ON THE PROP CORRESPONDING TO BIALGEBRAS
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1 Introduction

It is well-known that there exists a PROP whose category of models
in the tensor category of vector spaces is equivalent to the category
of bialgebras (= associative and coassociative bialgebras). In [10]
there is a description of this PROP in terms of generators and rela-
tions. Here we give a more explicit construction of the same object.
Our construction uses the Quillen’s Q-construction for double cat-
egories given in [4].

The paper is organized as follows: In Section 2 we recall the
definition of PROP and show how to obtain commutative algebras
as models over F. Here F is the PROP of finite sets. In the next
section we construct the PROP of noncommutative sets denoted by
F(as). The models of F(as) are associative algebras. In Section 4
we generalize the notion of Mackey functor for double categories and
in Section 5 we describe our hero QF(as), which is the PROP, whose
models are bialgebras. By definition of PROP the category QF (as)
encodes the natural transformations H®" — H®™ and relations
between them. Here H runs over all bialgebras. As a sample we
give the following application. For any bialgebra H, any natural
number n € N and any permutation o € G,,, we let

v H - H

be the composition y" o o, 0 A" : H — H, where A" : H — H®"
is the (n — 1)-th iteration of the comultiplication A : H — H ® H,
oy : HO" — H®" is induced by the permutation o, that is

U*($1®®$n):$01®®xo_n

and p" : H®" — H is the (n — 1)-th iteration of the multiplication
w: H® H — H. Moreover let ® : 6, x 6,, — &,,, be the
map constructed in Proposition 5.3. Then it is a consequence of



our discussion in Section 5, that for any permutations o € &,, and
7 € G,, one has the equality

lIl(n,a) o ,I;(m,T) _ \Ij(nm,@(cr,”r)).

Let us note that if o is the identity, then W is nothing but the
Adams operation [8] and hence our formula gives the rule for the
composition of Adams operations.

2 Preliminaries on PROP’s

Recall that a symmetric monoidal category is a category S with a
unit 0 € S and a bifunctor

O0:8SxS—S
together with natural isomorphisms
axy,z: XD(YDZ) — (XDY)DZ,

Ix : X00 — X,rx : 00X — X,cxy : XOV — YOX

satisfying some coherent conditions (see [5]). If in addition axy z,
lx, rx are identity morphism then, S is called a permutative cate-
gory. If S and S are symmetric monoidal categories, then a functor
M : S — Sy is a monoidal functor if there exist isomorphisms

uxy : M(X)OM(Y) — M(XOY)

satisfying the usual associativity and unit coherence conditions (see
[5]). A monoidal functor is called strict if uxy is identity for all
X,Y € S. According to [5] a PROP is a permutative category
(A, 0O), with the following property: A has a set of objects equal to
the set of natural numbers and on objects the bifunctor O is given
by mOn = m + n. A model of A is a strict monoidal functor from
A to the tensor category Vect of vector spaces over a field k.

Examples. 1) Let F be the category of finite sets. For any n > 0,
we let n be the set {1,...,n}. Hence 0 is the empty set. We assume
that the objects of F are the sets n, n > 0. The disjoint union
makes the category F a PROP. It is well-known that the category



of models of F is equivalent to the category of commutative and
associative algebras with unit. Indeed, if A is such an algebra, then
the functor £.(A) : F — Vect is a model. Here the functor £, (A)
is given by
L.(A)(n) = A®™.
For any map f : n — m, the action of f on £,(A) is given by
f*(a1®---®an) =01 R R by,

where
bj = H Qa;, ]:1,,’n
f)=j
Conversely, assume T is a model of 7. We let A be the value of T
on 1. The unique map 2 — 1 yields a homomorphism

p:A®AXT2) —T(1) = A

On the other hand the unique map 0 — 1 yields a homomorphism
n:k=T(0) — T() = A. The pair (u,n) defines on A a structure
of commutative and associative algebra with unit. One can use the
fact that T is strict monoidal to prove that T'= L, (A).

2) Let us note that the opposite of a PROP is still a PROP with the
same 0. Hence the disjoint union yields also a structure of PROP
on F°P. The category of models of F°P is equivalent to the category
of cocommutative and coassociative coalgebras with counit. For any
such coalgebra C we let £*(C') : F°P — Vect be the corresponding
model. On objects we still have £*(C)(n) = C*".

