tw (Z,8) =
Fun(Z, C).

(2) If 7 is a discrete category (i.e., contains no non-identity morphisms), an adjunction
bundle over 7 is simply a collection of categories {C;};c7, and the category of
twisted diagrams is the product category [[;.; Ci.

(3) Suppose B, = (C¥, F¥, U") is a family of adjunction bundles indexed by Z,,. Then
we can form the following adjunction bundle [[, ¥, =:® = (C, F, U) indexed by
the disjoint union 7 := 11, Z,: for each ¢ € 7 there is exactly one v with ¢ € Z,,
and we define C; = C! (and similarly for the F' and U). It is easy to see that
Tw (Z,9) =[], Tw(Z,,%®,) in this case.

Example 2.8. (Spectra.)

Let N denote the ordered set of natural numbers, considered as a category. For
each n € N, define C,, to be the category S of pointed simplicial sets. If n < m, we have
an adjunction X" : § T/ §: Q™" of iterated loop space and suspension functors.
It is clear that this defines an adjunction bundle Sp over N. A twisted diagram X with
coefficients in Sp, graphically represented by the “diagram”

Xg —o> X —o» X9 —0» ...,

is nothing but a spectrum in the sense of [BF].
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Given twisted diagrams Y, 7 € Tw (Z,®) and a collection of maps f;: Y; — Z;

in C;, we can form two squares for each morphism o: 7 — jin Z

v, —L .z Fy(vy) — Fy(2:)
yl:r lzi and yg lzg

and the definition of adjunctions imply that the left square commutes if and only if the
right square commutes. Thus the family (f;)icz determines a map of twisted diagrams
if and only if 2% o F,(f;) = fjo yh

o

For later use, we record the following fact:

Lemma 2.9. Suppose we have a map yg.: Y; —— U,(Y;) in C; for each morphism
o:1—> jinT satisfying y?d = id, and denote by y% the adjoint map F,(Y;) — Y;.

Let 7: j —— k be another morphism in Z. Then if one of the squares

FTOFO'(YD - TOU(Y;;) K Y;,
Fr(y) l lyﬁoa and ye l lyioa
F.(Y: Y, - (Y oo (Y
¥o) — k Uals) =5y~ Uroo ()

commutes so does the other (the upper horizontal map in the left square is the uniqueness
isomorphism). In other words, if one of the squares commutes, the objects Y; together

with the maps yg form a twisted diagram.

Proof. Assume that the square on the left commutes. We want to show that the
square on the right is commutative. The strategy is to divide the square into smaller
pieces which are known to commute.

For each morphism o: ¢ — j in Z, there exists a natural transformation of func-
tors 7 : Id — U, oF, called unit of the adjunction of F,, and U,. Given the structure
map yf : F,(Y;) — Y}, we obtain the corresponding adjoint map WY, — U, (Y;)

as the composite

ol #
Y P U, 0 By () Lol

Us(Y;)

(cf. [ML], IV.1, p. 80). In particular, the functors F;., and U,, are adjoint with unit
N7 : Id — U,op © Frog. But U,o, = U, o U, has another left adjoint F; o F,, and
we denote the corresponding unit by 77°%: Id — U, o U, o F; o F,.
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Now we redraw the square on the right with some extra data added:

%, l 1 Uioed l 2 ln?ﬁ"
Uo (kg (v3))
U, o F,(Y) 2 s U, 0U, o F, o F,(Y;) Uson © Frog (Y7)
Uo(yg) 3 UUOU-,—OF-r(yg)l 4 lU‘roa(ygoa)
Us(Y5) Ua(n3,) > Us o Ur o F2(Y}) Uroo (yE) Urea (Vi)

The outer square is the right hand square of the lemma. Square 1 commutes by the
composition rules for adjunctions and units ([ML], IV.8.1, p. 101). Square 2 commutes
by definition of the uniqueness isomorphism. Square 3 commutes since 77 is a natural
transformation of functors, and since U, is a functor. Finally, square 4 commutes by
hypothesis (apply U, o U, = U, o, to the left diagram of the lemma).

The other direction of the lemma, is proved using similar techniques. We omit the
details. O

The next lemma says that Tw (Z,®) is as complete and cocomplete as all the C;,
and limits resp. colimits can be computed “pointwise” in the categories C;. For ¢ € Z,
let Ev;: Tw (Z,8) — C; denote the ith evaluation functor which maps a twisted
diagram Y to its ith term Y;.

Lemma 2.10. Let G: D —— Tw(Z,®) be a functor, and suppose that for all i the
limit of Fv; o G exists. Then lim G exists and the canonical map

Ev;(limG) — lim(Ev; o G)
s an isomorphism, and similarly for colimits.

Proof. The proof relies on the compatibility of left (resp. right) adjoint functors with
colimits (resp. limits): if F is a left adjoint, and D is a functor, then there is a unique
natural isomorphism colim (F' o D) —— F(colim D), and similarly for right adjoints
and limits ([ML, V.5, theorem 1, p. 114]).

To prove the lemma, we treat the case of colimits only. (For limits one has to use
similar techniques. Since U is supposed to be functorial, this is slightly easier.) Let
G; := Fv; o G, and define C; := colim G;. We claim that the objects C; assemble to a
twisted diagram C', and it is almost obvious that C'is “the” colimit of G.

Let 0: 1 —— j denote a morphism in Z. The f-type structure maps of the twisted
diagrams G(d) (for objects d € D) assemble to a natural transformation

G?, : Fyo0Gy — G
of functors D — C;. Hence we can define the f-type structure map c(ﬁ7 as the composite

F,(C;) = F,(colim G;) = colim (F;, o G;) T+ colim G =C;
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with f induced by G¥. By lemma 2.9 we are left to show that the following square
commutes for all composable morphisms ¢ and 7 in Z:

FT o Fa’(Cz) —g’ FTOU(Ci)

Ff(c%.>l lﬁ (*)
F(Cy) C,,

ct

T

We replace the symbols C; and the structure maps by their definition and obtain the
following bigger diagram:

R

F, o F,(colim G;) === F; o F(colim G;) F, o, (colim G;)

gl 1 gl 2 lg

F, (colim (F, 0 G;)) ——» colim (Fy o Fy 0 G;) —— colim (Frog 0 G;) (%)

| : l o

F-(colim (G;)) colim (F; o Gj) colim (Gy,)

~

All the small squares commute: for 1 this is true by uniqueness of the isomorphisms
for commuting left adjoints with colimits. The horizontal maps of 2 are induced by
the uniqueness isomorphism, the vertical maps are induced by the isomorphism for
commuting left adjoints with colimits. By uniqueness, 2 commutes. Both horizontal
maps of 3 are induced by the isomorphism for commuting colimits with F, and both
vertical maps are induced by the natural transformation G% : F, oG; — G;. Hence 3
commutes. Finally, square 4 commutes by lemma 2.9, applied componentwise to the
diagrams Gy, and by functoriality of colim .

Hence the diagram (#*) commutes. But the square (x) is contained in there as the

outer square, thus is commutative as claimed. O

Definition 2.11. (Inverse image of twisted diagrams.)

Suppose we have a functor ®: 7 —— 7, a J-bundle B, and a twisted dia-
gram Y € Tw(7,®8). We define the inverse image of Y under ®, denoted ®*Y,
as the twisted diagram over Z with coefficients in ®*® given by (®*Y); := Yg(;) and
(q)*y)z = yg(g) for all objects i € Z and all morphisms ¢ € Z. We obtain a functor
*: Tw (J,8) — Tw (I, d*D).

Now suppose we have Z-bundles A = (C, F, U) and ® = (D, G, V), and an
Z-morphism ¥ = (p, A\): ¥ —— B. The functor inverse image under ¥, denoted
U*: Tw (Z,8) — Tw (Z,9), assigns to a twisted diagram Y € Tw (Z,®) the object
U*Y € Tw (Z,¥) given by (¥*Y); := \;(Y;) with f-type structure maps (U*y)% given
by the composition

Il

Fy (WY ):) = Fy (M(0) 2 A(Go (V1) 2922 2 (15) = (w°Y);
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for all objects i € Z and morphisms o: ¢ —— j. (We will prove in the next lemma
that U* is well-defined, i.e., that ¥*Y is a twisted diagram.)

