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Abstract. Let M be a compact simply connected Riemannian manifold
which contains a non—trivial closed geodesic v such that the curvature is
constant and strictly negative in a neighbourhood of 7. We show that in this
case a Poincaré inequality for the H' gradient on the free loop space C(S*, M)
endowed with Bismut measure does not hold. Similar results hold w.r.t. more
general metrics, and also on based loop spaces with base point close to v. A
key ingredient in the proofs is a result which shows that in a certain sense,
the concentration of a Brownian bridge on hyperbolic space near the geodesic
joining the end points z and y increases rapidly as d(z,y) — oo.

1 Introduction and main results

1.1 General introduction

In [F], S. Fang proved a Poincaré inequality w.r.t. Wiener measure on the
based path space over a compact Riemannian manifold. The validity of this
inequality is equivalent to the existence of a spectral gap above 0 for the
Ornstein Uhlenbeck operator on the path space, which is the generator of
the corresponding Dirichlet form. In spite of this positive result, it is still
not known if, and under which conditions, a corresponding result holds on
loop spaces.

That the loop space case can not be handled as easily as the path space
case is already indicated by the fact that the kernel of the Ornstein Uhlenbeck
type operator on the loop space is infinite dimensional if the underlying
manifold M is not simply connected. Nevertheless, one might still hope



for the existence of a spectral gap above 0 in general, and for a Poincaré
inequality in the ordinary form if M is simply connected. The aim of this
article is to demonstrate that such results can not be expected without further
geometric restrictions. More precisely, we will show ( in a particular case )
that a non-trivial closed geodesic which is a local minimum for the energy
functional on H'(S', M) can provoque accumulation at 0 of the spectrum of
the Ornstein Uhlenbeck operators on pinned and free loop spaces over M. A
corresponding result holds for a broad class of other diffusion operators on
these loop spaces as well.

We now introduce the framework needed to state our results in detail. Up
to slight modifications, this framework has been used in many publications
during the last years, cf. e.g. [D], [DR], [L], [M], [H1], [H2], [ES], [A1], [A2].

1.2 Measures on loop spaces, stochastic horizontal lifts,
and integration by parts

Let M be a compact connected Riemannian manifold, and let d = dim (M).
Let LM = C(S*, M) denote the space of continuous loops over M. In the
sequel we will identify S* = [0,1]/ ~, so

LM ={w e C([0,1],M); w(0) = w(1)}.

For x € M let L,M = {w € LM; w(0) =z} (={w e C([0,1],M); w(0) =
w(l) = z} ) be the pinned loop space at x. We endow the spaces LM and
L, M, z € M, with their Borel o-algebras B(LM) and B(L,M), which are
generated by the M—valued evaluation maps Il;, 0 < s < 1, [l (w) = w(s).
The distribution P, of the Brownian bridge from x to x in time 1 is the
unique probability measure on L, M such that

flw(s1),w(s2),... ,w(sy)) Py(dw)

L.M

= f(xl,xQ,... ,xn)Psl(ﬂf,ﬂﬁl)l)sz—sl(ﬂﬁlaﬂﬁz)"'
Mmn
n

t 'psn—snfl(xn—la $n)p1—sn (‘Tna .’E) H V(dxz) /p1($, 37)

=1

holds for all n € N, f € C®(M"), and 0 < 81 < $3 < ... < s, < 1. Here
pi(x,y) denotes the heat kernel of A/2 on M. The S! invariant normalized
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Bismut measure P on LM is determined by

flw(s1),w(s2),...,w(sy)) Pdw)

LM

= f(xla T2y .- 7$n) p51($, xl)pSQ—Sl(‘Tl’ $2) T
Mn
n

 Dansns (et En)D1s (1, 2) [ V(d) / /Mm(x,x) V(dz)

=1

foralln e N, f € C®(M"), and 0 < 57 < s9 < ... < s, < 1. Hence

P = / P, pu(w,7) V(dz) / pi(z,2) V(dz)

where the measures P,, © € M, have been extended trivially to LM . For the
key assertions below it does not make a difference whether we are using the
normalized or unnormalized Bismut measure. In particular, the operators on
LM defined below are the same in both cases.

The M-valued process (II;)o<s<1 is a semimartingale both on (L,M,
B(L,M)"=, P,) for every z € M and on (LM, B(LM)”, P) w.r.t. the corre-
sponding augmentations (F7)o<s<1, (Fs)o<s<1 of the filtrations generated by
the process, cf. e.g. [D]. Here B(L,M )=, B(LM)¥ denote the completions of
the Borel o-algebras. Let 7 : O(M) — M be the orthonormal frame bundle
over M. We will view a frame u € O(M) as an isometry from R® to T, M.
We fix a Borel measurable map U®) : LM — O(M) such that 7o U® =Y},
The corresponding horizontal lift of the semimartingale (II;)o<s<1 is the (up
to equivalence unique ) O(M) valued horizontal semimartingale (Us)o<s<1 on
(LyM, B(L M), P, (F%)), (LM, B(LM)?, P, (F;)) respectively such
that Uy = U© and 7o U, = II, for all 0 < s < 1 hold P,-a.s., P-a.s.
respectively, cf. e.g. [HT, Satz 7.141].

For x € M and w € L,M, the tangent space T,L,M consists of all
continuous vector fields X : [0,1] — TM along w that vanish at 0 and
1. Let FC* denote the space of all smooth cylinder functions F(w) =
fw(s1), ... ,w(sn)), n € N, f e C®M"), s1,...,8, €[0,1 on LM. For
such a function F' and X € T,L, M, the directional deriwvative X F' is given
by

n

XF = Z(Xg)f) (W(Sl),... aw(sn))a

i=1



where X s(i) denotes the appliaction of the derivative X, to the i—th component
on M™. Let (Us)o<s<1 be a version of the stochastic horizontal lift w.r.t. P,.
For h € C([0,1],R%) with h(0) = h(1) = 0 let X" denote the measurable
vector field on L, M given by

(1.1) XM (w) = Ugw)h(s), 0<s<1,weL,M.

If his in Hy*([0,1],R%), then the following crucial integration by parts iden-
tity holds :

(1.2) / X"FGdpP, = —/ F X,G dP, + By F G dP,
oM oM LaM

for all F, G € FC®, where B, = [ (K'(s) + Ricg, (h(s))) - db,. Here X,F
denotes the directional derivative of F' in direction X}, Ricy, = U, Ric U,
and (bs)o<s<1 is the R%valued stochastic development of the Brownian bridge
s+ w(s), cf. e.g. [HT]. The function (3 is contained in L?(L,M; P,) for every
p € [1,00). Notice that (1.2) means that the smooth cylinder functions are
contained in the domain of the adjoint X of the operator (Xj,, FC*) on
L*(L,M; P,). For the proof of (1.2) see [D], [H2] or [ES].

1.3 H! metrics and gradients on loop spaces

From now on we fix a version (Us)s>o of the stochastic horizontal lift w.r.t.
P or P,, x € M, respectively. The tangent space 1,,LM at a loop w € LM
consists of all continuous vector fields X : S' — TM along w. Since a
typical loop in LM is not absolutely continuous, we have to use the stochastic
horizontal lift to define an H' metric on TLM. Forw € LM let T.: LM denote
the space consisting of all X € T,,LM such that s — U,(w)™'X,,0< s <1,
is an absolutely continuous curve in R¢ with square-integrable derivative.
For X € T:LM, we define the covariant derivative

VX d _

“ds (s) = Us(w) %(Ut(w) X0 i=s

of X along w. Note that if w would be smooth, and U(w) would be the usual
horizontal lift, then (1.3) would yield the usual covariant derivative along w.

The H' metric on T:LM is defined by
(1.4)

(1.3)

VX, VY
X, Y)m = — —
O

1
S (8)>Tw(s)Mds + / <XS’ YS)Tw(s)M ds;
0



X,Y € T)LM. W.r.t. this metric, T:LM is a Hilbert space, and the map
h — X"w), defined by (1.1) is an isometry between {h € HY%([0,1], R%);
Up(w)h(0) = Uy(w)h(1)} and TLLM.

Now fix € M, and let (Us)o<s<1 be the fixed version of the stochastic
horizontal lift w.r.t. P,. Then for w € L, M, the H' tangent space 1> L, M
and the covariant derivative of a vector field X € T!L,M along w can be
defined similarly as above. Note that a priori the stochastic horizontal lifts
w.r.t. P, and P are not related, because the measures are singular. However,
it is possible to construct a joint version of the stochastic horizontal lift w.r.t.
both measures, cf. [D]. By using such a version for the definitions, we have

T'L,M = {X € T\LM ; X, =0}.

The H' metric on T'L,M could now be defined as the restriction of the
H' metric on T'LM, cf. (1.4). In stochastic analysis, however, one usually
uses the eqivalent metric

1 VX VY

15 XV = [ G

() 5,

X,Y € T!L,M. The map (h,w) — X"(w) defined by (1.1) is an isome-
try between the trivial bundle L,M x Hy*([0,1],R?%) and the measurable
field of Hilbert spaces T L, M provided Hy” ([0, 1], R%) is equipped with the
Cameron Martin metric

(hy g)om = /0 h'(s) - ¢'(s) ds.

For a smooth cylinder funtion F(w) = f(w(s1),...,w(ss)), the gradients
DF and DF are the “sections” of T'L,M, T'LM respectively defined by

(D°F)(w), X)riz,m = XF forallw € L,M and X € T, L, M,
(DF)(w), X)mipyy = XF  forallw € LM and X € T)LM.

One easily calculates that explicitly,
(1.6)

Us(w) H(DF)(w)(s) = Z GO(s, 5;) Uy, (w) tgrad® f (w(sy), ... ,w(sy))



where G°(s,t) = sAt—s-t, s, t € [0, 1], is the Green’s function of the operator
—d?/ds* with Dirichlet boundary conditions on (0,1). In particular,

IDF() i = Y, (GO(SZ-, 5;)Us; (w) Lgrad® f(w(s1), ... ,w(sn)) ,
ij=1
(1.7) U, (w)grad? f(w(s1), ... ,w(sn)) )Rd .
Corresponding representations hold for DF as well, but G°(s,t) has to be
replaced by the matrix—valued Green’s function G(w, s,t) of the operator
1 — d?/ds* acting on functions h : [0,1] — R? with stochastic boundary
conditions h(1) = Uy (w) " tUs(w)h(0) and A/ (1—) = Uy (w) " tUs(w) A (04).

A section X of the bundle T'LM is called measurable if the function
U'X : LM — HY*([0,1], RY), (U'X)(w)(s) = Us(w)™' X;(w), is measur-
able. It is called square—integrable w.r.t. P if [(X(w), X(w))rm P(dw) <
oo. The space L*(T*LM; P) consisting of all equivalence classes of square
integrable sections is a Hilbert space. In fact, it is the direct integral of
the measurable field of Hilbert spaces T'LM, cf. [Di]. The Hilbert space
L*(T'L,M; P,) is defined similarly.

