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We give sufficient conditions on the coefficients such that the Cauchy—Problem is
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class of Nelson—diffusions that could not been constructed before.
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0. INTRODUCTION

The purpose of this paper is to propose a new method for the construction of
diffusion processes generated by time-dependent differential operators of type

d

d
(0.1) Lu(t,) =Y ai;(t,x)diju(t,x) + Y bi(t,z)dult, z) ,

i=1 =1

u € C§°((0,T) x U), on arbitrary open subsets U C R? and T > 0 with merely
measurable coefficients.

We will be in particular interested in the following class of examples arising from
stochastic mechanics: Let d > 3, (a;;(x)) be measurable and uniformly strictly el-

liptic and V € L1 _(U) be a real potential with V— € L2 (U) U L>(U). Sobolev’s

loc

inequality then implies that the quadratic form Zf =1 [ ai;0;udjudx + [ u?V dzx,
u € HF(U) N L3(U,V*dx), is well-defined and bounded from below. Its comple-
xification uniquely determines a self-adjoint operator L{ and the wave-function
P(t) = eitLé/¢0 solves the Schrodinger equation 10y = — L, ¥(0) = 1)y. One
of the basic problems in stochastic mechanics then consists of constructing a time-
inhomogeneous diffusion process (sometimes called Nelson—diffusion (cf. [C], [Nag]))
whose generator (now written in divergence form) extends

(0.2)
d d
Lu(t,z) = Z 8; (ag; (z);u(t, z)) + Z bi(t, 2)Ou(t,z) ,u € C((0,T) x U) ,

where b;(t, z) = 2|¢(t, z)|7%(g(t, ) 0;(h(t,z) +g(t, )+ h(t, x)-0i(h(t, ) — g(t, ),
1 <i<d, g(t,z) = Ret(t,z) and h(t,z) = Im (¢, x). It is well-known that
the construction of the above mentioned diffusion process causes serious technical
difficulties in that the operator has only unbounded measurable coefficients, so that
it is not possible to consider the Cauchy-problem on spaces of continuous functions
or to try to solve the corresponding stochastic differential equation directly. Even
worse, since b; ¢ L2 ([0,T] x U,dzdt) for any T > 0, it is not possible to use
classical perturbation theory of the Laplacian or to construct weak solutions of the
corresponding stochastic differential equation by means of the Girsanov transform.
Note that however, using integration by parts, it is quite easy to see that under the
assumption above it follows that for arbitrary 0 < s < ¢t and u € C§°(U)

(0.3) /U w(z)p(t, z) dz — /U w(z)p(s, ) dz = / t /U Lou(z)p(r, z) dz dr |

where p(t,z) := |[1(t,x)|? (cf. Example 1.e)(1)). We will therefore solve the Cauchy-
problem in L'-spaces induced by the measures p(t, r) dz. Note that this cannot been
achieved with standard techniques from the theory of evolution equations since the
L'-spaces will depend on time.

In the particular stationary case, that is, the case where the density p(t,z) =
po(x) does not depend on time, hence b;(t,z) = b;(z) is time-independent too,
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the problem reduces to construct a time-homogeneous Markov-process on U with
invariant measure pg dxr whose generator extends

d d
Lu(z) = Z i (aij(x)0ju(z)) + Z bi(z);u(z)

u € C§°(U). Note that (0.3) reduces to

/ULu(:E)pO(:E) dr=0,ueCF0U),

so that in this case pg(x)dx is an infinitesimally invariant measure for L. Hence,
instead of trying to solve the Cauchy-problem associated to L in spaces of con-
tinuous functions the problem is studied in L!(pgdz). Once, the existence of a
sub-Markovian Cy-semigroup on L!(pgdx) is settled, an associated diffusion pro-
cess can then be constructed using the theory of generalized Dirichlet forms (cf.
[St1]). This program has been carried out in a very general context in [St2]. In
particular, the well-posedness of the Cauchy-problem in L!(pgdr) has been stu-
died thoroughly. Moreover, the same techniques have been applied to obtain similar
results for a corresponding class of infinite dimensional diffusion operators. All this
can be seen as part of a more general program on LP—analysis of finite and infinite
dimensional diffusion operators as it is outlined in [R].

The main results of this paper now will be generalizations of [St2] to a general
time-dependent setting. Above all we will reduce the time-inhomogeneous Cauchy-
problem associated to L to a time-homogeneous one by addding time to the state-
space and passing to the differential operator

d d

04)  Lu(t,z) =) diai(x)d5u(t,z)) + Y bi(t,)du(t, z) + dult, z) ,

i,j=1 i=1

u € C§°((0,T) x U). Note that passing from (0.2) to (0.4) corresponds to the well—
known procedure of constructing a semigroup of kernels (p;) (called the forward
space-time homogenization) to a given propagator of kernels (ps:)o<s<: (that is, a
family of kernels on a measurable space (X, B) satisfying p;.(z,-) = d5, € X,
t > 0, and the Chapman-Kolmogorov equation p, s 0 pst = prt, 0 <7 < s <t) by
defining p((r, z), ) = dp4t @ Prrye(x, ), r,t > 0, x € X (cf. [Sh, Section 16]). It is
now easy to see that we have reduced the problem formally to a situation similar
to the stationary case, since (0.3) immediately implies that

T
/ / Lu(t,x)p(t,z)dxdt =0 , for all u € C3°((0,T) x U) .
o Ju

The disadvantage of this procedure consists in the fact that L is now a second-order
differential operator with degenerate diffusion matrix. To choose the forward space—
time homogenization, instead of the backward one, is arbitrary in our framework.
Our choice is the usual one in stochastic analysis (cf. [StrV]). In particular, it
corresponds to the standard formulation of the time-dependent Ito-formula.
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Going back again to the general case we therefore assume the existence of a non-
negative measure i = fOT e dt satisfying

t
(0.5) /ud,ut—/udus:/ /Lrudurdr,ungo(U).
U U s JU

A measure @ satisfying (0.5) is called infinitesimal invariant for the operator L. We
will specify exact conditions on a;j, b; and 71 later on that imply in particular that
the integral in (0.5) is well-defined.

We are now mainly concerned with the following three problems:

(a) Ewistence: Give conditions on the coefficients a;; and b; of the operator L and on
the measure i such that there exists a closed extension of (L, C§°((0,T) x U))
in L1((0,7) x U, ) generating a Co—semigroup (1%;)¢>¢ of (bounded) operators
on L1((0,T) x U, 1) (henceforth such extensions will be called mazimal) that are
sub—Markovian (that is, 0 < Tyu < 1 if 0 < u < 1) (cf. Subsection 1.a)).

(b) Associated Processes: Construct associated diffusion processes with the help of
the theory of generalized Dirichlet forms and identify the associated processes
as solutions of the martingale problem associated to (L,Cg°((0,7) x U)) (cf.
Subsection 1.b)).

(c) Uniqueness (in the case U = R?): Give conditions on a;;, b; and [ such that
there exists only one maximal extension in L!((0,7") x U, i) (cf. Subsection 1.c)).

In Subsection 1.d) we give several Examples. Besides the one mentioned above
arising from stochastic mechanics (cf. Example 1.d)(2)) we will consider also time—
dependent diffusion operators in divergence form (cf. Example 1.d)(1)). In parti-
cular, we will specify conditions on the coefficients that ensure the existence of a
nontrivial infinitesimal invariant measure 7 satisfying (0.5) for a given L.

Sections 2-4 contain the proofs of the main theorems.

1. FRAMEWORK AND MAIN RESULTS

a) Existence.

Let us first introduce some notations. Fix 7" > 0. For an arbitrary subset U of R¢
let Uy :=(0,T] x U and Ur :=[0,T) x U. Let LP(U), p € [1,00], be the usual LP—
spaces w.r.t. the Lebesgue measure, H*(U) = {u € L*(U)|0;u € L*(U),1 <i < d}
be the Sobolev space in L?(U) of order 1 with Neumann boundary conditions
and H}(U) be the Sobolev space of order 1 with Dirichlet boundary conditions,
that is, the closure of C§°(U) in H'(U). Furthermore, for an arbitrary Banach
space E and p € [1,00] let LP([0,T]; E') be the space of all strongly measurable
u : [0,T] — E with |Ju(-)||g € LP([0,T]). In the particular case E = L?(U) we
will sometimes identify the two spaces L?([0,T]; L>(U)) and L?(Ur), so that any
subspace of L%([0,T7]; L?(U)) can be identified with a subspace of L*(Ur).

Throughout the whole Section fix an arbitrary nonempty open subset U C R? and

a o—finite positive measure 7z on B(Ur). Denote by || - ||, p € [1, 00], the usual norm

on LP(Up,m). If W C LP(Ur, ) is an arbitrary subset, denote by Wy the subset
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of all elements u € W such that supp (|u|f) is a compact subset contained in Urp,
and by W), the subset of all bounded elements in W. Finally, let Wy, :== Wy N W,

Suppose that T < dr and that the density of & admits a representation ¢?,
where ¢ is contained locally in the space L2([0,T]; H}(U)), in the sense that
ox € L*([0,T]; H}(U)) for all x € C§°(U).

For any open subset V of U let (D, Hy''(Vip, 7)) be the closure of the bilinear form

/OT/(Vu(t, ), Vo(t, ) dus dt ;u,v € C°(Vrp)

in L?(Vp, 1), where V denotes the gradient w.r.t. the space variables z;, 1 <1i < d.
Let H):!(Viy, 1) be the space of all elements such that wy € H'(Vy,7) for all

loc

X € Cgo(VT)

For A = (a;j)1<ij<a and B = (b;)1<i<d, @ij, b; : Upr — R measurable, let

d d
Lapu= Y a;(t,z)d;u(t,z)+ > bi(t,x)du(t,z) .
i,j=1 i=1

Let us now specify conditions on A and B that will imply the existence of a maximal
extension of L4 p + 0; generating a sub-Markovian Cy-semigroup in L' (). For all
V' relatively compact in U we assume that

(1.1) djaij € L*(Vp, m),1 < i,j < d,

(1.2) vt b2 < (A(t,2)h, h) < vy|h|? for all h € RY, (¢, 2) € V|
for some positive constant vy > 0 and
(1.3) B e L*(Vr; R4 ) .

Finally we assume that
t
(1.4) /udut - /uduS = / /LA,B,rUdll«r dr for all u € C§°(U),

where Lg p,ru(z) = Z;’i,jzl a;;(r, )0ju(x) + Zle bi(r,z)0u(x), u € C§°U).
Note that (1.2) clearly implies that the bilinear form A%(u,v) = [(AVu, Vv) dg;
u,v € Hg’l(VT,ﬁ), is well-defined.

(1.4) has two immediate consequences. First,
(1.5) /(LA73+8t)udﬁ:0for all u e C§°((0,7) x U)

i.e., 71 is an infinitesimally invariant measure for L4 g + 0. Second, the operator
L 4 opo_p — O, is the formal dual operator of L4, g + 0; w.r.t. the measure i in the
sense that

(1.6) /(LA73+8t)uvdﬂ: /U(LA,2BO—B — Oy)vdp ;u,v € C5O((0,T) x U) .
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Here, B = (19,...,0%) € L} (Ur,7) is defined by

d

00 = (9jai; + ai20;0/0) 1 < i < d.
j=1

It is general theory of diffusion operators that (1.5) implies that L4 pu + O,
u € C§°((0,T) x U), is dissipative on all LP(z)-spaces, p € [1,2], in particular
negative definite on L?(zi). Hence, there exist extensions of this operator in L?(f)
that generate Cy—semigroups. Clearly, these extensions will never be unique, since
we are considering a bounded domain. We will describe in the next step extensions
of Lap+ 0y and of L4 opo_p — 0 that are still dual w.r.t. 77 and that generate
sub-Markovian Cy—semigroups on all LP-spaces.

To this end let
3:=B— BY

and note that (1.4) implies

¢
(1.7) /udut - /ud,us = / /(B, Vu) du, dr for all u € C5°(U),

since fLA,B,ru d,ur = f<ﬁ(r7 ')7 VU> d/'LT for all u € C(C))O(U)

If V is an arbitrary open subset of U, let Hy' (Vi, i) be the closure of C§°(Vy) in

_ 1 _
L*(Vp, ) w.r.t. the norm ([ u? 4+ |Vu|?dp)>. Here, V denotes the gradient w.r.t.
time— and space—variables. Similarly, let H YLV, ) be the closure of C8°(Vp) in

L*(Vy,7t) w.r.t. the norm ([ u? + |Vu|2du) Let B(t,z) := (1, 3(t, x)).
Lemma 1.1. Let V be open and relatively compact in U. Then:
(i) [(B,Vu)dn <0 for allu € Hy'(Vp,f), u> 0.
(ii) — [(B,Vu)di <0 for all u € Hy'(Vo, ), u > 0.
(iii) [(B,Vuyvdi = — [(B,Vv)udp for all u € Hy (Vi W)s, v € Hy (Vo, T0)p-
Proof. For the proof of (i) let u € C3°(Vr) and extend u as well as # and p to

[0,00) x U by 0. For € € (0,1) let p. € CH(R), 1. (t) =0if t <0, ¢ (t) =t ift > ¢
and 0 < ¢/ (t) < 2. Then (1.7) implies that

/ Oue(u) dfi = Jim / / G ()t + o) — o) (8, ) dpy

:g%——/ /¢5 ) dpy dt
/(/1/1 )(t + h, - dut+h—/1/)6 dut>dt

~lim + /// Bt +1,-), Viba(w)(t + 1, ) sy dr dt

h—0 h

6
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ie., [(B,Vie(u)di < 0. Ifu € Hy'(Vr, @), u > 0, let (u,) C C°(Vr) be con-
verging to u in Hy'' (Vo 7i). Then lim,, oo ¥e (un) = ¢ (u) in Hy''(Vr, i) and thus
[(B, V. (u)) dii < 0. Since lim, o%.(u) = u in Hy'(Vr,7) we finally conclude
J(B,Vu)da < 0.