3) We let €2 be the subcategory of F, which has the same objects
as F, but morphisms are surjections. Clearly Q is a subPROP of F
and the models of Q are (nonunital) commutative algebras.

4) We let Mon be the category of finitely generated free monoids,
which is a PROP with respect to coproduct. Similarly the category
Abmon of finitely generated free abelian monoids, the category
AbD of finitely generated free abelian groups and the category Gr of
finitely generated free groups are PROP’s with respect to coprod-
ucts. For the category of models of these PROP’s see Theorem 5.2
and Remark 1 at the end of the paper.

In the next section we give a noncommutative generalization of
Examples 1)-3).



3 Noncommutative sets

We introduce the PROP F(as) whose models are associative al-
gebras with unit. Objects of F(as) are finite sets. So Ob(F) =
Ob(F(as)). A morphism from n to m is a map f : n — m together
with a total ordering on f~!(j) for all j € m. By abuse of notation
we will denote morphisms in F(as) by f, g etc. Moreover sometimes
we write | f | for the underlying map of f € F(as). We will also say
that f is a noncommutative lifting of a map | f |. In order to define
the composition in F(as) we recall the definition of ordered union of
ordered sets. Assume A is a totally ordered set and for each A € A
a totally ordered set X is given. Then X = [] X is the disjoint
union of the sets X, which is ordered as follows. If x € X, and
ye Xy, thenz <yin X iff A\<porA=pandz<yin X,.

If f € Homg(as)(n,m) and g € Homz(,g) (m, k), then the com-
posite gf is | g || f | as a map, while the total ordering in (gf)~!(i),
i € k is given by the identification

@hHt@ =11 £ 0.

Jj€gL(4)

Clearly one has the forgetful functor F(as) — F. A morphism
f in F(as) is called a surjection if the map | f | is a surjection. An
elementary surjection is a surjection f : n — m for which n—m < 1.

Remark. The category F(as) is isomorphic to the category AS
considered in [7], [4].

Since any injective map has the unique noncommutative lift-
ing, we see that the disjoint union, which defines the symmetric
monoidal category structure in F has the unique lifting in F(as).
Hence F(as) is a PROP.

We claim that the category of models of F(as) is equivalent to
the category of associative algebras with unit. The only point here is
the following. Let us denote by er 7 ; the product of the elements
x; € A where [ is a finite totally ordered set and the ordering in
the product follows to the ordering I. Here A is an associative
algebra. Now we have a model X,(A) : F(as) — Vect. Here the
functor X, (A) is given by the same rule as £.(A) in the previous
section, but to take []< in the definition of bj. For example, if

f:4— 3isgiven by f(1) = f(2) = f(4) = 3, f(3) = 1 and the



total ordering in f~1(3) is 2 < 4 < 1 then f, : A®* — A®3 ig
nothing but a1 ® as ® az @ ag — a3 ® 1 ® asasaq.

We let Q(as) be the subcategory of F(as), which has the same
objects as F(as), but morphisms are surjections. Clearly Q(as) is
subPROP of F(as) and the models of 2(as) are (nonunital) asso-
ciative algebras.

Quite similarly, for any coassociative coalgebra C' with counit
one has a model X*(C) : F(as)” — Vect with X*(C)(n) = C®"
and the category of models of F(as)” is equivalent to the category
of coassociative coalgebras with counit.

In order to put bialgebras in the picture we need the language
of Mackey functors.

4 On double categories and Mackey functors

Let us recall that a double category consists of objects, a set of
horizontal morphisms, a set of vertical morphisms and a set of bi-
morphisms satisfying natural conditions (see [4]). If D is a double
category, we let D" (resp. DV) be the category of objects and hor-
izontal (resp. vertical) morphisms of D.