D and D are densely defined linear operators from L?(LM; P) to
L*(T'LM; P), and from L?(L,M; P,) to L*(T'L,M; P,) respectively. It is
a consequence of the integration by parts identity (1.2) that these operators
are closable. For the reader’s convenience, a simple proof of this fact is given
in the appendix. Notice that the closability of D° and D is equivalent to the
closability of the corresponding symmetric bilinear forms

(1.8) EXF,G) = /(DOF(w), DOG(w))TiLmM P, (dw), and
(19)  &(F,G) = / (DF(w), DG(w))r110 P(dw),

F,G € FC*, on L?(L,M; P,), L>(LM; P) respectively. We remark that
these bilinear forms are independent of the choice of the initial frame U®
and a corresponding version (U;);>o of the stochastic horizontal lift made
above.

We denote the domains of the closures of the operators D and D by
HY(L,M; P,), H"?(LM; P) respectively. The closures of the gradients and
the forms (1.8) and (1.9) themselves will again be denoted by D°, D, £2, and



€ respectively. D° and D are non—flat analogues of the Malliavin gradient
which is defined on the path space over R", cf. [M]. We are interested in the
spectrum of the non—negative definite self-adjoint operators

L= (DYD® and L = DD
which are associated to the quadratic forms (€2, H“*(L,M; P,)) on
L*(L,M; P,;) and (£, HY*(LM; P)) on L*(LM; P) respectively. Since the
forms do not depend on the choice of U® and (U;);>0, the operators £2 and
L do neither. Because of the analogy of the definition of these operators
to that of the Ornstein—Uhlenbeck operator on the based path space over
R"™, one might call them the Ornstein—Uhlenbeck operators on L,M, LM
respectively. We point out, however, that the spectral properties of these
operators can be very different from those of classical Ornstein—Uhlenbeck
operators, cf. the results below.

1.4 Poincaré inequalities and spectral gaps

We say that a Poincaré inequality holds w.r.t. the H' metric on L,M, LM
respectively, if there exists a finite constant ¢ such that

(1.10) Varp, (F)

<
(1.11)  Varp(F) <

c-E(F,F) forall Fe H"*(L,M; P,),
c-E(F, F) for all F € H“*(LM; P)

respectively. Here Var, denotes the variance w.r.t. a probability measure p.
Notice that it is enough to verify (1.10) and (1.11) for F in FC*°.

We first point out that the Poincaré inequalities do not hold if M is not
simply connected. In fact, in this case the loop spaces L,M and LM are the
disjoint unions of their connected components ( i.e., the corresponding homo-
topy classes of M ), and it can be shown easily that each indicator function of
a component A is contained in the kernel of D°, D respectively, cf. the remark
below Lemma 5.1. In 1994, S. Fang proved a Poincaré inequality similarly to
the one above on the based path space P, M = {w € C([0,1], M); w(0) = z},
cf. also [H1], [AE], [CHL], and [H2] for extensions. Notice that L,M is a
submanifold of P,M with finite codimension. The measure P, can be ob-
tained by conditioning Wiener measure on P, M to L, M, and the gradient
DY is precisely the projection of the Malliavin type gradient on P,M to the
H' tangent bundle of the submanifold L,M. There have been attempts to



extend Fang’s method of proof, which relies on a Clark-Ocone formula on
P.M, to the loop space case, cf. e.g. [GM] and [A2]. However, so far the
validity of a Poincaré inequality in the sense above could not be shown on
any loop space over a non-flat simply connected Riemannian manifold that
is not diffeomorphic to R".

We now state our main result which shows that in fact, Poincaré inequal-
ities w.r.t. the H' metric on loop spaces over compact simply connected
Riemannian manifolds can not be expected to hold without further geomet-
ric restrictions on the base manifold. We make the following assumption on
the Riemannian manifold M :

(A 1) There exists a non-trivial closed geodesic v : S' — M such that the
curvature is constant and strictly negative on a neighbourhood of y(S").

EXAMPLE. Suppose that dim (M) = 2, and M contains an open subset
U that is isometric to the surface of revolution in R? given as the image of
the map f: (—A4,4) x R — R3,

f(s, ¢) = (R coshs cosp, R coshs sinp, / (1 — R?sinh? t)1/2 dt)
0

for some R, A > 0 with sinh A < 1/R. Then (A 1) holds.

Note that there exists a constant ¢ > 0 such that the exponential map
is a diffeomorphism from the set of all vectors of length < ¢ in the normal
bundle along (S') to the set

U. = {z € M; dist (z,7(S")) < e},

cf. e.g. [C], Sect. 3.6. From now on we fix such an ¢ for which moreover the
curvature is constant on U,.

Theorem 1.1 If (A 1) holds then

inf {E(F,F); Fe FC*, Varp(F)=1} = 0 and
inf {EX(F,F); F € FOC®, Varp,(F) =1} = 0  for every z € UL.
REMARKS. (i) The strict negativity of the curvature along v implies that

v is a local minimum for the energy functional E(w) = [ |dw/dsl[%, ds on
H'(S', M), cf. e.g. [J], Thm. 4.1.1.



(ii) I strongly suspect that the assertion of the theorem holds as well under
the weaker assumption that the curvature is strictly negative on (S'). In
fact, in this case the proof given below can be carried out in a similar way
except for the proofs of the estimates in Section 3, where we use the explicit
representation of the heat kernel on the hyperbolic space H¢.

Notice that the constant functions are contained in the kernel of the
operators L2, © € M, and £. We say that a non-negative self-adjoint
operator with non—trivial kernel has a spectral gap above 0 if its spectrum
is contained in {0} U [\, 00) for some A > 0. As a consequence of the proof
of Theorem 1.1 that will be given below, we obtain the following corollary
which is slightly stronger than Theorem 1.1 itself :

Corollary 1.2 If (A 1) holds then the kernel of the operator L is infinite
dimensional, or L does not have a spectral gap above 0. The same holds for
the operators L2, z € UL.

In fact, S. Aida [A1] has shown that the kernels of the operators L2,
x € M, contain only the constant functions if M is simply connected. Hence
the operators £2, z € U,, do not have a spectral gap above 0 in this case.

REMARKS. (i) The absence of spectral gaps on loop spaces over not
simply connected manifolds can be proven similarly under the additional
assumption that the closed geodesic v in (A 1) is homotopic to a constant
loop.

(ii)) The assertion of Theorem 1.1 means that for z € U, the strongly
continuous semigroups (exp(tL));>o on L*(LM; P) and (exp(tL2))t>o on
L?(L,M; P,) do not decay exponentially fast to equlibrium.

1.5 Generalizations

We now state a generalization of Theorem 1.1 which shows that a Poincaré in-
equality on the loop spaces considered is not only violated w.r.t. the H' met-
ric, but also w.r.t. a broad class of other metrics. Let M be again a compact
connected Riemannian manifold satisfying (A 1). Suppose that we are given
a symmetric bilinear operator I' : FC*® x FC* — L'(LM; P) such that
['(F,F) >0 P-as. for all F € FC*, and

(112) T(F... . B).C) = Y 2 (R BIT(F.G)  Poas



foralln € N, ¢ € C;°(R") and Fy, ..., F,, G € FC*. Typically,

I'(F,G) = (DF, DG)
for some gradient D and some metric (-,-) on LM. We assume that the
non-negative definite symmetric bilinear form

(1.13) E'(F, G) :/ I(F,G)dP, F,GeFC™,
LM

is closable on L?(LM; P). We denote the closure again by £' and its domain
by H%’Q(LM ; P). We assume moreover that there exists a function o €
LY(LM; P) such that

(1.14) [(folly, foll,) (w) < a(w)-grad fl2,y  P-as.

holds for all f € C*°(M) and s € S*.

For n € N let v, : S* — M be the closed geodesic obtained by winding
around v n times, i.e., 7,((k + s)/n) = v(s) for all k£ € {0,1,... ,n — 1}
and s € [0,1]. We choose € > 0 as above. Let €, C LU, denote the free
homotopy class of U, that contains +,. For § > 0 let

Q° = {w € Qy; sup dist (w(s),y(SY)) < 6}.

seSt

The conditional expectation w.r.t. the probability measure P is denoted by
EP[‘ | ]

Theorem 1.3 Consider the situation just described, and suppose that (1.14)
holds for some function o« € L*(LM; P) such that

(1.15)  liminf exp(—n®) Ep[a|Q, \ Q%] = 0  for some 3 < 1/4.
n—oo

Then
inf {EV(F, F); F € HY*(LM; P), Varp(F) =1} = 0.

Corollary 1.4 Let A be a non-negative function in L*(LM; P). If

liminf exp(—n?) Ep[A|Q, \ Q%] = 0  for some 3 < 1/4,

n—oo
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then a Poincaré inequality of type

Varp(F) < c- / A(w) (DF, DF)g1 0 Pldw), F € FC™,

LM

does not hold for any ¢ > 0.

REMARKS. (i) Again, corresponding results hold on based loop spaces.
(ii) Theorem 1.3 can also be used to show the non—existence of Poincaré
inequalities w.r.t. H® metrics for 0 < a < 1.

The organization of this article is as follows : In Section 2 we give a simple
criterion to disprove the existence of a spectral gap. To apply this criterion
on loop spaces, concentration results for Brownian bridges are crucial. In
Section 3 we prove a result of this type that might also be of independent
interest : A Brownian bridge from x to y on hyperbolic space concentrates
in a certain sense more strongly near the minimal geodesic joining z and
y if d(z,y) gets large. In Section 4 we show how this result implies con-
centration properties for pinned Wiener and Bismut measures on manifolds
satisfying (A 1). The proofs of the main results on free loop spaces are given
in Section 5, and those on based loop spaces in Section 6.

2 A general anti—spectral gap result

In this section we give a simple criterion for the non—existence of a Poincaré
inequality that holds in a more general framework.

Let (2, F, 1) be a probability space, and let £ be a closed non—negative
definite quadratic form on L?(); i) such that the constant functions are in
the form domain Dom (£). We assume that (£,Dom(&)) is a strongly local
Dirichlet form that admits a carré du champ ( energy density ), i.e., there
exists a symmetric bilinear map I' : Dom (€) x Dom (£) — L*(2; ) with the
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following properties :

(2.1) ['(F,F) >0 p-a.e. for all F € Dom (£),

(2.2) E(F,Q) = /F(F, G)dp for all F,G € Dom (£),

(2.3) The composition ¢(Fi, ..., F,) isin Dom (&) for all n € N,
Fi,...,F, €Dom ()N L®(Q;u) and ¢ € CH(R™), and

L(@(F,... , F), G) = > aagz(Fl"" JE)T(F,G) pae.

=1

for all G € Dom (€).
It is a consequence of (2.3), that for F, G € Dom (£) and ¢ € R,
(2.4) I'(F,G)=0 p-ae on{weQ; Flw)=c},

( Strong locality, cf. [BH] ). We set E(F) = E(F, F) and I'(F) = I'(F, F).
REMARK. All the closed quadratic forms on loop spaces introduced in
Section 1 are strongly local Dirichlet forms with Carré du champ.
The following observation is almost trivial, but important :

Lemma 2.1 Suppose that there exist disjoint sets B,, € F, subsets A, C B,
A, € F, and functions F, € Dom (£), n € N, such that F, = 1 p—a.e. on
Ap, F, =0 p-a.e. on Q\ B, and

(25)  lminf BD(F)| By \ A u(Ba\ A2)/u(4s) = 0.
Then
(2.6) inf {E(F); F € Dom(£), Var,FF =1} = 0.

