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1 Introduction

Let (E,F,pu) be a probability space, and (L,D(L)) a densely defined linear operator
which generates a Markov Cy-semigroup P; on L?(p) where g is its invariant measure.
The Poincaré inequality for L reads

p(f*) < CESLf). ulf)=0,f€D(L), (1.1)

where E(f, f) := —u(fLf) for f € D(L), and C > 0 is a constant. It is well known that
(1.1) is equivalent to the exponential L?-convergence of P

p((Pef)?) < exp[=2t/Clu(f?),  f € L*(p),n(f) = 0,1 >0.

To describe also slower convergence rates of P, Liggett [19] introduced the following
version of Nash type inequality

u(f?) < CE(F NYPR(HY, p(f) =0, f € D(L), (1.2)

where p,q € (1,00) with p~' + ¢7! = 1, C is a positive constant, and ® : L?(u) — [0, o0]
satisfies ®(cf) = 2®(f) for any ¢ € R and f € L?(u). This inequality was used by Liggett
[19] to prove an algebraic convergence of P, and was applied in [19] and [7] to some spin
systems. The following result is taken from [19].

Theorem 1.1 (Liggett [19]).  If (1.2) holds with ® satisfying ®(P,f) < ®(f) for
f€D(L) andt > 0, then there exists ¢ > 0 such that

p((Pf)?) < ()t t>0,f € L*(u). u(f) = 0. (1.3)

Conversely, if Py is symmetric then (1.3) implies (1.2) for some C' > 0.

The main aim of this paper is to introduce a general version of (1.2)(which can be
checked in many concrete cases) to describe general convergence rates of P,. To do this,
a very simple way is to replace £(f, f)*/? in (1.2) by a general function of £(f, f), and
to change ®(f)'/? there into another function of ®(f) such that the whole inequality is
homogeneous in f. Then, one may try to study the L?-convergence of P, using such a
more general inequality. More precisely, one considers

u(f?) < OE(S 1)), u(f) =0,f € D(L),®(f) <1, (1.4)

where © € C]0, 00) is a nonnegative and increasing function with ©(0) = 0, ©(r) > 0 for
r>0and O(r)/r — 0 as r — oo, and ® is as in (1.2). For (1.2) we choose O(r) = /7.
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To estimate the L?-convergence rate of Py, we let ©7!(r) := inf{s > 0: O(s) > r}. Then
(1.4) implies

O~ (u(f?) SE(f.f). feDL).u(f)=0.2(f) <1
Assuming that ®(P.f) < ®(f), we obtain

/H(fQ) O- : f ( ) (f) N(f) =
ZQt, t>0, GDL,@ Sl, 0.
w((P:f)?) l(r)

Therefore, to describe the convergence rate of P;, one has to solve this possibly complicated
inequality. To avoid this, we will use an alternative approach based on [16, 28, 29] in which
semigroup properties and spectral estimates were studied by using the super-Poincaré
inequality

p(f?) <rE(f )+ Bru(f)? 7> 0,feD(L), (1.5)

where 3 is a positive decreasing function on (0, c0). The advantage of such Poincaré type
inequalities is that they imply semigroup estimates directly. Correspondingly to (1.5), we
introduce the following weak Poincaré inequality as an extension of (1.2)

p(f?) < a(mEf, ) +re(f), u(f)=0,f€D(L),r>0, (1.6)

where « is a nonnegative and decreasing function on (0, 00), and @ is as in (1.2). It is
easy to see that (1.2) is indeed equivalent to (1.6) for a(r) = cr'™? and some ¢ > 0. More
generally, (1.4) implies (1.6) for a(r) := sup,., s~ '[O(s) — r], while, if lim,_,, a(r) = 0,
then (1.6) implies (1.4) with O(s) := inf,~o[a(r)s + 7].

The main general results of this paper are Theorems 2.1, 2.3 and Corollary 2.4. By
the above considerations, Theorem 1.1 is hence an immediate consequence thereof, and
this way we obtain a new proof for Theorem 1.1. Some criteria for (1.6) are presented
in section 3 which are especially designed for diffusions on a Riemannian manifold. In
sections 4 and 5 we study (1.6) by using isoperimetric inequalities for both diffusion and
jump cases. Results obtained in these two sections extend known ones on the spectral
gap via Cheeger’s inequality (see e.g. [8, 15, 18, 31]). In section 6 the behaviour of
the weak Poincaré inequality under perturbations of p is studied. The main result in
that section is applied to the stochastic quantization of field theory in a finite volume
A C R?. In section 7 we obtained a sharp criterion of the weak Poincaré inequality for
Poisson measures on configuration spaces. In particular, in the case where the intensity
of the Poisson measure has positive smooth density, we prove that the spectral gap of the
underling Dirichlet form on a configuration space coincides with the principal eigenvalue
of the corresponding weighted Laplacian on the based manifold.



Moreover, we like to mention that, for a conservative Dirichlet form (£, D(E)) (cf.
20]), (1.6) for ®(f) = || f||%, is equivalent to Kusuoka-Aida’s “weak spectral gap property”
(WSGP for short, see [1]): for any sequence { f,} C D(€) such that u(f?) < 1, u(f,) =0,
and E(fn, fn) — 0 as n — oo, we have f,, — 0 in probability.

Proposition 1.2. Let (£,D(€)) be a conservative Dirichlet form on L*(n). Then
WSGP is equivalent to (1.6) for some a and ®(f) := || f2.

Proof. First of all, by Theorem 2.13 in [20] (1.6) holds with ®(f) = || f||%, for all f € D(L)
if and only if it holds for all f € D(E). Assume that WSGP holds. If (1.6) does not
hold for any «, then there exist » > 0 and a sequence {f,} C D(E) N L>®(u) such that

w(fn) =0,p(f*) =1 and

nE(for fu) +rlfulZe <1, n>1

Hence || f,]|2, < r~* for all n — oo and &(f,, fu) — 0 as n — co. By WSGP it then
follows that
1= lim p(f?) <e®+r2 lim p(|f,] >¢) =&

for any € > 0, which is impossible.

On the other hand, assume that (1.6) holds for ®(f) = || f||2, and some a. Let {f,} C
D(E) with p(f,) = 0,u(f?) <1 and E(f,, fn) — 0 as n — co. We have to prove that
w(|fn] > €) — 0asn — oo for any € > 0. For R > 0, let f,r:= (fu AR)V (—R). By
(16).

w(f2p) < u(fur)? +rR2+a(r)E(fo fu), 7>0n>1,R>0. (1.7)

Since p(fy) = 0 and | for — fal < Lyjfa>ry(|fn] — R), it follows that

plfor)* < p((fal = B)Lqpasry)® < p(f)(fol > B) < R72. (1.8)

Furthermore, pu(f? z) > *u(|fu,rl > €) > °u(|fa] > €) for R > ¢ > 0. Combining this
with (1.7) and (1.8) we obtain

wllful > €) < e ?a(r)E(fa, fo) + R 2+ 1R, 7>0,R>e.
This implies p(| fn| > €) — 0 asn — oo since R and r are arbitrary and E(f,,, f,) — 0. O

We would like to mention that, for conservative Dirichlet forms, Mathieu [21] proved
the equivalence of WSGP and the L!-convergence of P,

lim sup ||P.f — p(f)llr = 0. (1.9)

t=oe (f2)<1



It is easy to see that (1.9) is equivalent to lim; . supy s <1 [|P2f — p(f)[l2 = 0. Then one
may prove Proposition 1.2 by Theorem 2.3 in the next section.
We also have the following result concerning the relation between (1.1) and (1.6).

Proposition 1.3.  Assume that (£, D(£)) is a conservative Dirichlet form. If (1.6) holds
for ®(f) = ||flloc and there exist Cy,Cy > 0 such that

u(f?) < CEL )+ Canl|f])? f€D(L). (1.10)
Then (1.1) holds for some C' > 0.

Proof. Assume that (1.6) holds for ®(f) := || f||%. If (1.1) does not hold for any C' > 0,
then there exists a sequence {f,} C D(L) such that u(f,) =0, u(f?) =1 and E(f,, f) —
0 as n — oo. By Proposition 1.2, for any € > 0 one has p(|f,] > ¢) — 0 as n — oo.
Therefore, (1.10) yields that

Cr& (far fa) 2 1 = Cop(|ful)* 2 1 = 2Cou(] fullqjfuizey)? — 2Cae”
> 1 —2Cou(|fu] > ¢) — 2Cye*, &> 0.

This implies liminf,, .« E(fn, fn) > 1/C1, which is a contradiction. a

Finally, for motivation, we present below applications of our main results to diffusion
processes on R?. See section 3 for the proofs.

Example 1.4. Let E = R4 L = A+ VV,u(dz) = "@dx/[[ eV @ds|, and E(f, f) =
w(IV fI?) for the choices of V specified below. Let ®(f) = || f]|2.

a) Forp > 0, let V(z) = —(d + p)log(1 + |z|) and 7 = min{(d +p + 2)/p. (4p + 4 +
2d)/[p* — 4 — 2d — 2p|*T}. Then (1.6) holds with a(r) = c(1 +r77) for some ¢ > 0, and
there exists ¢ > 0 such that

(P < I, €= 0,u(f) = 0. (1.11)

b) Let p > 1 and V(xz) = —dlog(1l + |z|) — ploglog(e + |x|). Then (1.6) holds with
a(r) = ¢y explegr Y ®=V] for some ¢y, cy > 0, and there exists ¢ > 0 such that

p((Pef)?) < el flls[log(L + )], ¢ >0, u(f) = 0. (1.12)

c¢) Let V(z) = —ol|x|° for some 0,6 > 0. We know from Corollary 1.4 in [27] that the
Poincaré inequality holds if and only if 6 > 1, so we only consider the case 6 € (0,1). For



§ € (0,1), there exist ¢, c1, ¢y > 0 such that (1.6) holds with a(r) = ¢[1+log(1+4+r=1)]*1=0)/8,
and

u(Puf)?) < all I exp [ — et @], pu(f) =0t > 0. (1.13)

In particular, when d = 1 we obtain sharp choices of a for a) and b) at the end of
section 4.