(i) can be shown analoguously. For the proof of (iii) note that uv € Hy' (Vip, 1) N
Hy''(Vo, i) so that (i) and (i) imply

[@.Tuvdn+ [@.Fouda= [ @ Fw))dn=o.

if u,v > 0. The general case now follows from considering the cases u™v™, uTv™,
u~vt and u” v~ separately. [J

Let us state next some general results concerning diffusion operators on LP-spaces.
Let

M :={p € C}(R)|p(0) = 0, ¢ monotone increasing } .

Definition 1.2. Let (X, m) be a o—finite measure space. A linear operator (A, D)
on L'(X,m) is called an operator of diffusion type if [ Aup(u)dm < 0 for all
u € D(A), ¢ € M.

Proposition 1.3. Let (A, D) be a linear operator of diffusion type on L'(X,m).
Then:

(i) (A, D) is dissipative, in particular closable.

(ii) The closure (A, D(A)) generates a Co—semigroup (1%)i>o if and only if (A —
A)(D) C LY (X, m) dense for some X\ > 0. In this case, (T}) is a sub—Markovian
contraction semigroup. In particular, Ty 1~ can be uniquely extended to a sub-
Markovian contraction on T} on LP(X,m) for allt > 0, p € [1,00]. Moreover,
(T?) is a Cy—semigroup of contractions on LP(X,m) for all p € [1,00).

Proof. (i) Let ). € M, ¢ > 0, be such that . (t) = sign(t) if |t| > . Then

/Au (1{u>0} — 1{u<0}) dm = ;1_1% Autp.(u)dm <0 .

Since ||ull1(L{us0; — l{u<o}) € L™®(X,m) = L'(X,m)" is a normalized tangent
functional to u we obtain the assertion.

(i) By [ReSi, Th. X.48] the closure (A4, D(A)) generates a Cp—semigroup of con-
tractions (T});>o if and only if (A — A)(D) C L'(X,m) dense for some A > 0. In
this case let (G4 )a>0 be the resolvent associated with (A, D(A)). We will show that
(Ga)a>o is a sub—Markovian resolvent. Since Tiu = lim, .~ exp(ta(aG, — 1))u for
all u € L'(X, m) (cf. [Pa, 1.3.5]) it then follows that (7});>¢ is sub-Markovian too.

To this end let . € M, e > 0, be such that . (t) = 0ift <1, p.(t) =1if t > 1+4e¢.
Then
/Aul{u>1} dm = lim [ Aup.(u)dm <0
7



for all u € D(A).
Let f € LY(X,m) and u := oG, f € D(A). If f <1 then

a/ul{u>1} dp < /(Oéu — Au)lpysyy dp = a/fl{u>1} dp < a/ Lius1y dp

Consequently, a [(u — 1)1{y>13 dpp < 0 which implies that v < 1. If f > 0 then
—nf <1, hence —nu < 1 for all n, i.e., u > 0. Hence (G,)a>0 is sub-Markovian.

By the Riesz—Thorin Interpolation Theorem (cf. [ReSi, Th IX.17]) we conclude
that Tjjp1nze can be uniquely extended to a contraction 7} on LP(X,m) for all
p € [1,00]. Clearly, (I7):>0 is again a Cy—semigroup of sub-Markovian contractions
on LP(X,m) for p € [1,00). O

Definition 1.4. Let (A, D) be a linear operator of diffusion type on L!(X,m).
(i) (A, D) is called mazimal, if (a — A)(D) = L*(X, m) for one (hence all) a > 0.

(ii) (A, D) is called L' -unique, if there is only one extension of (A, D) on L'(X,m)
that generates a Cy—semigroup.

Remark. (i) It follows from [Ar,Th. A-TI, 1.33] that if (A4, D) is L'-unique, the
unique extension (A4, D) of (A, D) generating a Cp—semigroup is obtained as the
closure of (A, D). Equivalently, (A4, D) is L'*-unique if and only if (o« — A)(D) C
LY(X,m) dense for some o > 0.
(ii) Let (A4, D) be L'*-unique and (A4, D(A)) be the closure in L*(X,m). By 1.3 (ii)
the semigroup generated by A uniquely induces Cy—semigroups on LP(X,m),

p € [1,00). The corresponding infinitesimal generators (A,, D(A,)) are called
the LP-realization of (A, D).

For the statement of the next Proposition recall that for a linear operator T :
D(T) C X — Y with X C Y its part on X is the linear operator S : D(S) ¢ X — X
defined by Su :=Twu for all u € D(S) :={u e D(T)|Tu € X}.

For any open subset V' C U let us introduce the following norm |- |y on L'(Vr, 11):

(1.8) |flv == sup /fvdp
eHo (VT M)

||UH<>0+A0(’U;U)2 <1

Clearly, |f|v < ||fll1 and L'(Vy, i) is not complete w.r.t. | - |y. In the following
denote by I (Vr,7) the completion of LY (Vy, @) w.r.t. |- |y

Proposition 1.5. Let V C U be an open subset with OV € C* relatively compact
inU. Let L:=Lap+0; and L' := L op0_p — 0. Then:

(i) L :Co(Vy) € L' (Vi) — L' (Ve o) (resp. L' = (Vi) C Zl(vT,—) .
fl(VT, 1)) is closable and the part (L ,D(L V)) (resp. (L D( ))) in

LY(Vr, 1) of its closure is a maximal linear operator of diffusion type.
8



(ii) For all w € D(L ) (resp. u € D(L Vo) there ezist (un) C C§° (V) (resp.
(un) C C§°(Vp)) such that ||un||eo < ||l +2 and lim,, o ||uyn — ul|y + || Luy, —

-V . -V,

L UHF(VTJ) =0 (resp. lim, oo ||t — ully + || L'up — L UHF(VT,E) =0).
(iii) (a) D(_ Yo C HY 1(VT, 1) (resp. D(L"")y c HY 1(VT 7)) and A°(u, u) <

—fL wudp, u € D(L ) (resp. A°(u,u) < — fL uudu,uED( )b)

(b) D(f )b (Tesp. D( )b) is an algebra and T u? = 2uL’” u+ 2(AVu,Vu), u
D(ZV) (resp. "2 = ouL"” u—l—Q(AVu, Vu), u € D(L ) ).

(c) ffvuvdﬁ = fufv’/v di for all u € D(fv)b, ONS D(ZV’/)b.
The proof of 1.5 is given in Section 2.

For all open subsets V relatively compact in U with 9V € C* let @‘af = (a —
fv)_l (resp. @Z’, = (a— ZV’/)_l), a > 0, be the resolvent of (fv, D(fv)) (resp.
(T"', D(T""))). If we define

=V =V =V, =V, _
Gof =G, (fly)(resp. G, f =G, (f1v)) , f € L'(Ur, 1) ,a > 0,
then @Z (resp. @Z’/) can be extended to a sub-Markovian contraction on L' (U, ).

Lemma 1.6. Let V,W be open with OV,0W € C* and relatively compact in U
such that V. C W. Let a > 0 and f € L*(Ur, 1), f > 0. Then @Zf < @Z’f (resp.
a'r<an'y).

Proof. We will prove @Z f< @ZV f only. The dual statement can be shown simi-
larly. Let v, € C§°(Vr), w, € C§°(Wr), n > 1, be such that lim,,_,~ (1 — Zv)vn =
fly in ﬁ(VT,ﬁ) and lim, (1 — fw)wn = flw in ﬁ(WT,ﬁ). Let ¢(t) =
1fr%l[o’oo)(t) € M. Then ¢(v, —w,) € Hy (V7 since 0 < (v, —w,) < v, and

Uy € Hilp’l(VT,ﬂ), n > 1. Now 1.1 implies that
A(l](‘:p(vn — Wn), P(Vn — wn)) < A1(vn — wn, (v — wy))

(1.9) < / (1= L) (v — wn)p(tn — wy) |

and consequently, (¢(vy, — wp))n>1 € Hy' (Vi T)p bounded. We can now find a

subsequence (¢(vp, — Wy, ))k>1 converging to @(@Y f— @‘I/V f) weakly* both in
LY (Vp, @) and L' (Wr, ). Taking the limit n — oo in (1.9) one obtains that

V. =W V. =W Vo AW o
A(e(@ £ -8 De@ 1 -G ) < [(F1v = 1)o@ £ -G Haa <o,
thus (G f — Gy f) =0, ie., Gy f <Gy f, since p(t) > 0ift > 0. O
For the statement of the main result let (A", D(.A")) be the closure of the quadratic

form [(AVu,Vu)dpn, u € C°(Ur), in L*(Ur, it).
9



Theorem 1.7. Let (1.1)-(1.4) be satisfied. Then there exists a maximal extension
(L, D(L)) of diffusion type of La pu+ Opu, u € C§°(Ur), on LY (Ur, 1) satisfying
the following properties:

(a) If (U")p>1 is an increasing sequence of open subsets with QU™ € C° such

that U = U,>, U™ then hmn_,ooG f (a« — L)=Yf in LY (Ur, 1) for all
f € LY(Ur, ) and o > 0.

(b) D(L), C D(A°) and for all u € D(L)y, v € C§°(Up)
(1.10) A (u, v) +/(B,Vv>udﬂz —/fuvdﬁ.

Moreover, A°(u,u) < — [ Luudp for allu € D(L),.
(c) D(L)y is an algebra and Lu® = 2uLu + 2(AVu,Vu), u € D(L)s.

The proof of 1.7 is given in Section 2.

Definition 1.8. Let p € [1,00]. A semigroup (73) on LP(]0,T) x X,m) is called
a semigroup of evolution type if T;((f(- —t)1y,1))g) = fTig for all f € By([0,T)),
g€ LP([0,T) x X, m) and t > 0.

Remark. Note that our definition of a semigroup of evolution type is different from
the one given in [Ne|. This is due to the fact that in our setting we consider the
forward space—time homogenization of a given time—dependent diffusion operator
wheras in [Ne| one considers the backward space—time homogenization of a given
propagator.

Proposition 1.9. Let (L, D(L)) be the mazimal extension of (La,p+0;, C5¢(Ur))
as specified in 1.7 and (T)¢>o0 be the corresponding semigroup. Then:

(i) fg € D(L) and L(fg) = fg+ fLg if f € C*([0,T)), g € D(L).

(ii) (T¢)e>0 is of evolution type.

Proof. (i) By taking appropriate limits we may assume f € C*°([0,77]). Let g =
G1h, h € LY Uz, 1), and (U™)n>1 be an increasing sequence of open subsets as in

1.7 (a). Let g, := Gl “h.

Claim: Let n € N. Then fg, € D" ) and IV (fg,) = fg+ fI" g.

Proof Let u,, € C§°(UF), m > 1, be such that hmm_,OO |tm — gnll + | Ly, —
v gn|Un = 0. Then fum < C’O (U}) for all m and T fum = fg+fL g. Note

that lim,, . |fum + fL — fgn — fL gn|Un — 0. Since lim,, o0 | fUm —
fgnlun = 0 too, it follows that fgn is an element of the closure (A, D(A)) of
. TTirm — : —un U™ _
(L, C3°(UR)) in LY(Ug, 7) and A(fgn) = fg+ fL g. fg+ fL" g € L'(Ur,R)
now implies that fg, is an element of the part of (A, D(A)) in L'(UR, 1), hence
the assertion follows.
10



The claim implies in particular that fg, = @?n( fon+f (h1lyz)). Since
limy oo || fgn + f(hlyz)) + fg — fh||L1(UT 7 = 0 we conclude from 1.7 (a) that

£g = limn e fgn = limp o Gy (—fgn+f(hlug)) = Gi(—fg+ fh) which implies
the assertion.