PROOF. By (A.5) in the appendix, I'(F},) vanishes py—a.e. both on Q\ B,
and on A,, whence by (2.2),

g(Fn) an\An F(Fn) d'u’ . /*L(Bn \ An)
ng du < fAn Ldu = E[F(Fn)|Bn \ An] ) ,U(An)

Since the sets B, are disjoint, the functions F, are orthogonal in L?(£2, u1).
Hence

(2.7)

Var, F,
2.8 e |
N T [ F2d

([ Fndu)? ( F, )
S A e A Y (e | —1
(fF2dm) " " ) oo
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as n — oo by Parseval’s identity. By (2.7), (2.5) and (2.8),
liminf £(F},)/Var,(F,) = 0.

n—0o0
This implies the assertion after normalizing.

REMARK. More generally, the arguments in the proof imply that
inf {£(F); F € Dom (), /(F — PFY?dp=1} = 0

holds for every finite dimensional projection P : L?(Q; u) — L*(Q; ).

ExXAMPLE. Suppose that € is a complete finite dimensional Riemannian
manifold, and p is a probability measure on  with C! density w.r.t. the
volume element. If there exist disjoint open sets B, C €2, n € N, and open
subsets A, C B, such that

. M(Bn\An) 1 —
oot < WA ds @\ By, Az) =0
then 9
nf fM‘df T;M,U(dw) _
feCge (M) Var, f

This follows by applying Lemma 2.1 with F,, = 1 — dist (-, A,)/dist (2 \
B,,, A,) to the closure (£, Dom (£)) of the symmetric bilinear form £(f, g) =

J(df,dg) dp. Arguments of this type are used in many different contexts,
cf. e.g. [CGP].

In Section 5, we apply Lemma 2.1 to the situation on loop spaces de-
scribed in Section 1. The sets A, and B, will then be chosen as appropriate
neighbourhoods of geodesic loops that wind around the set U, n times.

3 Concentration of Brownian bridges on
hyperbolic spaces

Let H¢, d > 2, k < 0, denote the hyperbolic space of dimension d and
curvature k. For z, y € H? let Q,, denote the distribution on C([0,1], HY)
of the Brownian bridge from z to y in time 1. Let v, : [0,1] — H? be the
unique geodesic from z to y, and let r,, = dist (-,7,4([0,1]) ). The aim of
this section is to prove the following proposition :

13



Proposition 3.1 For everya > 0 and § < 1/4, there ezist constants K, Ko,
c1 € (0,00) such that the estimates

(81)  Quylsup d(w(t), Yay(t)) > u] < K;-exp(—ciu?)
t€[0,1]

(3.2) Qzy [til[épl] Tey(W(t) > a] < Ky-exp(—d(z, y)ﬂ)

hold for all x,y € H? and u > 0.

REMARKS. (i) The crucial statement in Proposition 3.1 is that the con-
stants can be chosen indepently of x and y. It seems that the second estimate
does not hold with sup r,,(w(t)) replaced by the supremum distance of w
and 7,y

(ii) Estimate (3.2) can be improved considerably. For our purposes, how-
ever, the form stated is sufficient.

Let ¢;(z,y) denote the heat kernel on H?. We first recall two well-known
facts about ¢; and about hyperbolic triangles, which we will frequently use
in the sequel :

Lemma 3.2 There exists a constant K € (1,00) such that
Kil . Qt(way) S Qt(l"ay) S K- (it(xay) fO’f' all te (Oa 1] and x,y € Hga
where
; _ —d/2 o~ gl d(ay) (@-1)/2
Gi(z,y) = (27t) e T2t e 2 -(1+d(x,y)) :

PROOF. See e.g. [Da], Thm. 5.7.2.

Lemma 3.3 (Hyperbolic theorem of Pythagoras) If a, b, ¢ are the

lengths of the sides of a right-angled geodesic triangle in H® with right angle
opposite to the side with length c, then

(3.3) cosh(v/—k-¢) = cosh(v/—k-a) - cosh(v/—k - b).

In particular,

(3.4) ¢ > a + (—k)"Y? log cosh (v/—k - b).
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PROOF. (3.3) is standard, and can be easily verified in one of the explicit
models of H? cf. e.g. [Be|, 19.3. In particular, ¢ > a. Since coshu =
e“(1 4+ e 2%)/2, (3.3) implies

eV7re > eV7Ra cosh(v/—kb)- (14+e72V759) /(14+e72V75¢) > eV™k cosh(v/—kb),

and thus (3.4). g

REMARK. If the angle opposite to the side with length c is greater than
7/2, then (3.3) holds with “=" replaced by “>”. In particular, (3.4) is still
true.

For z,y € H? and t > 0 let p*Y denote the distribution of w — w(t/2)
w.r.t. the Brownian bridge from z to y on H¢ in time ¢, i.e.,

%/2(% z) Qt/2(za Y)
Qt(x, y)

pe (dz) = V (dz).

The next lemma is the key step in the proof of Proposition 3.1 :

Lemma 3.4 There exist constants Ay, Az, 6 € (0,00) such that

PV {z € HY rpy(z) > a}] < Ay -t @0/, g datrda))/t
(3.5) Va,ye H, aec|0,1], t € (0,1],

and

1 = 5,
Nf’y [{Z c Hg; d(z, ,wa(§)) > a}] < A2 . t—(d—l)/4 . e_a.az.(azm)/t
(3.6) Vaz,y€ HY a€[0,00), t € (0,1].

PROOF. For better transparency we will restrict ourselves to the case
k = —1. Using Lemma 3.2 and 3.3, the proof can be carried out similarly
for other negative values of k. Let H? = H? and let v = (d — 1)/2. By
Lemma 3.2, it suffices to prove the assertion with ;Y replaced by ;¥ =
p¢Y dV, where

~T QNt 2(.7),2) C}’t Z(Zay)
i) =

; . for all z, y, z € H% and t € (0, 1].
Qt(x,y)
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Fix z,y € H¢ and t € (0,1], and let £ = d(x,y). Then

55y 2\ —(d(z,2)+d(2,9)*— €2 /2) [t ,~v(d(w,2) +d(2,y)~¢)
pt’ (z) e E 6 bl bl e ) )
1 1 v
) (1 d(,2)(1+d(z, )
1474

9\ /2
= (_> e~ (d(@;2)=/2)* +(d(2,y)—=£/2)*) [t , = (v+L/1)-(d(x,2) +d(2,y)—E)

" y ((l—i-d(x,z))(l—i-d(z,y)))”-

1+74
We remark first that

(3.8)

e—u.(d(w,z)—l—d(z,y)—@) . ((1 + d(l'a Zl))—ilg-i- d(Z; y))) < Ky - (1 + E)V Vaze H

holds with some finite constant K, that does not depend on x and y. This
is obvious for z € H¢ with d(z, z) + d(z,y) < 2¢. For z € H? with d(z,2) +
d(z,y) > 2¢, the left hand side of (3.8) is dominated from above by exp(—v -
(d(z, 2)+d(z,y))/2)-(1+d(x, 2))"(1+d(z,y))", which is a uniformly bounded
function in z, y and z.

Now let 7, , : R — H% be the unique geodesic parametrized by arc length
such that 4, ,(0) = = and 7,,(¢) = y. In particular, v;,(t) = Yz, (¢ - t) for
t € [0,1]. We complete Fy(s) = Yz4(8) to a parallel orthonormal frame
{Ey(s), Er(5),... ,Eq_1(s)}, s € R, along 7,,. Let H = H*\ 7,,(R), and
let S92 denote the unit sphere in R4, In particular, S® = {+1,—1}. We
introduce Fermi coordinates v : HY — R, p : H¢ — (0,00) and N : H? —
S9=2 by requiring that

d—1

(3.9) z = exp(p(2) ZEZ(u(z))N’(z)) for all z € H,

=1

where N'(z) is the 7—th component of N(z) in R4 ! O S92 Since the
curvature is negative, (u, p, N) is a global diffeomorphism between H¢ and
R x (0,00) x S92, cf. e.g. [C], Sect. 3.6. We extend the functions u and p
continuously to H¢.
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For z € H? let 2 = 9,,(u(z)) be the orthogonal projection of z onto
¥zy(R). Then both (z,Z,2) and (y, Z, z) are triangles with right angle at
z. Since d(z,2) = p(2), d(z,2) = [u(2) — u(z)| = [u(z)], and d(2,y) =
lu(y) — u(2)| = |€ — u(2)|, Lemma 3.3 implies

(3.10) d(z,z) > |u(z)| + logcosh p(z), and
(3.11) d(z,y) = |€—u(z)| + logcosh p(z).
Thus

(3.12)  d(z,z) + d(z,y) lu(2)| + [£—u(z)| + 2logcosh p(z)

¢ + 2logcosh p(z)
for all z € H¢. Moreover,
(3.13) max (d(z,2),d(z,y)) — £/2 > |u(z) — £/2]| + logcosh p(z).

In fact, (3.13) is an immediate consequence of (3.10) if u(z) > £/2, and of
(3.11) if u(2) < £/2. By (3.7), (3.8), (3.12) and (3.13),

(3.14)
ﬁ;cy(Z) < Ky - ( )d/2 (|u(z)—£/2\+10gcosh p(z))2e—2%-logcosh p(z) | (1 + Z)V

for z € H% and t € (0, 1]. Integrating over z, and using that the volume ele-
ment can be expressed in Fermi coordinates as sinh®™2 p cosh p dp du dVsa—(N),
we obtain

(3.15) afY[{z € H% p(z) > a and u(z) > B+ £/2}]

< Ko (B)7v(s') /ﬂ o et gy

00
X/ e—(logcosh p)2/te—%elogcoshp . (1 +£)u Sinhd—Zp cosh pdp
a
oo
< K, _t(l—d)/Qe—ﬂQ/t/ (1 +g)ue(d—l)pe—(%logcoshp+(logcoshp)2)/t pd—2dp
a

for all «, B € [0,00) and ¢ € (0, 1], where K; is a finite constant that does
not depend on t, z, y, o and 3. Here we have used that

/00 e~ W2t gy < G_BQ/t/ooe_”2/tdv = Vate P12,
B+€/2

0
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because (u—£/2)? > 2+ (u—B—1£/2)*ifu> [+ £/2.
To estimate the integral on the right hand side of (3.15) note that

logcosh 7 = log(e" - (1 +e %)/2) = r —log2+1log(l —e *) ~r —log2

as r — oo, whereas logcoshr ~ r?/2 as r — 0. Since the function log cosh
is continuous and strictly positive on (0,00), there exists A > 0 such that
logcoshr > Ar? if 0 < r < 1 and logcoshr > Ar if r > 1. Let I(p,t,£)
denote the integrand in the integral on the right hand side of (3.15). For
g > 1 we obtain

/ I(pa t,f) dp < (1 + g)v . €—2Aao£/t . / e(d_l)”e_)‘292/t pd—Z dp

0 o

(3.16) < (1 —{—E)V . e~ 22a0l/t | (d—1)ao e—Azag/t(l + ao)d—Q
% / e(dfl)vef)\zv2 (1 + U)di? dv
0
< Ky - e heot/t . oo Nag/(20) for all ¢ € (0, 1]

with some finite constant K5 that does not depend on ¢, £ and «y.
Moreover, if £ > 1 then for a; € [0, 1] we have

1 o0
/ I(p,t,f)dp < (1+€)”ed_1/ e 2Pt =2 g

1 ay
o0

3.17) = (1+£0)"e* (20 t_”/ e rd 2 g
(3.17) 1+ (2eM/1) T

eTINTV 1 @72t (1 4y - (/200 ]1) / eV v 2 dy

0

IN

IN

Ky-t¥- e*(l—f-ﬁ))\a%/(%) Vte (O, 1]’

and if £ <1 then for oy € [0, 1],

1 o)
/ I(p,t,0)dp < 2vet. / e NP =2 dp
o

1 a1
o

(3.18) < 2”ed_1)\_”t”/2-/ e ri=2 dr
A

1/20,4-1/4

IN

o0
(Q/A)Ved—l i e—/\2a‘11/t (1 + )\1/2a1t—1/4)d—2 . / e—r4 ri=2 qr
0
< K4 . tu/2 . €(1+€))\2a‘11/(4t)
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where K3 and K, are finite constants that do not depend on ¢, a; and Z.