More generally, a morphism = = (&, ¥): 9 — B of bundles induces an inverse
image functor Z* = ¥* o0 ®*: Tw (J,®) — Tw (Z,¥).

If ®: Z —— J is the inclusion of a subcategory, we write Y|z instead of ®*Y
and call the resulting twisted diagram with coefficients in 8|7 the restriction of Y to Z.
This defines the restriction functor Tw (J,®) — Tw (Z,®|z). As a special case of
restriction (if Z = {¢} is the trivial subcategory consisting of i), we obtain the evaluation
functors Fv; as defined above.

Lemma 2.12. Given Z-bundles % = (C, F, U) and ® = (D, G, V), an Z-morphism
U= (\p): A — 3B, and a twisted diagram Y € Tw (Z,®), the object V*Y defined

in 2.11 is a twisted diagram with coefficients in 9.

Proof. Let 0: 7 — j and 7: j —— k be morphisms in 7 and consider the diagram

oy

FTOFO'O)\Z'(Y;) ‘FTOO'OAi(Yvi)

gl lg

Fr 00 Gy (Y;) — Ak 0 Gr 0 Gy(Y;) —— Ay 0 Grop(Y3)

paor ) | Akomyg)l lwao,,)
FroA(Yj) Ak 0 G- (Yj) Ae(Y)

oy

Ak (yl)
in which all arrows labeled with “=” denote uniqueness isomorphisms. Recall that
the compositions of functors appearing in the upper rectangle are left adjoints to the
functor U, o U o p.. Thus the upper rectangle commutes by uniqueness. The lower left
square commutes by naturality. The lower right square commutes since Y is a twisted
diagram (lemma 2.9) and A; is a functor. Hence the whole diagram commutes and
U*Y is a twisted diagram by another application of lemma 2.9. O

Definition 2.13. (Direct image of twisted diagrams.)

Suppose we have a bundle morphism = = (&, ¥): 4 — B, where A = (C, F, U)
is an Z-bundle, ® = (D, G, V) is a J-bundle, ® is a functor Z —— J, and
U = {(\;, pi) biez is an Z-morphism ¥ —— &*B. Let Y be a twisted diagram with
coefficients in . It is straightforward to check that the definition W, (Y'); = p;(Y})
yields a twisted diagram with coefficients in ®*® having the structure maps

i (%)
U, (y)% 2 pi (Vi) 2202 p, 0 Un(Y)) = Vit © p (Y5)

for a: i — j. In this way we obtain a functor ¥, Tw (Z,%) — Tw (Z, P*DB).
Suppose the right adjoint R® of &* exists. The composition

Ey=RbPoV,: Tw(Z,%) — Tw(TJ,D)

is called the direct image functor.
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We will see that if the bundle ® consists of complete categories, the functor R®
exists and can be constructed by twisted KAN extension.

Corollary 2.14. Let =2 = (®,¥): A — B be a bundle morphism, with B consisting
of complete categories. Then the functor Z* (inverse image under E) has a right adjoint
E, (direct image under Z).

Proof. Since R® is right adjoint to ®* by assumption, it remains to show that WU, is
right adjoint to U*. However, this is true, because W, is pointwise right adjoint to W*,
and it can be checked that adjoining pointwise respects maps of twisted diagrams. We
omit the details. O

3. Twisted KAN Extensions

Assume that B is a trivial bundle over 7, consisting of the category C (and identity
functors), and ®: Z —— J is a functor. In this case, the inverse image of % under ® is
the trivial bundle over Z (consisting of C and identity functors), and ®* is the functor
Fun(J,C) —— Fun(Z,C) mapping Y to Y o ®. If C is complete and cocomplete,
the functor ®* has a left and a right adjoint given by left and right KAN extension
respectively ([ML, X.3, corollary 2]).

It is possible to lift this construction to our framework. We consider only left KAN
extensions, the other case being similar (and easier).

Let ®: 7 —— J be a functor, ® = (C, F, U) a J-bundle, and Y a twisted
diagram (over Z) with coefficients in ®*® = (D, G, U). First, we have to define a
twisted diagram L(Y) over J with coefficients in 8. (Later, we will convince ourselves
that the assignment Y —— L(Y") is a functor which is left adjoint to ®*.) Let j € J be
given, and let ® | j denote the category of objects ®-over j. Its objects are maps of the
form o: ®(i) — j € J (for i an object of 7). The morphisms from o: ®(i) — j
to 7: ®(i') — j are morphisms «a: i — ¢/ € T satisfying 7 o ®(a) = 0. Consider
the assignment

DY:®|j—>Cp (D)) T j) = F,(Y:)

This is well-defined because Y; is an object of D; = Cg(;) by definition of ®*®, so I, (Y;)
is an object of C;.

The assignment D}/ is in fact a functor, as one can deduce as follows. Let prz
denote the obvious projection functor ® | j —— Z mapping the object ®(i) — j
to i, and define pry := ® oprz. Using the equality pr’;® = pr7($*®), we get a functor
pry: Tw(Z,*B) — Tw (P | j,pry®). Let {j} denote the subcategory of J given
by the object j (and no non-identity morphism) and consider the category C; as a (triv-
ial) bundle over {j}. Then we have a morphism of bundles Z: C; — pr’;® consisting
of the functor ® | j —— {;j} and the (® | j)-morphism ¥ from pr’® to the trivial

bundle with o-component the adjunction [, : Ce;y =— C;: U, (for o: ®(i) — j).



Twisted Diagrams 9

The inverse image under V¥ is a functor W*: Tw (® | j,pr®) — Fun(® | j,C;).
Tracing the definitions shows D]Y = Upri(Y).

Now assume that the bundle 8 consists of cocomplete categories. Define L(Y);
as the colimit of DJY. To prove that the L(Y); assemble to a twisted diagram, we
construct for each a: j — k a structure map 1% : F,,(L(Y);) — L(Y); and apply
lemma 2.9.

Since F, is a left adjoint, we have a unique isomorphism

Ug : Fo(colim D]Y) = colim (F, o DJY) .

Let (1) —7 » j be an object of ® | j. Then o oo is an object of ® | k, and there
is a canonical map F,o,(Y;) — colim D} = L(Y), (since Fo0.(Y;) appears in the
diagram D,};) The composition with a uniqueness isomorphism yields a map

ty: Foo Fo(Y;) — L(Y) .

The t,’s assemble to a natural transformation from Fj, o D}/ to the constant diagram
with value L(Y'), (a proof involves the uniqueness of the uniqueness isomorphisms and
the naturality of the canonical maps mentioned above; we omit the details). By taking
colimits, this determines a map

Vo colim (F 0 DY) — L(Y ) ,

and we set lg 1= Uy O Ugy-

Now we have to check that, for j —— k By € J, the square

Fp o Fu(L(Y);) — Foa(L(Y);)
wg)l lzgw ()

Fp(L(Y)r) — L(Y)
8
commutes. First of all, the diagram
Fg o Fo(L(Y);) ——— Fpoa(L(Y);)

| |~

colim (Fj 0 F 0 D)) — colim (Fjgoq 0 D))

consisting of uniqueness isomorphisms commutes because of their uniqueness. By the

universal property of the colimit and the definition of the structure maps, we are left
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to show that, for every o: ®(i) — j, the diagram

Fgo Fyo Fy(Y;) —— Faon 0 Fy(Y3)

Fﬁ OFaoa(}/i) = Fﬁoaoa(n)
colim (Fj o D,};) Coaco
F(L(Y)) L(Y),

:
L

commutes, where the maps cqor and cgonos are canonical maps to the colimit, and all
maps labeled with ‘=’ are uniqueness isomorphisms. The upper square commutes by
uniqueness, and the lower square commutes by definition of l%. This implies that the
square (*) commutes, and 2.9 shows that L(Y) is a twisted diagram as claimed.