(ii) We follow the proof of the corresponding statement in the theory of evolution
semigroups (cf. [Ne]). By taking appropriate limits it is clearly enough to consider
f € C§((0,T]) and g € D(L). Let f_y(s) := f(s — t)1p(s), t > 0, and note
that f_; € C§((0,T]) again. For arbitrary g € L'(Ur, ) define ¢¢(g) : [0,7] —
LY (Ur, i), t — Ty(f-1g) — fT1g. If g € D(L) (i) now implies that ¢ (g) is diffe-
rentiable and ¢ (g)(t) = é7(Lg). Fix to > 0 and define ¢ : [0,t0] — L' (Ur,T),
t + ¢;(Tig)(to — t). Then 1) is differentiable and 1) (t ) —64(T1g)(to — t) +

= —¢5(T
o7 (LT1g)(to —t) = 0. Consequently, 0 = ¥(ty) = 1(0) = Ty, (f-1,9) — fTt,9 which
implies the assertion. [

b) Construction of associated diffusion processes.

Once a maximal extension of diffusion type (L, D(L)) of (L, C§°(Ur)) is construc-
ted, we now ask for the existence of an associated Markov process whose transition
probabilities are given by the semigroup (7;) generated by L. A suitable tech-
nical tool for the construction of reasonable Markov processes to generators of
sub—Markovian semigroups on L?-spaces is provided by the theory of generalized
Dirichlet forms (cf. [St1]). We intend to apply the main existence theorem ([St1, Th.
IV.2.2]) to the generalized Dirichlet form induced by the L?-realization (L, D(L))
of (L, D(L)) (cf. [St1, 1.4.9 (ii)]). To state our main result properly we need to
introduce some potential theoretic notions related to (L, D(L)). For an element
f € L3(Ur,m) let Ly :={g € L*(Ur,1)lg > f}. Let G, := (o« — L)L, a > 0, be
the resolvent of L. An element f € L?(Ur,T) is called 1-excessive (w.r.t. (G4)) if
BGai1f < f forall B> 0. 1If f € L*(Ur, 1) such that £; N D(L) # () there exists
a l-excessive element ey € Ly such that ey < g for all g € L, g 1-excessive (cf.
[St1, II1.1.7]). es is called the 1-reduced function of f. An increasing sequence of
closed subsets Iy, C Ur, k > 1, is called an L-nest if €f1pe 0 in L?(Ur, ) for
all f € D(L), f 1-excessive. A subset N € B(Ur) is called L-exceptional if there
exists an L-nest (F}) such that N C (,~, Ur \ Fk. A property of points in Uy is
said to hold L—quasi everywhere (L—q.e.) if it holds for all points in the complement
of some L—exceptional set. Finally, a function f : Upr — R is called L—quasi conti-
nuous (L—g.c.) if there exists an L-nest (F}) such that fr, is continuous for all k.
Our main result on the existence of Markov processes associated with L (resp. its
L?-realization L) is then stated as follows:

Theorem 1.10. There exists a i—tight special standard process M = (Q, F, (Yi)t>o,
(P(s,2))(s.0)cUruia}) with life time ¢ that is associated with (L, D(L)) in the sense
that E. [ [ e~ f(Y;) dt] is an L—gq.c. fi—version of (o — L)L f for all f € By(Ur) N
Ll(UT,ﬁ), a> 0.

The proof of 1.10 is given in Section 3. For the precise definition of a z—tight
special standard process we refer to [St1, Ch. IV]. However, we will show in the
next Proposition that any Markov process as in 1.10 is in fact a diffusion.
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Proposition 1.11. Let M be as in 1.10. Then

Pis,») [t = Yi is continuous on [0,()] =1 L—q.e. (hence fi—a.e.)

The proof of 1.11 is given in Section 3.

Remark 1.12. The fact that the semigroup (T;) generated by L is of evolution
type easily implies that the first component of any Markov process M associated
with L as in 1.10 is a uniform motion to the right in the sense that

(1.11) PV #s+t,(>t]=0xae.

Indeed, let QN [0,7) = {gn|n > 1}, fu(t) = |t —qn| for n > 1, fo =1 and (x,) C
Co(U) be an increasing sequence of nonnegative functions with 1y = sup,,>; Xn-

Let (p;) be the transition semigroup of M. Since p;f is a fi—version of T f for all
f € By(Ur) N LY (Ur, 1) and (T}) is of evolution type it follows that

(fm( - t) [t T)Xn)( ) - fm(s)thn(af) —a.e.

for all m > 0, n > 1. Taking the limit n — oo we obtain

(1.12) Pt(frm (- = )1 y1u)(s,2) = fm(s)pelu(2)

fi—a.e. for all m > 0. Hence there exists a g—null set N such that (1.12) holds for
all (s,2) € Ur \ N and for all m. In particular, p;(1;.71v)(s,z) = pily(z), hence
Es»|Y! <t,Y? € Ul =0 for all (s,z) € Up \ N. For arbitrary (s,z) € Up \ N we
conclude

pe(|- =t —s|ly)(s, @) = pe(| - —t — s|1p.1)lu)(s, @)
= lim pi(]-—t =gl mlo)(s, )
Q€gﬁ[O,T)
= ;g;|s—qmuU@>=o,

qeQn(o,T)
thus P(Syx)[thl #*s+t,(> t] = 0.

Remark 1.13. (i) Note that any process M as in 1.10 solves the martingale pro-
blem associated to (L, C3°(Ur)) in the following sense: Let (F3):>0 be the natural
filtration of Ml and denote by ( its lifetime. Then u(Y}/\C) —u(Yy) — fot/\c Lu(Y5) ds,

t >0, is an (F;)-martingale under P,z = [ Pyv(z)u(dz) for all v € B, (Ur) such
that [vdp =1 and all u € C§°(Ur).

(ii) For results on solutions of the martingale problem in the particular case U = R?,
pi(RY) =1 for all t € [0,7] and (a;;) locally Hlder—continuous we refer to [CaLl].
Note that in contrast to our framework, no absolute continuity of (p¢)efo,7] is
needed. On the other hand, in contrast to [CaL|, we obtain the full Markov process
associated to (L, C§°(Ur)) rather than just a solution to the martingale problem.
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c) Uniqueness in the case U = R?.

Let U = R<. Throughout this subsection we assume in addition to assumptions
(1.1)-(1.4) on 71, A and B that for all compact V C R? there exist Ly > 0 and
ay € (0,1) such that

(1.13) ais(s,@) = aij(t,9)| < Ly (]2 = y|*Y +|s =)

for all s,t € [0,T], x,y € V. The following is the main regularity result on which
our L'-uniqueness result is based on.

Theorem 1.14. Let (aij)1<ij<a satisfy (1.18) and g > 0. Let h € B(R%), h
locally bounded, h*t € By(R%), be such that [(ag — Lap — O)uhdi < 0 for all
u € C(RYL), u>0. Then ht € D(A) 1o and

(1.14)
Javant, vty + it dn < [ AV, V(") dn

+ [ (B =B Vo P+ [ @02 dn
for all x € C§°(RY.).
The proof of 1.14 is given in Section 4.

Corollary 1.15. Let (a;;) satisfy (1.13). Then each of the following assumptions
(a) and (b) imply that (La.p + O, C§°(RE)) is L1-unique:

(a) aij,bi =) € LY(RE,A), 1< 4,5 <d.
(b) There exists V € C2([0,T] x R?), such that lim,|_o V (£, 2) = +00 uniformly
int and Ly opo_gV — 0,V < oV for some ay > 0.
Proof. Fix ap > 0 as in (b) and let h € L>®(R%, 1) be such that [(ag— Lap —
Oy )uh dii = 0 for all u € C§°(R%.).

For the proof of (a) fix xn € D(A%)10e; 0 < xn < 1, with x5 T 1, [VXnlloe < £ and
O¢Xn < 0. 1.14 now implies that At € D(A%);,. and by (1.14)

/ (AVxnh™, Vxnht) + aox2 ()2 dii < / (AVxm, Vi) (W) dfi
+ / (B — B®, Vyy)xn (W) it
C C C
< —||n|A (= —|I|1B — BY
< SIS lalh + 2118 - P11,

which implies AT = 0 taking the limit 7 — oco. Similarly, A~ = 0 hence the assertion.

For the proof of (b) first note that adding a positive constant if necessary we may
suppose that V> 0. Let x,, := h — % Then X, is locally bounded, x; globally
13



bounded and [(ag — La,g — Op)uxndi < 0 for all u € C§°(R%), u > 0. Hence
Xt € D(A%);,c by 1.14. Since supp (x; i) is a compact subset of R% there exists
x € Cg°(RZ), 0 < x < 1, such that x = 1 on supp (x;;7z) and thus by (1.14)

/kAVkﬁ,in%+adxifdﬁ§(L

ie., h < % Since n was arbitrary we conclude that A < 0. Similarly, —h < 0 and
consequently, h =0. O

d) Examples.

1) Time—dependent singular diffusion operators in divergence form

Let U C R? be an arbitrary open subset and on Uy consider the following time-
dependent diffusion operator in divergence form

d d
Lu(t,z) = Z di(aij(t, x)dju(t, ) + Zbi(t,x)&-u(t,m) :

(i) Time-dependent linear drifts

Let B = (by,...,bs) be a time—dependent linear drift, i.e., B(t,z) = B(t)x. This is
a simple example, of course. However, we include it here to demonstrate the precise
scope of our techniques. In the following we assume on the coefficients of L that for
all V relatively compact in U

(115) a]alj € LQ(VT) a]- S Za] S d 9

(1.16) vyt b2 < (A(t,2)h, h) < vy|h|*;h € RY (t,2) € Vi |
for some positive constant vy and
(1.17) Bi; € L'([0,T]) ,1<i<d.

Let py(dx) == a(t) dt, t € [0,T], where a(t) := exp(— fg tr(B(r))dr).Ifu e C5°(U)
it is easy to see that

/5 t / Loudp, dr = / t / i Oy(asy (r, 2)dyu(@)) + (B(r)e, Vu()) alr) de dr

_ _/:/uda:a(r) tr(B(r)) dr

:/:/udxz_j(r)dr:/udm(a(t)—a(s)):/udut—/udus.

The results of Subsections 1.a)-c) now imply the following:
14



Theorem 1.16. There exists a mazimal extension of diffusion type (L, D(L)) of
(L + 8¢, CS°(Ur)) in LY (Up,a(t)dt ® dx) satisfying 1.7 (a)-(c). Moreover, there
exists a strong Markov process M with life—time ¢ on Up whose transition probabili-
ties are given by the semigroup generated by (L, D(L)). M is a diffusion in the sense
that P(s [t — Y; is continuous on [0,()] = 1 dt ® dz—a.e. and M is a solution of
the martingale problem to (L + 0;, C§°(Ur)) in the sense of 1.13. If U = R?, the
(ai;) are locally Hélder-continuous and satisfy (1.13) and for some positive constant
M

(A(t,x)x, x)

1.18) -2
18 =2

+tr(A(t, )+ (B°(t,z)— B(t)z,z) < M(|z|? In(|z|?>+1)+1)

(here BY(t,x) = Z(;Zl dja;;(t,r), 1 < i < d) it follows that (L,C$°(R%)) is L'~
unique, hence (L, D(L)) is given by the closure of (L, C§°(R%)) in L (R4, a(t) dt ®
dz) (or equivalently in L*(R%.)).

Proof. Clearly, (1.15)—(1.17) imply (1.1)—(1.4) on fi(dt, dz) = a(t) dt dz, A and B.
Hence 1.7 implies the existence of (L, D(L)) and 1.10, 1.11 and 1.13 the existence
of M with the stated properties. If (1.18) holds, let V' (¢,x) := In(|z|> 4+ 1) + 1. Then
Lapo_gV — 0,V <2MV, hence Lu + Opu = L4 poypu + Owu, u € C§° (R4, is
L'unique by 1.15. O

(ii) Time-dependent non-linear drifts

In the case of a time—dependent non-linear drift the first problem consists of con-
structing a nontrivial measure 1. We will do this in the following with the help
of Fredholm perturbation theory. To this end let U C R%, d > 3, be a relatively
compact subset with U € C*°.

Lemma 1.17. H([0,7]; H=1(U)) n L*([0,T); H*(U)) — L*(Ur) is compact.