By (3.15), (3.16), (3.17) and (3.18), we see that there exist constants
K5, 6 € (0,00) independent of z and y such that for all ¢ € (0, 1],

K t_u/ge_ﬂZ/te—tsoO/l(l'f‘e)/t Ya € [0, 1],
K e_ﬂQ/te_‘so'(a2+m)/t Va € [1’ oo)

@Y p> aand u > £/2+ ]

<
gl [p>aand u>l/2+ 6] <

By the invariance of i under the map z — exp(p(z) 3. Ei(¢ — u(z))N(z))
( reflection at the middle plane between z and y ), the same estimates hold
for i;[p > aand u < £/2 — 8]. Now notice that for z € H¢ we have
ag(2) = dist (2,5 ([0, ) = d(22) = p(z) it 0 < u(2) < £, 1yy(2) =
d(z,y) < p(z) +u(z) — Lif u(z) > £, and r,,(2) = d(z,2) < p(z) — u(z) if
u(z) < 0. In particular, p(z) > ry,4(2)/2 or |u(z) — £/2| > £/2 + 1y, (2)/2 for
each z € H% Hence

fii 'lray 2 o] < 50p = /2] + 5(|u—€/2] = (E+ a)/2]
(3.19) = 20 [p>a/2and u>0/2] + 20 [u> L+ of2]
< 2K V2 (6760a4-(1+€)/(l6t) + ef(2£oe+a2)/(4t) )

for all ¢t € (0,1] and « € [0,1]. Since K5 and &y do not depend on z, y and
t, (3.19) implies Estimate (3.5). Furthermore,

(2, Y2y (1/2)) < d(2,2) + d(Z,724(1/2)) = p(2) + u(z) - £/2] Vze HY,
whence

i {2z € HY d(2,74,(1/2)) > o}]
< ez /2 + B lu—4/2] = /2]

= 20 [p>a/2and u>0/2] + 23 [p>0and u > £/2 + «/2]

2Ky t7V/2 . (¢7%00n(40/060 o o=a?/(40)) i e (0,1], a € 0,2,

2Ky - (e 0@ +2e)/(4) o o=o?/U0)y vt e (0,1], a € [2,00).

<
resp. <

This proves Estimate (3.6).

We finally show that Proposition 3.1 follows from Lemma 3.4 :

PROOF OF PROPOSITION 3.1. We first show that (3.6) implies (3.1).
Afterwards, we use (3.1) and (3.5) to prove (3.2).
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(i) Proof of (3.1) : Fix z,y € HY, and let P, (H¢) denote the space
of all continuous paths w : [0,1] — H? with w(0) = z and w(1) = y. For
ke NU{0} and w € P, ,(H?) let

Mi(w) = max d(w(i-27%), 7,0 27%)), and
0<i<2k
Ni(w) = max d(w((i+1/2)- 275), Y20y w(is1)2-+) (1/2))-

Recall that since H? is simply connected and has negative curvature, the func-
tion t — d(1(t),12(¢))? is convex for any two geodesics 71, 72 : [0,1] — HZ
parametrized proportional to arc-length, cf. e.g. [J], Lem. 6.5.2. In particu-
lar,

d(m(t),72(t)) < max (d(71(0),72(0)), d(7:(1),72(1)))
for all t € [0,1]. Hence

d(Yoia-#)w(ir1)2-5) (1/2), Yoy (i +1/2)-277))
< max (d(w(i-27%), 12y (i-277)), d(w((E+1) - 27%), 70y ((E +1) - 27%)))

for all £ > 0 and 0 < 7 < 2%, and therefore
Mii(w) < My(w) + Ng(w)  for all w € Py, (H?) and k > 0.

Since My(w) = 0, we obtain M (w) < Z?;& Nj(w), and thus

o

sup d(w(t),Vzy(t)) = sup My(w) < ZNj(w) for all w € P, ,(HY).

te[0,1] kEN =

Let p = (d + 3)/4. By (3.6),

271

Qzy[N; 2 0] < Z Qugyld(W((i+1/2) - 277), Yoo w(+1)2-)(1/2)) > o]

1=0

< 2. sup Y [d(- ey (1/2) > a] < I S R Oy
z'y' e HY
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for all & > 0. Hence

Quyl{w € Puy(HY); s d(W(t), Yay(t)) > (1 427%)  0}]
te[0,1

e o0
—J i _§.90.9=3/4y2.((2-/4y2
< S QuyN; > 27 < 4, S gpem i )
j=0 =0

00 00
i 5.20/242 — 4§02 i (2972
< AQE :2p]e §-21/2y < A2'6 v § :2p]e 0-(2 1)
7=0 7=0

for all v > 1. This shows that (3.1) holds for all z,y € H¢ and u > (1 —
271/8)~1 with constants K1, ¢; € (0,00) that do not depend on z, y and w.
Clearly, by choosing K; large enough, we can ensure that (3.1) holds for
0<u<(1—-27%""1 as well

(ii) Proof of (3.2) : This is slightly more involved. Fix o € (0,1] and
z,y € H with d(z,y) > 1, and let £ = d(z,y). Let
I = {wePuy(Hy); dw(s),w(t) > |t —s| - £/2
(3.20) for all s, € [0,1] with |t — s| > 1/V¢}.
By (3.1), and since d(v;,4(5), Vay(t)) = |t — s| - £ for all s, € [0,1],
Quy[Pay(HO)\T] < Quyl sup d(w(t), 710,(1)) = VE/4]

t€0,1]
(3.21) < Ky-emat/ls

Hence to prove (3.2), it suffices to estimate Quy[{w € I'; supe(o1) Ty (W(t)) >
a}]. Now let

~ _ . © ok
My(w) = 01;212% dist (w(7-277), v2,4([0, 1])), and
New) = max dist (0((+1/2) 2 ), vuga-byaena-o (0:1)).

Similarly as above, we have
My (w) < Mi(w) + Ng(w) forallw €T and k € NU {0},

because

dist (71(2), 72([0,1])) < max (dist (71(0), 72([0,1])), dist (y1(1),12([0,1])) )
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holds for any two geodesics 71, 7 : [0,1] — H?, and all ¢ € [0,1]. The latter
fact can be seen for example from the expression of the metric on H ¢ in Fermi
coordinates based on a geodesic extending 7v,. Hence M (w) < > j;é N;(w),
and

(3.22) sup 7,,(w(t)) = sup Mj(w) < ZNj(w).
te[0,1] keEN =0

For oo > 0 and j € N U {0} with 277 > 1/+/¢, we have by (3.5) and (3.20) :
(3:23)  Quyl{w €T Nj(w) > a}]
< 27 -sup {uf_’i-"[w,y/ > al; o',y € H with d(2,y') > 2777 -E}

< Ay 9Pi . @A) R2TITI g opi L B2 /2) (an)?

Y

whereas for & > 0 and j € N U {0} with 277 < 1/v//, we still have
(3:24)  Quy[{w €T; Nj(w) = a}]

< 27 .sup {,ugg?’[rz:’y/ >al; o',y € Hg} < Ay 9P g0 en)?
Let @ =a-(1—2"%),ie,a=1a-Y72727% Since £ > 1, we can find

ko € N U {0} such that 2% > 1/y/¢ > 2-(kot1)_ Notice that @ < a < 1. By
(3.22), (3.23) and (3.24),

(3-25) Quyl{w €Ty sup ryy(w(t)) = al]

te[0,1]

< Y Quyl{w € T; Ny(w) > 279/%a}]
j=0

ko 00
< A - E :21)]'6—5.(2]'/2_1_2*1/2_4/2)64 4 A - Z 2pje_52j/za4
7=0 Jj=ko+1
0 00
S A1 ) 676a4£3/4 . Z 2pje,52j/264 + A1 . E”/Qe"s‘_‘%w . Z 2p'(i+1)676(2i/271)a4

Here we have used in the last step that 277/2 > 27%0/2 > ¢=1/4 for all j < k,
9pko < gp/2’ 2(k0—|—1—|—i)/2 _ 2(k0+1)/2 — 2(k0+1)/2 . (21/2 _ 1) > 21’/271 for all 4 > 0’

and 2(kot1)/2 > ¢1/4 Since a > 0, the sums on the right hand side of (3.25) are
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finite. By (3.21) and (3.25) we see that for every a € (0,1] and § < 1/4 there
exists a constant K, € (0,00) such that (3.2) holds for all z,y € H¢ with
d(z,y) > 1. If K, is chosen sufficiently large, then (3.2) holds for z,y € H?
with d(z,y) < 1 as well. Finally, for ¢ > 1, the estimate follows from the
corresponding estimate for a = 1.

4 Concentration of pinned Wiener and Bis-
mut measures near energy minimizing loops

Let M be a compact connected Riemannian manifold satisfying (A 1). We fix
€ > 0 as in Section 1. In this section we will apply the results from Section 3
to obtain concentration results for the pinned Wiener and Bismut measures
on loop spaces over M, cf. Proposition 4.3.

