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Abstract
It is proved that if the semigroup with the generator a* 9,0; + (3'9;, where

a and b* are smooth functions, sends log-concave functions to log-concave
functions, then a = (a*) is constant and 3 = (") is an affine mapping.
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It is well known that the semigroups
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(the Ornstein-Uhlenbeck semigroup) possess the following property: for every log-
concave function ¢ : R" — IR the functions T ¢ and T} are log-concave (see [6] for
a more general fact). Recall that a function f is called log-concave if it has the form
f =€V, where V is a convex function. Such functions are important in analysis,
stochastics, in the theory of Gaussian measures (see [1], [2], [4]). In particular, the
property of s semigroup to preserve the log-concavity occurs to be useful for proving
the correlation inequality for Gaussian measures. The correlation inequality is the
inequality
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where 7 is a centered Gaussian measure on IR", A and B are convex sets, symmetric
about the origin. This inequality has been proved so far only for some certain pairs of
sets. For example, in [3] the above mentioned property of the Ornstein-Uhlenbeck
semigroup has been used for the case, when one of the sets is an ellipsoid. It
is natural to ask what semigroups preserve log-concavity. We shall show that in a
certain sense these two main examples exhaust the semigroups with such a property.
More precisely, it will be shown, that the above mentioned property only holds for
the semigroups generated by Gaussian diffusions (these are the diffusions having
the generators with constant coefficients at second derivatives and an affine drift).
Recall that the generators of T and T} are, accordingly, %A and %A — %(a:, V).

The upper index 7 will denote the i-th coordinate and the lower index 7 will
denote the derivative along x'. It will be assumed throughout that o(z) = (¢'¥)(x)
and B(x) = (B%)(x) are twice continuously differentiable mappings from R™ with
values, accordingly, in the space of matrices n x n and IR", such that

o (@) +6(z)| < K(1+ |2]),

o™ ()]sl + 1[8*(@)]il < K,
[l (@)]is| + 118" ()]s < K (1 + |2™)

for some constants K and mg and any indices i, j, k,[. Then the solution of the
following stochastic equation exists:

é(x) =z + / o(6u(x))dW, + / B(&,(x))ds, (1)

where W, is a n-dimensional Wiener process. The corresponding semigroup is given
by
Ty - = B (&(2))-

Let a = (a¥) = 200, The generator of {T}} is
aij&-@j + 5181

where 0; = 0,, and the summation in the repeated indices is meant.

Lemma. Let A(x) be a nonnegative symmetric matriz n X n for every x € R".
Suppose that (—A(z)w,w) is convex for every vector w. Then A is constant.

Proof: Let us prove by induction on dimension n. For n = 1 the lemma follows
from the obvious claim that an unconstant, convex on the whole line function cannot
be everywhere negative. Let n=2. The condition A > 0 implies that A™ (2!, 2%) > 0
and A%?(z',2%) > 0. Taking w = €' and w = €? we get that —A'" (2!, 2?) and
—A%(z' 2?) are convex. Consequently, fixing the coordinates z' and z?, we find
that A" and A*? are constant. Taking w = e! + e, we get that the function



— A2 = —A?! i5 convex. But the condition det A > 0 implies that A'? is bounded.
This means that A'? is constant. If n > 2, the claim is easily obtained from the
proved one for n — 1 if we note that matrix obtained by deleting the k-th line and
k-th column and fixing an arbitrary coordinate, fulfills the conditions of the lemma.

O
The proof of the following theorem is given in [5, Theorem V.7.4].

Theorem 1. Let a function f and all its derivatives approach zero at the infinity
faster than 1/|z|N for every N > 0. Then, for all t > 0, the function y(z) =
Ef(&(x)) is well defined, where & fulfills the condition (1). Moreover, the following

equalities are valid:

(o) = B(f)e(&D):,
(We)ig = IE [(F)a(€)i(E)s + (V€]

where the processes (€F); and (€F);; solve the following stochastic differential equa-
tions:
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(in the terms like (a*™),(&,) we omit the argument &, and the summation in the
repeated indices is meant).