A Janus functor M from a double category D to Vect is the
following data

i) a covariant functor M, : D" — Vect
ii) a contravariant functor M, : (DV)? — Vect

such that for each object S € D one has M,(S) = M*(S) = M(S).
A Mackey functor M = (M,, M*) from a double category D to Vect
is a Janus functor M from a double category D to Vect such that
for each bimorphism in D

U N IS
o= L ¢ o |
T J, 1%

the following equality holds:

M* ()M (f) = Mi(f1) M (¢1)



Examples 1) Let C be a category with pullbacks. Then one has
a double category whose objects are the same as C. Moreover
Mor? = Mor" = Mor(C), while bimorphisms are pullback dia-
grams in C. In this case the notion of Mackey functors corresponds
to pre-Mackey functors from [3]. By abuse of notation we will still
denote this double category by C. In what follows F is equipped
with this double category structure.

2) Now we consider a double category, whose objects are still finite
sets, but Mor? = Mor" = Mor(F(as)), where F(as) was intro-
duced in Section 3. By definition a bimorphism is a diagram in

F(as)

U N, S
o= L ¢ o |
T AN 1%

such that the following holds:
i) the image | a | of o in F is a pullback diagram of sets,

ii) for all z € T the induced map f, : ¢7'(z) — ¢~ '(fz) is an
isomorphism of ordered sets

iii) for all y € S the induced map ¢, : fl_l(y) — f(¢1y) is an
isomorphism of ordered sets.

By abuse of notation we will denote this double category by
F(as). Let us note that for a bimorhism a in F(as) in general
p1of # fro0.

One observes that for any arrows f : T — V, ¢ : § — V in
F(as) there exists a bimorphism « which has f and ¢ as edges
and it is unique up to natural isomorphism. Indeed, as a set we
take U to be the pullback and then we lift set maps f; and ¢ in
the noncommutative world according to the properties ii) and iii).
Clearly such lifting exists and it is unique.

3) We can also consider the double category F(as),; whose objects
are still finite sets, vertical arrows are set maps, while horizontal
ones are morphisms from F(as). The bimorphisms are diagrams
similar to the diagrams in Example 2) but such that ¢ and ¢; are
set maps, while f and f; are morphisms from F(as). Furthermore



the conditions i) and iii) from the previous example hold. We need
also a double category F(as), which is defined similarly, but now
vertical arrows are morphisms from F(as) and horizontal ones are
set maps.

We have a following diagram of double categories, where arrows
are forgetful functors

F(as),

F(as) F. (4.0)

N /
F(as),

Let D be one of the double categories considered in (4.0). A bi-
morphism « is called elementary if both f and ¢ are elementary
surjections. The following Lemma for D = F was proved in [1].
The proof in other cases is quite similar and hence we omit it.

Lemma 4.1 Let D be one of the double categories considered in
(4.0). Then a Janus functor M is a Mackey functor iff the following
two conditions hold

i) for any injection g : A — B one has M*(g)M.(g) = ida
i) for any elementary bimorphism « one has

Theorem 4.2 Let V' be a vector space, which is equipped simulta-

neously with the structure of associative algebra with unit and coas-

sociative coalgebra with counit. Then V' is a bialgebra iff
X(V)=(X(V),X*(V)) : F(as) — Vect

is a Mackey functor.

Proof. One observes that the condition 1) of the previous lemma



always holds. On the other hand the diagram

4 2, 2
a= I ¢ Fol
2 !

is a bimorphism. Here f~}(1) = {1 < 2}, p~1(1) = {1 < 2},
p~H2) ={3<4}, ¢ (1) = {1 < 3} and ¢~ }(2) = {2 < 4}. Clearly
fe : V2 — V is the multiplication z on V and f* : V — V®? is
the comultiplication A on V, while p, = (£ ® p) o 723 and ¢* =
T930A® A, where 93 : V¥4 — V& permutes the second and the
third coordinates. Hence V is a bialgebra iff the condition ii) of
the previous lemma holds for «. Since both X.(V') and X*(V') send
disjoint union to tensor product the result follows from Lemma, 4.1.

Addendum. For a cocommutative bialgebra C' the Mackey functor
X (C) factors through the double category F(as),, for a commuta-
tive bialgebra A the Mackey functor X'(A) factors through F(as),
and in the case of commutative and cocommutative bialgebra H
one has the Mackey functor L(H) : F — Vect.