Let 0 : R — M be the geodesic parametrized by arc length defined by
o(s+kL(y)) = v(s) forallk € Z and s € [0, 1], where L(7y) is the length of the
closed geodesic . Let k < 0 be the constant such that the sectional curvature
is identically  on U,. We fix a unit speed geodesic & : R — HY, d = dim(M).
Let {Eo(s), E1(8),--.,Ea-1(s)} and {Ey(s), E1(s),...,Eq-1(5)}, s € R, be
parallel orthonormal frames along o, & respectively such that Fy(s) = o'(s)
and Ey(s) = &'(s) for all s € R. Let u: H* = R and v : H — R be the
coordinates given by z = exp(3.%_, v*(z) Ei(u(x))) for all z € H%. (u,v) is
a global diffeomorphism between H? and R?, and dist (z,5(R)) = |v(z)| for
all z € HY. Let U, = {x € H? dist (z,6(R)) < €}. Since the curvature on
U. is identically , the map

m:U.—= U, 7(z) = exp(

e
~
o
S
=
—~
>
Nt

is a Riemannian covering map. By the choice of €, the exponential map is
a diffeomorphism from the set of all vectors of length < ¢ in the normal
bundle along (S*) to U.. This implies that the map 7 is a bijection between
Ucw={z € U; n-L(y) <u(z) < (n+1)-L(y)} and U, for every n € Z. Let
I, be the inverse of 7| e A loop w € LU, lifts to a unique continuous path
& :[0,1] = U, such that 7 o & = w, &(0) = ly(w(0)), and &(1) = I,(w(0)) for
some n € Z. For x € U,, the sets

(4.1) Qe = {we LUs; 0(1) =lu(2) },
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n € Z, are the homotopy classes in L,U,. Let
(4.2) Qn,w = {we C([0,1], [75); w(0) = lp(x), w(l) = l,(x) }.

For every n € Z, the lifting map w — @ is a homeomorphism between €, ,
and Qn,w. We now consider the image of pinned Wiener measure under this
map. For z,y € M let P,, denote the distribution of the Brownian bridge
from z to y in time 1 on C([0,1], M). Recall also that @, denotes the
distribution on C([0, 1], H%) of the hyperbolic Brownian bridge from z to v,
and ¢;(z,y) is the heat kernel on HZ.

Lemma 4.1 Letn € Z and x € U.. Then for every Borel subset B C Qmw,

Pz[{w € LJCUE; w € B}] ']91(37,!13) Qlo )oln(z) [ ] QI(ZO(x)aln(x))

PROOF. Let (W;):>0 be a Brownian motion on H¢ starting at lo(z) defined
on a probability space (Q, F, P). For w € Q let 7(w) = inf {t > 0; W;(w) €
oU. } where inf () = co. The projection 7o W; is defined for 0 <t < 7 if 7 is
finite and for 0 < ¢t < oo else, and 7 = inf {¢t > 0; mo W, € U, } P-as. Since
7 : U. — U, is a local isometry, the U.valued process 7 o W;, 0 < t < 7, is
( w.r.t. P ) a Brownian motion on M starting at x, and stopped at the first
hitting time of the boundary QU,. In other words, the process W;, 0 <t < 7,
is the lift of the Brownian motion 7 o W;, 0 < ¢ < 7, to the covering space
U..

Let PEM, l (m) denote the distribution of Brownian motion starting at x,
lo(x) on C([0,1], M), C([0,1], HZ) respectively. By the considerations above,
the restriction of @13, to C([0,1],U) is the image of the restriction of PBM
to C([0,1],U;) under the lifting map.

Now let inj (M) denote the infimum of the injectivity radii of all points in
M. Since M is compact, inj (M) > 0. We fix » > 0 such that r < inj (M) and
B,(x) C U.. Then 7=!(B,(z)) is the disjoint union of the balls B,(l,(z)), n €
Z, in U.. Let € denote the set of all continuous paths w : [0, 1] — U, such
that w(0) = r and w(1) € B,(z). Let €, , denote the connected component

of (2 that contains €, ,, and let Q;m = {&;w e @ ,}. Then Q _ is the

set of all continuous paths p : [0,1] — U, such that p((]) = (=) and p(1) €
B.(I(z,)). Now let F be a bounded continuous function on C([0,1], H)
that vanishes outside €2 . and let F be the function on C([0,1], M) defined

n,xr?

by F(w) = F(@) for w € Q

n,xr’

F(w) = 0 else. Since the lifting map is
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a homeomorphism, and 0%, , = W(@Q,n’w), the function F' is continuous as
well. Moreover, for every bounded function g on M that vanishes outside
B, (),

FdP, (@) V(d
/B;r(z'(/ v) (W) Pz, y) V(dy)
= PBM(dw)
- / F(p) (n(p(1))) QB (dp)
= / (/Fd@lo(x),z) 9(m(2)) q1(lo(z), 2) V(dz)
B, (in())
- /B (@) (/FdQlO(x)aln(y)) 9(y) a1(lo(2), la(y)) V (dy).

In the last step we have used that [, is an isometry from B, (z) to B, (l,(x)).
We obtain

(4.3) p(z,y) - / FdPy = qi(lo(x),ln(y)) - / F dQuo(a) 1)

for a.e. y € B,(z). On the other hand, the maps (z,y) — P,, and (z,y) —
Rz, are weakly continuous on M x M, H? x HZ respectively, cf. e.g. [ES],
1.5. Thus both sides of (1.3) are continuous in y, whence (1.3) holds actually
for every y € B,.(z). In particular,

p(e,2) - / FdP, = q(lo(x), ln(x)) - / F dQuio

Since the equality holds in particular for every bounded continuous function
F on C([0,1], HY) that vanishes outside 2, , with F' defined as above, it
implies the assertion of the lemma.

REMARKS. (i) By Lemma 4.1,
(4.4) Pl{w € LU; & € BY [zl = Qu@in@! Bl s

for every x € U,, n € Z, and every Borel subset B C Qn,z.
(ii) The free homotopy classes €2,, n € N, introduced in Section 1.5 can
be described by

(45) O = {w € LU,; d’(l) = ln(W(O))}
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In particular, €2, is the disjoint union of the sets €, ,, * € U,. Let Q, =
{@; w € O}, and let Q™ denote the probability measure on C([0, 1], H¢)
defined by

(4.6

Q(n / Qio(@) ()01 (lo(2), In(x)) V (dx) //q1 lo( ) V(dz).
Then
(4.7) Pl{we LU; @ € B} | %] = Q™[ B[]

for every Borel subset B C Q. In fact, applying the lemma for every z € U,
and integrating over z shows that P[{w € LU,, ©® € -}] is proportional to
Q™ on the Borel o-algebra of €2,,, whence the normalized measures coincide.

For x € M let r(x) = dist (z,v(S")).

Lemma 4.2 Let ry € (0,e). There exist ro € (0,71) and A, A € (0,00) such
that

q1(lo(2), In(2)) /@1 (lo(y), ln(y)) < A-exp(—An)

for all z, y € U, with r(x) > and r(y) < re, and all n € N.

PROOF. For a > 0 let g(a) = (21) %2e=0"/2¢=(d=1V=Ra/2(] 4 )(d=1)/2,
By Lemma 3.2, there exists K € (1,00) such that

K™ -g(d(z,y)) < ai(w,y) < K-g(d(z,y)) forallz,ye HY.
In particular, for z,y € U, and n € N

01(lo(2), 1 (2)) /a1 (lo (1), la(y)) < K* - g(dn(2))/9(dn(y))

(18) = K?.e (a@H)Hd DV R @) du(s)/2 <1+d (x)>
1+ dn(y)

where

dn(2) = d(lo(2),1.(2)) for z € U..
Now fix n € N and = € U, with r(z) > r;. I claim that

(4.9) dn(x) > min (nL(y) cosh(v/—kr1/2), nL(vy) + 2log cosh(v/—kr1/2) ).
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To verify this, we introduce the Fermi coordinates u(z), p(z) = |v(2)|, and
N(z) = v(2)/|v(2)], 2 € H%, where u and v are defined as in the beginning
of this section. Calculating the metric in these coordinates yields

(4.10) ds® > dp® + cosh®(v/—kp) du?,
cf. e.g. [C], Sect. 3.6. Note that p(l,(z)) = p(lo(x)) = r(x) > r1. Since

(4.11) u(ln(z)) — ullo(z)) = n-L(v),

(4.9) clearly holds if the minimal geodesic 7;y(4),,(z) Satisfies

P(Mio(@)in(z)(8)) > 71/2  for all s € [0,1].

Otherwise, let p be a point on 7jy(z),1.(z) ([0, 1]) With p(p) = r1/2, and let 2
and z, be the orthogonal projections of ly(x) and l,(x) onto the cylinder
C = {z € H% p(z) < r1/2}. In Fermi coordinates, p(z;) = 71/2, u(z) =
u(li(z)), and N(z;) = N(li(x)), ¢ = 0, n. In particular, the geodesics 7i(z),z
and 7V, (z),2, have length /2 and hit OC orthogonally at 2y, 2, respectively.
Moreover, C is convex, whence the geodesics 7,,, and 7,, , do not leave C.
Therefore, the angles of the triangles (lo(z), 2o, p) and (I,(x), z,, p) at zo, 2y,
respectively are greater or equal to 7/2. Thus by Lemma 3.3 and the remark
below,

dn(x) d(ZO(m)a ln(x)) = d(l0($),p) + d(pa ln(x))
d(zo,p) + log cosh(r,/2) + d(zn, p) + log cosh(r,/2)

>
> d(zg,2n) + 2logcosh(r/2).

Since by (4.10),

d(z0,2n) 2> u(zn) —u(zo) = ulln(z)) —ullo(x)) = n-L(y),

this completes the proof of (4.9).

By (4.9), there exists ro € (0,71) such that d,(x) > nL(y) + 3r, holds
for all n € N and z € U, with r(z) > 7. Now fix such an ro. For n € N
and y € U, with r(y) < 79, we have p(lo(y)) = p(ln(y)) < re and |u(l,(y)) —
u(lo(y))| = n- L(7y). Thus the piecewise geodesic connecting the points ly(y),
a(u(lo(y))), 6(u(la(y))), and I,(y) has length < nL(vy) + 2ry, whence

(4.12) da(y) = d(lo(y),ln(y)) < n-L(y) +2r2 < du(z) — 72
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for all x € U, with r(z) > r;. Since d,,(2) > nL(y) for alln € N and z € U,
the assertion of the lemma follows from (4.12) and (4.8). g

For z € U, and n € N let 7&") denote the unique minimal geodesic in (2, ,
parametrized proportional to arc length. For z € H? and w € C([0, 1], HY)
let

riM(z) = dist (z,4™([0,1])) and R™(w) = sup r(w(s)).

T
0<s<1

Moreover, for w € LM, we set R(w) = sup,cs r(w(s)). As a consequence of
Proposition 3.1 and the lemmas above we obtain :

Proposition 4.3 Let 6 > 0 and § < 1/4. Then

lim e - Py [{w € Qp p; Rg(c") (@) > 6} | QU] = 0 for every xz € Ue, and

n—oo

lim ¢ - P[R>6|Q,] = 0.

n—o0
PROOF. Let z € U, and n € N. By (4.4),
(4.13) Py [{w € Qa5 Rén (@) 26} [Qna] = Qlo(z),ln(m)[Ra(cn) >0 Qn,m]
< Qi@ B > 6]/ Quo@)in (@) sl

Since 7 : U. — U, is a Riemannian covering, the lift %‘[‘) of the geodesic fy;(un)

is the geodesic Vi (z),,(c) in H, ¢ and 7‘5 ) — Tlo(2),ln () ( cf. Section 3 for the

notation ). By (4.9), d(lo(x),l,(x)) > n - L(7y) for all z € U, and n € N,
whence by Proposition 3.1,

(4.14) lim e" Qlo(m @[ R™ >6]=0 uniformly for z € U..
n—r0o0

To estimate Qjo(z)1,()[Q2%] from below, we note that dist (Ip(z), 5(R)) =
dist (I,(x),6(R)) = r(x). Since Yiy(q),n(z) and & are geodesics, this implies

(4.15) dist (Yig(a).1n(2)(8), G(R)) < (),
and thus dist (Yiy(a)1.(x)(5), HE\ Ue) > € — r(x) for all s € [0,1]. Therefore

Tio(@)in(z) > € —T(T) on H,‘f \ 05,
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and thus by (4.2),

Qo@)tn(@) [zl > Quo@)tn@{w € C((0,1], HE); sup 1ip(a) 1, @yow < e=1(z)}].
Since U, = {x € M; r(z) < €}, Proposition 3.1 implies

(4.16) Hm Qo) in(@)[ne] = 1 forallz e U,
n—00

where the convergence is uniform on U, = {z € M; r(z) < &'} for every
g’ <e. (4.13), (4.14) and (4.16) imply the first estimate in Proposition 4.3.