2 L*-convergence of Markov semigroups

The aim in this section is to establish relationships between (1.6) and the L?-convergence
rate of P;.

Theorem 2.1. Assume that (1.6) holds. Then

p((Pf)?) < inf L sup ®(P.f) +exp[-2t/am]u(f) b, > 0,u() =0, f € D(L).

>0 s€[0,t]
(2.1)
Consequently, if ®(P.f) < ®(f) for any t >0 and f € L*(u), then
p((Pf)?) < E@)@(f) +u(f?)], t>0,u(f)=0,f € D(L), (2.2)

where &(t) :=inf{r > 0: —3a(r)logr <t} fort > 0. In particular, £(t) | 0 as t ] oo.
Proof. For f € D(L) with u(f) =0, let h(t) :== u((P.f)?). By (1.6),

(1) = —28(P.f, P.f) < —%h(t) n %@(Ptf), t>0.

This implies (2.1) immediately. O

To prove a converse of Theorem 2.1, i.e. to establish a functional inequality from the
L?-convergence rate of P;, we need the following lemma due to [29] whose proof we include
here for completeness.

Lemma 2.2. If L is normal (i.e. LL* = L*L), then for any f € L*(u),

H((Pof)?) < p((Pf)?)Pu(f2) = 0<s <t (2.3)



Proof. Let o(L) be the spectrum of L and {F) : A € o(L)} the spectral family corre-
sponding to L. We have

P = / eMdEy,  t>0. (2.4)
o(L)

For any f with pu(f?) = 1,d||Ex(f)]|5 is a probability measure on o(L). Then (2.4) implies

WP = [ expl2(ReNsld| By

o(L)

< (/U(L) eXp[Q(Re)\)t]dHE)\(f)Hg) o — N((Ptf)Q)s/t, 0<s<t.

This proves (2.3). O

Theorem 2.3. Assume that L is normal. If there exist W : L?(u) — [0, 0o] and decreasing
£:]0,00) — (0,00) such that U(cf) = c*U(f) forc €R and f € L*(n),£(t) | 0 ast ] oo,
and

p((Pef)?) <€@)(Sf),  t>0, u(f)=0.f € D(L), (2.5)
then (1.6) holds with ® = U and

1
a(r)=2r igg —& H(sexp[l — s/r]), where £ 1(t) == inf{r >0:£&(r) <t} (2.6)
5>0 8
If in particular (2.5) holds for £(t) = exp[—dt| for some d > 0, then the Poincaré inequality
(1.1) holds for C' =2/6 and all f € D(L) with ¥(f) < oc.

Proof. Since (2.5) implies p(f?) < £(0)¥(f), we only need to prove the case where r <
£(0), where £(0) := limy o £(t). For any ¢ > 0 and f € D(L) with u(f) = 0 and u(f?) =1,
let h(s) := u((Psf)?),0 < s <t. By Lemma 2.2 and (2.5),

h(s) <€ s (0.1,
This implies



For u > 0, taking t = £€~'(uexp[l —u/r]) which is positive since uexp[l —u/r] < r < £(0),
we obtain

p(?) =1 < e wespll — u/r)E(S, £) +1U(), >0

This proves the first assertion.
If (2.5) holds for £(t) = exp[—dt], then a(0) := lim, o a(r) = 2/ for a determined by
(2.6). O

The following is a consequence of Theorems 2.1 and 2.3, which recovers Theorem 1.1
since (1.2) is equivalent to (1.6) with a(r) = cr'™? for some ¢ > 0, see Appendix.

Corollary 2.4. 1) Let ¢ € (0,1). If (1.6) holds with ® satisfying ®(P,f) < ®(f) and
alr) = 8 + Sllog(l + rH)]E9 for some 61,65 > 0. Then (2.5) holds for U(f) =
O(f) + u(f?) and £(t) = expley — cotf] for some ci,co > 0. Conversely, if L is normal,
then (2.5) with the above (t) implies (1.6) with ® = ¥ and the above o for some 61,02 > 0.

2) Let p,q € (1,00) with p~t + ¢! = 1. The assertions in 1) hold for a(r) = or'=? for
some & > 0, and £(t) = ct'=? for some ¢ > 0, where in the first assertion we may take
U = .

3) Let p > 0. The assertions in 1) hold for a(r) = exp[§(1 4+ r71/P)] for some § > 0,
and &(t) = cllog(1 +1t)] P for some ¢ > 0.

Proof. 1) Let € € (0,1). If (1.6) holds with ® satisfying ®(P.f) < ®(f) and a(r) = é; +
Salog(1+771)]A=9)/% for some 01,0, > 0. Let £() > 0 be such that a(£(t)) log&(t) = —2t,
we have £(t) < exple; — cot?] for some ¢y, co > 0. Then the first assertion follows from
(2.2). Next, if L is normal and (2.5) holds with £(t) = explci — cot®] for some ¢y, co > 0,
then £7(t) = {L]e; —log?]*}'/=. By Theorem 2.3, (1.6) holds with ® = ¥ and

_ 1
a(r) = 2re, e igg ~{[c1 — logs — 1+ s/r]F}/e.
5>0 5
Taking s = r[log(1 + r~')], we prove the second assertion.

2) Let p,q € (1,00) with p~' + ¢~ = 1. If (1.6) holds with a(r) = 677" for some
d>0and ®(Pf) < ®(f), by (2.1) we have

p((Pef)?) < r®(f) + exp[=2tr" 1 /0]u(f?), t>0.u(f) =0,f € D(L),r > 0.

Letting ¢ > 0 be such that exp[—2c?~'/§] = 277 and taking r = ct'~? in the above
inequality, we obtain

H((Puf)?) < et 10(f) + 2 9u(f2), ¢ > 0,u(f) =0, € D(L).
Applying this inequality repeatly, we obtain
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H((P)?) < 27 090 f) + 27 ((Pyaf )
< (12 D) + 2 Hu((Pyaf ) < -

< THITID(f) Y 27 = 2UTIB(f), >0, u(f) = 0.
n=0

This proves the first assertion. The second assertion follows from Theorem 2.3 by taking

s =rin (2.6).
3) The first assertion follows immediately from (2.2), and the second one follows from
(2.6) by taking s = r in the expression of a(r). O

Finally, we present an analogue of Theorem 2.3 for a class of operators L, which are
not necessarily normal, but are such that

EWBS, Bf) <hE(S. f), t=0,feD(L) (2.7)

for some positive h € C|0, 00). It is well-known that (2.7) holds for h = 1 provided L is
self-adjoint. Moreover, (2.7) holds for h(t) = exp[—2Kt| if the curvature of L is bounded
below by K € R (see e.g. [6] for details).

Theorem 2.5. Assume that (2.7) holds. Then (2.5) implies (1.6) with ® = ¥ and

£7H(r)
a(r) = 2/ h(s)ds, r>0.
0

Proof. Noting that

t
W) = (B P) =2 [ E(Peaf P)is, 1> 0.0 € D),
by (2.5) and (2.7) we obtain

t

u(f?) < 28(f. f) / h(s)ds + EO)U(f). | € D(L).u(f)=0,¢ > 0.

0

This completes the proof. O

3 Criteria of weak Poincaré inequalities

We first present a general criterion for the weak Poincaré inequality which applies in many
cases. Then we go to estimate the function o in (1.6) for diffusions on a Riemannian
manifold. To prove (1.6), we assume the following local Poincaré inequality
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(A) Foranye € (0,1), there exist A € F and ¢ > 0 such that p(A) > 1 —¢ and

p(f*1a) < c€(f, )+ p(fla)*/(A),  f € D(L). (3.1)
Theorem 3.1. If (A) holds then

p(f%) < amEf. £ +rifll, 7> 0.f€DL), u(f) =0, (3.2)

where

a(r) =inf{c > 0: (3.1) holds for e = ILM with ¢ for some A € F with u(A) }.

Proof. For any € € (0,1), let ¢ > 0 and A € F be such that pu(A) > 1 —¢ and (3.1) holds.
For f € D(L) with p(f) =0, one has pu(f14)? = pu(f1lac)? < 2| f]|%- Then

> _ -
—r+1

2
W(1%) < (L) + £ fI% < €L 1) + “Lf(ig) el fI.
< cE(f f)+ 7 IfI%  f € D). u(f) =0.
The proof is completed by taking e = /(1 + r) for r > 0. O

Remark. 1) (A)isnot astrong assumption (in particular in the finite dimensional case).
For example, (A) holds for £(f, f) := u(]Vf]?) on a connected Riemannian manifold,
where dp := exp[V]dx is a probability measure and V" is locally bounded.