Proof. Let (u,) C H“2([0,T]; H='(U))NL>([0, T]; H'(U)) be a weakly convergent
sequence, denote by wu its limit and fix an orthonormal basis (e,) of H'(U). Note
that the trace theorem (cf. [LMa, 1.3.1]) implies that each uj admits a continuous
version iy, : [0,7] — L*(U) and for some positive constant ¢,

~ ~ duk
(1.19)  sup |a(t)ll2 < collarllzzqo.ry o)) + Il 2o, i1y sk 2 1

te[0,T]

Since gn.m(t) = [un(t,-)em dm € H([0,T]), n,m > 1, is bounded we can find by
compactness of H1([0,T]) — L?([0,T]) a subsequence (ny) for which limg_, 0 gn, .m
= gm in L?([0,7)) for all m. Here, g, (t) := [u(t,-)en, dt. Passing to a further
subsequence if necessary we may assume in addition that limy_.o gn, ,m = gm a.e.
for all m. Hence u,, (t,-) — u(t,-) weakly in H'(U) a.e. Since H'(U) — L?*(U)
is compact by the Rellich-Kondrachov theorem (cf. [Ad, Th. 6.2]), we obtain that
Un, (t,-) — u(t, ) strongly in L?(U) a.e. Consequently,

T
i e, =gy = [ June () = e di =0
15



by Lebesgue’s theorem and (1.19). O

We will now assume that for all V' relatively compact in U

d

(1.20) djai; € LT ([0,T); L7 (V) ,1<i,j <d,

(1.21) v R < (A(t,z)h, h) <v|h|*;h e RY, (t,2) € Ur

for some positive constant v,

and for some positive constant ¢

(1.23) ——Z/ 6udaz+c/l]udw2O;UEHI(U),UEO,tE[O,T].

Proposition 1.18. There exists a nontrivial measure @ on B(Ur) such that its
density ©* admits a representation ¢ € L2 ([0, T); HY(U)) for which

loc

t
/udut—/udusz/ /LTud,qur

for all w e C§°(U).

Proof. Modifying b; on a set of Lebesgue-measure zero we may assume that
supseqo, 1) 10i(ts )lla + [[0i(t, )l < +o00. By (1.21), (1.22), (1.23) and Sobolev’s
imbedding theorem (cf. [Ad, Th. 5.4]), the quadratic form

ED (u,v) = Z/awﬁuavdw—Z/b@uvdw+c/uvdw u,v € HY(U) ,

2,j=1
is a positive definite closed sectorial form on L2(U). Let (%, H,,.([0,T); H-Y(U)))
be the time-derivative on L*([0,7]; H *(U)) with periodic boundary conditions,
that is, the generator of the Cp—semigroup Usu(s, ) = u((s+t)modT,-), t > 0. Let
& be the time—dependent Dirichlet form corresponding to (&€ (t))te[O,T] and %, given
by

T i '
E(u,v) = { o ED (u(t,-),v(t,-)) dt+f0 du(y y ou(t,-))dt  ifucF,ueV

JEEDult, ), v(t, ) dt — [T (2(t, ), ult,))dt  fueV,veF.

Here V = L2([0,T); HY(U)), F := HY([0,T]; H-Y(U)) NV and (-,-) denotes the

dualization between H~1(U) and HY(U) (cf. [St1, 1.4.9. (iii)]). £ uniquely determi-

nes a generator (A, D(A)) of a sub-Markovian Cy—semigroup of contractions (S;)

on L?([0,T); L*(U)) = L?(Ur). In particular, ind (A — «) = 0 for @ > 0. Since
16



D(A) C F and the latter one is compactly embedded into L?(Uz) by 1.17 we con-
clude that ind (A + ¢) =ind (A —1) =0 by [Ka, IV.5.26]. Since 1 € D(A) (this is
the reason why we have chosen H!(U) instead of H}(U) and the time—derivative
with periodic boundary conditions) and (A + ¢)1 = 0, thus dim ker(A + ¢) > 0, it
follows that dim koker(A + ¢) = dim ker(A’ + ¢) > 0, where A’ is the adjoint of
A. Now fix p € ker (A" + ¢) \ {0}. We will show in the following that we may
assume p > 0. To this end let (S]) be the adjoint semigroup of (S;) and no-
te that (S]) is positivity preserving, that is Sju > 0 if u > 0 (cf. [St1, 1.4.2)).
Then (A’ + ¢)p = 0 implies Sjp = e “'p, hence S;(p*) > (Sjp)™ = e “lpT. On
the other hand fOT Jy Sipt) — e “tptdadt = fOT Sy pt(Sil — e 1) dxdt = 0,
since (A + ¢)1 = 0 implies S;1 = e~ °*1. Hence e~ “'S}(p™) = pt and similarly
e~ °'Si(p~) = p~. Consequently, p*, p~ € ker (A’ + ¢), too. Since at least one, p™
or p—, # 0, we may assume p > 0.

Fix g € C§°(U) and f € C*°((0,7)). Then (A’ +¢)p = 0 implies for f € C*>((0,7))
and g € C°(U)

/ f Z /aw Zgajpala:alt—/ fZ/b@ngda:dt+/ f/gpdxdt—o

2,7=1

hence & [ gp(t,-)dx = [ Lgp(t,-) dz. Since \/p € L*([0,1]; H*(U)), hence in parti-
cular in L? ([0,T]; H}(U)), by the following Lemma, the assertion now follows. [

loc

Lemma 1.19. Let p be as in 1.18. Then \/p € L*([0,T); HY(U)) and

T T
(1.24) / /(AV\/E, V\/p) da dt < f/ /p—l—eldxdt.
0 U 4 0 U

Proof. Let us first prove the following

Claim: Let ¢ € B(R), |¢(t)] < M(|t| + 1). Then fo (L (t,-), o(u)(t,-)) dt = 0 for
allu e F.

Proof: The assertion is obvious for u € H} ([0 T); L?(U)), since then, for v €

per

Hlloc(R) with Z/J = ¢, f() dt ):(10( fO fU dl/ji(tU) dxdt = 0. But
H,,.([0,T]; HY(U)) c H,,, ([0, T] LQ(U)) C .7-" dense by [LMa, Sect. 3.1, Lemma

1.2], hence the assertion follows by taking limits.

For e > 0 let 9. (t) =t — elog(t +€) +e 't >0, and ¢.(t) = —cloge + e~ if
t < 0. Then ¥.(p) > 0, V(p) = -2=Vp, and (1.23) now implies

p+6

1
—5//(B,Vlog(p+5))pda:dt+c//p—5log(p+5)+e_1da:dt20.



Moreover, since fo d—p( -),1og(p + €)(t,+)) dt = 0 by the Claim, it follows that

//(AVp, Viog(p+¢))dedt < E(log(p+¢), p)
(1.25)

+c// (p+e)log(p+e) + e tdrdt

//A’ log(p + ¢) dxdt+c// (p+¢e)log(p+e)+e tdrdt

:c//p—elog(p+5)+eldxdt.

Clearly, /p +¢ € L?([0,T]; HY(U)) for € > 0. Since

//(AV\//)-l-e,V\/p-l-e)dxdt: i//(AVp,Vp)/(p-l—e)dwdt
= i//(AVp,Vlog(p—l—S»dx dt

we conclude from (1.25) sup.~ [ [(AVy/p+ ¢, Vy/p+¢) dx dt < +o0, hence \/p €
L*([0,T); HY(U)), /p + € — /p weakly in L*([0, T]; H'(U)) and (1.24) now follows
from (1.25) by taking the limit ¢ — 0. O

The results of Subsections 1.a)-c¢) now imply the following:

Theorem 1.20. There exists a mazimal extension of diffusion type (L, D(L)) of
(L+0;, C5°(Ur)) in LY (Ur, 1) satisfying 1.7 (a)-(c). Moreover, there exists a strong
Markov process M with life—time ( on Ur whose transition probabilities are given by
the semigroup generated by (L, D(L)). M is a diffusion in the sense that P(s ;)[t —
Y; is continuous on [0,¢)] = 1 i—a.e. and M is a solution of the martingale problem
to (L + 0y, C3°(Ur)) iin the sense of 1.13.

Proof. It remains to verify (1.1)—(1.3). Clearly, (1.2) is implied by (1.21). Since
p € L*([0,T); HY(U)) and ||p(t, MNaoa < collp(t, )|l () for some positive constant
¢o by Sobolev’s imbedding theorem ([Ad, Th. 5.4]), we obtain for arbitrary V C U
and f € B(VT),

T T
|| Poawar< [ 150N e ot ey de
o Jv 0 +2
T 2 T 2
(1.26 g(/ ||f<t,->||i#2dt> (/ ||p<t,->||3%dt)

2

T
< collpll 20,1711 (1) (/ (ol dt) ,
0 +2
d

hence L% ([0,T7; L*#= (V) C L*(Vr, ). Clearly, (1.1) and (1.3) now follow from
(1.20) and (1.22). O
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2) Conservative Diffusions

Let d > 3 and U C R? be an arbitrary nonempty open subset. Let A = (ai;)
be uniformly strictly elliptic. Then the bilinear form Zi =1 [ a;;0;udjudz, u €
H}(U), is well-defined and uniquely determines a self-adjoint operator L° in L?(U).
In the following suppose that

(1.27) dja;; € Lt (U),1<4,5<d.

loc

Let V € L. (U) be a real potential with V=~ € L% (U). Sobolev’s imbedding theo-

loc
rem then implies that the bilinear form

d
EV(u,u) = Z /aijaiuajudx+/u2de,uED(SV) = HY}(U)NLA(U, V' dx),

4,j=1

is a well-defined closed bilinear form on L?(U). Moreover, there exists a positive
constant b such that £V (u,u) + b [u?dzx > 0, for all u € D(EY). Let LY be its
uniquely determined self-adjoint generator. Let L?(U;C) (resp. D(EY;C)) be the
complexification of L2(U) (resp. D(EY)), and L{ be the complexification of LY.
Lé:/ is self-adjoint and Stone’s theorem implies that for arbitrary ¢y € D(L(g ),
(ARES e“ngo, t € R, solves the Schrodinger equation i0;9) = —L{, (¢, ") = o,
which is equivalent to 8;g = —LY' h, 9;h = LY g, where g := Re(v)) and h := I'm(1)).
From now on suppose that 19 € D(V;C). Then R — D(EV;C), t — e“ngo, is
continuous, in particular g,h € L2([0,T]; D(€Y)) C L2([0,T]; HY(U)) for finite
T > 0. We can now define the time—dependent diffusion operator

d d
Lu(t,z) = Z i (aij(2)0jult, ) + Z bi(t,z)0u(t,z) ,u € CF(Ur) ,

where b;, 1 <4 < d, are the components of the vector—field B := 2|¢| 2(gAV (h +
g) + hAV(h — g)). In stochastic mechanics one is now interested in the existence
of non—homogeneous diffusion processes whose generator extend L (cf. [C], [Nag],
[O]). The example fits exactly in our framework if we let di := [1|? dz dt = g* +
h? dx dt. Indeed, first note that the density of & clearly admits a representation
©? for ¢ € L*([0,T); H}(U)) and that B € L?*(Ur;R% ). (1.2) is obvious and
(1.1) follows from Sobolev’s imbedding theorem, since for all V' relatively compact
in U an analoguous computation to that of (1.26) shows that L>([0,T]; L4(V)) C
L?(Vy, 1), hence 0;a;; € L*(Vy, 1) by (1.27). Moreover, (1.3) is satisfied, since both

b; and 2?21 djai; € L*(Vp, ). To verify (1.4) note that for u € C§°(U) C D(L)
t t
/ /Lru dpy dr = —2/ /(AVu, Vg)g+ (AVu, Vh)hdx dr
t
+ 2/ /(gAV(h +9),Vu) + (hAV(h — g), Vu) dx dr
t
(1.28) = 2/ /(AVu, Vh)g — (AVu,Vg)hdx dr

) / / (AV (ug), VI — (AV (uh), Vg) da dr
19



Suppose now for the moment that ¢g € D(L{), hence g(t,-), h(t,-) € D(LV) for all
t. Then

(1.29)
Q/t/(AV(ug),Vh) — (AV(uh), Vg) dx dr = —2 /t/Lthu—LVghud:vdr

t
:2/ /(&g)gu—}—((‘),ﬂh)huda:dr: /ud,ut —/udus .

Combining (1.28) and (1.29) implies

t
(1.30) / /LTuduT dr = /udut —/ud,us

in the particular case 19 € D(L{). The general case ¢y € D(EY;C) can now be
obtained from (1.30) by taking limits in D(EY; C).

Remark. The procedure above very much reminds one of the h—transform of Doob
of a given Markov process (cf. [Sh, Section 62]), used in probability theory to
construct bridgeprocesses. Indeed, let M be a Markov process associated with L,
fix p € L2(U), p > 0, and let p(t,-) := eT=9L°p t € [0, T). The bridge-process M?
corresponding to p is then obtained as the time—-inhomogeneous Markov process
with generator

d d
LPu(t,x) = Z Oi(aij(x)0ju(t,x)) + p(t, x) Z x)0;p(t, x)0u(t, x) .

i,5=1

Let du; = p(t,+)dx, t € [0,T]. Then d;p(t,-) = —L°p(t,-), t € [0,T), hence (LP +
Op)u = p_l(L0 + 0¢)(up) for all uw € C§°(U), implies

¢ ¢ ¢
/ /Lﬁudurdr:/ /(LO—}—@T)(up)dxdr—/ /&udurdr
S St S
:/ /u&npd:cdr:/udut—/ud,us 0<s<t<T,

for all uw € C§°(U). However, instead of using now the results of Subsections 1.a) and
1.b) to construct the (forward space—time homogenization of the) bridge—process
MP, this particular case can be treated more naturally in an L?-setting as the h—
transformation of the time-dependent Dirichlet form corresponding to (€%, D(£°))
(in the sense of [St1, 1.4.9 (iii)]) with the excessive function p (cf. [St1, IL.5 (b)]).