Theorem 3.1. (Left KAN extensions.)

Let B be a J-bundle consisting of cocomplete categories, ®: 7 —— J a functor
and Y a twisted diagram with coefficients in ®*®. The assignment Y — L(Y') described
above is the object function of a functor L®: Tw (Z,d*B) —— Tw (J,B) which is
left adjoint to ®*.

Proof. Abbreviate L® by L and keep the notation used in the construction of L(Y).

We start by describing the effect of L on morphisms. Let f: Y —— Z be a
map of twisted diagrams with coefficients in ®*®, and fix an object 5 € J. For each
o: ®(i) — j, the maps F, (f;) form a natural transformation from D}/ to DJ-Z , because
the uniqueness isomorphisms are natural, f is a map of twisted diagrams and F, is a
functor. This defines a map on the colimits L(f);: L(Y); — L(Z);.

We claim that the maps L(f); assemble to a map L(f) of twisted diagrams. For
a:j — kin J, consider the diagram

FL(L(Y);) =52 F(2))
L(Y)s L(Z)

where [ and m denote the structure maps of L(Y) and L(Z). It commutes if and only
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if for each object o: ®(i) — j of ® | j, the diagram

Foo By (v;) 22U poo k(7))
Faoo‘(yvi) Faog‘(fi) Faoa’(Zi)
LY =5, L2k

commutes. The isomorphisms are uniqueness isomorphisms, which are natural, hence
the upper square commutes. The lower vertical arrows denote the canonical map to

the colimit, and the naturality of these make the lower square commute.

Having checked that L(f) is indeed a map of twisted diagrams, it is clear that L is
a functor. To prove that L is left adjoint to ®*, we construct natural transformations
n:1d — ®*oL and e: Lo®* — Id satisfying the triangular identities ([ML, IV.1],
theorem 2 (v)).

For Y € Tw(Z,9*®), the Y-component 7y is given (pointwise) as the canonical
map to the colimit Y; —— ®*(L(Y")); = L(Y)a(;) which corresponds to the identity
id: ®(i) —— ®(i) (an object of & | ®(i)). We check that 7y is a map of twisted
diagrams. Let a: ¢ —— j € Z be given and consider the diagram

Fy(a)((my)i)

Fyo)(Y3) Fo(o)(L(Y)ai)
yg‘ l lfb(a)
Y; > L(Y)a(j)

(my);

with the structure map ¥ starting from G (Y;) = Fy(a)(Yi) by definition of &*®.

Since the structure map lé(a) is defined via the canonical maps to the colimit

F‘I:‘(a) © Fa’(Yk) = F@(a)oo‘(Yk) - L(Y)<I>(j)

(for o: ®(k) — ®(i) an object of ® | ®(i)), the composition lf‘b(a) o Fo(a)((my)s)
coincides with the canonical map to the colimit c: Fgp (o) (Y:) — L(Y)a(;) (the special
case 0 = idg(;)). Hence we have to show that the triangle

Fy(a)(Yi)
y&l \
ij (ny )i L(Y)@(j)

Y

commutes. But this is true by the definition of L(Y)g;) as the colimit of Dy, .
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The naturality of n follows easily from the naturality of the canonical maps to the
colimit.

We turn to the definition of €. For Z € Tw (J,®), the map e is given pointwise
as follows: for every j € J and every o: ®(i) — j in ® | j, the structure maps

ﬁ *
Fo(®*(2)i) = Fo(Za) Y2, 7; assemble to a natural transformation from D$ 7 to
the constant diagram with value Z; (this follows from lemma 2.9 and the fact that Z is
a twisted diagram). By taking the colimit, we obtain a map
(ez)j: L(®"(2)); — Z; -
To prove that €z is a map of twisted diagrams, let «: j —— k € J and consider

the following diagram:

Fo((ez);)

Fo(L(®%(2));) Fo(Zj)
L(®*(Z)) > 7k

(e2)k

Using the universal property of the colimit, the definition of ¢z and the definition of
the structure map m¥,, we are left to show that, for each o: ®(i) — j, the diagram

Fo(F, (Z:)) —2C200 5, (2))

commutes, where the left vertical map is the composition of the uniqueness isomorphism
and the canonical map to the colimit Fio,(Z;) — L(®*(Z))x. However, the definition
of ez implies that the diagram above commutes since Z is a twisted diagram.

The naturality of € is obvious.
It remains to prove that the composites
L L P B
L= Lod*olL =L and & % d*oLod* —5 @~

are identity natural transformations.
In the first case, let Y € Tw (Z, ®*®) and j € J. The map

L(ny);j: L(Y); — L(®*(L(Y))),

is defined via the canonical maps to the colimit F5(Y;) —— F,(L(Y)g(;) (for mor-
phisms o: (i) — j). The definition of € then implies that it suffices to prove the
commutativity of the triangle

Fy(Y;) — Fo(L(Y)a(:)
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for each o : ®(i) — j, where the two arrows in the middle denote canonical maps to
the colimit. The definition of I} gives the desired result.

In the second case, let Z € Tw(J,®) and i € Z. We have to show that the
triangle

Zoiy — L(®"(Z))a)

X l(GZ%}(i)

Za (i)

commutes, where the upper horizontal map is the canonical map to the colimit (corre-
sponding to idg(;)). But this is obvious from the definition of e. O

The right adjoint of ®*, obtained by the corresponding twisted version of right
KAN extension along ®, will be denoted R®. By the dual of theorem 3.1 it exists if B
consists of complete categories.

Recall the functor Ev; defined as the restriction along {i} —— J, and suppose
its left adjoint Fr;: C; —— Tw (J,®) exists. Then we call F'r;(K) the free twisted
diagram generated by K € C;.

Example 3.2. (Spectra, continued.)
Let Sp be the bundle defined in 2.8 which leads to ordinary spectra. The nth
evaluation functor maps a spectrum to its nth term, and the corresponding nth free

twisted diagram of a pointed simplicial set K is the spectrum
¥ —o> % —o> ... —0> * —0o» K —o» YK —o» Y?’K —o0» ...

with K appearing at the nth spot and all §-type structure maps being identities except
for the map () =« — K.

4. Construction of Adjunction Bundles

Twisted diagrams were introduced as generalized diagrams. However, there is a
different (but equivalent) approach using fibred and cofibred categories in the sense of
GROTHENDIECK. For definitions and notation the reader may wish to consult [Q].

Let us recall the GROTHENDIECK construction E*}(U ) of a contravariant functor U

defined on Z with values in the category of (small) categories. The objects of /GVT(U )
are the pairs (4,Y) with ¢ an object of Z and Y an object of U(i). A morphism

(i,Y) — (4, Z) consists of a morphism i —— j in Z and a morphism Y’ A, U(o)(2)

in U(i). Composition is given by the rule
(1.B)o(0,A) := (too,U(c)(B) o A) .

This construction comes equipped with a functor @(U ) — T.
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Remark 4.1. An adjunction bundle determines a functor U: Z°° —— C'at, hence a
functor Gr(U) — Z. The existence of the left adjoints F, make Gr(U) a cofibred
category over Z°P, even a bifibred bundle in the sense of the next definition.

Definition 4.2. Given a functor 7: £ —— A, we call £ a bifibred bundle over A if
the following conditions are satisfied (using notation from [Q)]):
(1) The functor 7 is fibred, and for all composable morphisms a and 3 in A, the
natural isomorphism a* o 3* —— (B0 «a)* is the identity.
(2) The functor 7 is cofibred, and for all morphisms a € A the functor a* is right
adjoint to a.
In this situation, a functor f: 7 —— A determines an Z-indexed adjunction bundle
fxam =1 a4 £ which sends the object i € Z to the category 7~ !(f(i)) and the
morphism g € Z to the adjoint pair f(u). and f(p)*.

Remark 4.3. (M. BRUN's reformulation of twisted diagrams.)

Recall from remark 4.1 the functor 7: @;"(U ) — T associated to an adjunction
bundle. A straightforward calculation which we omit shows that Tw(Z,®) is the
category of sections of 7.