To prove the second estimate let p(x) = dist (x,5(R)), z € H?, and

A

R(w) = sup p(w(s)),  w e C([0,1], H).

0<s<L1

~

Clearly, p = r o7 on U. and R(w) = R(@) for all w € C([0,1],U.). Let
n € N. For w € , and s € [0, 1],

p(w(s)) < m(o),w(l)(W(S))ﬂLOS;;lgl P(Yw()w(1)(5)) < Tw)w)(W(s)) + pw(0)),

because & and 7,(0),.(1) are geodesics, and 7(w(0)) = 7(w(1)) implies p(w(0)) =
p(w(1)). Since w(0) = ly(7w(w(0))) and w(1) = l,(7(w(0))), we obtain

(4.17) R(w) < R™ (w) + p(w(0)) for all w € Q,,
whence by (4.7),

(4.18) P[R> 26| = Q™[R > 26|Q,]
< QM{w € Qu; RY, ), (@) 26 or p(w(0)) > 53]/ QM[0,].

Since Q™ is a mixture of measures Qio(@)in(zx)> * € U, (4.14) implies
(419)  lim exp(n”) - Q[{w € Qu; R g (@) > 6} =
Moreover, by Lemma 4.2, there exist constants C, A € (0, 00) such that
(4.20) QM [{w € Qu; p(w(0)) > 5}]
< [ ale@)b@) V) [ a0 @) Vi) < ce
Ue\Us U.
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for all n € N. On the other hand, since the convergence in (4.16) is uniform
on Ug /2, we have

(4.21) liminf Q™[]

n—oo

> liminf /U a1(lo(2), In(2)) V(dz)/ | a(lo(z),ln(2)) V(dz) = 1.

e/2 Ue

Since 6 > 0 has been chosen arbitrarily in the beginning, (4.18), (4.19), (4.20)
and (4.21) imply the second estimate in Proposition 4.3. g

5 Proofs of the results on free loop spaces

Let M be a compact connected Riemannian manifold such that (A 1) holds.
In this section we apply Lemma 2.1 and Proposition 4.3 to prove Theorem
1.3 and Corollary 1.4. The free loop space part in the assertion of Theorem
1.1 is a special case of the corollary. The results on based loop spaces will be
proved in Section 6 after some additional preparations.

Consider the situation described in Section 1.5. The symmetric bilinear
operator I' : FC*® x FC*® — LY(LM; P) introduced there has a unique
extension to Hy*(LM; P) x H-*(LM; P) that is continuous w.r.t. the norm

(5.1) 1Fllar = ( / (F? + T(F)) dP)/2

We denote this extension again by I'. It is a carré du champ operator for the
quadratic form (7, HY*(LM; P)), and by (1.12) and continuity it satisfies
the chain rule (2.3). In particular, €' is a strongly local Dirichlet form. We
set EV'(F) = EY(F,F) and ['(F) =T[(F, F).

Let do be the metric on LM given by

doo(w,w) = sup d(w(s),o(s)).

seSt

The distance w.r.t. do from an open subset Q ¢ LM will be denoted by
disteo( -, §2), i.e.,

distes (w, Q) = inf deo(w, ) for all w € Q.

we

We will need the following fact in the proof of Theorem 1.3 :
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Lemma 5.1 For every open set Q C LM, the function w — diste(w, Q) is
in H>(LM; P), and

[(distoo(-,2)) < « P-a.s.

Here « is the P-integrable function appearing in the assumption (1.14).

REMARK. The lemma implies in particular that every indicator function
xa of a connected component A C LM is contained in H%’Q(LM; P). In fact,
distoo (A, LM \ A) > inj (M) > 0. Let ¢ : R — [0, 1] be a smooth function
such that ¢(r) = 1 for » < 0 and ¢(r) = 0 for r > distoo (A, LM \ A). Then
xa = Y odiste (-, A), which is in H-*(LM; P) by Lemma 5.1. Moreover, by
the chain rule,

D(xa) = (¢ odiste(+,A))? - T'(diste(-,A)) = 0 P-ae

PROOF OF LEMMA 5.1. Fix & € Q and s € S*. Let ¢, : R — (0, 00),
n € N, be smooth functions such that ¢, (z) = |z| if |z| > 1/n and |¢]| <
1. Then the function G7, : w = @,(d(w(s),®(s))) is in FC*>, and by
(1.14), T(GZ ;) < a P-as. In particular, (GZ ,)nen is a bounded sequence in
the Hilbert space H*(LM; P). Since the sequence converges P-a.s. to the
function Gy, : w — d(w(s),@(s)), this function is in H*(LM; P) as well,
and
(5.2) [(Gas) < liminf N(G;,) < o P-as.
In fact, the Césaro means of a subsequence of (G7 ,)nen converge in the
Hilbert space Hy?(LM; P) by the theorems of Banach/Alaoglu and Ba-
nach/Saks, cf. [MR], Appendix 2. Because of the P—a.s. convergence to Gg s,
the HY?(LM; P) limit is G, as well. Hence (5.2) holds by the continuity
of T': H*(LM; P) x HY*(LM; P) — L'(LM; P).

Since LM is separable w.r.t. do, there exists a countable dense subset €2,
of Q. Obviously,

(5.3) disteo(-,Q) = inf sup Ggy.

weNe: 5€(0,1)NQ

Since the functions Gy, s are uniformly bounded by the diameter of A, and
the measure P is finite, the assertion now follows from standard arguments
for local Dirichlet forms, cf. Appendix A.2.
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Recall the definition of R from Section 4, and the definition of the closed
geodesics 7, and the sets Q, and Q2 § > 0, from Section 1.5. Note that
Q0 ={w € Qy; R(w) < §}. We define F,, : LM — [0,1] by

Folw) = 2-3"'RWw))* A1l forw € Q,, 0 else,

where ¢ is chosen as in (A 1). We want to apply Lemma 2.1 with A, = Q:/?

and B, = Q,,. We first show :

Lemma 5.2 For every n € N, the function F, is in H%’Q(LM; pP),
T'(F,) < 3¢~la P-a.c. on Q¥ \ Q/®, and T(F,) =0 P-a.c. else.

PROOF. We first remark that the function R is in Hp?(LM; P) and
['(R) < «a P-ae. This follows by a similar argument as in the proof of
Lemma 5.1, because

R(w) = sup d(w(s),7(S").
$€(0,1)NQ

Hence the function F' = (2 — 3¢ 'R)* A1 is in Hp*(LM; P) as well, and

['(F) < 3e'a P-a.e., cf. Appendix A.2.
Now fix a constant 6 € (0, min(inj (M), £/3)), and set

(5.4) U, = (1—=0"diste(-,0%/3))* .

For every n € N, ¥, is a function on LM with ¥,(w) =1 for all w € Q3.

I claim that ¥, vanishes outside €2,. To see this, suppose the contrary. Let
w € LM\ Q, and 0 € Q¥"® such that du(w,0) < 6. Since § < inj (M),
the vector field X (s) = exp;(ls) (w(s)), s € S', along o is well-defined and
continuous. Hence H(t,s) = exp,,(tX(s)), s € S', t € [0,1], defines a
homotopy between H(0,-) = o and H(1,-) = w. Since o is contained in 2,
but w is not, there exists to € (0,1] such that H(to,-) is in 0€2,. Since 2,
is a connected component of LU, H(ty, so) is in OU, for some s, € S, i.e.,
d(H (tg, s0),7(S')) = e. This is a contradiction, because on the other hand,

dist (H (to, 80),v(S")) < d(H(to, s0),0(80)) + dist (a(s0),7(S"))
<t doo(w, o) + distee(0,7(SY)) < 6+2¢/3 < e

Hence U, (w) = 0 for w € LM \ Q,, and thus F,, = F - U,,.
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By the considerations above and by Lemma 5.1, both F and ¥, are
bounded functions in Hy?(LM; P). Hence F, is in Hy*(LM; P) as well.
Moreover, F,, vanishes on LM \ ng/ % and F,, — 1 vanishes on QZ/ 3, whence
['(F,) =0 P-a.e. on (LM \ ng/?’) U Q3 of. (A.5) in the appendix. On the
other hand, F, = F on Q2% so I'(F,) = ['(F) < 3¢ oo P-a.e. on Q2% g

PrOOF OF THEOREM 1.3. Let § < 1/4 such that (1.15) holds. By
Proposition 4.3,

e’ PO, \ QP/PIOS] < & PR > /3] — 0
as n — 0o. On the other hand,
Ep[T(F) | Qn \ Q2] < 37 Ep[a|Qn\ Q77
by Lemma 5.2. The assertion now follows by Lemma 2.1.

PrROOF OF COROLLARY 1.4. W.l.o.g. we may assume that A > 1 P-
a.e. Otherwise, we may apply the corollary with A = 1 + A. Clearly, the
assumption for A implies the assumption for A, and the non—validity of a
Poincaré inequality w.r.t. A implies the non—validity of the corresponding
inequality w.r.t. A.

Now suppose A > 1 P—a.e. Then the symmetric bilinear form

EAF.G) = / A(@) (DF, DG)upu P(dw),  F,G € FC™,
LM
is closable on L?(LM; P), cf. Appendix 1. The closure (£#,Dom(€%)) is a
strongly local Dirichlet form with Dom (£4) ¢ H"?(LM; P) and carré du
champ operator ['*(F, G)(w) = A(w)(DF, DG)r1u. Let F be a function on
LM of type F(w) = f(w(s)) with s € [0,1] and f € C*°(M). Note that for
w€ LM and X € T,LM, we have

X
Vd—u(u) du for all t € [0, 1],

1
[Xslrym < |Xt|Tu(t)M+/
0 Tu(u)M

and thus

1
VX
|X5|Tu(s)M S A (lXu|Tu(u)M + ‘W(u)
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Hence

|DF (w)|ripy = sup{XF; X € T.LM, |X|pipp =1}
V2. grad,, ;) f |1, (0 and thus
(55)  TARF)W) < V2AW) - gy S, u

IN

for every w € LM, and f, s, I' as above. By the assumption in Corollary 1.4
and (5.5), Theorem 1.3 implies

inf {£4(F, F)/Varp(F); F € Dom (£%), Varp(F) # 0} = 0.