The results of Subsection 1a)-c) now imply the following:

Theorem 1.21. There exists a mazimal extension of diffusion type (L, D(L)) of

(L+0;, C5°(Ur)) in LY (Ur, 1) satisfying 1.7 (a)-(c). Moreover, there exists a strong

Markov process Ml with life-time ( on Ur whose transition probabilities are given by

the semigroup generated by (L, D(L)). M is a diffusion in the sense that Prs m[t —

Y; is continuous on [0,()] = 1 fi—a.e. and M is a solution of the martingale problem
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to (L + 0, C§°(Ur)) in the sense of 1.18. If U = R%, the (a;;) are locally Holder-
continuous and satisfy (1.13) and
(1.31) d;a;; € L (R UL®(RY),1< 4,5 < d,

it follows that (L,C§°(R4.)) is L*—unique, hence (L, D(L)) is given by the closure
of (L, C°(RS) in L' (R4, ).

Proof. It remains to check that in the case U = R% and (1.31) (L,C§°(R)) is L1
unique. But this follows from Corollary 1.15 (a) since b; € L?(R%, 1) € LY(R%, ),
1 <i,j <d, a;;20;p/p € L*(R%, ) C L*(R%, 1) and finally (1.31) implies 9;a;; €
LY(RZ, 1) by Sobolev’s imbedding theorem. [

Remark. (i) We emphasize that all the results of 1.21 remain true if V € L}
is such that for all u € HE(U)

|/ u?Vdz| < a Z/aw@u@udaj—kb/u dz

1,j=1

)

loc

for a € (0,1) and b > 0. Moreover, the dimension d can be arbitrary under this
assumption.

(ii) For a construction of the Markov process M associated to (L + 9;, C5°(Ur)) in
the particular case where U = R, a;; = 0;; and V is a Rellich class potential, we
refer to [C].

2. PROOF oOF PRrROP. 1.5 AND THEOREM 1.7

Let the assumptions be as in 1.5. To simplify notations let V := Hg ’1(VT,ﬁ) and
1 —
o]y, = [|v|lee + A%(v,v)2, v € Vy, so that |f|y = SUD |y |, <1 [ fvdp. Moreover,

let T' ==L (Vir, o).
Lemma 2.1. fl(VT,ﬁ)’ = HY (Vi Ti)s.

Proof. For v € V, it follows that
Co(f) = (f,0) < |flv (o] o + A(v,0)2) | f € LY (Vp, ) |

which implies that ¢, can be extended uniquely to a continuous linear functional on
L' which implies that V), C LU, To see the converse implication fix ¢ € L'. Then
Ui v € L*(Vr,m)' = L= (Vr, ). Hence there exists h € L>(Vr, ) such that

= [ fhdg, f € L*(Vr, ). We will show next that h € V. To this end denote
by (Ra)a>0 the resolvent associated to the quadratic form A°(u,v), u,v € V. Then
aR,h € V), a > 0 and

A’ (aRyh, aRLh) = a/(h — aRyh)aRyh | dfi

(2.1)

IN

a /(h —aRyh)hdi = l(a(h — aRyh))

< [[ellzrla(h — aRah)lv -
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Note that
(2.2)
la(h — aRyh)|y = sup a/(h —aR,h)vdi= sup A°(aRuh,v)

llollv, <1 llvllv, <1

< cA°(aRuoh, aRoh)? .
Hence, combining (2.1) and (2.2) we conclude that

sup A’ (a@Ryh, aRyh) < 400 |
a>0

hence h € V. O
Lemma 2.2. (L,C5(Vy)) (resp. (L', C3°(Vo))) is closable in LY(Ur, ).

Proof. We will prove closability of (L, C5°(Vr)) only. Closability of (L', C§°(Vp))
can be shown similarly. To this end let (u,,) C C§°(Vr) be such that lim,, .o un, =0

in L1 and lim,,_,oc Lu, = f in LT for some f € L1. Let ¢ € M, v € C§°(Vr) and

A € R. Then (p(u,+Av)) C WV = v bounded, since sup,, > [|¢(Un+Av)[[o0 < [|¢]l0o
and

A (p(uy + M), o(uy + M) < — / L(up + M) (uy + Av) di
< [L(un + A0)|v [[o(un + Av) ||y, -

Since L1 is separable we can find a subsequence such that limy_, o(Up, + Av) =
o(Av) weakly* in LT, Since L(u, + M) — f+ ALv in L1 it now follows that

(f + ALv, p(Mv)) = kErx;(L(unk + Av), o(ty, + Av)) <O0.

In particular, if we choose ¢ € M such that ¢(t) =t for |t| < |A|||v]||~ We conclude
that (f + A\Lv, \v) < 0 and taking the limit A — 0 we obtain (f,v) < 0. Passing
from v to —v implies (f,v) = 0 for all v € C§°(Vr). For arbitrary v € V, we can now
find a sequence (v,,) C C§°(Vr) bounded in V, and converging weakly* to v in s
Hence (f,v) = lim,, .~ (f, v,) = 0 which implies f = 0 and hence the assertion. [

By 2.2 we can define the closure (4, D(A)) (resp. (4’, D(A"))) of (L, C§°(Vr)) (resp.
(L',C§°(Vp))) in L'. In the following let A be the Laplacian on V with Dirichlet
boundary conditions.

Lemma 2.3. Let f € C*(V), @ > 0 and u := (a — A)7'f € H}(V). Then
u € C®(V), and there exist v, € C(V), |[vnlloo < |tt]loos m > 1, converging to u
almost everywhere such that |||Vu,|||co < L for some constant L.

Proof. By [GT, 8.14] u € C*°(V'). Note that u can be extended by 0 to a function
in H)*(RY) such that fBT(I) \Vu|dr < Mr? for all z € R% r > 0, and some
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constant M. By the theorem of Morrey it follows that |u(z) —u(y)| < L|x — y| for
all z,y € R? and some constant L.
Let V. := {z € V|d(z,0V) > e}. Let ¢ € C§°(B1(0)), ¢ > 0, with [¢dz =

(0
1, Ye(z) = e (e 'z), xe(z) = [l (z — y)s(y) dy and e = Xeu. Then
Xe € C5°(V), Vxe(z) = 0if z € V3. and |Vx. ()| < ¢ Vifx e V\ Vs, with

c == Vd [ [¢'| dy. Since u(z) = 0 if z € R?\ V we conclude that |u(z)| < L3e if
xeV\ V3. and consequently,

Ve (2)] < Ve (@) fu(e)| + [Vule)| < Loe+1)

Since u. € C§°(V') we can now take v, :=ui, n>1. O

Lemma 2.4. Let A be the Laplacian on V with Dirichlet boundary conditions, f €
C°((0,T)), g € C° (V) and a > 0. Then (o —A—0;)~'(fg) € Hy' (Vi W) N D(A)
(resp. (o — A+ 8,)"(fg) € Hy'' (Vo, @) N D(A).

Proof. We will prove the statement for A only. The dual statement can be shown
similarly. First note that Hy'' (Vy, ) € D(A). Indeed, for arbitrary u € Hy'' (Vp, i)
we can find (u,) C Cg°(Vp) converging to u in Hy'' (Vp, ). Then

|L(tp — um)|y = sup /L(un — U ) dfE

lvlv, <1

= sup Aty — ) — / B,V (1 — ) v i

vllv, <1
< Jlun — umHHé’l(VT,ﬁ) (L+[lIBll[2) = 05n,m — oo,

which implies that u € D(A). It is therefore enough to prove that (a — A —
9)7'(f9) € Hy'' (Vo) ).

Step 1: Let f € C>([0,T]), f(T) = 0, and g € C*(V). Then f(a — A)~lg €
Hé’l(VTvﬁ)'

Proof: Let u := (a—A)'g. By 2.3 there exist (v,) C C5°(V) converging to u a.e.,
[vnllco < [Julloc and sup,,>q |[Von|[leo < +00. Then fv, € Cg°(Vr) C Hy''(Vip, )
and sup,,>; [ |V(fvn|? di < 400, which implies that fu € Hy'' (Vip, T0).

Step 2: Let f € C>([0,T]), f(T) =0, and u € D(A) with u, Au € L>(V). Then
fue Hy'' (Vp, ).

Proof: Let g := (o« —A)u € L (dzx) and (g,) C C§°(V) be such that lim,, ,~ g, =
g a.e. and sup,,>; [|gnllee < 00. For u, := (o — A)~!g, it then follows from Step 1
that fu, € Hy’ 1(VT, ). Since fu, — fuin L?(Vr, )

/|V fun)|?di < — /f Aunund,u—Q/f n) Un dIT
—/fQAunundﬂ+2/f2ui

1 _
45 [ 1VGu)P dn,
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so that

2
dp

Y

[P dn< =2 [ 28w [ g

Ve
¢

it follows that (fun)n>1 C Hy''(Vp, ) bounded, hence fu € Hy''(Vp, ) and

/ V(fun)|* dpi < lim inf / IV (fun)|? di

2
(2.3) < lim inf / (Oefun)® di — 2 / f2Auy, u, di + 4 / fAu? Ve dn

n—oo

= [ (Bfu)? dp—2 | fPAuuda+4 [ a2 |22 dn.
f @it an-z | [

Step 3: (a — A —9,)"(fg) € Hol’l(VTvﬁ)-

Proof: Let p; = 2, ¢t > 0, be the semigroup generated by A. Fix f € C§°((0,7)),
and extend f by 0 to R*. Let g € C§°(V). By Step 2

n2"

Z 1,k k 1,1 —
Unp = Ee nf(+g)p%g€H0’ (VTMU') .

k=1

Since [Junfloo < 311 llocllgllocs 10stnlloc < 1 Fllscllglloos 1AUnlloo < 5 l1f o]l Aglloe
(2.3) implies that

2

@ dﬁ

/|vun|2dﬁg/(8tun)2 dﬁ—2/Aunundﬁ—|—4/ui

is bounded in n, hence (u,) C Hy'(Vp,7) bounded. Consequently, (v — A —
8) N fg) = [T e U f(- 4+ t)pg dt = limy oo u, € Hy'' (Vir, i) which implies the
assertion. [

Proof of 1.5 (i). Step 1: (1—A)(D(A)) C L! (resp. (1—A")(D(A’)) C L) dense.

Proof: Again, we will prove the statement for A only. The proof of the dual state-

ment is similar. By the Hahn—Banach theorem we only need to show that ¢ € s

with £((1 — A)u) = 0 for all u € D(A) implies ¢ = 0. By 2.1 we may identify ¢ with

the linear functional f — (f, h) for some h € V} and we have to show that h = 0.

Let ho € span{fg|f € C§°((0,T)),g9 € C5°(V)}, be such that ||k |ec < ||h]|eo +1

and ||ho — hll2 < L. By 24 uy := (0 — A — 8,) " hy € Hy'(Vy, 7)) N D(A) and
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|ata]lso < ||R|loo + 1 by the maximum principle. Observe that

_ Vo _
D(aug,0uq) < — /(A + 0¢)(aue) (qug) din — /(ﬁ + 27, Vauy)ous di
— - [+ B)(@ua) (A + 0o + o) dr
— /(ﬁ - QE, Voaus)ou, dis
P

——a [(A+0)udn—a [(A+0)ua(h, — b)dn

(2.4)
_ Ve _
_ /(A + 0¢)(qug)h di — /(ﬁ + 2?, Vauy)au, dii
<-2 /((A 40 di + 5 lh — B3 — /L(aua) hdpi — A(aa, h)
Vo _
+ D(Quq, h) + /(ﬁ - 2?, Vauu)(h — auy) di
< —% /((A + 0y )ua ) dii + % — /auahdﬁ— A°(aug, h)
Ve _
+ D(aug, h) + /(B + 2?, Voaus)(h — auy) di .
Hence

sup D(aug, augy) + % /((A + 0)ug)? dii < 400
a>0

in particular, lim, . [|@uq — h|2 < limg—oo [|(A + Op)uall2 + [|Ra — hl|2 = 0, and
then lim,_,~ auy, = h weakly in V. Now (2.4) implies that

D(h, h) < liminf D(au,, auy)

a—00

< liminf — / ughdii — A (aug, h) + D(aug, h)

Ve _
+ /<(5 + 27), V(aus))(h — aug) di

_ _/thﬁ—AO(h,h) +D(h, h)

hence h = 0.
Let (T, D(T")) (resp. (L', D(T"")) be the part of (A, D(A)) (resp. (A’, D(A")))
in Ll(VT,ﬂ).

v v,/

Step 2: (1-L )(D(Z")) = LV, T) (vesp. (1—L"")(D(T
(EV,D(IV)) (resp. (ZV’/,D(ZV’,))) is maximal.