More generally, given a bifibred bundle 7 and an adjunction bundle f < 7 as in 4.2,
the category of twisted diagrams Tw (Z, f < 7) is the category of lifts of f to &, i.e.,
the category of functors g: Z —— & satisfying mo g = f.

Example 4.4. Let Mod — Rng denote the canonical functor from the category of
all modules over all rings to the category of rings. (The objects of Mod are pairs (R, M)
with R a ring and M an R-module. A morphism (R, M) — (S, N) consists of a ring
map f: R — S and an f-semilinear additive map M —— N.) This defines a bifibred
bundle.

A toric variety determines a functor into Rng, hence (by 4.2) an adjunction bundle.
In fact, a fan X of a toric variety can be regarded as a poset, hence as a category, and
we obtain a functor

¥ —— Rng, o+— Clo N M]

where & is the dual cone of o and M is the dual lattice (see [O] for details). Thus the
toric variety X () determines the adjunction bundle ¥°P xip,, Mod.

This example can be generalized to obtain an adjunction bundle from a diagram
of monoids and a cocomplete category D. We proceed with a construction.

It is well known that we can consider any monoid M as a category with one object
and morphisms corresponding to the elements of M. A morphism of monoids then is
a functor between two such categories. Suppose that D is a cocomplete category. We
define the category of M-equivariant objects in D, denoted M-D, as the category of
functors M — D. A monoid homomorphism f: M —— M’ induces the “restriction”
functor f* = Ry: M'-D —— M-D (given by precomposing with f). Since D is
cocomplete, this functor has a left adjoint f, = - Apy M': M-D —— M’-D. For
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composable monoid homomorphisms we have the relations (g o f)* = f* o g* and
(go f)« = gs o fu. Moreover id* = id, and we choose id, = id.

Let EqD denote the category of equivariant objects in D. Objects are the pairs
(M, D) where M is a monoid and D is a functor M —— D. A morphism from
(M, D) to (M', D')is a pair (o, v) where a: M —— M’ is a monoid homomorphism
and v is a natural transformation of functors D —— D’ o a. The forgetful functor
w: BgD —— Mon into the category of monoids make F¢D into a bifibred bundle in
the sense of 4.2. The fibre over the monoid M is the category M-D of M-equivariant
objects in D.

Definition 4.5. Suppose we have a (small) category Z and an Z-indexed diagram G
of monoids, i.e., a functor G: Z —— Mon. For a cocomplete category D we define the
Z-indexed adjunction bundle AdpG = (C, F, U) by

AdDG = INMO” EqD .

Explicitly, for an object i € Z we let C; := G(i)-D, the category of G(i)-equivariant
objects in D, and for a morphism o € Z we define F, := G(0), and U, := G(o0)*.

This definition is clearly natural in G, i.e., given a natural transformation of
diagrams of monoids G —— G’ we obtain an Z-morphism of adjunction bundles

AdDG/ —_— Ad'DG

Example 4.6. (Non-linear projective spaces.)
This generalizes example 2.3. Let [n] denote the set {0, 1, ..., n}, and write (n)
for the subcategory of non-empty subsets of [n]. For A C [n], define the (additive)

monoid
M4 = {(ao, . ay) € ZMTT ‘ ZGZ':OandVigéA: @i 20} :
0

These monoids assemble to a functor G: (n) —— Mon. Let G denote a topologi-
cal monoid, and write D = G-k Top, for the category of G-equivariant, based, com-
pactly generated topological spaces. We are now in the situation of definition 4.5 (with
T = (n)); call the resulting adjunction bundle " (G). The category of twisted diagrams
Tw ((n),P"(G)) is nothing but the category pP"(G) of G-equivariant quasi-coherent
presheaves as defined in [Hi, 6.1].

5. Remarks on Model Structures

The terminology concerning model categories is taken from [DS] and [Hol, the
proofs are mostly modifications of the corresponding proofs in [Ho]. The term “model
category” is always to be understood in the sense of [DS], which is slightly more general
than the definition given in [Ho|. The differences are the following: In [Ho], it is required
that a model category has all small limits and colimits (instead of just finite ones),
and the factorizations have to be functorial and are part of the structure (instead of
assuming that they simply exist).
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Definition 5.1. Let & = (C, F, U) be an adjunction bundle over Z. We call %
an adjunction bundle of model categories if all the C; are model categories, and all
the F, preserve cofibrations and acyclic cofibrations. In other words, we require the
pair (F,,U,) to form a QUILLEN adjoint pair.—If in addition all the C; are proper model
categories, B is called proper. Note that the inverse image of a (proper) adjunction

bundle of model categories is again a (proper) adjunction bundle of model categories.

Example 5.2. The projective space bundles $"(G) (for G a cofibrant topological
monoid, 2.3) and spectra Sp (cf. 2.8) are examples of proper adjunction bundles of
model categories. The model structure defined on M-kTop, (for M a monoid) has
weak equivalences and fibrations on underlying spaces, the model structure on the
category of pointed simplicial sets is the usual one.

Before defining the model structures on twisted diagrams, we make a technical
observation.

Remark 5.3. Suppose C =[], C, is the product of model categories C,. Then there
is a product model structure on C where a map is a weak equivalence (resp. fibration,
resp. cofibration) if its image under the canonical projection is a weak equivalence
(resp. fibration, resp. cofibration) in C, for all v (see [Ho, 1.1.6]). If all the C, are
proper, C is a proper model category.

6. The c-Structure

Definition 6.1. A category with degree function is a (small) category Z together
with a Z-valued function d, defined on the objects, such that whenever there is a non-
identity morphism ¢ — j we have d(i) # d(j). (We say that all non-identity arrows
change the degree. In particular, objects have no non-trivial endomorphisms.) The
category is called bounded if d is bounded below, and it is called locally bounded if each
connected component is bounded. If non-identity arrows always increase the degree
and the category is (locally) bounded, we say that Z is a (locally) direct category.

Remark 6.2. It is possible to allow more general degree functions with arbitrary
ordinals as values (cf. [Ho]). The two inductive proofs appearing in this section just
have to be completed with a discussion of the “limit ordinal case”.

All finite dimensional categories (i.e., categories with finite dimensional nerve)
admit degree functions and can be made into direct categories. A disjoint union of
locally direct categories is locally direct. If Z is (locally) direct, so are subcategories,
under and over categories formed with Z. In particular, the full subcategory Z,, of
objects of degree less than or equal to n is (locally) direct. A finite product of direct
categories is direct (with degree given by sum of partial degrees).

In what follows, & = (C, F,U) is an adjunction bundle of cocomplete model cate-

gories over Z. Let Y be a twisted diagram with coefficients in & and ¢ an object of Z. To
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describe the cofibrations in the model structure we are going to construct, we have to
introduce the latching object of Y at 7. Roughly speaking, it is given by the colimit over
all components of Y mapping to Y;; the colimit is to be taken with respect to the f-type
structure maps.—For each object i € Z, let 7 | ¢ denote the category of objects over i.
Let Z | 7 denote the full subcategory of Z | ¢ which consists of all objects o: j ——
with o # id;. There are canonical functors ¢: Z || ¢ —— Z | ¢ (the inclusion) and
pr: Z | i — 7 (the projection (o: j — i) — j). Set Pry; := pro ¢ and denote the
trivial bundle over Z |} ¢ with value C; by C; again. We define an Z |} ¢-morphism of
bundles ¥: C; — (Pry;)*® as follows: For o: j — 4, the adjoint pair

Fg:Cj<—'CiSUU

is the o-component of ¥, and it is obvious from the definitions that V¥ is in fact a bundle
morphism. Hence we have a functor ¥*: Tw (Z | i, (Pry;)*®) — Fun(Z | i,C;).
Define G;: Tw (Z | i, (Pry:)*®) — C; as the composition colim oW*.

Definition 6.3. The latching object of Y at i is defined as L;Y := G; o (Pgy;)*(Y). It
is an object of C;.

Remark 6.4. The structure maps y¥ : F,(Y;) — Y; for o: j — i define a natural
transformation L; —— Fv;. If a map L;Y —— Y} is mentioned, it is always this

natural map.