The assertion of Corollary 1.4 follows because FC™ is dense in Dom (£4) by
the definition of £4. 5

PROOF OF THE FREE LOOP SPACE PARTS OF THEOREM 1.1 AND COROL-
LARY 1.2. Theorem 1.1 is a special case of Corollary 1.4. Actually, the proof
of Corollary 1.4 and the remark below Lemma 2.1 show that more generally,
(A 1) implies

inf {£(F,F); F € FC®, Ep[(F — prye cF)?] =1} = 0

if the kernel of L is finite dimensional, and pry,, . denotes the orthogonal
projection onto the kernel in L2(LM; P). This proves the assertion of Corol-
lary 1.2.

6 Proofs on based loop spaces

Let M be a compact connected Riemannian manifold satisfying (A 1). We fix
x € U.. The aim of this section is the proof of the based loop space parts of
Theorem 1.1 and Corollary 1.2. We will essentially use the same techniques
as in the free loop space case ( cf. Section 5 ), but now the functions F,
we choose will depend on the lift @ of a loop w, and not only on w itself.
Therefore, we need some additional preparations.

Recall that r(z) = dist (z,7(S')) < e. We fix a constant ¢ € (0, inj (M))
such that 36 < & — r(x), and define functions ¥y, n € N, on L, M by

(6.1) U, = (1 -6 diste(-, Q@2+,
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Here QF . = Qf N L, M for a > 0. Since r(z) + 30 < &, we can show by the
same argument as in the proof of Lemma 5.2, that the extension of ¥,, to
LM vanishes on LM \ §2,. Hence ¥, vanishes on L, M \ €, ,. Moreover,
in the same way as in the proof of Lemma 5.1, we see that the function
disto (-, 7Y is in HY?(LyM; Py), and | Ddisteo( -, Q5 ) ap < 1
for P,-a.e. w € L,M. Hence ¥, is in H"?(L,M; P,) as well, and

(6.2) |D0‘Iln\T$LmM < gt for P,a.e. w.

Lemma 6.1 Let s € (0,1), and let f be a bounded Lipschitz continuous
function on U,. Fiz n € N, and let F' be a function on L ;M such that
F(w) = f(&(s)) for allw € Q4. Then F -V, is in H-*(L,M; P,), and

(6.3) D'(F-¥,)(w) = F(w)(D"¥,)(w) + ¥,(w) Y(w)

for Py—a.e. w € L, M, where Y (w) € T:L,M is defined arbitrarily for w €
L, M\ Q. 4, and

Y(@)(t) = (sAt—st)-Uw)Us(w) " (dos)m) (gradgs) f)
for allt € [0,1] and w € Q4.

ProoF. We fix a € (0,inj(M)/3). For z € U, let By(z) = {2z €
U.; d'(z,z) < a}, where d' is the intrinsic distance function on U,. Note that
d' generates the same topology as the distance function d on M, but d can
be smaller than d’ in general. For z € U, let B,(z) = {z € U.; d(z, ) < a}.
Since U. is a convex subset of H 4 the intrinsic distance on U. coincides with
the restriction of the hyperbolic distance. We now proceed in two steps :

Step 1: In this step we prove the assertion under the additional assumption
that there exists y € U, such that f vanishes on U, \ 7~ (B, (y)).

Note that d(l,(y),l,(y)) > inj (M) for all m,p € Z, m # p. Since
o < inj(M)/3, 7 Y (Ba(y)) is the disjoint union of the sets Ba(ln(y)),
m € Z, and the distance between any two of these sets is greater than
«. Consequently, the set

Q{n,x = {w €Wy w(s) € Ba(y) }
is the disjoint union of the sets

Q(m) = {w € Qn,a:; (IJ(S) € Ba(lm(l')) }’ m € Z.

n,x
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Moreover :

Claim : There exists a constant r > 0 such that dw(w, o) > 7 holds for all
w € U™ and o € QF), with m, p € Z, m # p.
Here do(w,0) = sup,eoqd(w(t),0(t)) as above, where d is the distance
function on M. To prove the claim, we first remark that the function (x,y) —
d(z,vy) is continuous and strictly positive on the compact set {(x,y) € U, x
U.; d'(z,y) > a}. Hence there exists 7 > 0 such that d(z,y) > r for all
z,y € U; with d'(z,y) > a. Now fix m,p € Z with m # p, as well as
w € Q%"fu) and o € Qﬁf )w For every ¢t € [0, 1], the minimal geodesic from
w(t) to o(t) in U, has length d'(w(t),o(t)), whereas all the other ( non-—
homotopic ) geodesics from w(t) to o(t) in U, have length greater than 3a.
Since the minimal geodesic in U, between &(t) and &(t) is the lift of one of
the geodesics above, we have

d@(t),o()) = d(w(t),o(t)) or d(w(t),s(t)) > 3a
for every t € [0,1]. Moreover, the function t — d(@(t),d(t)) is continuous,
d(©(0),5(0)) =0, and

d(@(s),6(s)) > dist (Ba(lm(y), Ba(lp(¥))) > o
This is not possible if sup,coqd(w(t),0(t)) < «, since then the function
t — d(w(t),6(t)) could only take values in [0, a] U [3a, 00), and thus ( by
continuity ) not both in [0, o] and in (o, 00). Hence sup,¢(o 1 d'(w(t), o(t)) >
a, and thus de (w, 0) = sup;e(o 1y d(w(t), o(t)) > r. This proves the claim.

Now fix 7 > 0 as in the claim. Let m € Z, and let ®, ,,, be the function
on L, M defined by

Dpm(w) = (1—r" - distoo(w, QTY) )T

As in the proof of Lemma 5.1, one shows that ®,, ,, is in H"*(L,M; P,) and
|D°®, | r1p,m < vt for Pp-ae. w € LyM. Moreover, ®,, =1 on Q,(f,';),

and ( by the claim ) &, ,,, vanishes on QP), for every p € Z \ {m}.

Let Gy, = F- ¥, ®,, ,,,. We now show first that G,, is in H»2(L,M; P,).
Note that, by our assumption on f, F' vanishes on 2, \ Q;w Hence G,,
vanishes on L, M \ Q%m) On the other hand, for every 1 < i < k, the
restriction of the covering map 7 : U — U to B, (l,(y)) is an isometry onto
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B, (y). Hence there exists a Lipschitz continuous function f:M — R such
that

(6.4) f(r(z)) = f(z) for all z € B,(lm(y))-

Let F be the function on L,M given by F(w) = f(w(s)). Then F(w) =
F(@&(s)) = F(w) for all w € QSL’Q, whence G = F - U, - ®p . Since F, ¥,
and ®,, ,, are bounded elements in H"*(L,M; P,), Gy, is in H"*(L,M; P,)
as well. Moreover, since Gy, vanishes on LM \ Qg’fc) and G, = F - U, on
Qg’fc), we have

(6.5) D°G,, = 0  Pyae on LM\ Q"

(6.6) D'G,, = D%F-v,) = F-D, + ¥, -D°F
= F-DWy + U, - DF P,—a.e. on QSZQ

and

For P—a.e. w € Q2. (D'F)(w) is given by

(D°F)(w)(t) = Ut(W)Us(UJ)*lgradw(sf
(6.7) = U(w)Us(w) *(dags™) (gradss) f)

The last equality holds by (6.4) and because 7 is a local isometry.

The function F' - ¥, coincides with G,, on Q( ™ for every m € Z, and
vanishes on L, M \ Qn’m. In particular, F' - ¥, = hmM_>oo Sy where Sy =
M, Gm. The functions Sy, M € N, are in H'?(L,M; P,). For m € Z,

Sar = G o Sar = 0 on Q) whence by (6.6) and (6.7),
[Su(w)] < |Gm(w)l < sup|f(z)]  and

N wEfJE
1D°Sulrip,n < [D°Galpip,n < 67 sup | f(z)| + esssup,g,|grad f,
z€Ug
hold for all M € N and P,a.e. w € ;.. Since the functions Sy ( and
hence their gradients ) vanish outside " their H L2(L,M; P,) norms are

n,xr?
bounded. Hence the pointwise limit F - ¥, of the sequence (Sy)men is in

H'Y?(LM; P,) as well. Since F'- ¥, =0 on L,M\, , and F- ¥, = Gy, on
Qﬁ{’;’ for every m € Z, we finally obtain

DYF-¥,) = 0 Py-a.e.on LM\, ,, and, by (6.6),

DYF-w,) = D°F, = F-DW,+ W, -D°F P,ae on Q™ melZ.

n,xr?
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By (6.7), this implies the assertion of the lemma for the special class of func-
tions f and F' we have considered in Step 1.

Step 2. We now prove the assertion for arbitrary bounded Lipschitz continu-
ous functions f on U.. Fix such a function f, and let F' be a function as in the
statement of the lemma. The balls B’ (y) = {z € U,; d'(z,y) < a}, y € U,
form an open covering of the compact set U.. Let {B.(y1),...,B.(y~n)},
N € N, be a finite sub—covering, and let V;, 1 < i < N, be open sets in M
such that V; N U, = B, (y;). Such sets exist, since B, (y;) N AU, is a relatively
open subset of OU,. Let g, ©1, pa,...,pn € C*®(M) be a partition of unity
on M adapted to the open covering {M \ U,,Vi,...,Vn} of M, ie., ;>0
forall0 <7< N, ZZ o ®¥i =1, @o vanishes on UE, and ¢; vanishes outside
Vi (‘and thus on U, \ B,(y;) ) for every 1 <14 < N. Note that Zz:l wilz) =1
forz € U.. Fixi € {1, 2,..., N} for the moment. We define functions h; on
U. and H; on L,M by hi(z) = f(z) - ¢i(7(x)) and H;(w) = F(w) - pi(w(s)).
Clearly, H;(w) = hi(@(s)) for all w € Q,,. Moreover, h; is bounded and
Lipschitz continuous, and vanishes on U, \ 7~!(B,(%;)). Thus by Step 1,
H; -9, is in HY*(L,M; P,) and (6.3) holds with F, f replaced by H;, h;
respectively. But F(w) = Zfil H;(w) for all w € Q,, ,, beacause Zfil pi=1
on U,. Since ¥,, =0 on L, M \ ©Q,, ., we have

N
F-¥, = Y H;-V, € H*L,M;P,), and

=1

DY(F-¥,) = i DY(H; - 0,

Now (6.3) follows from the corresponding formulae for H;, 1 <i < N.
Recall the definition of the function Ré”) from Section 4. We define func-
tions F,, : L,M — [0,1], n € N, by
F,lw) = 2=0"'"R™W@)NTA1  forwée g,
0 else.

Lemma 6.2 For every n € N, the function F,, is in H"*(L,M; P,), and
|D°F, | g, <071 for Ppa.e. w € Ly M.

PROOF. Let n € N. We first remark that F,, vanishes on L, M \ Q52

In fact, for w € Quy \ Q2 there exists s € [0,1] with r(m(&(s))) =
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(w(s)) > r(z) + 26. On the other hand, for all £ € [0,1], r(x(3 (1)) <

(z) (cf. (4.15) ). Hence d(&(s), 4 (¢)) > 26, and thus R (&) > 26 and

F,(w)=0forallw € Qn,w\QZEﬁ)Hd. Outside €2, 5, F;, vanishes by definition.