) =L'(Vr, ), ie.,

Proof: Again, we will prove the statement for L only. The proof of the dual state-

ment is similar. By Step 1 and the definition of (A4, D(A)) there exist (un) C

C§° (V) such that f,, := (1 — L)u, — f in L'. Let ¢ € M be such that 0 < ¢ <1,
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lp(t)] > 0if t # 0 and ¢(t) = sgn (¢) if [¢| > 1. Then

APty — 1), Pty — ) + / (1t — 1) (th — 1)

(2.5) < [ (= L) — ) ¢ — )
< 11 = L) (e — )y 0t — ) v, -

Consequently, (¢(tm — Un))m.n C Vb bounded, and now (2.5) implies that

lim (U, — Upy) (U, — Up,) dE =0 .
Hence there exists u € L'(Vr, i) such that lim,, .. u, = v and lim,, o (1—L)u,, =
f in LT which implies u € D(A) and (1—A)u = f. Since (EV, D(ZV)) is the part of
(A, D(A)) in L (Vir, 7)) we conclude that f € D(Z") and (1-L" Ju = (1—A)u = .

Step 3: (T, D(T")) (resp. (T, D(T""))) is of diffusion type.

Again, we will prove the statement for L only. The proof of the dual statement is
similar. Fix u € D(ZV), @ € M and let (u,) C C§°(Vr) be such that lim,, (1 —

L)u, = (1 — L )u in L. Similar to the proof of the corresponding statement in
Step 2 it follows that lim,, .., u, = u in L*(Vy, 7). In particular,
lim, oo [(p(un) — ¢(u)) di = 0 and (¢(u,)) C V, bounded. Consequently,

-V o -V o =V _
[T uetwydn— [TV un gt dm <1 [T ulou)  plun) dn
1 [ = ) ) i =0 =00
which implies that

/fvu o(u)dp = lim fvun o(up)dp <0 .

n—oo

Clearly, 2.2 and Step 1-3 now imply Prop. 1.5 (i).

Proof of 1.5 (ii): We will prove the statement again for L only. The proof of

the dual statement is similar. Let u € D(LV)b and (u,) C C3°(Vr) be such that
limy oo (1 — L)up = (1 — " Ju in L1

Claim: lim,, f{Ml (AVuy,, Vuy,) = 0 for all [Jule < M1 < Mo.

<lun|<Mo}

Proof: Let 1) € M be such that ¢(t) = 0 if t < ||u|s and ¢(t) = 1 if t € [My, Mo).
Then (¢)(u,)) C Vy bounded, lim,, ., ¥(u,) = 0 in L!(Vp, ) and consequently,

lim (AVipn, V) di < lim | ¢(un)(AVUy,, Vu,) dfi
n=00 J{ue[ My, Ma]} n—00
= lim A°(upn, ¥ (u,)) < lim —/Lun Y(uy)dm =0
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(cf. the proof of Step 3). Similarly, lim,, f{—ue[ (AVuy,, Vuy,) di = 0 and

My, M2]}
the claim is proved.

Let ¢ € M be smooth, 0 < ¢ < 1, [|¢]loo < ||t]|oo+2 and p(t) = tif [t] < ||uloo + 1.
Similarly to the proof of the corresponding statement in Step 1 it follows that
(o(un)) C Vy bounded and lim,, oo u,, = u in LY (Vp, Ti).

Clearly, lim,, o ¢(un)(AVu,, Vu,) = 0 in L'V, ) hence in particular in LT by
the last statement. Furthermore, lim,, ., ¢(uy)Lu, = Lu in L' since

[(un) Ltin — Luly < [¢(un) L(un — u)lv + |(¢(un) — 1) Luly — 0,

. -V =V . —
BT =l = swp [T () plua)oam
vEVp:||lvflv, <1

—V
<L (un — w)lvle(un)llv, =0,

and lim,, o ((un) — 1)fvu = 0 in L*(Vy,7), hence in particular in L!. Conse-
quently,

=V . -V . =V

L o(un) = ¢(un)L un + @(un){(AVuy,, Vu,) — L u

in LT and (¢(u,)) is the desired sequence.

Proof of 1.5 (iii): We will prove the statements for v only. The dual statements
can be shown similarly. Fix u € D(fv)b, v E D(ZV’/)b and let (u,) C C3°(Vr) and
(vn) C C§°(Vp) as in 1.5 (ii). Similarly to the proof of the corresponding statements
in Step 1 it follows that lim, . u, = u in L'(Vy, ) and (o(u,)) C V, bounded
for all ¢ € M. In particular, (u,) C V} bounded itself, since sup,,>; ||t [|oo < +00.

Hence u € V} and lim,, .~ u, = u weakly in V. Passing to a subsequence we may
—
assume in addition that lim,,_, . %, = u weakly® in L1 . Hence

A°(u, u) < liminf A(up, u,) < lim inf — /fvun Up dfi = — /fvuudﬂ .

n—oo n—oo
This proves (a). Moreover,

Ao(un — U, Uy — u) < liminf Ao(un — Uy Uy, — Upp)
m—00

< lim inf —/L(un — U ) (U, — Uy ) AT

m—00

= —/L(un —u)(up —u)dp ,
and consequently, lim,, .~ u, = u in V.

To prove (b) note that u2 € C§°(Vy) and L(u2) = 2u, Lu,, +2(AVu,, Vu,). Hence
it suffices to prove that lim,,_, 2u, Lu, +2(AVu,, Vu,) = 2uLu+2(AVu, Vu) in
LL. Clearly, lim,, o (AVuy,, Vu,) = (AVu, Vu) in L*(Vy, ), hence in particular
in L. Moreover,

|/ufvu — Uy Luy)vdi < |/(fvu)(un —w)vdp| + | /fv(u — Uy ) Up v dfi|
-V -V
<L u(u = un)h[olloe + 1L (u = un)lv [[unvlly,

=V =V
< L7 u(u = un)hil[olloe + 1L (u = un)lv[[unllv, [0]lv, ,
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hence

|ufvu — up Luyly = sup /(ufvu — unLuy) di

[vllv, <1

—V —V
< I (= wun)lls + B ()l (sgp ||un||v,,) —0n = o0
n>1

This proves (b). For the proof of (c) note that [ ", v, dp = [ AL di by
1.1 (iii), hence

n—oo

/fvu vdg = lim Zvun v dp = lim unfv’/vn dp = /ufv’,v dp . O

Proof of 1.7. Let (V"),,>1 be an increasing sequence of open subsets with 0V" €
C*® relatively compact in U such that V™ C V"le n>1,and U =], V" Let

f e LY (Ur, ) f>0. Then G f := hmnHOOG f exists fi—a.e. by 1. 6 Moreover
SUp,>1 faG fdu < [ fdm implies G f € LY(Ur,n) and hmnHOOG f Gof
in L'(Ur, ). Consequently, hma_,ooG f = limg 0o G (f+ f7) = G.f in
LY(Ur,n) for all f € LY(Ur, 1) too. It is easy to see that (Ga)aso is a sub—
Markovian Cy-resolvent of contractions on L(Uz, i) (cf. the proof of the similar
statement in [St2, Th. 1.5]). To see that the corresponding generator (L,D(L))
extends (L C° (UT)) fix u € C§°(Ur) and let n be such that w e Hy' (V2 7). Then

u € D(L ) and L' u= Lu, m > n, implies that u = Gl (1 L)yu — G1(1—L)u.
Hence v € D(L) and Lu = Lu. Clearly, (L, D(L)) is of d1ffus1on type, since for

v € M and u, = G1 ( — L)u 1.5 (i) 1mp11es that fL ungo(un) dp < 0 and
consequently, [ Lup(u)df = lim, . fL ungo(un) dp < 0.

We will show in the following that (L, D(L)) satisfies (a)—(c) as stated in the theo-
rem. For the proof of (a) let (U™),>1 be as in (a) and f € LY(Ur, ) f>0. By
compactness of V" there exist m Such that V* C U™ and therefore G f< G f

by 1.6. Hence G f < lim,, Ga f. Similarly, lim,, Ga f < Gof hence (a) is
satisfied.

For the proof of (b) fix u € D(L),. Then aagnu e Hy' (VR ) € D(AY) for all n
and by 1.5 (iii)

lim sup A° (aég u, a@}: u) < liminfa /(u - aa}: u) a@Z”udﬁ

=« /(u — aGuu) aGaudi = /(a@afu)aaau di .
In particular, sup,,>, Ao(aéznu, aaznu) < 400, hence aG,u € D(A%) and

A (aGqu, aGau) < —/a@a(fu)aaaudﬁ < | Zu|l1]|u) o
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which now implies sup,qA%(@Gau, aGau) < +o0, hence u € D(AY) and
A(u,u) < — [ Luudp.

For the proof of (1.10) ﬁx v e C5°(Up) and assume first that u = Gif, f €
LY(Ur, 1)p. Since v € D(L ) for big n, 1.5 (iii) implies for u, := G1 f that

(2.6) A° (U, v) + /(B, V)u, dii = /fvn’lv Uy dll = /fvnun vdp .
Since lim,, .o U, = u in LY (Ur, ) and weakly in D(A°) we can take the limit on

both sides of (2.6) to obtain (1.10) in this case. For general u € D(L); consider
aGou = Gi(u+ (1 —a)Guu), a > 0. Then

(2.7) A’ (aGou, v) + /(B, Vu)aGaudi = /a@afuvdﬁ

for all & > 0. Taking the limit o — oo in (2.7) implies (1.10).

For the proof of (c) it is enough to show that u € D(L),, implies u? € D(L);, and
Lu? = g,, where g, := 2uLu + 2(AVu, Vu). To this end it suffices to prove that

(2.8) /f/v u? dp = /gv dp for all v = allh Jhe LYUr, )y,

since then [ Gy (u?—g)hdn = f(uz—g)é,lh du = fuz(éllh—f/@;h) dip= [u?hdn
for all h € LY(Ur, ). Consequently, u? = G1(u? — g) € D(L)y.

For the proof of (2.8) fix v = G4h, h E LY(U, p)p- Suppose first that u = Gy f
for some f € LY(Ur,m)p. Let u,, := G1 f and T, = G1 'h. By 1.5 (ii) we can
find u,, € C§° with ||un|lco < ||u]lco + 2 and |Gy, — un |1 + |Lvn(ﬂn — Up)|yn < 4
and v, € C§°(Vp) such that |7, — v,|[1 + |fvn’l(ﬂn — v,)|lvn < L. Note that

(tn), (vy) € D(AY) bounded, so that lim, .. u, = u weakly in D(A") and thus
lim, 0 [(AVup, Vu)v, dii = [(AVu, Vu)v dp. Clearly,
/fvn’/vn uty, dii = —A° (v, uuy,) — /(B, YV, )uu, di
= —A(vpup, u) — /(Aan, Vu,)udi + /(AVun, Vu)v, dip
(2.9) - /(B, V (vpup))u di + /(B, V) v,u di
= /fuvnun dﬁ-l—/fvnun vpu dp + /(AVun,V(vnu))dﬁ

- /(Aan,Vun>u di + /(AVun,Vu>vn dn

= /fuvnun dﬁ+/fvnun vpu di + 2/<AVun,Vu)vn dpi .

) —Vny _ =V _ =vn _
Since | [ L~ "wpuupdp— [ L "Tpuu, dp| < |L (vn =) v [wun |l g1 v ), —

0, n — 00, and lim, . [ v T, dp= [ T ou? dpi it follows that
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lim, oo [ v ’,vn uty, dit = [ Luvudp. Similarly, lim, o [ v Uy, VpU Al
= [Luvudp . Hence we may pass to the limit in (2.9) to obtain (2.8) in this
particular case.

For arbitrary u € D(L)p let g, := 2(aGou)L(aGou)+2{AVaGau, VaGau), o > 0.
Then (1.10) implies

A’ (aGou — u,aGou —u) < — /f(a@au —u)(aGou — u) di
< 2||uloo |6GoLu — Lull;y — 0

if & — oo, which implies that limg ..o aGau = uin D(A°) and thus limy 00 go = ¢
in L'(Ur, 7). Since au+(1—a)Gau € LY (U, p)p and G (au+ (1 —a)Gau) = aGau
by the resolvent equation it follows from what we have just proved that

/Zlv(aaau)Q dp = /gav di

for all a > 0 and thus, taking the limit a — oo,

/f/vuzdﬁz/gvdﬁ

and (2.8) is shown. [

3. ProoF OF THEOREM 1.10 AND Prorp. 1.11

Throughout the whole section fix an increasing sequence of open sets V" as in Theo-
rem 1.5 (a). Let (L™, D(L™)) be the L?-realization of (fv ,D(ZV )) (cf. Remark

following 1.4) and let (G%)a>0 be the resolvent of L".

Lemma 3.1. (i) D(L™) C Hy''(V2,T) and A°(f, f) < — [ L"f fdf, f € D(L™).
(ii) D(L) C D(A%) and A°(f, f) < — [ Lf fdm, f € D(L).