2) It is known that for a symmetric irreducible Dirichlet form (£, D(£)), P, f converges
to u(f) in L?(u) as t — oo, see the Appendix in [3] for a simple proof. Theorems 2.1 , 2.3
and 3.1 imply estimates for the rate of L?-convergence even for nonsymmetric semigroups.
For instance, let dy = " dz be a probability measure on a connected Riemannian manifold
with V' locally bounded, then for any Markov semigroup P, on L?(u) satisfying

d
TGRS = =p(IVRSP), 120, f€CF, (3.3)
it follows from Theorem 3.1 and the proof of Theorem 2.1 that supy ¢ oo | Prf —p(f) |2 —

0 as t — oo provided p is an invariant measure of P,. For general diffusions on R? with
diffusion coefficient matrix a, |V f|? is replaced by (aV f, Vf).

In the remainder of this section, we consider Dirichlet forms with the local property

for E = M, a connected noncompact Riemannian manifold M of dimension d. Let
dp = eVdx be a probability measure on M with V a locally bounded function, and
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E(f, f) == w(|Vf]?) for f € C*(M). Below we use Ci°(M) to replace D(L) in (3.2).
Let 0 € M be fixed, and denote by p(x) the Riemannian distance between x and o. Let
B, ={p <r} forr>0.

To obtain explicit estimates for «, one needs to estimate the local Poincaré constant
¢ in (3.1). This is related to a well-known topic in geometry, namely, estimating the first
Neumann eigenvalue on a regular domain, see e.g. [13, 26] and references therein.

Theorem 3.2. Assume that B, is convex for any r > 0. Let K € C(0,00) be a nonneg-
ative increasing function such that the Ricci curvature on B, is bounded below by — K (r).

Then (3.2) holds with

AR? cosh” ' [R,\/K(R,)/(d — 1)]
m2\/1+8R2K(R,)/m*

alr) = expl6n, (V)] (3.4
where R, := inf{s > 0 : u(BS) < r/(1+7)},0r(V) :=sup{V(z) = V(y) : =,y € Bgr}.
Where for d =1 we put K = K/(d—1) = 0.

If Ve C*(M), let Ky be an increasing function such that Ric — Hessy is bounded
below by — Ky (r) on B,. Then (3.2) holds with

eXp[%KV(Rr)R?“] -1

a(r) = Ky () (3.5)
Proof. By Corollary 3 in [13], one has
AR) = inf {u(|V f[*1p,) : f € C'(Br), u(f1pg) = 0, u(f*1,) = 1}
(3.6)

> 4R2\/1+8R2K( )/m*cosh' ™ [Ry/K(R)/(d — 1)],

where for d = 1 we have K = 0 and set K/(d — 1) = 0. Then, by a simple comparison
argument, we see (3.1) holds for A = By and

4R? cosh®™ [R\/ - 1) }
c= p[or(V)]-
T2y /1+ 8R2K( )/7r4
Therefore, the first assertion follows from Theorem 3.1.
For the case where V € C?(M), by Corollary 1 in [13], (3.1) holds for A = Bg and

_ eXp[%KV(R)R2] -
Ky (R)

which proves the second assertion. O
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It is clear that the assumption in Theorem 3.2 that B, is convex was made to use
known estimates for the first Neumann eigenvalue. This assumption is however not true

in general. To treat the general case, we present a result below based on an idea from
27].

Theorem 3.3. Assume that there exist ro > 0 and v € C|rg, 00) such that

Lop = (A+VV)p <~(p) on B (3.7)

in the distribution sense. For anye > 0 and R > ry, let n.(R) = fj(&—i—’y(r))*dr. If there
exists € > 0 such that u(Bg) exp[n.(R + 1) — n.(R)] — 0 as R — oo, then there exists
c(e) > 0 such that (3.2) holds with a(r) = c(¢) exp[n-(R, + 1)], where

Reiminf {R > ry: u(Br) ™+ cle) expln.(R+ 1) — n.(B)] < r/u(BR)}, > 0.
FEspecially, if n-(00) < oo for some € > 0, then the Poincaré inequality (1.1) holds for
C' = c(e) exp[n:(c0)].

Proof. Let L = Lo — 1{,>r0(e +7(p))*Vp, where Vp(z) := 0 if 2 is in the cut locus of o.

Then Lp < —¢ on By, in the distribution sense. Therefore (see Corollary 1.4 in [27] and
its remark), there exists ¢1(¢) > 0 such that

v(f*) = v(f)* < alev( V) (3.8)

for all Lipschitz continuous f € L*(p), where dv = C exp[—1{,5,037:(p)]dp with C' > 0 a
normalizing constant. For f € C;°(M) with u(f) =0and R > 1o, let h = (R+1—p)T AL
We have

p(F*0%) = u(fh)?/i(Bria) = inf p((Fh = r15,,,)%)
< O explne (B + D)) inf v((Fh = 115,.,)%)
= O expl(R 4+ D] (/1) = v(1)/v(Brs)
< C ltexpn(R+1)] (’/(f2h2) - V(fh)Q)'
Combining this with (3.8), we obtain (recalling that u(f) = 0)

u(f2h%) < p(fh)?/u(Br) + C ter(e) expine(R + 1)]v(|V(fR)[?)
< |1 fIIZp(BE)? /(Br) + 2c1(€) exp[n-(R + 1)]u(|V f]?)
+2¢1(e) expn:(R+ 1) — n-(R)| (BRI 1%

for some ¢;(g) > 0. This proves the theorem for c(e) = 2¢;(¢) since u(f?) < p(f2h?) +
L 12 (BR). a
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We note that the second assertion in Theorem 2.3 for the Poincaré inequality was
already proved in [27]. In the case where 7 is negative, we have the following result which
provides better choices of o than Theorem 3.2 when p(B§) decays fast enough as R T oo,
see e.g. the proof of Proposition 1.4 ¢).

Theorem 3.4. Assume that 7 in (3.7) is negative and B, is convez for any r > 0. For
any R > rg, let

Y(R) = inf [—y(r)], &(R):=inf{s >ry:¥(R)*s" > 9u(B;)},

r€(ro,R|

C(R) = (R |1+ 6(R)V/K(6(R))| cosh’™ |6(R)v/K(6(R))/(d — 1) |ebem ),

Then there exists ¢ > 0 such that (3.2) holds for a(r) = c¢/C(R,) provided
R, :=inf {R >ro: p(Bj_1)[1 +¢/¢(R)] < rp(Br-1)/(r+1)} < oo, r>0.

Proof. By Theorem 3.3, the Poincaré inequality (1.1) holds provided #(oco) > 0. Hence
we only consider the case where 1(0o0) = 0. In this case one has ¢(R) T oo as R | oo.
Then there exist € > 0 and R(e) > ro + 1 such that

Y(R)*1(By(r)) (S(R) —10)* = 8(L+&)u(By ), R > R(e). (3.9)

Next, since Lop < —(R) in Bg \ By, in the distribution sense, by Cheeger’s inequality
we obtain (see e.g. page 398 in [27])

A(Bi\ Buy) = inf {u([Vf7: f € C(Bu\ B)on(r) = 1) > L 310)
Next, the proof of Theorem 1.1 in [27] yields that
AR) = inf {J(Vf12) [ € C(Ba), plf?) — p(f)? = 1)
B BB~ I
—2M(r)(r —10)? + A(Br \ Bro)(r — r0)’u(Br) + 2u(B;)’ o
Combining this with (3.6), (3.9) and (3.10), we obtain
. e MR (B W(RI(G(B) — ro)° .

~ AO(R))(#(R) —710)* + (R ) (0(R) = 70)*1(Bymy) + i(Bomy) —



for some c;,co > 0 and all R > R(e) such that ¢(R) < R. If ¢(R) > R, then A\(R)(>
A(R)) > coC(R) still holds for some co > 0 according to (3.6). Then for any f € Cp°(M)
with u(f) =0 and any R > R, let h = (R — p)T A1, we have

(VI + 20 f2m(Bi_y) | IfIZp(Bgy)
caC(R) p(Br-1)

This proves the desired result by taking ¢ = 2/¢, for small » > 0 such that R, > R(e). O

2
(f2) < p(f2h2) + | flPp(By) < -

Now we are ready to prove the results claimed in Example 1.4.