Example 6.5. If X is a spectrum and n > 0, the latching object of X at n is the
pointed simplicial set ¥X,,_1, and the natural map XX,_; —— X,, of 6.4 is the
structure map of the spectrum.

Example 6.6. Let Y = (Y 5. Yy L Y_) be a twisted diagram with coefficients
in the projective line bundle $! (cf. 2.3). The latching objects of Y at + and at — are
the initial objects in N -k Top, and N_-kTop,, respectively. The latching object at 0
is the Z-equivariant pointed space (Yy AN, Z) V (Y- AN_ Z). The f-type structure

maps induce a map to Y.

Definition 6.7. (c-structure)

Let f: Y —— Z be a map in Tw (Z,8). We call f a weak equivalence if f; is
a weak equivalence in C; for every object ¢ € Z. We call f a c-cofibration if for all
objects ¢ of I, the induced map Y; Ur,y L;Z —— Z,; is a cofibration. We call f a
c-fibration if all f; are fibrations in C;.

To prove that the c-structure is a model structure, we have to concentrate on the
lifting axiom first. Call a map f € Tw (Z,8) a good acyclic c-cofibration if for all
objects 7 of I, the induced map Y; Ur,y L;Z — Z; is an acyclic cofibration. Later,
we will prove that the class of good acyclic c-cofibrations coincides with the class of

acyclic c-cofibrations.
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Lemma 6.8. Let T be a direct category, and let B be an adjunction bundle of cocomplete
model categories over I. Good acyclic c-cofibrations have the left lifting property with
respect to c-fibrations. Similarly, c-cofibrations have the left lifting property with respect

to acyclic c-fibrations.

Proof. We treat the first case only, the other is similar. Let

A2, Xx

fl lp

B——Y
h

be a commutative diagram in Tw (Z,®) such that f is a good acyclic c-cofibration
and p is a c-fibration. We will construct the desired lift by induction on the degree of
objects of 7.

Since 7 is direct, the degree function d has a minimum k. If ¢ is an object in Z of
degree k, then L; is the constant functor with the initial object as value. By definition
of a good acyclic cofibration, the map f; is an acyclic cofibration in C;. Hence we can
find a lift /; in the following diagram:

9i

i 2 X

A .
.‘.’
g I N,.--"""\'m i "
B .

' Y,

~

@l

T h,

Since the full subcategory Z; of objects of degree k is discrete, the lifts [; for the
various i € Z, assemble to a map l|z, : Bz, — X|z, in Tw (Zx, 8|7, ).
Now let n > k, and assume that we have constructed a lift in the diagram

glz,_
A|In—1 —1> X|In—1
v

Flzp_y l A lp| Tp_1
o \\’Lrﬂ/

B‘Infl _EE—_» Y‘Infl
n—1

making it a commutative diagram in Tw (Z|,—1,®|z,_,). If i is an object of degree n

. o
and o: j — = i an object of 7 | 4, the map Fy(B;) -2 F,(X;) —*7» X; is part of

a natural transformation ¢: L; B —— X, such that the diagram

|l

LiB — X;
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commutes. Hence we get a diagram

BiUr,p LiA — X;

B; Yi

h;

in which, by hypothesis, the left vertical map is an acyclic cofibration and the right
vertical map is a fibration. Thus a lift [;: B, —— X exists, and it is straightforward
to check that these maps [;, together with the morphism |z, _,, define a map of twisted
diagrams |z, : B|z, — X]|z, such that the diagram

Alz, Az X|z,

-"
f|1n l “._-"' lplfn
- NG

B|In Tz: Y‘Zn

commutes. This completes the proof. O

Let : Z — J be a functor and ¥ an adjunction bundle of cocomplete model cat-
egories over J. Obviously, the functor ®*: Tw (J,dA) — Tw (Z, ®*¥) preserves weak
equivalences and c-fibrations. The question is whether ®* also preserves c-cofibrations.
Under certain conditions (which are satisfied in the case of interest) we can give a

positive answer.

Suppose the functor ¢: 7 — 7T is injective at identities, i.e., whenever ®(o) is
an identity morphism, so is 0. (For example, a faithful functor is injective at identities.)

Then ® induces a functor
Sli:ZT)i— T P>)

which sends 0: k —— i to ®(0): ®(k) —— (7). This construction is compatible
with the projection functors, i.e., we have ® o Pry; = Pyyq@) o @ | .

Recall that a functor F': C —— D is called final if for each A € D the category
A | F of objects F-under A is non-empty and connected.

We say that the functor & satisfies the finality condition if it is injective at iden-
tities, and the functor ® | 7 is final for all objects i € Z.

Lemma 6.9. Let &: 7 —— J be a functor, B an adjunction bundle of cocomplete
model categories over I and i an object of Z. Denote by L; the i-th latching object
functor of Tw (Z,9*B), and by Lfb(i) the ®(i)-th latching object functor of Tw (J,D).

If & satisfies the finality condition, then there is a natural isomorphism L;o®* = LiI)(i)‘
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Proof. The functor L; is defined as the composition colim oW* o Pz, with ¥ being
an Z |} --morphism with o-component given by the adjunction

Foo): Cog) <= Ca(i) : Un(o)

where 0: j —— i is an object of Z | i. On the other hand, L&)(i) is the composition

Lfb(i) = colim o®* o P} 1B() with © having the 7-component given by the adjunction
F‘r: C] P C@(Z) UT

where 7: j —— ®(7) is an object of J || ®(7). It is straightforward to check that the
equality L; o ®* = colimo(® |} i)* c ©®* o PjMJ(Z.) holds. Hence the ¢-th latching object
of ®*(A) is given by

L;i(®*(A)) = colimo(©" o P74, (A)) o (P ) ) .

The functor ¢ |} i induces a map L;(®*(A)) — Lj;)(A) which is an isomorphism
by [ML, IX.3.1] since ® |} 7 is final. O

Corollary 6.10. If ® satisfies the finality condition, then ®* preserves c-cofibrations

and good acyclic c-cofibrations.

Proof. This follows immediately from 6.9 since the maps L;(®*A) —— Ag(;) and
L&)(i)A —— Ag;y correspond under the isomorphism. O

Remark 6.11. The functor Pry; satisfies the finality condition because (Pry;) | « is
an isomorphism of categories for each object a € Z | 1.

Lemma 6.12. Let Z be direct. For each i € T, the latching object functor L; maps

c-cofibrations to cofibrations and good acyclic c-cofibrations to acyclic cofibrations.

Proof. Recall that L; was defined as the composite G; o (Pry;)*. By remark 6.11
and corollary 6.10, we are left to show that G; maps c-cofibrations to cofibrations and
good acyclic c-cofibrations to acyclic cofibrations. However, G; has a right adjoint
Vi := W, 06, where 0: C; —— Fun(Z | i,C;) denotes the constant diagram functor
and W, is the direct image under W. It is easy to see that V; maps (acyclic) fibrations
to (acyclic) c-fibrations. Hence the statement follows from lemma 6.8 and the fact that
C; is a model category. O

Corollary 6.13. If f is a (good acyclic) c-cofibration, all its components are (acyclic)
cofibrations in their respective categories. In particular, a good acyclic c-cofibration is

an acyclic c-cofibration.
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Proof. Let f: A—— B be a c-cofibration. By 6.12, the map L;f: L;,A —— L;B
is a cofibration in C;, hence its cobase change A; —— A; Uy, 4 L;B is a cofibration.
Observe that f; factors as this last map followed by A; Ur, 4 L; B — B;. Since the
latter is a cofibration by hypothesis, we conclude that f; is a cofibration.—The other
case is similar. O

Theorem 6.14. Suppose T is a locally direct category, and B is an adjunction bundle

of cocomplete model categories over T.

(1) The c-structure is a model structure.

(2) A map f of twisted diagrams is an acyclic c-cofibration if and only if it is a good
acyclic c-cofibration

(3) If B is a proper bundle, the c-structure is proper.

