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Abstract

Let E be the loop space over a compact connected Riemannian manifold
with a torsion skew symmetric (TSS) connection. Let L be the Ornstein-
Uhlenback operator on the loop space E, and f be a cylinder function on
E. We first extend the expression of Lf, proved by O.Enchev and D.W.
Stroock for the Levi-Civita connection, to a general T'SS connection, and then
prove that f € D(L) and ¢|Lf|? is exponential integrable for some constant
e:=¢(f)>0.

1 Introduction

Let M be an n-dimensional connected compact Riemannian manifold with a torsion
skew symmetric (TSS for short) connection V (for the definition see [Dr94]), and
let E be defined by

E={weC(0,1; M) : w(0) = zp,w(l) = yo}

for fixed xg, 0 € M. FE is the so called loop space over M when ¢ = yo.

A function f on FE is called as a smooth cylinder function if there exist a function
F € C®°(M™) and a partition 0 < ¢t; < --- < t, < 1 of [0,1] such that f(w) =
F(w(ty), - ,w(ty)) for any w € E. We denote the set of all smooth cylinder
functions on E by FC*®(E).

Pinned Wiener measure ( i.e. Brownian bridge measure) p on F is the unique
Borel probability measure on £ such that, the coordinate process (v;) on E is the
Brownian bridge process. Let (F;)o<i<1 be the corresponding p-completed natural
filtration corresponding to it. Moreover, for a given orthonormal frame ug at xg € M
there exists a unique stochastic horizontal lift (U;) of (y:) determined by the TSS
connection V satisfying Uy = ug (see [Dr94]). For convenience, we consider an
orthonormal frame U at x € M as an isomorphism from R" to T, M. If we denote



the bundle of orthonomal frames over M by O(M), then (U;) is an O(M)-valued
process. We identify 7, M and R™ via uy and set

Hyi= {h € CO. R : [hlfy, — [ [0t < o0,h(0) = k(1) = 0}

Then we can define a closed densely defined operator Vg from L?(E, u) to L*(E —
Hy; p) with FC*°(F) as its core, which is considered as a natural gradient operator
on £ with domain D(Vy)(see [Dr94]). In particular, for f € FC>®(E) with f(w) =
F(w(ty), -+ ,w(t,)) we have

m

(Vof()(®) =D (min(ti,t) — t) Vi) F(y. -+ ) (1.1)

i=1

where VW F denotes the gradient of F with respect to the i-th variable, Vg)F
denotes the unique element in R such that (a, Vg)F JRn = Vg)aF for any @ € R"
and U € O(M). It follows from (1.1) that |[Vof]|m, € L®(n) (Vf € FC>(E)).

Let the Dirichlet form (£, D(€)) in L*(u) be defined as follows: D(€) = D(Vy),

E(f,9) = /E<Vof, Vog) modp (1.2)

for any f,g € D(E), and denote the generator of (£, D(€)) by L. L is the so called
O-U operator on loop space E. Obviously, FC*®(E) C D() is the core of (£, D(E)).
In this paper we prove that for f € FC*(E) we have f € D(L) and

/Eexp{6|Lf|2}du < 00 (1.3)

for some constant ¢ := e(f) > 0. To this end, we extend the expression of Lf, proved
by O. Enchev and D.W. Stroock in [ES96] for V being the Levi-Civita connection
on M, to the case of a general TSS connection V on M. The result (1.3) is needed
in Remark 3.2 of [GRWO00] to show that f is in the domain of the so called ground
state transform of a Schrodinger operator on E.

The organization of this paper is as follows:

In Section 2 we introduce some notations and describe the main result in more
detail.

In Section 3 we prove the main result of this paper.

2 Notations and the main result

In this section we introduce some notations and describe the main result of this
paper.