Proof of Example 1.4. By Corollary 2.4, it suffices to prove (1.6) with « as specified there.
We note that K = 0 since M = R%. Let R, and R, be defined in Theorems 3.2 and 3.4
respectively.

a) In this case we have 6z(V) = (d + p)log(1 + R) and R, < ¢(1 + r~V/?) for some
¢ > 0 and any 7 > 0. By Theorem 3.2, (3.2) holds with

AR; —(d+p+2)/
a(r) = 2 exp|dg, (V)] < e TPT2IP (3.11)

for some ¢; > 0 and all r € (0, 1] (hence for all r > 0 since u(f?) < ||f]|%). Next, assume
that p> —4 — 2d — 2p > 0. Let ry > 1 be such that (d — 1)/ro — (d+ p)/(1 + o) < 0. It
is easy to see that Y(R) > coR™Y, ¢(R) < c3RY+P) ((R) > ¢, R™2+2+20)/(2+P) for some
¢, 3,4 > 0 and all R > ry. Moreover, we have R, < c5r_(2+p)/(p2_2d_4_2p) for some c5 > 0
and all r € (0, 1]. Therefore, by Theorem 3.4, (3.2) holds with

a(r) = c¢/¢(R,) < cer—2d+2+2p)/ (p*~2d—4=2p)

for some ¢, ¢g > 0. Combining this with (3.11) we prove (3.2) for a(r) = ¢;r~7 for some
cy > 0.

b) Obviously, 6z(V) = dlog(1 + R) + ploglog(e + R), and R, < exp[c(1 + r~1/®=1)]
for some ¢ > 0. By Theorem 3.2, (3.2) holds with

AR, ~1/(p-1)
a(r) = — explig, (V)] < ¢y explegr™ /P

for some ¢y, co > 0.

c¢) In this case Theorem 3.4 provides better result than Theorem 3.2. Let 6 € (0,1).
We have y(r) = ©2 — 22 which is negative for big r. Taking ro > 1 such that (r) < 0.
We see that ¥(R) > c1 R~ for some ¢; > 0 and all R > ro. It is easy to see that
there exists ¢ > 0 such that u(B¢) < cyexp[—0s®]s'™ for s > rg. Let sz > 0 solve

9cy exp[—0s0]s~1F0) = 2 R20=D then ¢(R) < sp V ro. Hence
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explOo(m (V)] = explog(R)?] < explo(sg V 70)°] < esR¥1™9

for some c¢3 > 0. Since K = 0,
C(R) = @b(R)? exp[—5¢(R)(V)] > C4R4(5—1)

for some ¢4 > 0. Then p(B§_;)¢(R)™ < ¢5 exp[—oR’/2] for some ¢5 > 0 and all R > rq.
We obtain R, < cg(1+ [log(1+7"1)]/?) for some cg > 0. Therefore, by Theorem 3.4, (3.2)
holds for

a(r) = C¢(Rr)_2 exp[5¢(RT)(V)] < ¢y[log(1 + rfl)]él(lf&)/&

for some ¢; > 0 and all r € (0, 1] (hence all r > 0).
On the other hand, by (3.4) one obtains (3.2) for a(r) = ¢(1 + r¢) for some ¢, > 0.
This choice of a is worse than the one above. O

Before concluding this section, we consider general diffusions on R?. Consider E = R?
and let @ = (a;;) be uniformly positive definite on any compact domain. Assume that
dp = eVdz is a probability measure on R? with V locally bounded. For any R > 0, let
Br = {z: |z| < R} and

a(R) = inf{{a(x)y,y) : ly| = 1,2 € Br}, Ir(V):=sup{V(z)—-V(y):x,y€ Bgr}.
Letting pgr(-) := p(- N Br)/u(Bgr), we have

2

%) < il )+ o expldn(V)]n(V 1)
4R?
m2a(R)

< pr(f)?+ expl0r(V)|ur((aVf, Vf)),

Then for any f € Cp°(R?) with p(f) =0,

If2m(Bg) | AR?
B mra(r) CPLORVIMAV V).

Letting R, := inf{R > 0: u(B%) <r/(1+r)}, we obtain

n(f?) <

u(f?) < amu(aVEVE) +rlfls,  w(f)=0,f € CFRY),r>0 (3.12)

for a(r) = W;;IZ’Z%T) explog, (V)]
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4 Isoperimetric inequalities: the diffusion case

The aim of this section is to prove (1.6) using isoperimetric inequalities for diffusions
on a manifold. The study goes back to Cheeger’s inequality for estimating the principal
eigenvalue and the spectral gap of the Laplacian, see e.g. [8, 31]. Isoperimetric inequalities
have also been developed by Ledoux in [18] for the log-Sobolev inequality, by Réckner and
Wang in [23] for the F-Sobolev inequality (i.e., using an increasing function F' to replace
log in the log-Sobolev inequality), and by Wang in [28] for the super-Poincaré inequality
(1.5).

Let M be a connected noncompact Riemannian manifold, and p a probability measure
on M. Define

L . pa(0A)
k(r) := M(A)lél[f,l/Z] L(A) r e (0,1/2], (4.1)

where A runs over all open smooth domains (according to Yau [31], we may also assume
that A is connected), and pg(0A) denotes the area of A induced by p.

Theorem 4.1. If k(r) > 0 for any r € (0,1/2], then

ulf?) < a(r)u(IVI?) +r0,(f)°, 7> 0,f € (M), u(f) =0, (4.2)

where or) = 4k(r/2)~% and 6,(f) = inf =1 sup{f(z) — f(y) : @,y € A}. In particular,
if k(0) := lim,_q k(r) > 0, then (1.1) holds for C = 4/k(0)2.

Proof. Assume that k(r) > 0 for r € (0,1/2]. Let f € Cs°(M) be such that p(f) = 0.
Take 1 € [inf f,sup f] such that u(f > ro)Vu(f <ro) <1/2. For s > 0, let t; := inf {t >
0: u((f — r0)+2) > s}. By (4.1) and the coarea formula, we obtain

, (-ro)* I ,
u((f =)™ = [ W((F = o)™ > t)at

0

ts )2
< / L R [T

u(IV(f =)D+ sl(f = o). s> 0.

<

The same estimate holds for (f — rg)~ in place of (f —rg)*. Then

s8,(f)? +— w(IV(f =)+ V(= 70) %))
> u((f - ro>+2 +(f —70)7) = ul(f —10)?).
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Noting that

w(|V(f =)™+ |V(f = 10)7°]) = w(IV(f = 10)%]) < 20/ (VFP)u((f = r0)?).

by (4.3) we obtain

2 2 4
,u(f ) < ,u((f—’l“o) ) < ]{3(8)2

This implies (4.2) by taking s = r/2. O

p(IV 1) +2s6,(f)% s> 0.

It is well-known that (1.1) holds for C = 4/k(0)? provided k(0) > 0 (see e.g. [8, 18, 31]).
Theorem 4.1 extends this result to weak Poincaré inequalities.

Theorem 4.2. Assume that V € C*(M) such that du := eVdx is a probability measure
and that |V P f|*> < h(t)P|V f|? holds for some positive h € C[0,00) and all t > 0, f €
Ceo (M), where Py is generated by A + V'V on L*(n). If (4.2) holds, then for any € €
(0,1/2) there exists c(e) > 0 such that k(r) > c(e)/aler).

Proof. (The idea for this proof originates from [18]) We first note that the assumed gra-
dient estimate implies P;1 = 1. Moreover, this assumption implies (see e.g. Lemma 4.2

in [6])

P~ (Pf) > 2 / %WPJF — ()[R SR, e CE(M).

Then

IVPflloo < ([ fllecv/1/c(t), > 0.

Hence for any smooth g with ||g|/. < 1,

t

ulots ~ P = [ uo(A+ V)P s = [ p((VP.g. Vs

0

smwn/o IV Pygllcds < ctu(|V 1))

for some ¢ > 0 and all t > 1. Therefore,

w(lf = Pfl) < ctu([Vf]), ¢ =1. (4.4)

For any r € (0,1/2] and any smooth domain A with p(A) € [r,1/2]. Take {f,} C C§°(M)
such that f,|4 = 1, fu(x) = 0 if dist(z, A) > 1/n, and |V f,| < n+ 1/n. Applying (4.4)
to f, and letting n T oo, we arrive at
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ctps(0A) = p(la(l — Pela)) + p(lacPila) = 2[u(A) — p(1aFila)]
= 20(A) = 2u((Pyj21a)?).

If (4.2) holds, by Theorem 2.1 we have

(4.5)

p(Py21a)®) < s+ exp[—t/a(s)|u(A) + p(A)*, s> 0.
Therefore, (4.5) implies

uz((if)l) > sup %{1 — s/u(A) — exp[—t/a(s)] — p(A)}

1 —2s/r —2exp[—t/a(s)]

> sup .
5,t>0 ct
For any ¢ € (0,1/2), taking s = er and ¢ = a(er) log =5, we obtain % > Cf((g) for
some c(g) > 0. O

Corollary 4.3. consider the situation of Theorem 4.2. If (4.2) holds then for any ¢ €
(0,1/2) there exists c(e) > 0 such that

1
/ ) 4 > (o) R, (4.6)

uipzRr) T
Proof. Let h(s) = u(p > s). By Theorem 4.3, (4.2) implies that —% > ¢(e). This
proves (4.6). O

Obviously, for a given function «, (4.6) provides an estimate of the decay of u(p > R)
as R 7 oo. In particular, if (1.1) holds then by (4.6) there exists ¢ > 0 such that
p(explepl) < oco. This is a well-known result according to Herbst’s argument, see e.g. [2].

Next, let us consider Dirichlet forms on RY with the local property. Let p be a
probability measure on R? and E(f, f) := u((aVf,Vf)),f € C(M), where a(z) =
(aij(7))axa is positive definite for any = € RY. Let ¢1,¢9 be two positive continuous
function such that

o1(2) |y < (a(z)y,y) < da(@)|y>, =,y €R™

Finally, let djig = ¢odpus and dﬁa = ¢1dus be defined on the boundary of any smooth
domain, where dug is induced by @ and the standard Euclidean metric. The proofs of
Theorems 4.1 and 4.2 imply the following result.
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Theorem 4.4. Let k(r)(resp. k(r)) be defined in (4.1) with py replaced by fip(resp. Ky)-
1) If k(r) > 0 forr € (0,1/2], then

p(f?) < amp(aV V) +r8u(f)? fe CERY),u(f)=0,r>0  (47)

for a(r) = 4k(r/2)72.
2) Assume that a;; € C*(R?),du = e¥dx for some V € C*(RY), and that there exist
K > 1 and a matriz-valued function o such that K='I < a = oo* < KI and

sup |z — y|~*[lo(z) — o(y)]|* + (b(z) — b(y), = — y)] < K, (4.8)

Ay

=1

c(e) > 0 such that k(r) > c()/aler).

where b; = 39 [aija%v + a%jaij]. If (4.7) holds then for any € € (0,1/2) there exists

Proof. Let P, be the Markov semigroup generated by the closure of Zf i1 aij%(;wj +
S bia%i' One has (aVP.f,VP,f) < K2* P (aVf,Vf) for f € C*(RY), see (9.1) in
[14]. Hence the proof of Theorem 4.2 applies to the manifold R? with the metric induced

by a~!. O
The following is a simple consequence of Theorem 4.4 in the one dimensional case.