Proof. Let (Z,) denote the family of path components of Z. Then Z = [[Z,,, and each
of the Z, is a direct category. Since Tw (Z,8) = [[, Tw (Z,,®|z,), it is enough to
show that the c-structure is a model structure for each of the categories Tw (I,,®|z, );
by 5.3 we can equip Tw (Z,®) with the product model structure. Consequently, we
can assume that Z is direct.

We use the axioms for model categories as given in [DS]. First we note that the class
of weak equivalences is closed under composition since weak equivalences are defined

pointwise. Similarly, the composition of two c-fibrations is a c-fibration again.

Now assume we have two composable c-cofibrations A . p_2. C. To show

that go f is a c-cofibration, we have to prove that for all objects ¢ € Z the induced map
AU, a LiC — C;
is a cofibration in C;. But we can factor this map as

A;iUr,a LiC=A;Up,a L;BUyp, g L;C

x

B; Ur,B L;C

where x is induced by f, and y is induced by g. But both of these maps are cofibrations
(since they are cobase changes of cofibrations), hence so is their composite.

It is obvious that each of the classes above contains all identities.

Axiom MC1: existence of finite limits and colimits is guaranteed by 2.10 since
they exist in all C;.

Axiom MC2: the “2-of-3” property for weak equivalences is satisfied since weak
equivalences are defined pointwise and M C2 holds in all the categories C;.

Axiom MC3: the class of weak equivalences is closed under retracts since weak
equivalences are defined pointwise, and in each category C; a retract of a weak equiva-

lence is a weak equivalence. Similarly, the class of fibrations is closed under retracts.
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Suppose g: Y —— 7 is a retract of f: A —— B and f is a c-cofibration. We
have to show that for all objects i € Z,,, the map L;Z U,y ¥Y; — Z; induced by g¢
is a cofibration in C;. But by functoriality of pushouts and latching objects, this map
is a retract of the map L;B Uy, 4 A; —— B; induced by f, which is a cofibration by
hypothesis. Since MC3 is valid in C;, the former map is a cofibration. Hence g is
a c-cofibration as claimed. This argument also shows that the class of good acyclic
c-cofibrations is closed under retracts.

Axiom MC5: let f: A—— X be a map in Tw (Z,®8). We will construct in-
ductively a factorization of f as a good acyclic c-cofibration followed by a c-fibration.
(The other factorization axiom is proved in a similar manner). Let k& be the mini-
mum of the degree function on Z, and let ¢ be of degree k. Then f; factors in C; as

A; »%» T, —2+» X;, with g; being an acyclic cofibration and p; being a fibration.

The collection of these factorizations (where i ranges through all objects of degree k)
yields a factorization of f|z, in Tw (Zy,8|z,) as g|z, : Alz, —— Tz, followed by
p|Ik : T|Ilc - X|Ik'

Let n > k, and assume we have already constructed a factorization of f|z, , in

g|I -1 p|I -1 .
“— T|z,_, —— X|z,_,. Let i be

Tw (Z,-1,8|z,_,) as the composite A|z, _,
of degree n. The canonical functor Pry;:Z || i —— Z factors through the inclusion
b:7, 1 ——>TZas0O:T]i— T,_1 since I is direct. Recall the functor

appearing in the definition of the i-th latching object functor L; (6.3). By defini-
tion, L, = G; o Pry; = G,; 0 ©* o &*, hence G; o ©*(A|z,_,) = L;A. The maps

_ ot
F,(T}) Folog) F,(X;) — X; for the different objects o: j — i of Z | i induce a
map G; o O*(T|z,_,) — X; which makes the diagram

Gi o} 6* (A|In_1): LZA Al
GiOG*(Q|In1)l lfz
Gio©*(T|z,_,) Xi

commute. Now factor the induced map A; Ug,(a) (Gs 0 ©%)(T|z7, ;) — X; as an
acyclic cofibration h;: A; U, 4y (Gi o ©*)(T|z,_,) ~—» T, followed by a fibration
p;: T; — X; in C;. The collection of the T;’s for the different objects i of degree
n, together with T'|z, | define a twisted diagram in Tw (Z,, 8|z, ). The new structure

maps for o: j —— 1 are the compositions

* * hi
Fo(Tj) —> Gio©" (17, ) —> AiUp,(a) (Gi0O")(Tz,_,) — T;

where the first two maps are the canonical ones. If we define g; as the composition of
the canonical map A; —— A;Up,(a) (G;00%)(T|z,_,) with hy, it is straightforward to
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check that we get a factorization f|z, = p|z, o g|z, in Tw(Z,,®|z,). This completes
the induction.

We end up with a factorization of f as A —9. 7 -2+ X. The object T'|z, we
constructed in the induction step coincides with the restriction of 1', and similarly for
the maps g and p. It is clear that p is a c-fibration in Tw (Z,®8). To complete the
proof of axiom MCS5, it remains to show that the map ¢ is a good acyclic c-cofibration.
However, if 7 is of degree kK = mind, the map A; Uy, 4 L;T = A; % T, is an acyclic
cofibration in C;, and if ¢ is of degree n > k, the map A; U, 4 L;T —— T} coincides
with the map h;: A; U, a) (Gi 0 ©%)(T|z,_,) — T; which is an acyclic cofibration

in C;. Hence g is a good acyclic e-cofibration.

We prove part (2) of the theorem. We have already seen that every good acyclic c-
cofibration is an acyclic c-cofibration (6.13). To prove the converse, let f: A — X be
an acyclic c-cofibration. Factor f as a good acyclic c-cofibration g: A —— T followed
by a c-fibration p: T" —— X, and note that p is an acyclic c-fibration by axiom MC2.

The map f is in particular a c-cofibration, so we can find a lift in the diagram
A T

f { lp

X

X —»
which expresses f as a retract of g. Since good acyclic c-cofibrations are closed under

e

idx

retracts, we are done.

Knowing (2), we see that axiom MC4 is an immediate consequence of lemma 6.8.
This finishes the proof of (1).

Finally, recall from lemma 2.10 that pushouts and pullbacks are calculated point-
wise. Since the components of a weak equivalence (c-fibration, c-cofibration) are weak
equivalences (fibrations, cofibrations) in the respective categories (use corollary 6.13
for the c-cofibrations), assertion (3) follows. O

7. The f-Structure

The construction of the c-structure can be dualized. There is a notion of a (locally)
inverse category, and matching objects allow us to define an f-structure with pointwise
cofibrations and weak equivalences.

In the following, let ® = (C, F, U) be an adjunction bundle of complete model
categories over Z. Denote by 7 | Z the full subcategory of the under category i | 7
consisting of objects o: 1 —— j with ¢ # id;. Again we have a canonical functor
.7 Z — 7. Consider C; as a trivial bundle over 7 || Z, and let ¥: &*H —— (;
be the 7 | Z-morphism of bundles with o-component given by the adjunction

Fg:Ci.—_’Cj:U,,
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for o: i —— j. Define H;: Tw (i | Z,®*B) — C; as the composition limoW,. In
fact, H; coincides with the direct image functor =, where = is the bundle morphism
given by the pair (V,i | Z — {i}) (here {i} is the trivial category).

Definition 7.1. Let Y be a twisted diagram with coefficients in . The matching
object of Y at i is defined as M;Y := H; o ®*(Y').

Remark 7.2. The structure maps ¢’ : Y; —» U,(Y;) for o: i — j define a natural
transformation Fv, —— M;. If a map Y; —— M;Y is mentioned, it is always this
natural map.

Definition 7.3. (f-structure)

Let f: Y —— Z be a map in Tw (Z,8). We call f a weak equivalence if f; is
a weak equivalence in C; for every object i € Z. We call f an f-fibration if for all
objects ¢ € I, the induced map Y; —— Z; Xp1,z M;Y is a fibration. We call f an
f-cofibration if all f; are cofibrations in C;.

Definition 7.4. A category with degree function is called a (locally) inverse category
if its opposite category (with the same degree function) is (locally) direct.

Theorem 7.5. Suppose I is a locally inverse category, and B is an adjunction bundle

of complete model categories over I.

(1) The f-structure is a model structure.