Theorem 2. Let the semigroup {T;} send log-concave functions to log-concave func-
tions. Then a is constant and (3 is an affine mapping.

Proof: For a log-concave function ¢ € C*(IR",IR), the following matrix ® (1))
must be nonnegative: (®(¢))¥ := (¥)i(¥); — ¥(¥);.

We prove that if the conditions of the theorem are not satisfied, then we can find
a point xy and a log-concave function 1 such that, for small ¢, the matrix ®(vy),
where 1, = Ty, is not positive. Let g : IR — IR be a function, which is smooth,
nonnegative, even, convex, increases at the infinity faster than z2 and equals zero on
[—1,1]. Let us consider the function 1) = ¢“®~2i<n 9= where the vector w will
be chosen later. This function is log-concave and satisfies the condition of Theorem
1, but all the subsequent calculations will be made with the function e“® instead
of ¥, because the results, as it will be easily seen, will depend only on values of the
function 9 in a small neighbourhood of x.



We take an arbitrary vector v. Then the expression (®(e“)v, v) equals

Bl w, (€| — B DB [ (w. (6);)(w, (6,100 + (w, (€)'

We shall calculate the derivative of (®(e*))v,v) at the moment ¢ = 0. For this
purpose we shall find the Ito-differentials of processes occuring in the formula, i. e.
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We shall use the previous calculations and the following formula:
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where 1, = x + f(f adW, + f(f bds. We obtain
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It follows from the previous expressions that
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because 1 and e coincide in some neighbourhood of z,. We have only to show
that if the conditions of the theorem are not valid, then we can find w,v and zg,
such that %(@(]Ee(“”ft))v,v)‘t:o (xo) < 0. Indeed, if we assume that the opposite
inequality fulfilles, then taking w = =ee* and choosing ¢ small enough, we get
ﬂfj = 0. So, we see that (3 is affine. Therefore, we obtain that the following condition
must be valid: v'v/ (00w, w);; < 0. This means that (—oo?w,w) is convex. Finally,
the lemma implies that oo’ is a constant matrix. L]

Note that the matrix o(z) from the equation (1) may be non-constant. For
example, o(x) may be unitary for every x.

Proposition.  Let a be constant and let 3 be an affine mapping. Then the
semigroup Ty preserves log-concavity.

Proof. Since the distribution of the solution of (1) depends only on z, § and a,
we can assume without loss of generality that o is also constant. Equation (1) takes
the form:

Ex) =z + oW, + / (8o + L&, (x))ds,

where 3y is a vector and L is some linear mapping. It is easy to see that & is a
Gaussian process. Taking the expectations of both sides, we get

E&(z) =z + /Ot(ﬁo + LIEE (z))ds. (2)

Let v(t) be the solution of the equation: v(t) = fg (Bo+ Lwv(s))ds. Since the difference
[E&:(x) —v(t) is the solution of the linear differential equation with initial point z, it
depends linearly on z. On the other hand, since the process v; = & — IE£ solves the
stochastic equation v, = oW, + fot L(vg)ds, it does not depend on x. So, we see that
& is a Gaussian process whose mean has the form & (z) = v(t) + Mz for some
linear mapping M, : IR" — IR" depending only on ¢ and whose covariance matrix
does not depend on x. This means that for every ¢ we can choose a linear subspace
E; C IR" and a quadratic form @); on F; such that in the suitable coordinate system

Ef(&(x)) = i fy)e Qv v Mo)gy

Obviously, for the log-concave function f(y), the above integrand is a log-concave
function of (z,y). By the Prékopa theorem (see [6]) for every log-concave function
g(x,y) the integral [ g(z,y)dy is a log-concave function of z. Hence, we obtain our
claim. [
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