5 The construction of QF(as)

Let D be one of the double categories considered in Examples 1)-3).
Clearly categories DV and D" have the same class of isomorphisms,
which we call isomorphisms of D. We let QD be the category
whose objects are finite sets, while the morphisms from 7" to S are
equivalence classes of diagrams:

U N IS
l o
T

Here f € D" is a horizontal morphism and ¢ € DV is a vertical

morphism. For simplicity such data will be denoted by T h U 7,



S. Two diagrams T’ £> U iR S and T ﬁ Uy iR S are equivalent
if there exists a commutative diagram

r & U L

I hl I

o1 f1
s

T << Ui S

such that h is an isomorphism. The composition of T’ ﬁ> U iR S

and S ﬁ’ V2. Rin 9D is by definition T’ M w g—fl> R, where

W A, 1%
AT} v
U N S

is a bimorphism in D. One easily checks that QD is a category and

for any object S the diagram S & S 15 Sis an identity morphism
in OD.

Clearly the disjoint union yields a structure of PROP on @D and
0 is not only a unit object with respect to this monoidal structure,
but also a zero object.

For a horizontal morphism f : S — T in D we let i,.(f) : S — T
be the following morphism in QD:

s&s fop

Similarly, for a vertical morphism ¢ : S — T we let i*(f) : T — S
be the following morphism in QD:

Tl gls,
In this way one obtains the morphisms of PROP’s: i, : D — QD
and 7* : D? — OD.

Remark. The construction of @D is a particular case of the
generalized Quillen’s Q-constuction [11] considered by Fiedorowicz
and Loday in [4]. The following lemma is a variant of a result of

[6].



Lemma 5.1 The category of Mackey functors from D to Vect is
equivalent to the category of functors M : QD — Vect.

Proof. Let M : QD — Vect be a functor. For any arrow
[ oS — T we put M(f) = M(i.(f)) and M*(f) := M(&*(f)).
In this way we get a Mackey functor on D. Conversely, if M is a
Mackey functor on D, then we put

M(S L v LTy = M (F)MH(g).

One easily shows that in this way we get a covariant functor @D to
Vect and the proof is finished.

By applying the Q-construction to the diagram (4.0) one obtains
the following (noncommutative) diagram of PROP’s:

Q(F(as),)

Q(F(as)) Q(F)

N\ /
Q(F(as),)

The following theorem gives the identification of the terms involved
in the diagram, except for Q((F(as))).

Theorem 5.2 i) The category of models of Q(F(as)) is equivalent
to the category of bialgebras.

it) The category of models of Q(F(as),) is equivalent to the cat-
egory of cocommutative bialgebras and Q(F(as),) is isomorphic to
the PROP Mon®".

iii) The category of models of Q(F(as),) is equivalent to the
category of commutative bialgebras and Q(F(as),) is isomorphic to
the PROP Mon.

iv) The category of models of Q(F) is equivalent to the category
of cocommutative and commutative bialgebras and Q(F) is isomor-

phic to the PROP Abmon.
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Proof. Theorem 4.2 together with Lemma 5.1 shows that any
bialgebra V' gives rise to the model X' (V') of Q(F(as)). Conversely
assume M is a model of Q(F(as)) and let V' = M(1). Then
M o i, and M o4* are models of F(as) and F(as)”. Thus M
carries natural structures of associative algebra and coassociative
coalgebra. Since M = (M o i,, M o i*) is a Mackey functor on
F(as), it follows from Theorem 4.2 that V is indeed a bialgebra.
To prove the remaining parts of the theorem, let us observe that
(Q(F(as),))? = Q(F(as),), where equivalence is identity on ob-

jects and sends T £> U 7, S to S i> U L, We now show

that Q(F(as),) = Mon. The main observation here is the fact that
if f: X — S1[[S2 is a morphism in F(as) then f = fi[[ f2 in
the category F(as), where f; as a map is the restriction of f on
F71(S:),i = 1,2. Since f; }(y) = f~1(y) for all y € f~1(S;) we can
take the same total ordering in f; '(y) to turn f; into a morphism
in F(as). A conclusion of this observation is the fact that disjoint
union defines not only a symmetric monoidal category structure but
it is the coproduct in Q(F(as),). Clearly n is an n-fold coproduct
of 1. On the other hand, we may assume that the objects of Mon
are natural numbers, while the set of morphisms from k to n is
the same as Homy,oneigs(Ek, Frn), where F), is the free monoid on
n generators. This set can be identified with the set of k-tuples
of words on n variables z1,---,z,. Since Q(F(as),) and Mon are
categories with finite coproducts and any object in both categories
is a coproduct of some copies of 1, we need only to identify the set
of morphisms originating from 1. A morphism 1 — n in Q(F(as),)