(2) If f is an f-fibration, all its components are fibrations in their respective categories.

(3) Amap f:Y — Z of twisted diagrams is an acyclic f-fibration if and only if for
all objects i € I, the induced map Y; —— Z; X1,z MY is an acyclic fibration
mn C;.

(4) If B is a proper bundle, the f-structure is proper. O

Remark 7.6. In fact, it is possible to construct a model structure on Tw (Z,®) if Z
is a REEDY category and & consists of complete and cocomplete model categories.
One has to combine the construction of the e-structure and the f-structure. The weak
equivalences are pointwise weak equivalences, the fibrations and cofibrations are more
complicated to define. In the case of diagram categories, this is done in section 5.2 of
[Ho], and the proof given there applies to our situation as well. The authors decided
to restrict attention to the simpler case.

8. The g-Structure

In this section we consider cofibrantly generated model structures. (The dual case
of fibrantly generated structures seems to be irrelevant in practice, hence is omitted
from the discussion.) Terminology is taken from [Hol.
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Definition 8.1. An Z-bundle 3 of cocomplete model categories is called a cofibrantly
generated adjunction bundle if for all objects ¢ € Z the model category C; is cofibrantly
generated.

Examples of cofibrantly generated adjunction bundles include the spectrum bun-
dle Sp of example 2.8 and the projective space bundle $"(G) of 4.6. The inverse image
of a cofibrantly generated adjunction bundle is cofibrantly generated.

Since C; has all colimits, the i-th evaluation functor Ev;: Tw (Z,8) — C; has
a left adjoint Fr;: C; — Tw (Z,®), the i-th free twisted diagram functor obtained
by twisted left KAN extension (theorem 3.1). Explicitly, for an object A of C; the
j-component of Fr;(A) is given by the coproduct

I AW

achomz (%,5)

and the structure maps are given in the following way: if 8: j —— k is a morphism
in Z, the map Frl-(A)/ﬂ@ is the composition

Fg(Fri(A)j):Fﬁ< I1 Fa(A))% [T For= J] Fseald)

achomz (4,7) a€homz (i,7) achomz (i,7)

— I »®

~y€homz (i,k)

where the last map is the canonical map induced by the identity on each summand,
mapping the a-summand of the source into the 8 o a-summand of the target.

Define M to be the set of maps in Tw (Z,®) of the form Fr;(f) with ¢ some object
of 7 and f a generating cofibration in C;. Define N to be the set of maps in Tw (Z,%®)
of the form F'r;(f), with i some object of Z and f a generating acyclic cofibration in C;.
Note that M and N are sets because 7 is small.

Definition 8.2. (g-structure)

Let f: Y —— Z be a map in Tw (Z,8). We call f a weak equivalence if f; is a
weak equivalence in C; for every object i € Z. We call f a g-fibration if f has the right
lifting property with respect to the set N. We call f a g-cofibration if f has the left
lifting property with respect to every g-fibration which is also a weak equivalence.

Lemma 8.3. A map has the right lifting property with respect to the set N (resp. M)

if and only if all its components are fibrations (resp. acyclic fibrations).

Proof. This follows from the adjointness of F'r; and FEwv;, and the fact that ® is
cofibrantly generated. O

Lemma 8.4. The domains of the maps of M are small relative to M -cell. The domains
of the maps of N are small relative to N-cell.
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Proof. This follows from the adjointness of Fr; and Fv;, and the fact that ® is
cofibrantly generated. We give a detailed argument for the case of M. Let A be the
domain of a map in M, so A is of the form Fr;(X) for some ¢ € Z, with X being the
domain of a generating cofibration in C;. Denote the set of generating cofibrations in
C; by J and recall that X is x-small relative to the class J-cell for some cardinal x,
because C; is cofibrantly generated. We will prove that A = Fr;(X) is xk-small relative
to the class M-cell.

Let A be a r-filtered ordinal and B: A —— Tw (Z,®) be a functor such that the
map Bg —— Bgy; is in M-cell for all 8 with 3+ 1 < A. We have to prove that the

canonical map
colim Tw (Z,®)(A, Bg) — Tw (Z,®)(A, colim B)

is an isomorphism. The adjointness of F'r; and Ev; provides that this map is isomorphic
to the composite

colim C;(X, Ev;(Bg)) — Ci(X, Ev; o colim B) = C;(X, colim Ev; o B)

(where the isomorphism is the one from lemma 2.10). This composite is the canonical
map, and X is x-small relative to J-cell. By [Ho, 2.1.16], X is then even x-small relative
to the class of cofibrations in C;. Hence we are done if for all § with 8+ 1 < A the
map Ev;(b): Evi(Bg) — Ev;(Bg+1) is a cofibration. However, since the maps in M
are in particular pointwise cofibrations, and the class of pointwise cofibrations is closed
under cobase changes and transfinite compositions, every map in M-cell is a pointwise
cofibration. This finishes the proof. O

Theorem 8.5. Let B be a cofibrantly generated bundle over T. The g-structure is a
model structure on Tw (Z,B) which is cofibrantly generated by the sets M and N.

Proof. We use Theorem 2.1.19 of [Ho|, which applies also for model categories in the
sense of [DS]. The weak equivalences clearly define a subcategory which is closed under
retracts and satisfies MC2, so condition 1 holds. Lemma 8.4 implies conditions 2
and 3, and lemma 8.3 implies conditions 5 and 6, and one half of condition 4. It
remains to prove that every map in N-cell is a weak equivalence. Since every map
in N is pointwise an acyclic cofibration, and the class of pointwise acyclic cofibrations
is closed under pushouts and transfinite compositions, every map in IN-cell is pointwise
an acyclic cofibration, so in particular a weak equivalence. O

Remark 8.6. The g-structure coincides with the c-structure provided both are defined.

This is true because both have the same classes of weak equivalences and fibrations.
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9. Sheaves and Homotopy Sheaves

Let C and D be model categories. If F': C —— D is a left QUILLEN functor (i.e.,
F preserves cofibrations and acyclic cofibrations, and F has a right adjoint U), we obtain
([DS, 9.5 and 9.7]) adjoint functors LF': HoC —— HoD and RU: HoD —— HoC,
called total left derived of F and total right derived of U, respectively.

Let Ho¢ C denote the full subcategory of Ho C spanned by the fibrant objects. The
inclusion ¢¢ is an equivalence of categories. Since U is a right QUILLEN functor, the
image of Hoy D under RU is contained in HoyC. Thus we obtain, by restriction, a
functor Ho D —— Ho¢ C which will be called R¢U. Define L¢F := (1p)~' o LF o ¢
where (1p) 1
to R f U.

By the construction of total derived functors as given in proposition 9.3 of [DS],
we have Ry(U; o Uz) = RyU;y o RyUsz and Ry (ide) = idpo, ¢ (for this it is important
to choose the DWYER-SPALINSKI model for total derived functors and to restrict to
fibrant objects). Thus the following definition makes sense:

is an inverse of the equivalence tp. In particular, LyF' is left adjoint

Definition 9.1. (Associated homotopy bundle.)

If® = (C, F, U) is an Z-indexed adjunction bundle of model categories, we define
its associated homotopy bundle of fibrant objects Hoy ® = (HosC, Ly F, R;U) as the
Z-indexed adjunction bundle given by i — Hos C; for objects 7« € 7 and o — L F, and
o — RsU, for morphisms o € 7.

The idea of this definition is that a twisted diagram Y with coefficients in B gives
rise to a twisted diagram h(Y") with coefficients in Ho s ® having the same components,
but structure maps of h(Y') corresponding to homotopy classes of structure maps of Y.
In detail, we can prove:

Proposition 9.2. Let B denote an Z-indexed adjunction bundle of model categories.
Assume that Tw (Z,%) can be equipped with a model structure with pointwise weak
equivalences (this is certainly the case if T is locally direct or locally inverse, or if B is
cofibrantly generated).

(1) Suppose that for all i € I, all objects of C; are fibrant. Then there exists a functor
h: Tw (Z,8) — Tw (Z,Hoy®) which maps weak equivalences to isomorphisms,
hence descends to a functor h: HoTw (Z,8) — Tw (Z,Ho;®).