Proof. (i) Let gr € L*(VJ', W), be such that limy_ o, ||grx — (1 — L") f||2 = 0. Then
_Vn .
tgr € DL )y ¢ H*Y(V,T) and AY(GPgx — GTg1,GRgr — Gia1) < [(gk —

91)(GYgr — G1g1) dii. Now limy_. ||GT gk — f|l2 = 0 implies that (GTgx)r>1 is an
HY'' (Vi )-Cauchy sequence, hence f € Hy''(V;?, @) and A°(f, f) < — JL"ffdp.

(ii) By 1.7 (b) the proof of (ii) is similar to (i). O

To unify notations in the following let V> := U, (L*°, D(L*>)) = (L, D(L)) and
(GX) = (Gq). Furthermore, denote by the superscript ™ all potential theoretic
concepts that are meant w.r.t. L™, n € NU {4o00}. In particular, let e for f €
L3(VE, @) with £;ND(L™) # 0 be the 1-reduced function of f w.r.t. L™, that is, the
smallest 1-excessive element (1-excessive w.r.t. (G7)) dominating f. Furthermore,
an increasing sequence of closed subsets Fj, C V', k > 1, is called an L™ nest if
e?lF,‘j — 0 in L2(V2, @) for all f € D(L™), f l1-excessive w.r.t. (G7).
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Lemma 3.2. Let f € L*(Ve,m), f > 0; myn € NU {+o0}, m > n. Then
eGm )1 =G f - GTf.

VTC"\V%
Proof. We first show that h := G7*f — GT f is 1-excessive (w.r.t. (GI')). Since
h > G7f on Vi \ V. it then follows that elGm < GU'f — GV f. To see

N2
that h is 1-excessive w.r.t. (GZ') note that

ﬂng+1G?f > 5Gg+1G?f = G?f—GEHf )
and thus

BGEW(GTf =GV f) <GV f = GEnf+ G f -G f<GIf-Gif.

To prove the converse inequality, let g := 6%1” Dlym v and denote by g, the unique
VIV

element in D(L™) such that (1 — L™)gs = a(ga —g) - Then 0 < g4 < g(< h) and

limg o0 go = g in L2(V, 1) (cf. [St1,I11.1.7]). Now h = G7*f on V7 \ V. implies

that

/ (go — aGTy h)? dji < / (1= I™)(ga — Gy 1h)(ga — G, 1) di
—a / (9 — (G Plyprin)™ — (h— aG h))(ga — Gy h) di

= (h — aG h) (g0 — G, 1) d
{gaZ(Ginf)lvr}n\V?}

+a | (G 7y — 9 — (b= @G 1)
(92 <(GT Ny 7p }

(9o — aGgl+lh) dp

—a/ (h—aG% 1h)(h—aGZ  h)di
{gaZ(Gr{nf)]-qu\V%}

+ 0“/ (aGai1h — 9a)(ga — aGLl 1 h) dip <0 .
{ga<(G{nf)1V771n\V%}

Consequently, g, = aG7' h for all a > 0, which implies the assertion taking the
limit o T c0. U

In the following, fix an element ¢ € L'(Ur, 1) such that 0 < ¢ < 1.

Definition 3.3. Let n € N U {+oco}. For U C Vp, U open, let Capj(U) =
J €lar oy, ¥ i and for arbitrary A C V7' let Cap,(A) := inf ocpy Capy(U).

Uopen

The main feature of the capacities just defined is that an increasing sequence of
closed subsets Fj, C V', k > 1, is an L™nest if and only if limj_, CapZ(V{l\Fk) =
0 (cf. [St1, I11.2.10]).
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Lemma 3.4. Let V C V° be open; m,n € NU {400}, m > n. Then:
(i) Cap(V NV) < Capll(V N V) + Capl (Vi \ V7).
(i) Capy(V NVy) < Cap(V N V).

Proof. (i) Let us show first that e’ + (G7p — GT) is 1—excessive w.r.t.

Gro)lynyn T
(G7)a>0- To simplify notations let( e :)— e(é?w)lvw%z' The resolvent equation for
(G™) a0 (resp. (GZL)(DO) then implies

6G,78n+1(€n + Gl —GTyp) = 5G,6+1e + 5G5+1( 1e) — ﬁGEH(e" —G1)

+ (GT'¢ — GTo) — (G%n+1¢ - Gg+190)
< BGHe" + (GTe—Glp) <e"+(G'e — GTy) ,

since G —e™ > 0, hence 5Gg+1(G?go —e") < BGREL L (Gle —e), and €™ is 1-
excessive w.r.t. (G2)as0. Since e(Gmp)lvwn + (G — GTo) = (GT') Ly it

follows that G%Tw)lv,}n\v < elgr (Gl v — GTy) and 3.2 now implies

190)1va:,@

Capy (VN V") = /e%;nw)lvmv%ngodﬁ

< /e(G 90)1an"9de + /e%gn@)lv%”\vggpdﬂ
= Capy, (V NV7) + Capy (V7" \V7) .
(ii) For the proof of (ii) first note that if u is 1-excessive w.r.t. (G3')a>0 then ulyn

is 1-excessive w.r.t. (Gf,)a>0. Indeed, since u > 0 it follows that BG},  (ulyy) <
(BGRE w)lvy < ulyp. But then G POy Ly is 1-excessive w.r.t. (G},)a>0

m
which implies that e(G )Ly v < e(G Py v lv%z < e(ngwlvw%n, and thus

Cap,(VNVy) = /e?G’fw)Iva; pdi < /G%TQO)]-VQVF @dp = Capy (V. NVL") .
U

Lemma 3.5. (i) Let f € D(L")p,n € N. Then e} € HY' (Vo fi) and Al (e}, ef) <

16|(1 = L") flun (I(1 = L") flvm + [ fllo)-

(i) Let f € D(L)y with L5 N D(L>) # 0. Then e € D(A%) and AQ(e}, e}) <

20(|(1 = Z7) fll [l fll -

Proof. (i) By assumption e} exists. Let f, € D(L"), a > 0, be the uniquely
determined element in D(L™) with (1 — L™)f, = a(fo — f)~ (cf. [St1, II1.1.6)).
Then 0 < fo <€}, a >0, and limy—o0 fo = €} In L2(VE, @) (cf. [St1, TIL.1.7]). By
3.1 (i)

Aﬂh—ﬁﬂrdﬁS/G—L%Ua—ﬁUA—ﬁﬂI

=a (U= GamDan— [@ =L (fa 1) dm
< [T =L") fll2llfa = fll2
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which implies that sup,oAY(fa — f, fa — f) < +o00, therefore e} € Hg’l(VT,ﬁ),

limg— o0 fo = €} weakly in Hg’l(V{f, f) and

Aj(e},e}) < liminf A} (fo, fa)
< liminf 249(fo — £, fo = £) + 2A0(£. )
< 1ggg;f—2/(1 L (fa— ) dﬁ+2/(1 LM f fdp

-2 [(L-L)f(ef - Ham+z [0 - L)) fa.
Consequently,

Al(eR,eh) < |(1— L") flyn (2A4%(e}, €1)2 + 4A°(F, )% +6[| f o)
<21 = )R+ S A ) 11— ) fln (4A°(F, )2 4 6 )
hence
AY(er, ) < 20[(1— L) flun (|1 = L) flvm + | f]loo) -

Here we used the fact that
A(f, 1) < / (1= I™)f £ di < (1= L") flvn (AU ) + (1 ]lso)

hence A°(f, f) < 2/(L = L") fl5n + [If 13-
(ii) Similarly to (i) let fo, € D(L>), o > 0, be the uniquely determined element in

D(L%°) with (1= L) fo = a(fa— f) " Since 0 < fo < e < | flloo, @ > 0, 3.1 (ii)
implies
Ao fofu— ) < /(1 L) (fa— ) (fa — f) dF
Za/(fa—f)(fa—f)dﬁ—/(l—Lo")f(fa—f)dﬁ
< 21— L) 111 llso -

hence sup, - A} (fa—f, fa—f) < +o0, therefore e? € D(A%) and limg 00 fo = ey
weakly in D(AY). Finally,

A (e, eF) < liminf AY(fa, fo)
<liminf 24 (fo = f, fa = ) + 241(f. )
<lminf6[(1 = L) fll1[lfllee - O
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Lemma 3.6. Let f € D(L"),. Then f admits an L™—q.c. i—version f Moreover,
if we extend f by 0 to V° \ V' then there exists for all ¢ > 0 a subset F, C Vz°,
closed in V3°, such that fir. is continuous and Capl,(Vp \ Fr) <e.

Proof. Since D(L™), C D(fvn)b there exist fi € C5°(V}) with supg~q || fx]lco <
400 and limy, . [(1—L™)(fx— f)|v~» = 0 by 1.5 (ii). Consequently, limy, . et s+
et ;. = 0in Hy'(VA, R), in particular in L2(V,7) by 3.5. Since each f; €
C3° (V1) is clearly continuous, [St1, II1.3.7] now implies the existence of an L™—q.c.
[—version f of f such that fe, — f L"—quasi uniformly along some subsequence,
i.e., uniformly on F,, n > 1, for an L™ nest (Fj)r>1. Note that f, can be exten-
ded by 0 to a continuous function on V> \ V7. If we extend f similarly by 0 on
V> \ V. we obtain that f, — f uniformly on F| == F, UV®\ F}, for all k. Clearly,
Fy, C Ve is closed and Capl, (Vi \ Fy) = Capl(V{ \ Fi) — 0, k — oo, which proves
the second assertion. [J

Lemma 3.7. Let f € LYV, )y, f > 0. Then G°f admits an L>®—q.c. fi—
Version.

Proof. For all n € N fix an L™—q.c. i—version h,, of G7f. We extend h, to Ve by
letting hy, () =0 for x € V° \ V.
Step 1: For all € > 0 there exist n, € N and a closed subset F, C V° such that

By k. is continuous for all n > n. and CapZy (V°\ Fr) < e.

Proof: Fix n. such that Cap2®(V° \Vr) < 5. By 3.6 we can find a subset F),,
closed in V2°, such that ﬁn|Fn is continuous and Cap(, (V7 \ F,) < £2=("+1) | Let
F. .= ﬂnzng F,. Then F, C Vp° closed and 3.4 now implies that

Cap (Vi \ Fo) < Caple (V2 \ Fo) N V) + CapX (Ve \ Vi)
n 6 n n
< Cap(|J Vi \Fa) + 5 < D Caple (Vi \ F) +

n>ne n>ne

< ZCap¢(VT\Fn)+§§ 252 <+1>+§§5.

n>ne n>ne

c
2

Step 2: There exists an L°°—q.c. fi—version h of G{° f such that h,, — h L*®—quasi
uniformly along some subsequence.

Proof: By Step 1 there exists a sequence of closed subsets (F}) such that an| Fe
is continuous for all n > aj (where oy is sufficiently big) and CapZ(Fy) < 2k,
Without loss of generality we may assume (Fy) and (ax) to be increasing. Since
{|hn — him| > A} U F¢ is open for all A > 0; n,m > o, v, = G°f — G}f is
l-excessive w.r.t. (G°) 40 for all n and

1 < (/M) (vn +om) + (GT¢) rg on {|hn — han| > A} U FY

for all k, n, m, it follows that
Cap (o = o] > ) < (/N) [ (0n+vm) g it [ gy, o

< (1/N)(lvall2 + llvmll2) [ oll2 + 275 .
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Since lim,,_, v, = 0 in L?(V;°, 1) we can find an increasing subsequence (ny)g>1
with n, > ag and Y7o | 2F||vn, [l2 < co. Let

Ap = J iy — bl > 277}, k> 1,
i>k

then F] := Fj, N A{ is an increasing sequence of closed subsets with

Capyy’ (V72 \ Fy,) < Capl (Vi° \ Fy) + Caply (Ag)
<27% 4> " CapX ({|hniyy — hni| >277})

i>k

< 2_k + Z 2i(||vm‘+1 ”2 + ||Unz 2)”90”2 + 2_i
i>k

<3/28 + (3/2)[ell2 > 2 lvn, 2 = 0,k — o0,

i>k
hence (F})>1 is an L>—nest. Since (ﬁnk) r>1 converges uniformly on F} we obtain
that

0 else

is L>°—q.c. Clearly, h is a 7i—version of Gef. O

Proof (of Theorem 1.10). To apply the main existence result in the theory of
generalized Dirichlet forms we need to show that (L, D(L>)) is quasi-regular and
that there exists a linear subspace ) C L*°(V°, ) such that YN D(L>*) C D(L>)
dense, limy o0 €3G0y = 0 in L2(Vpe ) for all f € Y and a A f € Y (= the
closure of Y in L*°(V°, 1)) for all f €Y and a > 0.