is a diagram 1 £> U N n, where ¢ is a map of noncommutative
sets. We can associate to this morphism a word w of length m on
n variables z1,- -+, z,. Here m = Card(U) and the i-th place of w
is 2 4(,,), where U = {y1 < --+ < yp,}. In this way one sees immedi-
ately that this correspondence defines the equivalence of categories
Q(F(as)2) = Mon. We refer the reader to [1] for the fact that
Q(F) is equivalent to Abmon. Argument in this case is even sim-
pler than the previous one and can be sketched as follows. Since the
PROP Q(F) is isomorphic to its opposite disjoint union yields not
only the coproduct in Q(F) but also the product. Next, morphisms
1 — 1in Q(F) are diagrams of maps 1 < U — 1, whose equivalence
class is completely determined by the cardinality of U. This gives

11



identification of morphisms from 1 — 1 with natural numbers and
the proof is done.
Thus the above diagram of PROP’s is equivalent to the diagram

Mon®?

Q(F(as)) Abmon

N /!
Mon

Here Mon — Abmon is given by abelization functor. Let us
note that Q(F(as)) and Abmon are self dual PROP’s, and the
arrows are surjection on morphisms. If one looks at endomor-
phisms of 1 we see that the endomorphism monoid Endg(1) for C =
Mon®?, Mon, Abmon is isomorphic to the multiplicative monoid
of natural numbers. This corresponds to the fact that the opera-
tions W(™?) from the introduction for commutative or cocommuta-
tive bialgebras are independent of o and W™ o W™ = ¥™™ [§].

The following proposition describes the endomorphism monoid
Endc(1) for C = Q(F(as)).

Let n € N be a natural number and let ¢ € G,, be a permu-
tation. Here &,, is the group of permutations on n letters. We let
[¢] be the morphism n — 1 in F(as) corresponding to the ordering
o(l) < o(2) < -+ < o(n). For example [id,]|, or simply [id] de-
notes the morphism n — 1 in F(as) corresponding to the ordering

1 <2< ---<n. Moreover we let (n,o) : 1 — 1 be the morphism

in Q(F(as)) corresponding to the diagram 1 i n Ld

Proposition 5.3 The monoid of endomorphisms of 1 € Q(F(as))
is isomorphic to the monoid of pairs (n,o), where o € &, and
n € N, with the following multiplication

(n,o) o (m,7) = (nm,®(c,1)).

Here
®:6,x6,,— G

12



is a map, which is defined by
®(o,7)(x) = 7(¢+1) +m(o(g) 1), 1<z <nm,

wherec=pn+q, 1 <g<nand0<p<m-—1.

Proof. A morphism 1 — 1 in Q(F(as)) is a diagram 1 Ly L,
1, where ¢ and f are morphisms of noncommutative sets. Hence U
has two total orderings corresponding to ¢ and f. We will identify U
to n, via ordering corresponding to f. Here n is the cardinality of U.
We denote the first (resp. the second, ---) element in the ordering
corresponding to ¢ by o(1) (resp. o(2),--- ). In this way we get
a permutation o € &,,. Thus any morphism 1 — 1 in Q(F(as))
is of the form (n,0). In order to identify the composition law it is

enough to note the following two facts:
i) The diagram

f
nm - n
gl | [o]
m Lid), 1

is a bimorphism in Q(F(as)). Here f and g are given by
F7H0) = {1+ (@G-Dm < 2+(j-)m < --- < (m=1)+(j—1)m < jm},

g @) = {i+(c(1)=1)m < i+ (c(2)=1)m < --- < i+ (o(n)—1)m},

fori € m and j € n.
ii) One has [®(o,7)] = [7] 0 g and [id,,] o f = [idpm).