Corollary 4.5. Consider the situation of Theorem 4.4. Let d = 1 and du = e¥dx for
some V € C(R). For any r € (0,1), let ¢, > 0 be such that p([—c,,c.]) =1 —r. Then

_ 1
k(r)=Fk(r)> inf — inf +/a(x)exp[V(2)]:= k(r). (4.9)
s€[r,1/2] S t€[—cs,cs]
Consequently, (4.7) holds for a(r) = 4k(r/2)~? provided it is finite. On the other hand, if
a,V € C*(R) such that aV" + sa'V'+2d" — %: is bounded from above, then (4.7) implies
k(r) = k(r) > c(e)/aler) for any € € (0,1/2) and some c(¢) > 0.

Proof. In the present case we have fip(z) = p () = (VaeV)(z). Then for any r € (0,1/2]
and connected I C R with u(I) = r, we have 91 N [—¢,,¢,] # 0. This proves (4.9).
To prove the second assertion, we consider the metric induced by a': |22 = a L.
Therefore, under this metric Ric = 0 (since d = 1) and the unit vector field is X = \/E%.
Next, let dz = a~'/2dz which is the Riemannian volume element. Then we see that
dp = explV + % log a]dz. Therefore,

1 1 2
Hessy (X, X) i= X2V = V" + Sa'V' + S =
The proof is completed by Theorem 4.4. O
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Finally, we apply Corollary 4.5 to the first two cases in Example 1.4 to obtain better
choices of a for d = 1.

a) For p > 0 and V(z) = —(1 + p)log(1 + |z|), we have ¢, < cr™'/? for some ¢ > 0.
Then x(r) > cr'/P and hence (4.7) holds for a(r) = ¢;7~%? and some ¢; > 0. Moreover,
it is easy to see that k(r) < ¢r/? for some ¢ > 0 and V" is bounded above. Hence, by
Corollary 4.5, (4.7) does not hold for any o with a(r)r*/? — 0 as 7 — 0.

b) Let p > 1 and V(z) = —log(l + |z|) — ploglog(e + |z|). Similarly to a), we have
Kk(r) > ert/®=Y exp[—r~Y®=Y] for some ¢ > 0 and r € (0,1/2]. By Corollary 4.5, (4.7)
holds for a(r) = c;r=2/®= exp[2r/(P=Dp=1/P=1)] for some ¢; > 0. Moreover, there exists
d > 0 such that k(r) < ¢rt/P=Y exp[—r~1/#=D]. Hence, by Corollary 4.5, (4.7) does not
hold for any o with a(r) exp[—sr~/®=1] — 0 as r — 0 for some s € (0,2/#~1),

5 Isoperimetric inequalities: the jump case

In this section we study the weak Poincaré inequality for general symmetric Dirichlet
forms following the line of [15, 30] in which the Poincaré and Sobolev type inequalities are
considered (see also [11, 12| for estimates of the constants in the log-Sobolev and Nash
inequalities).

Let J be a symmetric measure on (F x E,F x F). Define

1

ey [ @)= J@PIdedn). DE) = {f € L) s () < b

We consider the inequality

p(f?) < a(m)E(f. ) +10,(f), 7> 0.u(f) =0. (5.1)

If (5.1) holds, then for r € (0,1/2] and A with pu(A) =r € (0,1/2], taking f = 1,4 in
(5.1) we obtain

k(r) = inf MZsupl_s/T_ L—¢
pAernt/2)  p(A) s>0  os) a(er)

, e€(0,1). (5.2)

Therefore, the main task is to prove (5.1) using isoperimetric inequalities. To do this, we
take a nonnegative symmetric measurable function v on £ x E such that

Lot dz, d
/ {(v(ay)>0y (dz, dy) <u(d), AcF
AxE 7($,y)

Define J(dz,dy) = Liy@y>ord (dz,dy)/+/7(2,y), and let k be defined in (5.2) with J
replaced by J. We have the following result.
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Theorem 5.1. If k(r) > 0 for r € (0,1/2], then (5.1) holds for a(r) = 2k(r/2)2.
Consequently, if k(0) > 0 then (1.1) holds for C = 2k(0)~2.

Proof. Let r € (0,1/2]. For bounded f with u(f) = 0and E(f, f) < oo, let 7o be such that
w(f > 1)V ulf <o) <1/2. Forany t >0, let Ay := {(f —ro)t> >t} and p(t) := u(A,).
Then we have p(t) < 1/2. Let ¢, := inf{t > 0: p(¢) < r}, then

V2E(F =), (F = 1) )l (f = 70) )
> 5 [ 16@ = r)** = () = )| (e, )

B / [(F(2) = ro)** = (F(y) = 70)**] J(da, dy)
{(f(=

)=r0)T>(f(y)—ro)*}
tr B ~ tr
> / J(Ay x Af)dt > k;(r)/ p(t)dt.
0 0

Therefore,

I(F=ro)* 1%
u((f = r0)*?) = / p(t)dt
< ;;(17«) VRE((F = ro), (= ro))a(f — ro)*) + 7l (f = ro)* %

for all » > 0. This implies

E((f —ro)", (f —r0) ")+ 2r[[(f =0) "I, 7>0. (5.3)

Similarly, (5.3) holds for (f — 7o)~ in place of (f — ry)". Then the proof is completed by
noting that p(f?) < u((f —ry)?) and

|(f(@) =r0)" = (f(y) = 7o) | + |(f () = 70)™ = (f(y) = 70)”|?
<|f(x) = f)I*

Indeed, (5.4) is obvious when (f(z) — ro)(f(y) — ro) > 0. In the case where (f(x) —

r0)(f(y) — ro)) < 0, we have |f(z) — f(y)| = |f(z) — ro| + |f(y) — 70| and hence (5.4)
holds. 0

(5.4)

Corollary 5.2. Assume that there exists R > 0 such that J(A x ) < Ru(A), A € F.
Taking v = R we obtain k(r) = k(r)/v/R. Therefore, (5.1) holds for some a if and only
if k(r) > 0 forr € (0,1/2], and in this case (5.1) holds for a(r) = 2Rk(r/2) 2.
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Corollary 5.3. Consider the birth-death process: E =7, u(i) > 0 fori > 0,

0, otherwise,

> 1 such that J s symmetric. We call a; and
b; respectively the death rate and the birth rate. Since J is symmetric, we have (i) =
boubit)(0),4 > 1. Obviously, we may take v(i, j) = (a;+b;)V(a;+b;). For anyr € (0,1/2],

a---a;

let i, :=inf{i > 0:3 .., pu(j) <r} and

— in (i + Daiga) A (p(i)bi) <
plr) = f{\/(ai TV @b oS }

Then k(r) > infyep,1/2 p(s)/s and (5.1) holds for a(r) = 2{inf e[ j2,1/2) p(s)/s} 2 provided
it is finite for any r € [0, 1].

where ag = 0,by = 1,a;,b; > 0 for i >

Proof. Let r € (0,1/2]. For any s € [r,1/2] and [ C Z, with u(I) = s, we have [0,4,]N1 #
0,[0,i5 + 1) N I¢# 0. Then, for v(i,7) = (a; + b;) V (a; + b;) we have

[ [C
J( X Z J ) 2 )
2€Ij¢]
U

Finally, we present some examples for birth-death processes which have the same
convergence rates as the ones given in Corollary 2.4.

Example 5.4. Let a; =1 for ¢ > 1. We consider the following three choices of b;.
1) Let b; = (;)° for some § > 1 and all i > 1. We have (i) = p(0)i ° for i > 1,

Obviously, by Corollary 5.3 k(r) > e¢r=/@=1 for some ¢ > 0, hence (5.1) holds for
a(r) = dr?1=9 for some ¢ > 0.

2) Let b; = iil(igig%z))‘s for some 6 > 1. We have u(i) = i~*(log(1 +4))~°u(0),7 > 1.

By Corollary 5.3 there exists ¢;, ¢, > 0 such that k(r) > ¢; exp[—cor’/(=9], and hence
(5.1) holds for a(r) = exple(1 + r/(=9)] for some ¢ > 0.

3) Let b; = exp[o(i® — (i + 1)?)] for some o > 0,5 € (0,1) and all 7 > 1. We have
w(i) = exp[—ci®]u(0),i > 1. Since D i exp[—0°] < 13170 exp[—0i9] for some ¢; > 0 and
all i > 1, we have i, < i’ < cyflog(1 + 771)]Y% for some c; > 0, where 7. > 0 satisfies
cr(i)t~ ‘5exp[—0(i;)5] = r. Then by Corollary 5.3,

k(r) > %exp[—a(z’;)‘;] = ?(i;)‘s_l > cyflog(1 + T—l)](5—1)/5
1
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for some c3, ¢y > 0. Therefore (5.1) holds for a(r) = c[log(1 +r~1)]21=9/% for some ¢ > 0.
Finally, it is easy to see that (1.1) holds if § > 1.