Since ¥,, = 1 on Q%™ and RM™ (@) = sup r" o &, we have

(6.8)  Fp(w) = (2—=67" sup (Un(w)rM(@(s))) " Al for w € Q4
s€[0,1]

Let G, s € [0,1], be uniformly bounded functions on L,M with Gs(w) =

r{i(&(s)) for w € Q,,. By Lemma 6.1 and (6.2), the functions ¥, - G,

0 < s <1, are in HY"*(L,M; P,). Moreover, by (6.3), (6.2), and since

D0, =0 P,-a.e. on QZE?HJ, we have

r
r

|D0(\I/n . Gs)|TJLmM S 1+ 5_1 - sSup |Gs| XL@M\QZ€2)+25 (W)

for all w € Ly,M and s € [0,1]. The assertion now follows by standard
arguments, because F, = (2—§ 'sup{¥,-G,; s€[0,1]NnQ})T A1, and F,
vanishes outside Q512 .

PROOF OF THEOREM 1.1, BASED LOOP SPACE PART. Let z € U.. By
Proposition 4.3 and Lemma 6.2,

Pol{w € Qua: RO (@) > 6H> Lo

essSUp ¢y, ID°F 5y, s
ElaM ( ke p 1y € Q; RP(@) < 0}]

as n — oo. The assertion now follows by Lemma 2.1.

Appendix A.1 Closability of gradients on loop
spaces

Let H,, H, be Hilbert spaces, and let A be a dense subset of H;. A linear
operator D : A C H; — Hj is called closable if DF' — 0 in H, for every
sequence F,, € A, n € N, such that F,, — 0 in H; and DF,, is Cauchy
in Hy. A non-—negative definite symmetric bilinear form £ : A x A - R
is called closable if £(F,, F,) — 0 for every sequence F,, € A, n € N,
such that F,, — 0 in H, and E(F, — F,,, F,, — F,) — 0 as n,m — oo.
Closability of an operator D as above is hence equivalent to closability of the
form £(F,G) = (DF,DG)y,. We now consider the situation described in the
introduction with an arbitrary compact Riemannian manifold M.
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Proposition The operators D° : FC* C L*(L,M; P,) — L*(T*'L,M; P,),
T € M, and D : FC* C L*(LM; P) — L*(T'LM; P) are closable.

The closability of D° has first been shown in [DR]. We now recall the
proof from this article, and we sketch a simple proof for the closability of D :

PROOF. We fix an orthonormal basis {h,; n € N} of Hy*([0,1], R?) with
Cameron Martin type inner product. Then {X""(w); n € N} (cf. (1.1) ) is
an orthonormal basis of T)L,M for every w € L, M. Hence the symmetric
bilinear form &2 on L?(L,M; P,) defined by (1.8) is given by

ENF, Q) Z/ (X" F)(w) (X" G)(w) Py(dw) for all F,G € FC™.

To prove closability of this form ( and thus of D ) it suffices to show that
each of the forms (F,G) — [X"FX"G dP,, h € Hy*([0,1],R?), with
domain FC® is closable on L?(L,M; P,), cf. [MR]. This, however, is a direct
consequence of the integration by parts identity (1.2) : If (F,)nen is a null
sequence in L?(L,M; P,) then by (1.2), [ X"F, GdP, — 0 for every G €
FC>. So, if in addition (X"F,,)en is Cauchy in L?(L,M; P,), then X"F,, —
0in L*(L,M; P,).

To show the closability of D, we fix an O(M) valued stochastic process
(Us(w))o<s<1, w € LM, such that 7(Us(w)) = w(s) for all w € LM and
s € [0,1], and U is a version of the stochastic horizontal lift w.r.t. P, for
a.e. ¢ € M. In particular, it is a version of the stochastic horizontal lift
w.r.t. P. Let X", h € Hy?([0,1],R%), be the vector fields on LM given by
XMw) = Uy(w)h(s), 0 < s < 1, w € LM. Integrating the integration by
parts identity (1.2) over z w.r.t. the measure p;(z,z) V(dz) now yields the
same kind of integration by parts formula with L,M and P, replaced by
LM and P ( provided h is in H;?([0,1],R?) ). Moreover, the divergence
term (3, has the same expression as in the based loop space case, and is
contained in L?(LM; P). The square-integrability w.r.t. P can be seen by
the same arguments as that w.r.t. P,, cf. e.g. [H2], Ch. 4, Prop. 3.4. Let g,,
n € N, be an orthonormal basis of Hy?([0,1], R%) w.r.t. the inner product
(h,g)12 = fol(h’g’ + hg) ds. Then the symmetric bilinear form

E9(F.G) = f: /L (XF)(0) (XG)(w) Plde), F.G € FC™

n=1
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on L?(LM; P) is closable by a similar argument as above. Notice that
ERG) = [(DF D)y Pldo),

where D° denotes the gradient on the measurable bundle TMLM = {X €
T!LM; X(0) = 0}, w € LM, endowed with the H»? metric defined (1.4)
and (1.3). Clearly, (D°F)(w) is the orthogonal projection of (DF)(w) onto
the closed subspace T-°LM of T:LM.

Next, fix s € (0,1). For F € FC*® and w € LM let (D*F)(w) denote the
orthogonal projection of (DF')(w) onto the closed subspace

TYLM = {X € TLM; X(s) =0}

of TLM. Then the symmetric bilinear form
ENF,G) = /(DSF, DSG>T$LM P(dw), F,Ge FC™,

on L?*(LM; P) is closable as well. In fact, because of the invariance of the
Bismut measure under the natural action of S* on LM by reparametrization,
the closability of £% follows from the closability of £° and straightforward
considerations concerning the behaviour of the stochastic parallel transport
under reparametrization. Note that

(A1) EF.F) < / (DF, DF)qip0 P(dw) = E(F,F) for all F € FC*

holds for ¢ = 0 and ¢t = s. In particular,

(A.2) ENF,F)+E(F,F) < 2E(F,F) forall F e FC™.

On the other hand, there exists a finite constant C such that

(A.3) E(F,F) < C-(ENF,F)+&(F,F)) forall Fe FC™.

To see this, let f,g : [0,1] — [0,1] be Lipschitz continuous functions such
that f(1) = f(0) =0, g(s) =0, and f(t) + g(¢t) = 1 for all ¢ € [0, 1]. By the
Lipschitz continuity of f and g, there exists a finite constant C; such that

[X|rmw < Cr-|X|mom and 9X|mm < Cr-[X|mom
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for all w € LM and X € T:LM. In particular, since X = fX + ¢gX,

X F| |f XF|+ |g XF|
|f X |zear - [(D°F)(W)|rioar + 19X |m1pa - [(D°F) (W) |71 1as

Cr- |X\T$LM : (\(DOF)(W)\TgLM + \(DSF)(W)|T$LM)

for all F € FC®, w € LM and X € T.LM, whence

ININIA

\(DF)(W)|T$LM < (- (|(DOF)(W)|T$LM + |(DSF)(W)\T$LM)-

This proves (A.3).

Since the non-negative definite symmetric bilinear forms (€%, FC*) and
(€%, FC>) are closable on L2(LM; P), the form (£°+ &%, FC*) is closable as
well. (A.2) and (A.3) now imply the closability of (£, FC*®) on L?(LM; P),
and hence that of the gradient D.

Corollary Let A be a function in L*(LM; P) such that A > ag P-a.e. for
some constant ag > 0. Then the symmetric bilinear form

ENF,G) = /A(W) (DF)(w), (DG)(@))rapn P(dw),
F,G € FC*>, is closable on L*(LM; P).
PROOF. Let (F},),en be a sequence in FC® with F,, — 0 in L?(LM; P)
and EA(F, — Fy,, F,, — F,,)) — 0 as n,m — oo. Since EA(F, F) > aq-E(F, F)

for all F € FC®, |DFy|ri,p — 0 in L?(LM; P) by the proposition above.
In particular, \DFnk|TL5LM — 0 P-a.e. for a sequence n; — oo, whence

ENF,, F,) = / lim (A(w) |DF, — DF,,[71,,) P(dw)

k—o00

< liminf E4(F, — Fy,, Fy, — Fp,).
k—o00

Thus limy, 0 EA(F,, Fn) = 0. g
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Appendix A.2 Local Dirichlet forms

We recall some basic facts about local Dirichlet forms, cf. [BH], Ch. I, for
details.

Let (2, F, 1) be a o-finite measure space. A densely defined closed sym-
metric bilinear form (£, Dom (£)) on L?(Q; p) is called a Dirichlet form if
FtAlisin Dom (€) and E(FT AL, FTALl) < E(F, F) for every F € Dom (£).
This property implies that the composition ¢(Fi, ... , F,) is in Dom (£) for
alln € N, Fy,...,F, € Dom (), and all Lipschitz continuous functions
® : R" — R such that ¢(0) = 0. In particular, FG is in Dom (£) for all
F,G € Dom (£) N L*°(Q; ). A Dirichlet form (£, Dom (£)) is called strongly
local if £(F,G) = 0 for all F,G € Dom (€) such that (F + ¢)G = 0 for some
¢ € R. One says that (£,Dom (£)) admits a carré du champ if there exists a
symmetric continuous bilinear operator I' : Dom (€) x Dom (£) — L*(; u)
such that

(Ad)  E(FH,G)+E(GH,F)— E(H,FG) = 2 / HT(F,G) du

holds for all F, G, H € Dom (£) N L*°(Q; p). T is uniquely determined by
(A.4). The carré du champ of a strongly local Dirichlet form with 1 €
Dom (&) satisfies the chain rule (2.3). On the other hand, if (£, Dom (£)) is
a closed quadratic form on L?(f2; 1), and there exists a symmetric bilinear
operator I' : Dom (€) x Dom () — L'(Q; p) satisfying (2.1), (2.2) and (2.3),
then (€, Dom (£)) is a strongly local Dirichlet form, and T" is the correspond-
ing carré du champ.
The carré du champ operator of a strongly local Dirichlet form satisfies

(A.5) I'(F)=0 p-ae onfwe; Flw)=c}

for every F' € Dom (£) and ¢ € R, where ['(F)) = I'(F, F), cf. [BH], Ch. I,
Thm. 7.1.1. Moreover :

Lemma Let (£,Dom (£)) be a strongly local Dirichlet form with carré du
champ I

(i) If 1 € Dom (&) then ¢ o F is in Dom (£), and
PgoF) = (FoFPT(F) e

for all F € Dom (&) and every Lipschitz continuous function ¢ : R — R.
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(ii) Let Fy, k € N, be functions in Dom (£) such that supgen (| Fx* + T'(Fy))
is in L' (Q; ). Then supgen Fr and infien Fy, are in Dom (£),

C(sup Fy) < sup I'(Fy) p-a.e., and
[(inf Fy) < sup ['(Fj) p—a.e.
PRroOF. (i) See [BH], Ch. I, Cor. 7.1.2.
(ii) The assertion follows from [BH], Ch. I, Prop. 4.14, and [MR], Ch. I,
Lem. 2.12.
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