We will show first the existence of an L°°—nest consisting of compact sets. To this
end let F, := [0, 21T x V", n > 1. We will show that e5%,..
n (G1 <P)1VOC\Fn

To this end fix n and note that V2°\ F,, = U; UUs for the open sets U; = (V*° \V”)T
and Uy = (21T, T)x V. Note that G3°¢p—GT ¢ > Gi°¢ on Uy and G (T/n) >

%o on Us. Indeed, since the semigroup (T; ) generated by (L~ ,D(L™)) is of
evolution type by 1.9 it follows that 1[T_t7T)T:O<p = T:O(I[T_t,;p)(- — )1 ryp) =

T?OO = (. Hence

— 0,n — oo.

losir )Gl = /0 € Nniy )Ty Pt = /0 e Npnip g Ty (p)dt
: /0 ¢ pnagp ydt <T/n,

which implies that G$°¢ < T'/n on U,. Since both, G$°¢p—GT¢ and GPoA(T/n) are
1—-excessive w.r.t. (GX°) it follows that e%i"’w)lvwwﬂ < GPe—Gro+GPeN (T /n).
Since the right hand side of the last inequality converges to 0 for n — oo we obtain
that CapZy (Vo \ Fp) = fe‘(’g?o@)lvmwngpdﬁ — 0, hence (F},) is an L>—nest.
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Since G1 (LY (Ve 1n)p) € D(L*) dense there exists by 3.7 a dense subset of D(L>)
whose elements have L>—q.c. i—versions. Finally, since C5°(V2°) € D(L) there

exists a countable subset of fi—versions of elements in D(L) separating the points
of Vp°.

Finally, let Y := {f € D(foo)bwm N D(L*®) # (}. Y is an algebra, since D(L"),
is an algebra by 1.7 (¢). Hence fAa € Y if f € Y and a > 0. Clearly, YN D(L*>®) =
D(L*®), C D(L™) dense. Let f € Y. Then €35, ;_; € D(A%) by 3.5 (ii) and the
strong continuity of (G4)a>o0 in L'(V3°, ) now implies that

A?(egoGaf—fvegoGaf—f) <6)|(1 = L) (aGaf — f)l1llaGaf — flloo
<12[aGa(1—L)f = (L=L) fll1| floc 2 0,0 = 00. O

Let us now turn to the proof of 1.11. We will need one lemma. Let M be as in 1.10.
Denote by (pt)t>0 (resp. (Ra)a>0) the corresponding transition semigroup (resp.
resolvent). For f € By(Ur) and V C Up, V open, let

va(S,LE) = E(s,ac) [e—UVf(ng)] :

Here, oy = inf{t > 0|Y; € V'} is the first hitting time of V. To simplify notations
in the following let fy :=e%] for f € L?>(Ur, 1), V C Ur open.

Lemma 3.8. Let K C Ur be compact, and V :=Ur \ K. Let f € Cg°(V), f > 0.
Then HY f =0 L-q.e. on K.

Proof. Let g := (1 — L)f, h" := Ri(¢g") and h~ := Ry(¢97). For n € N let
h = Ri(g" An) (resp. h;, := Ri(g~ An)). Then HV h} (resp. H" h;, ) is an L—
quasi lower semicontinuous (= L—q.l.s.c.) i—version of (h})y (resp. (h,)v) (that
is, HVth (resp. th;|Fk) is a fi—version of (A )y (resp. (h})y) and there exists
an L-nest (F}) such that H Vh;';| , (vesp. H Vh;| r,) is lower semicontinuous for all
k)(cf. [St1, IV.3.9]). Since h™ = sup,,»; b} (resp. h~ = sup,,~; h,,) we conclude
that HV h* (resp. HVh™ ) too is an L—q.l.s.c. i—version of h{, (resp. y,).

We will show next that HY h*t = h* fi—a.e. To this end let b, o > 0, be the unique
element in D(L) such that (1 — L)ht = a(hf — hT1y) . Since 0 < hY < h{,
limy— o0 b = hi> in L2(Ur, 1) (cf. [St1, I11.1.7]) we obtain that

/(HVh+ —hM)*dp = lim [ (b} —h")?dn

a— 00

< lim [ (1-L)(h —h")(h. —hT)dn

= lim [(a(hl —hT1ly)" — (1 - LAt (kI —hT)dn

a—00

< lim —/g*(h*—hmdﬁ

a—00

_ / (1= D)f)H(h* — b)) dE=0,
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since hy, = h" on V and (1—L)f = 0 on K. This is where we use the fact that the
operator (L, C§°(Ur)) is local. Similarly, HY h~ = h~ in L?*(Uz, i) and thus HV h =
h fi-a.e. Since HV h* (resp. HVh™) is L—q.ls.c. it follows that HVht < 0 L-q.e.
(resp. HYh= <0 L-q.e.)on K. Thus0 < HY f = HV(h*—h~) < HV(ht+h™) <0
L—q.e. on K which implies the assertion. [l

Proof (of 1.11). Fix K C Ur compact and let u,, € C5°(Ur \ K), n > 1, u, > 0,
such that sup,,~; u, >0 on Ur \ K. Then HVu, =0 L-q.e. on K for all n by 3.9
implies that P ;) [Y5, € V] =0 L—q.e. on K.

Now, let (K,,) be a countable family of compact subsets of Ur such that (Ur \
K, )n>1 separates the points of Up and let U = {Ur \ K,|n € N}. Then there
exists some L-exceptional set N such that P, [Ys, € V] = 0 for all (s,z) €
Ur\ N,V € U. Let (Fi)r>1 be an L-nest such that N C (-, Ur \ Fi and

Qo := {limg .00 O\, > (). Let

Qg = {w|Y; (w) # Y;(w) for some t € (0,((w))} .

Then
QN c ) |J {wlilw) e VO\N,Y,, (bw) €V}
Veu te
QN(0,00)
Since

Py Yt € VE\N, Y5, 00, € V] = Ps ) [Py, Yo, € V], Y, € VE\N]=0

for all (s,z) € Ur, V € U, it follows that P, ;)[4 N Qo] = 0 for all (s,z) € Ur,
and thus P, ;) [Q4] = 0 L-q.e., since P, ) [€] =1 L-q.e. by [St1, IV.3.10]. O

4. PROOF OF THEOREM 1.14

Proof of 1.14. First note that [(ap—La, g)uhdpn <0 for all u € C§°(R%), u > 0,
implies the same inequality for all u € C’é ’Q(RdT), u > 0. To simplify notations let
YV = D(A%). Fix x € C§°(B,(0)r). We have to show that yh™ € V. Fix L > 0 and
a € (0,1) with |a;;(s,z) — ai;(t,y)| < L (Jz — y|* +[s — t|2) for all (s,2), (t,y) €
B, (0)r and define

" AD)z),(s,2) € R%

aij(s, iL') = aij(s, (m

Then @;;(s, ) := a;;(s,x) for all s € [0,T], x € B,-(0), and [a;;(s,z) — a;;(t,y)| <
2L (Jz — y|* + |s — ¢| %) for all (s,z), (t,y) € R}. Let LA = Zijzl @;;0;; + 0. By
[Fr, Th. 1.12, p.25] (and the time reversal ¢t — T —t, t € [0,7]) there exists for
all f: R4 — R, f bounded and Lipschitz—continuous, a function R, f € C12(R%),
Rof(T,-) = 0, for which (& — L*)Rof = f and |Raf(t,2)| < cexp(c|z|?) for some

constant ¢ > 0.

If f >0 then R,f > 0 by [Fr, Th. 2.9, p.43]. Moreover, since (o — LK)(éHfHOO +
Raf = Ifllo® f = 0, als0 |[Raf| < L[flo, i€ aRafloo < |flloe by [Fr, Th.
2.9, p.43| again.
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Since C§°(R%) C Co(R%) dense, where Co(R%) is the space of all bounded
continuous functions on RdT vanishing at infinity, we obtain that f — aR,f,
f e C§° (R%), can be uniquely extended to a positive linear contraction aR, :
Coo (RE) — Cp(R%), hence a sub-Markovian kernel on (R4, B(R%)), which will be
denoted again by aR,.

Let f, € C°(R4), n > 1, such that 0 < f, < ||A|l and g := lim, . f,, is a
f—version of A*. Then lim, o aRsfn(s,7) = aRyg(s, ) for all (s,z) € R by
Lebesgue’s theorem and ||aRag|lso < ||A] co-

Estimates for A°(xyaR, fn, x@Ra fr), uniform in n for fixed a:

Note that

A(xaRafuxaFafy) < = [ TF(xaRufu)xaFaf, dn
- [(B.VaRafu))x(0Fat,) dn
= / LAy (@R f,)? di — 2 / (AV'Y, VaR fo) X0 R fn di
(4.1) ~ [ 1Rt aBadudn— [ (B, V(xRaf) xRt d
— - [ XX (@Rafo) =2 [(AVY, V(xRS d
+2 [AVC T @Rafa?di— a [ @Rty = fu)3* B dn

- /<B, V(Xaﬁafn»x Oéﬁafn dﬁ .

Hence A°(xaRqfn, XaRafrn) < ¢ A°(xaRofrn, XQRa fn)'/? + M for positive con-
stants ¢ and M independent of n. Thus, sup,; A°(x@Ra fn, XQRafn) < +00,
hence yaR,g € V and lim,,_ . xaRafn = Y@Rsg weakly in V. Taking the limit
n — oo in (4.1) we conclude that

-/40 (XO(RQQ, XO‘Rozg) < lim inf AO(XaRafnv XaRafn)
(4.2) < - / XLAX (aR,g)* dii — 2 / (AVxX, V(xaRag9))aRag dfi
+2 /(AVX, VX)(aRag)? dfi — o /(aﬁag —9)x*aR.gdi

- /<B,V(X04Ra9)>xa§agdﬁ-

Estimates for A°(yaR.g, xaR.g), uniform in a:
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Since a(g — aR.g)(h — g) = —a(ht — aR,g)h™ > 0 Ti-a.e. we obtain that
—a / (aRag — 9)(aRag)x* dii = —c / (aRag — 9)gx* di
—a / (aRag — 9)*x*dp
(4.3) < —a / (aRag — 9)hx* dfi — / (aRag — 9)°X* dp
= lim —a /(aﬁafn — fu)hx? di — a/(aﬁag —9)*X*dn

= lim — / Lz(ozﬁoéfn)hx2 di — a/(aﬁag —9)*x*dn

= lim —/LZ(XQQEan)h dﬂ+4/<AVX, VaR,fr)xhdi
+ [ LA aRafhdn—a [(aRug - 9 dn
Observe that LA(x2aRsfn) = (Lag+0)(x*aRafn) — (B,V(x?aRufs)), so that

- / LA (CaBaf)h dii = / (L +0)(CaRafo)hdi
(1.4) n / (B, V(x*aRafu))h di

< —ao/XQ(aRafn)hdﬂ—l—/(B,V(x%zﬁafn»hdﬁ.

Inserting (4.4) into (4.3) and using g = h™ Ti-a.e. we obtain that
—a / (aRag — g)(aRag)x* di
< Jim ~aq [ (aRafi)hdu+ [(B.V(CaRaf)hdn
/(AVX, VaR,fr)xhdi+ / x>)aRy fr hdfi

(4.5) - a/(aﬁag — M2 di

——ao [ ¥ (aRaghdi+ [(B.V(PaFag)hdn

4 / (AVx, V(xaRag))hdpi — 4 / (AVx, Vx)(aRag)hdn
+ /LZ(XQ)aRaghdﬁ - a/(aﬁag — RN dE .

Combining (4.2) and (4.5) we obtain that

A’(xaRag, xaRag) +a / (aRag — h)*x*dfi < ¢ A°(xaRag, xaRag)'/? + M
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for positive constants ¢ and M independent of «. Hence (xaRa9)a>0 is boun-
ded in V and limg—co xaRag = xh* in L?(R%, 7). Consequently, xh™ € V and
limy o0 XaRag = YhT weakly in V.

Verification of (1.14):

Combining (4.2) and (4.5) and taking the limit & — oo we obtain
A°(xh™ xh™) < liminf A°(xaRag, xaRag)
< lim inf — / XL x(aRag)? dp — 2 / (AVx, V(xaRag))oRag df
(4.6) +2 /(AVX, Vx)(aRag)? dii — o / X*(aRag)hdii
+ [(B.V(CaRag)hdn+ 4 [ (AVx. V(xaFag)hdn
—4 / (AVX, Vx)(aRag)hdfi + / LA(x*)(aRag)h dii

- / (B,V(xaRag))xaRag dii
and the right hand side of (4.6) is equal to
- / LA (hH)2 dp — 2 / (AVx, V(xh )Wt dr
+2 [(AVx V() di - ao [ (") dn
+ [ B VO ) hdn 4 [(ATx V()b
4 [V T+ [ A0 d
— [(B.Vea i an
=— /)(2(h+)2 di + 2/(AVX, V(xh"))ht di
+ B an+ [ d.
Hence
At ) g [P0 A< [ AV V() dn

+ [ (5 — BV P+ [ oo dn . O
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