In the next example we consider some birth-death processes with unbounded rates.

Example 5.5. Letting a; = b; for i > 1, we have u(i) = a; ' p(0),7 > 1.

1) Let a; = i° for some § > 1 and all i > 1. Then i, < ;7Y% for some ¢; > 0.
By Corollary 5.3, k(r) > ¢yr®97/20-1) for some ¢, > 0. Hence (5.1) holds for a(r) =
csr(=907/0-9) for some ¢3 > 0. Especially, if § > 2 then (1.1) holds.

2) Let a; = i[log(1 +14)]° for some § > 1 and all 7 > 1. Then i, < exp[c;r/=9)] for
some ¢; > 0. By Corollary 5.3, there exists ¢, > 0 such that k(r) > exp[—cyr/0=9] and
(5.1) holds with a(r) = exple(1 + r/(1=9)] for some ¢ > 0.

3) Let a; = i*[log(1+1)] 7% for some § > 0 and all > 1. Then i, < ¢;rlog(1 +7r~1)]°
for some ¢; > 0. By Corollary 5.3 k(r) > cyflog(1 + r=1)]7%/? for some ¢, > 0 and (5.1)
holds with a(r) = c[log(1 + r71)]° for some ¢ > 0.

6 Perturbations of © with application to
the stochastic quantization of field theory

We first study the behaviour of the weak Poincaré inequality under perturbations of
the probability measure p. Then we apply the corresponding results to the stochastic
quantization of field theory.

Let M denote the class of measurable functions on (E, F), and let I' : D(I') x D(I") —
M be a symmetric bilinear mapping satisfying

1) D(I") is a sub-algebra of M, I'(f, f) > 0 for f € D(I'),1 € D(I").
2)If f,g € D(T) then T'(fg,h) = fT'(g,h) + gT'(f, h), h € D(T).
3)If f,ge D), then fAge D) and I'(f Ag, fAg) < Lip<yI'(f, f) + L=t 1(g, 9)-

Assume that there exists a decreasing function a : (0,00) — [0, 00) such that

p(f*) < amu@(f, ) +rIfll%. £ €DT)NL (), p(f)=0,r>0.  (6.1)

Let V be a measurable function such that dji := e"dy is a probability measure on £. Our
first aim is to establish the weak Poincaré inequality for fi.

Theorem 6.1. Assume (6.1). Let
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0(r) == u(V>r), 0(—r):=uV <—r), 0)=pV >r), 0(—r)=pV < —r), r>0.
If V. e D) with T'(V,V) € L?(u) for some p > 1, and e"[0(r;) — O(r; + 1)]@~D/?» — 0
as r1 — oo, then (6.1) holds for g and & in place of p and o for
a(r) := inf{2a(e) exp[ry + 1o + 1] : 11,19, > 0,9(r1, 12,) < 1},
where
I(r1,ra, ) :=4[0(r1) + 0(=r2) + e ] + 2™ a(e) [TV, V)| o)
[ 7_1 + 9( 7“2) . 0(7“1 + 1) . 9(_7_2 o 1)}(1’-1)/1’.

Proof. Forry,re > 0let o(r) := (r+ra+1)"AIA(ri+1—r)", r € R. For f € L>(u)ND(I)
with zi(f) =0 and T'(f, f) € L'(j1), we have

a(ff) < inf o G((f = )" Lcreveny) T AIFIR0(r) + 0(=r2))

el<l1fl1
<en it (S~ M ppcvary) + 4| I (00r1) + 0(—72))

i . : (6.2)
< e |c|§||,1vc||oo p((fo(V) =) + 4 F112.(0(r1) + 0(—r2))

< " a(e)u(T(fe(V), fo(V)) + 4l f5(0r1) + 0(=r2) + ee™),
for all € > 0. On the other hand,

pI(fe(V), fo(V) <2[p(f*' (V) T(V.V)) + u(e(V)'T (£, £))]
<2e” T A(T(S ) + 201 - 1TV V) g

)
[0(r1) + 6(=r2) = 0(r1 + 1) — O(—ry — 1)]#7V/P.
Combining this with (6.2) we obtain
A(f?) < 2e" 7 ale) (TS, £)) + 1120 (r. 72y €),
for all 71,79, > 0. This completes the proof. O

Next, we apply Theorem 6.1 to the stochastic quantization of (P(®),-) field theory in
finite volume studied by Jona-Lasinio and Mitter [17]. We use the notation in Rockner
and Zhang [24].

Let A be an open rectangle in R?, and (—A + 1)y the generator of the quadratic form

(u,v) — /(Vu, Vu)dz + / wvdz,u,v € {g € L*(A;dz) : |Vg| € L*(A;dx)}.
A A
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Let {\, : n > 1} be all (Neumann) eigenvalues of (—A-+1)y on A and e, the corresponding
normalized eigenfunction of \,. For § € R, define

Hs = {u c L*(A,dx) : Z)\fb(u,enﬁz(,\;dw) < oo},

n=1
(u, v) g, Z)\ (W, €) 2(Asde) (U, €n) L2(Asdn): U,V € Hs.
n=1

We now fix 9, 5 > 0, let p be the mean zero Gaussian probability measure on F := H ;
such that

/ el 2)eu(dz) = ||U||2,, [€E :=H;.
E

Forn > 1, let H,(t) := Z[mn/j(—%)m%, let o € C§°(R?) with 0 > 0, [ o(z)dz = 1

%)
and Q( ) = Q( ) For k> 1let ox.(y) == 2260(28(z — y)), zx(7) = 5{0sz 2)E and
= [ z.(2) r € A,z € E. Then for any h € L?(A;dx),

/A Hn(cﬁ(m)_I/QZH(x))cn(x)"/Qh(w)dx

converges in L”(u) for any p > 1, and the limit is independent of the choice of o(x) (see
e.g. [24]). Denote the limit by : 2" : (h) which is known as the Wick power of a random
variable (see e.g. [25]).

Now, fix N > 1,a, € R,0 <n < 2N with asy > 0. Define

2N
:C—Zan:z”:(lA), z e b,
n=0

where C is a constant such that dfi = e¥'dyu is a probability measure. V has the following
properties.

a) (see e.g. Theorems V. 2 and V.7 in [25]). There exists ¢ > 0 such that ||V, <
c(p—1)N, p>2 and exp[V] € LP(p) for all p > 1.

b) (see e.g. Theorem V.5 in [25]). There exist a,b > 0 such that u({V > b(log K)V})
< exp[— K] for big K.

¢) (see Proposition 7.2 and (7.19) in [24]). For any p > 1, [VOV|2 := Zﬁl(%)Q € LP(p),
J
where k; = A;‘Wej
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Theorem 6.2. Let § € [0,3). For any ¢ > (¢/N)™, there exists ¢ > 0 such that

a(f?) < ama(VO 1) +rllfli%, € FCE alf) =0, >0, (6.3)
for a(r) = c exp{cllog(1 +r 1V}, r > 0.

Proof. By b) there exist a,r9 > 0 such that

0(r) <exp{ - explar™]}, 7> (6.4)

By a) there exists ¢; > 0 such that
O(—r) < u(|V]>r) < iggcl(p —1)NerP > 0.
P>

Taking p = e~ 'r'/N for r > (2¢)V, we have p"?r" = ¢="? and hence

O(—r) < crexp[—Ne /M), r > (2)V. (6.5)

Now, for fixed s € (1/2,1), let p > 1 be such that (p—1)/p = 5. By ¢) we have [VOV|? €
LP(u). Since 6 < 1/2 the Poincaré inequality holds for g and E(f, f) = u(|V@P £]?), i.e.
(6.1) holds for some a with a(0) = lim, g a(r) < oo, I(f, f) = |[V©® f|? and D(I') = FC.
Hence using that exp[V] € N,>1L7 (1) (cf. a) above) we see that there exists co > 0 such
that ¥(ry,re,0) < cee™[0(ry) + 0(—12)]%, 1,72 > 0. Combining this with (6.4) and (6.5),
we obtain

D(r1.72,0) < coe™ {exp [ — exp[ari/NH +c exp[—Nr;/Ne’l}}s (6.6)

for ri,m9 > 19 V (2¢). Obviously, there exists 73 > 0 such that for any r € (0,73), there
exist 71,79 > 19 V (2¢)Y such that

1/N

exp{r; — sexplar;’" |} = ¢} exp[r; — SNT;/NG_I] - (6.7)

2802 '

By (6.6) we have ¥(r1,72,0) < r for r1, 79 > 0 solving (6.7). It is easy to see that for any
e € (0,1), there exists c3 > 0 (independent of ry, 79,73, ) such that

1 N
r < 5log7"_1 +c3, 19 < [7( :—]Vg)e logr_l] + c3,

for all r € (0,73) and the corresponding 71,75 > 0 solving (6.7). Hence we obtain (6.3)
from Theorem 6.1 for
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a(r) = c(e)r— exp {(“:Af)e logr_1>N]

for some c(g) > 0. Then the proof is completed since € > 0 is arbitrary and s T 1 as
pToo. O

The following is a direct consequence of Theorems 2.1 and 6.2.

Corollary 6.3. Let P, be the semigroup on L*(fi) associated to E(f, f) == p(|V@ f[?).
For any c € (0, N/e) there exists ¢ > 0 such that

=i

(Pf)?) < dexp [ —c(log(t + )™M fI%.  A(f)=0, feL=(m). t>0.