(2) Suppose that fibrant objects of Tw (Z,B) are pointwise fibrant (i.e., c-fibrant),
and that Tw (Z,B) admits functorial factorization of morphisms. Then there is
a functor h: Tw (Z,8) — Tw (Z,Hos®) which maps weak equivalences to iso-
morphisms, hence descends to a functor hi: HoTw (Z,8) — Tw (Z,Ho; ®).

(3) Suppose that fibrant objects of Tw (Z,B) are pointwise fibrant (i.e., c-fibrant).
Then there is a functor h: HoTw (Z,8) — Tw (Z,Ho; ®).

Proof. (1). We know that HoyC; = HoC; and RyU = RU in this case. Let

v;: C; — HoC; denote the canonical functor. Let o: i —— j be a morphism in Z.
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Since U, preserves all weak equivalences by BROWN’s lemma ([DS, 9.9]), we have the
equality RU, oy; =~; o U, by the remark preceding [DS, 9.3]. Hence given an object
Y € Tw(Z,9®), the assignment
i v(Yi), (o:i—>j) = 7(ys)

defines a twisted diagram h(Y) € Tw (Z,Ho; ®). Clearly h is a functor. Moreover, by
construction it maps weak equivalences to isomorphisms. By the universal property of
the homotopy category, h induces a functor i : Ho Tw (Z,8) — Tw (Z,Ho; ®).

(2). For a map o0:i —— j in Z, we know that U, : C; —— C; preserves weak
equivalences between fibrant objects. By the construction of total derived functors,
and by the remark preceding [DS, 9.3] we conclude that

RfU007j|cj{’ :fyioU0|C{ (%)

where ij denotes the full subcategory of fibrant objects of C;.
Let (-)7 denote the fibrant replacement functor in Tw (Z,®). It preserves all

weak equivalences, and maps twisted diagrams to pointwise fibrant twisted diagrams.

Using (), we conclude that the assignment

i—y(Y), (o:i—j) = 7(y))y)
defines an object of Tw (Z,Hoy®) (here v; is the localization functor C; — HoC;).
This construction is functorial and maps weak equivalences to isomorphisms, thus in-
duces a functor i on the homotopy category of Tw (Z,9).

(3). Let ¥ denote the category with objects the fibrant and cofibrant twisted
diagrams in Tw (Z,®), and morphisms the homotopy classes of maps between such
objects. By [DS, 5.6] the map v: £ —— HoTw (Z,®) is an equivalence of categories.
Thus it suffices to construct a functor ¢: & — Tw (Z,Ho; ®); then we can define A
by the composition of an inverse of v with ¢.

Given an object Y € &, we define ¢(Y') by the assignment

i y(Ya), (00— j) = yly)) -
This yields an object of Tw (Z,Hos®) by an argument similar to the one used in (2)
(restrict the functors RU, to fibrant objects).

A morphism f:Y —— Z in § can be represented by a map f:Y —— Z
in Tw (Z,®) by [DS, 5.7], and f induces a morphism ¢(f): ¢(Y) — ¢(Z) with
components ¢(f); = 7;fi using the notation of (2). We have to show that this defini-
tion is independent of the choice of f. Recall that homotopy is an equivalence relation
for maps Y —— Z by [DS, 4.22]. Moreover, the evaluation functors Ev; commute with
products and preserve weak equivalences. Hence they preserve path objects and right
homotopies. Thus if f and g are homotopic, so are f; and g; which proves that ¢(f) is
well defined. Obviously ¢(f) is a map of twisted diagrams.

Since homotopy is compatible with composition ([DS, 4.11, 4.19]), and since the
identity morphisms in £ are represented by identity maps, ¢ is a functor as required.

O
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Definition 9.3. (Left strict sheaves.)

Given an Z-indexed adjunction bundle 8, we call an object Y € Tw (Z,®) a left
strict sheaf if the f-type structure map y#: F,(Y;) — Y; is an isomorphism for all
morphisms o : i — j of Z. We write &hv (Z,®) for the full subcategory of Tw (Z,B)

generated by left strict sheaves.

There is also a dual notion of a right strict sheaf requiring that all b-type structure

maps are isomorphisms.

Example 9.4. (Quasi-coherent sheaves on toric varieties.)

Recall the adjunction bundle ¥°P >ig,, Mod associated to a toric variety X with
fan ¥, cf. 4.4. We claim that the category &ho (3P, 3P >p,, Mod) is equivalent to
the category of quasi-coherent sheaves on X. To see this, recall that a cone ¢ € X
corresponds to an open affine subscheme U, of X. Given a quasi-coherent sheaf F, the
associated twisted diagram is given by o — F(U,) with b-type structure maps given
by restriction maps. Conversely, a left strict sheaf Y defines quasi-coherent sheaves Y,
on the subschemes U, which can be glued via the fi-type structure maps to give a
quasi-coherent sheaf on X. The details are left to the reader.

Definition 9.5. (Left homotopy sheaves.)
Suppose that B is an adjunction bundle of model categories. We call an object
Y € Tw(Z,®) a left homotopy sheaf if for all morphisms o: i —— j of Z there is

an acyclic fibration Y; — % Y, in C; with Y; cofibrant such that the adjoint to the
composite

_ - b
Y, > Y, 2o -(Y;)

is a weak equivalence in C;. We write h&ho (Z,®) for the full subcategory of Tw (Z,®)
generated by left homotopy sheaves.

Proposition 9.6. (Comparison of strict sheaves and homotopy sheaves.)

Let B denote an Z-indexed adjunction bundles of model categories. Assume that
we have a map h as given by one of the cases of 9.2. An object Y € Tw (Z,®) is a left
homotopy sheaf if and only if h(Y') € Tw (Z,Hos®) is a left strict sheaf. In particular,

if Y =+ Z is a weak equivalence of twisted diagrams, Y is a left homotopy sheaf if
and only if Z is.

b

Proof. Fix amorphismo: i — jof Z, and define Z := A(Y'). By construction, z is a
morphism in Ho C; which is isomorphic, in HoC;, to a morphism kY, — RU,(Yj).

Since we have a commutative diagram of categories

HOfCZ' <RfUU HOf Cj

.

Ho CrL W HOC]
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where the vertical arrows are equivalences of categories, we know that zf is isomorphic
(in HoC;) to the adjoint k* : LEF,(Y;) — Yj of k*. In particular, 2! is an isomorphism
if and only if & is.

Choose a cofibrant replacement g;: Y° —"» Y, of Y¥; and a fibrant replacement

p;j:Y; — ij of Yj. Let ¢* denote the composite map

f)'

b
Ve o Y o, J(YJ) UU(Y]-

v qq Us (pj)
By the proof of [DS, 9.7] we know that &° is isomorphic to v;(£”) where 7; : C; — HoC;
denotes the canonical functor. Similarly, k¥ is isomorphic to Vi (Eﬂ), where 7; denotes the

canonical functor C; — HoCj, and % is adjoint to ¢°. In particular, k! is an isomor-
phism if and only if £ is a weak equivalence. But ¢* factors as F, (Y;¢) — Y; %» ij
i

which shows that ¢ is a weak equivalence if and only if the homotopy sheaf condition
(“at ¢”) holds for Y.

The second assertion follows immediately since A maps weak equivalences to iso-
morphisms and the property of being a left strict sheaf is clearly invariant under iso-
morphism. O

Example 9.7. Recall the adjunction bundle $"(G) from 4.6. This is an adjunc-
tion bundle of model categories. The resulting category §&hp ((n), P (G)) is the cate-
gory P"(G) of G-equivariant quasi-coherent sheaves as defined in [Hii, 6.3].

The index category (n) is direct with degree function d(A) := #A. Hence the
c-structure exists. Moreover, all objects of Tw ((n),$"(G)) are c-fibrant. Thus 9.2 (1)
applies, and 9.6 shows that the notion of a homotopy sheaf is homotopy invariant ([Hii],
corollary 6.5).
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