Remarks 1) It is well known that the PROP corresponding to
cocommutative Hopf algebras is Gr (see next remark), the PROP
corresponding to commutative Hopf algebras is Gr, while the PROP
corresponding to commutative and cocommutative Hopf algebras
is Ab. Of course the category of Hopf algebras are also models
over some PROP, which can be easily described via generators and
relations [10]. An explicit description of this particular PROP will
be the subject of the forthcoming paper.

13



2) Any cocommutative Hopf algebra A gives rise to the functor
X(A) : Gr”?” — Vect which takes < n > to A®™. Here < n > is a
free group on xy,- -, z, and X(A) is defined as follows. Since ® is a
product in the category Coalg of cocommutative coalgebras, A is a
group object in this category. On the other hand any group object
in any category A with finite products gives rise to the model in A of
the algebraic theory of groups in the sense of Lawvere [12]. But the
algebraic theory of groups is nothing but Gr°” and hence we have
the functor X(A) : Gr”? — Coalg, which assigns A®™ to < n >.
Moreover it assigns g to the morphism < 1 > — < 2 > given
by x1 +— x1z9. Similarly X(A) assigns A to the homomorphism
< 2> —>< 1> given by x1,z9 — x1. Of course it assigns the
antipode S : A — A to z; — x7'. Having these facts in mind one
easily describes the action of X'(A) on more complicate morphisms.
For example one checks that X'(A) assigns

(e, ) © (@, id, p,id) o (S,id gea) 0 T2 3 0 (id g3, A, id) o (A, A, id)

to the morphism < 2 > — < 3 > corresponding to the pair of words
($f1x2x1,x%x3). Here 3 permutes the second and third coordi-
nates. Conversely any linear map A®" — A®™ constructed using
the structural data of a cocommutative Hopf algebra A is comming
in this way. Hence to check whether a complicated diagram involv-
ing such maps commutes it is enough to look to the corresponding
diagram in Gr, which is usualy simpler to handle.

3) It is well known that the morphism n — m in Abmon can
be identified with (m x n)-matrices over natural numbers. Un-
der this identification the equivalence Q(F) = Abmon is given
by assigning the matrix whose (i, j)-component is the cardinal-
ity of f7Y(j))Ng~'(G), 1 <i < m, 1 < j < n to the diagram

n <L X %5 m. 1t is less known that the morphisms n — m in
Mon can be described via shuffles. In order to explain this con-
nection let us start with particular case. Consider a word z2yxy3z?
of bidegree (5,4). It defines a morphism 1 — 2 in Mon. One
associates a (5,4)-shuffle (1,2,4,8,9,3,5,6,7) to this word, whose
first five values are just the numbers of places where x lies. Sim-
ilarly morphisms n — m in Mon are in 1-1-correspondence with
collections {A = (a;j), (@1, -+, ¢n)}, where A is an (m x n)-matrix
over natural numbers and ¢; is a (a;1, - -, @iy )-shuffle, i = 1,--- . n.

14



The functor Mon — Abmon corresponds to forgetting the shuf-
fles. Now combine this observation with Proposition 5.3 to get
the description of morphisms n — m in Q(F(as)) as collections
{A = (cij), (1, -+, ¢n)}, where o = (a;j,04;) and a;; is a natu-
ral number, while o;; € 6%. is a permutation and finally ¢; is a
(@i1, -+, i )-shuffle.

4) In the recent preprint [2] the authors defined the action of Gy 41
on A®* for any commutative or cocommutative Hopf algebra A.
Actually they implicitly constructed the group homomorphism

&k - Gpp1 — Gy,

where &, is the automorphism group of < k& >. Then the action
of z € Sp,1 on A®F is obtained by applying the functor X' (A) to
k(). The homomorphism & is given by

oi1(z1) = 331_1, o1(x2) = 12, 01(T58) = T4y T > 2

oi(zic1) = zim1my, 0i(x;) = 271, 0i(@iv1) = wiwiv1, oi(x;) = ),

forl<i<k, j#i—1,i,i+1 and
op(Tr—1) = Tp_12k, ok(TK) = x,:l, op(zj) =x;if j <n—1.
Here o; € Gy is the transposition (¢,i + 1), 1 <7 < k.
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