7 Weak Poincaré inequalities on configuration spaces

In this section we study weak Poincaré inequalities for Dirichlet forms determined by the
gradient operator and Poisson measures on a configuration space. We refer to [4, 5, 22]
for previous results concerning analysis and geometry on configuration spaces. We first
recall some basic notions in the literature.

Let M be a connected noncompact Riemannian manifold, and ¢ an infinite Radon
measure on M with o(K) < oo for any compact K C M. The configuration space over
M is defined by

I''={yCM:|ynK| < oo for any compact K C M},

where |A] denotes the cardinality of A. As usual, we identify v with the measure }° _ d,.
For any f € Cg°(M) and any v € I, denote (f,7) :=(f) == >_,, f(x). Let

fol?o:{g(<f1*> 7<fN>)NZ 179601(;0(RN)*]¢13 *fNEC(())O(M)}

For A C M, let FC(A) be defined as FCp° with A in place of M. We consider the
vague topology on I'. Denote by B(I") the corresponding Borel o-field. Let 7, denote the
(pure) Poisson measure on I' with intensity o, i.e. 7, is the unique measure on (I', B(I"))
with Laplace transform

[ exph(Nimadn) = exp ofe 1)), 1 € GGF (),

r

For F' € FCy° and v € Vo(M), the set of smooth vector fields on M with compact
supports, define
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(VEF) () = S F (o, ()],

where eXp'y(t/U) - {eXpm(tvx) SRS ’7} If F= g((flv '>7 ) <fN7 >)7 then

Vi F(y) = Z@g((fl,v% (0, V) =7 ((0, VIF(Y)),

where VFF(’Y) = Zl]\il 5zg(<f1>’)’>/ Tty <fN>’V>)sz € VE)(M)
For v € T, let T,T" :== L*(M — TM;~) be the tangent space at v, equipped with the

product (-, -)o.r = (-, -) 2(M—1a15y)- We have
T 2
[VEF(y)]

= (VI'F(9), VFF(’V»TJ

N
=Y Aig((fr. ) (v D g (127D (v WYV V).
ij=1
For F,G € FCg, define E(F,G) = 7, ((VY'F, VEG)pr) which is a pre-Dirichlet form
on L*(m,). It is known that (see e.g. Proposition 4.3 in [22]) (£, FCp°) is closable
provided o(dz) = p(x)dz with p, |Vp|/p € L},.(dz) and \/p € H}*(dzx), where dz denotes

loc loc

the Riemannian volume element. We assume that (£, FC;°) is closable and let (€, D(E))
denote the closure.
Let 6(F") := sup I’ — inf I for a bounded function £, and let

Ao(r) =inf{o(|Vf|*) : f € C*(M),o(f*) = LIIfI5 < 7},
gap(€) = inf{E(F, F) : F € FC° m,(F?) — m,(F)* = 1}.
The main result in this section is the following.

Theorem 7.1. We have \,(r) > 0 for any r > 0 if and only if there exists a : (0,00) —
(0,00) such that

To(F?) — 1, (F)? < a(r)E(F, F) +rd(F)?, r>0,F € FC, (7.1)

and (7.1) holds for a(r) = X\,(1/r)™' provided \,(r) > 0 for all v > 0. In particular,
gap(€) = A\, (00).

To prove Theorem 7.1 we need some preparations. We will frequently use the following
local representation of m,. For A € O.(M) (i.e. A is a relatively compact open subset
of M), and for F' € FC(A), let Fy = F(0), F, € C(M") with F,(z1, - ,2,) =
F({zy, - ,x,}) if & # x; for i # j. We have
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7.2

n=0

where o on M™ is the product measure of o := o(-NA), and 03 (Fy) := Fy = F(0). The
following lemma is well-known. We include a proof for completeness.

Lemma 7.2. For f € C°(M), let F' = (f,-) —o(f). We have 7, (F*) = o(f*) +30(f?)%
Proof. Let G = (f,-). We have

FY= G* — 4GP0 (f) + 6G20(f)? — AGo(f)* + o(f)*.

Let h(r) := m,(e"%) = explo(e™f — 1)], we have <-h|,—g = 7,(G™),n > 1. Then 7,(G) =
o(f), 7o (G?) = o(f)* + o(f?), and

drn

7o(G?) = o (f)? + 30 (f)o(f*) + o (f?),
T (GY) = a(f)* + 60(fH)a(f)? + 30(f*)* + 4o(fo(f>) + a(f4).

Therefore, the desired result follows immediately. O

Lemma 7.3. If A\,(c) > 0 for some ¢ > 0, then

1
c)

Conwversely, if (7.3) holds with some ¢ > 0 replacing A\,(c), then for any r € (0,c¢), we
have \,(r) > (c —r)c /c.

Proof. For any f € C¢(M), let f = f/v/o(f2). We have o(f2) = 1, ||fIIZ = | fII%/o(f?).
If A\, (c) > 0and o(f?) > || f||% /c, then ||f||2 < cand o(|Vf|?) > \,(c), hence o(|V f]?) >

Ao (c)o(f?). Therefore (7.3) holds.

On the other hand, if (7.3) holds with ¢ replacing \,(c), then for any f € C§°(M)
with o(f?) =1 and || f||2 < r € (0,¢), we have o(|Vf]?) > /[l — r/c|]. This proves the
second assertion. 0

o(f?) <

1
o(IVIP) + ZIl%: | e G5 (M). (7.3)

>~
g

Lemma 7.4. Let py = op/o(A). Let V™ denote the gradient operator on M™. If (7.3)
holds for all ¢ > 0 then

n ngp 2 F 2
iR (E2) — i (p2 < AUV | rol)

< ST S TPOFEFCEW =L (14)
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Proof. Let F' = g({f1,+), -+, (fn,")) € FC*(A). Noting that Fy — F, € C§°(A), by (7.3)
for ¢ = 1/r we obtain

() = pa(B9)” < pa (B2 = Fo)°) < ﬁmvmg) + rjiiiz

Hence (7.4) holds for n = 1. Assume that (7.4) holds for n = k, it suffices to prove it for
n =k + 1. Since

h:= /k Fk+1($17"' 7$k,‘)ﬁ¢]/€\(d$17"' 7dajk) _/k dey’f\ € C(())O(A)’
A A

we have

2
/ (/k Fra(zy, -+ 2, ')#X(dfﬁv T adka)> dpp — MIX+1(Fk+1)2
A A

pa(IVA?) | ro(F)?
Ao(l/r)  a(A)

By this and applying (7.4) with n = k to

F*(y) = g((fr,v) + fu(x), - (v, ) + fa(2))

< pa(h?) <

for each x € M, we obtain
P () — iy (Fie)?

‘/A (X ((F)?) = 1a(F)* ma(d)

2
+/uA(dxk+1)(/k Frpr(z1, -+ 2pqr )k (day, - - - ;dxk)> — i (Frgn)?
A A

1 _ .12 rké(F)?
<o AT E (e + P
1 . 2 ro(F)?
+ WMA(‘V/M Frpa(@e, - an, ) pa(dey, - -+, day) ) + o(A)

r(k+ 1)5(F)2.

1 .
Si#?\+1(|vk+le+l|2) + O'(A)

As(1/7)

Lemma 7.5. Let py(i) := exp[-AJA /i, A > 1,0 > 0. For any ¢ > 0 and r € (0,1/2],
there exists e, > 1 such that for all X € [\, 00) and all bounded o : Z; — R,
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< 8r2e¥" (w4 ¢) Z ipA(i) (o — a;—1)* + 2r[sup a; — inf o).
i=1

Proof. Let &, be the Poisson random variable with intensity A, then E¢y = E|§,—\|? = m.

For any I C Z; with s := P(&, € I) € [r,1/2], we have P(|&, — A > /A/s +1/2) < s.
Then

(Z+\I)H<A—M—1,A+ /\/s+1>7é@,
Jm(A—\/T/s—l,)\+ A/s+1>7é(2).

It is easy to check that p,(7) is increasing in ¢ for i < A and decreasing in i for i > A, and
for any & > 0,

(7.5)

logpA( [)\ + \/T/S}Z + 1) - logpk([)‘]z)

(VAT 1 D) g — g L2 J[;]Tfu 1)

> —(v/A/s+2) log (1+1+7\A/T/8)
z—%(JT/sH)(HJT/s) 2—%—8’

for big enough A, where [r], = max{i € Z : ¢ < r} for r > 0. We have the same estimate
for [)\ — \/)\/SL — 1 in place of [)\ + ‘/)‘/8]2 + 1. Then, for sufficiently big A\, we have

pa(i) > expl—s~t —Ipr([N), i € Zy N [A = V/AJs — LA+ /s +1]. (7.6)

To apply Theorem 5.1, let a; = i,b; = A, 7 > 0. Define

aip)\(i)v lfj:Z—l,
JGi,5) = bpa(i), ifj=itl  ijEZ.
0, otherwise,

Then J is symmetric and
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S ipa(@)er —as 1 = 5 3 (e — (0. 9) &

Let J = 1ps00d /7 for v(4, §) == (a; + b;) V (a; + b;). By (7.5) and (7.6), for big A and
any I C Zy with P(&, € I) =: s € [r,1/2], we have

Mzmin{ ipa(0) :i€Z+ﬂ[)\—\/)\7/3_1a)‘+ )‘/34’1}}

) s\/2)\+ Vs +1
_ A=V s 1) expl=s! —p(A)
N s\/2)\+ Vs + 1

(7.8)

Noting that vApx([A.) — 1/v21 as m — oo, and s~ exp[—s~'] > r~exp[—r_'] for
s € [r,1/2], we obtain from (7.8) that, for any ¢ > 0, there exists m., > 1 such that k(r) >
{2r exp[r~!|V/m + 5}71 provided A > A.,. Then the proof is completed by Theorem 5.1
and (7.7). O

Proof of Theorem 7.1 Assume that (7.1) holds for some «, we are going to prove A,(c) > 0
for any ¢ > 0. If A\,(c) = 0 for some ¢ > 0, then there exists {f,} C C§°(M) such that
o(f3) =1,||fal% < cand o(|V[f,]?) — 0 as n — co. By an approximation argument (cf.
the last paragraph of this proof), we may apply (7.1) to functions F® := (f,,-) — o (f,).
Then 7, (F™) = 0,7, (F™?) = 1 and E(F™, F®) = o(|Vf.|?) — 0 as n — co. By
Proposition 1.2, for any € € (0, 1) one has

lim 7, (|F™| > ¢) = 0. (7.9)

On the other hand, we have

1= 7, (F™%) < e 4 1 (F™ 1 pmysey) < & + \/WU(F(”)4)7TU(|F(”)| > ).
Therefore, Lemma 7.2 implies that

e (1=ef (- _(1-ep
A=) = e T GU) T 3B © 3

since || f,]|%, < ¢ and o(f2) = 1. This is a contradiction to (7.9).

32



Conversely, if A\,(c) > 0 for any ¢ > 0, Lemmas 7.3 and 7.4 imply (7.4). It follows
from (7.2) and (7.4) that

S (o)
o(F7) ; explo(A)|n! (7.10)

1
E(F,F)+r6(F)?, r>0F¢cFCX ).

<
= Ao (r71)

Now, for Ay € O.(M) and F € FC;°(Ag), take Ay, D Ag such that Ay T M as k T oo.
Noting that F,(x1,- - ,z,) = F_1(x1, - ,z,1) if 2, & Ay, we obtain

|M7\k (Fn) - /'LXZI(anlﬂ

Fn PR ) _Fn— y Ty dn— A d 7"'~d n
AZ| (1 , Tn) 1(z1 z 1)|MAk( Z1 ,day,) (7.11)

O(F)a (o)
<o(F Ag) = ———=.
= ( )MAk( 0) O'(Ak)

o R (F)o(A)" . .
By (7.2) one has m,(F) = >~ W. Then, by applying Lemma 7.5 with ¢ =
1, A= 0(Ax), a; = pjy (F;), and using (7.10) and (7.11), we obtain

o (F?) — 76 (F)’
8r2e?/m (1 + 1)0(Ag)? (7.12)

< 1
~ () a(Ar)

for all 1,7 € (0,1/2] and sufficiently big k. By letting first k£ T oo then r; | 0 in (7.12),
we obtain (7.1) for a(r) = A\, (1/r)"?

Finally, we obtain gap(€) > A, (c0) by letting r — 0in (7.1) with a(r) = X\, (1/r)" 1. Tt
remains to prove gap(€) < A\,(00). For any f € C°(M) and n > 1, let F™ = g,({f,")) —
To(gn((f,)), where g, € C*(R) satisfying ¢, (r) = r for |r| < n, g,(r) = sign(r)(n + 1)
for |r| > n+2, and |¢/,| < 1. We have 7, (F™) = O,WU(F(")Q) — o(f?) as n — oo, and

E(FF) + (

+7r+ 27“1)5(F)2

m(VEOP) < 3 0 Al_ (V1) = oIV 1]2),

ex O'
i=1

where A € O.(M) be such that suppf C A. O]
As an extension of Cheeger’s inequality for A,(oco) which is well-known in geometry
(cf. [9]), we present the following result for A, (r).

Proposition 7.6. Forr >0, let k(r) := inf,(a)e(r,00) 05(0A) /0 (A), where A runs over all
bounded smooth domains, and c5(0A) denotes the area of OA induced by o. If k(r) > 0,
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then Ay (s) > (1 —rs)?k(r)?/4 for s € (0,1/r). On the other hand, assume that p := 9% is
positive and C?. Let P; denote the semigroup generated by L :== A + ¥V logp on L*(o). If
IVE.f|? < h(t) PV f|? for some positive h € C[0,00) and all f € Cs°(M), then A\, (s) > 0
implies k(r) > 0 forr > 1/s.

Proof. Assume that k(r) > 0. For any f € C5°(M) with o(f?) = 1, by the coarea formula,

o(|Vf3) = /OOO oo({f* =t})dt > k(r) /Otr o(f? > t)dt,

where t, = sup{t > 0: o(f*>1t) >r}. Then

, . TIE. 1 ,
o(f?) = / o(f? > t)dt < / o> 0t + oV P
< %\/auwn?) 1%

Then, for s € (0,1/r) and || f|% < s, we have
4o(|Vf)
") < R =y

Therefore, A\, (s) > k(r)?(1 — rs)?/4.
On the other hand, assume A, (s) > 0. By (7.3) we obtain

o((Pef)?) < exp[=2Xq(s)t]o (f*) + | fII5/s.  f € C5°(M). (7.13)

If [VEf|? < h(t) PV f|? for some positive h € C[0,00) and all f € Cg°(M), then P is
conservative and (4.4) holds. For any bounded smooth domain A with o(A) :==r > 1/s,
by taking f =14 in (4.4) and (7.13) we obtain

CltO'a(aA) Z O'(lA(l - PtlA)) + O'(lAcPtlA)
= 20(A) — 20 ((Pyj214)?) > 20(A) — 2exp[—A,(s)t]o(A) — 2/s
> 2(1 — exp[— A (s)t] — 1/(s7))o(A).

Therefore,

. 09(0A) 2
a(lAn)fZT () > sp C—lt(l — exp[—=Ag(s)t] = 1/(sr)) > 0.

O

Finally, we present two typical examples, where in the first example £ is irreducible
but (7.1) does not hold, and in the second (7.1) holds but gap(€) = 0.
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Example 7.7. Let M = R? and let o be the Lebesgue measure. Then (£,D(€)) is
irreducible (see e.g. [22]) but (7.1) does not hold. Indeed, for any R > 0 with o(Bg) > 1,
taking f = (R+1— p)* A1, where p(z) := |z|, we have f2/o(f?) <1 and hence

U(IVfIZ) < 0(Bry1) — 0(Br)
a(f?) — o(Br)

which goes to zero as R — co. Therefore (7.1) does not hold according to Theorem 7.1.

A (1) <

Example 7.8. Let M be the d-dimensional hyperbolic space with d > 4. Let o € M
be fixed and p the distance function from a fixed point o. Take a sequence {z,} C M
such that p(z,) = n. Let 0¢(dz) = dz be the Riemannian volume element. Let o, (dz) =
pn(z)dz for some smooth p, > 0 satisfying pu|p _,(wn)e = O,pn|3n_2/2(xn) = n**% = max p,,
where 0 € (0,2d —9) is a constant and B, (z) denotes the geodesic ball with center z and
radius 7. Let 0 =) >, 0y, then (7.1) holds for some a but gap(€) = 0.

Proof. For any n > 1, let f, € Cg°(M) be such that fu|p @) = 1, falB, s =
0, |V fn| < 2n2 We have

VL) _ A00(Ba2(a) \ Buoen) _
o(f2) = nloo(Byzp(an)) B
for some ¢ > 0 and all n > 1. Therefore, \,(0c0) = 0. By Theorem 7.1 we have gap(€) = 0.
It remains to prove (7.1). For n > 1, let M,, = M \ U;~,, B;—2(x;). Obviously, we have
1<p:=1+3°"p, <1+n*?on M,. Since Ap > d— 1, by the integration by parts
formula, we obtain

0o(04) _  (00)p(dA) _ d-1
o(A) — (1+n**%og(A) = 1+ n*to
for all bounded smooth A C M,. By the coarea formula (cf. the proof of Proposition
7.6), we arrive at

14 n**o o
o) < Do (v, recEu), (7.14
For i > n, let h; € Cg°(M) such that hi|lp_,@,) = 0,hp, _,@,) = 1 and [Vh;| < 2i°. For

any f € Cg°(M), let f, = fIli~, hi- By (7 14)/

446 4+6
o(12) < (92 + MU 2 S oo(Bas () \ B ()
N~ i>n (7.15)
n

< ﬁU(WfQD +en 2R FI12
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for some ¢ > 0 independent of n and f. Therefore,

o(f?) S o(f2) + /1% D o(Bai2(x2)

i>n
1 4 n*to ~ L
< ﬁO'qu?D +en 2d+9+6||f||(2>0 +Cl||f||c2>ozl4+6 2d
i>n
2 1+n4+5 - N
= %V c(VIBo(f2) + en®™ 2 fI%, n>1.f e (M),

for some ¢y, co > 0. Then for any r > 0 and any f € Cg°(M) with o(f?) = 1 and
| f1I2, <7, we have

d — 1)(1 — ren®+o-2d)+ 2
2 > \ (
o(|VFP?) > Sup 20+ i)

Therefore, A\,(r) > ¢(r) > 0 for any r > 0, and the assertion follows by Theorem 7.1. O

=:¢(r) > 0.
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