Let f € FC*(E) be the form f(w) = F(w(t1),--- ,w(ty)) with F' € C®(M™).
By one of the results in [GMR99] we know that for any h € Hy we have O, f :=



(Vof,h)m, € D(E) and

82f(h,u)( ) == (Vo(Onf), >

Z {vUt ut, (J) tjhe; F}}(7t17"' 7’th)
1<i,j<m (2.1)

+ Z <@tk (U) (V)Vgi)kF(FYtla e 7’-)/tm)7 htk>R"
for any u € Hy and p-a.s. v € E, where

t
By(u)(y) = / Q. (1,008, + Vo, og pr_s -+ yo)ds)
0

for any ¢ € [0,1] and u € Hy. In the above, Qy(a,b)c := U™ Rya(z)Ue, for any
a,b,c € R" and U € 77 (z) C O(M) with & € M, Ry, pp(x) : T,M — T, M is the
the curvature operator of the T'SS connection V on M, () is the martingale part
of ( fo ~t odys), and ody, stands for the Stratonovich differential of 7,. In fact,
(By) is a R” -valued Brownian motion. Note that, as a mapping Qy(a,b) : R* — R”
it is skew symmetric, i.e.

(Qu(a,b)c,d)pn = —(c, Qu(a,b)d)gn

for any a,b,c,d € R™, and we can consider (U,a,b) — Qy(a,b) as a o(n)-valued
mapping, where o(n) denotes the Lie algebra consisting of skew symmetric n x n
matrices. Hence, t — ®,(u)(7y) is an o(n)-valued continuous function on [0, 1] for
p-a.s. vy € FE.

Let Ric be the Ricci curvature of the connection V, and p,(z, y) be the heat kernel
of 2A where A is the Levi-Civita Laplacian on M. For any U € 7 (z) C O(M)
with z € M we define Ricy and VZ logpi_¢(-,40), (0 <t < 1) by setting

Ricy == U Ric(z)U

and
Vi logpi—i(-,y0) = U V2 log py_+(, yo)U,

where we consider Ric(z) and VZlogp;_¢(z,yo) as maps from T, M to itself.
Again, by one of the results in [GMR99] the following integration by parts for-
mula holds: for any f € D(V,)

[ Fof V)=~ [ pdiva () (2.2)
E E
where for any 0 < T <1
T . 1
divyp(Y) := —/ (Y: + {QRZ'C& - V?Jt log p1—¢(+, %0)" } i, dB¢)rr, (2.3)
0
and we denote the transposition of a matrix A by A*.
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On the one hand, observed that by (1.1) Vo f is not only a Hy-valued random
variable but also a W-valued random variable, where W denotes the dual space
of the flat loop space Wy := {w € C([0,1];R") : w(0) = w(1) = 0}. Let M(R") :=
M([0,1]; R™) denote the space of totally finite, R"-valued Borel measure on [0, 1].
For the simplicity of notation we use (-, A) to denote the integral with respect to the

measure A € M(RR™). One can establish an one-to-one mapping from M(R") into
Hy as follows: A : XA € M(R") — h* € Hy, and

h) = AN, == / (min(t, s) — ts)\(ds)

[0,1]

for any t € [0, 1]. It follows from above that (h, hy)y, = (h, A) for any h € Hy. Fol-

lowing the idea of [ES96] we define V(‘f/ Sf:E— M(R™) by the following equation:
for any ¢ € [0, 1]

Vol (V) = /[ mintt.8) = 19193 7)),

ie. VXVJf = A"'Vyf. Tt follows from (1.1) that

v0 0 f Z vUt ’7t17 e a%m)%a (24)

1<i<m

where ; denotes the Draic measure on [0, 1] at the point ¢ € [0,1]. Obviously,
Vo f() ([H52,1]) = 0(Vp — a.sy € E).

On the other hand, observed that there are two terms in (2.1). The first term
concerns with the second order derivative of F', and the second term conerns the
first order derivative of I associated with an action of an o(n)-valed random variable
which is independent on F. Also following the idea of [ES96] we define V3§, f :
EF — Hy® Hy by

(V3o f (V) h@u), = Qhyu)(7)
Z vUt ut, {V ht F}(’ytu T a7tm)

1<4,5<m

for any h,u € Hy. Since there exists a constant C' := C(F') € (0,00) such that for
pas. yeE
1Q(R, w)(V)] < CllR| o[l 125,

the above definition is well-defined. We can also define Try, V3, f : E — R by
TTHOV(Q);HO Z <VO HO h ® h >H ®HO

where {h,} is any ONB of H,. According to the above definition we obtain that for
p-a.s. yeE

Vo (Mes = D (min(t.t;) — tt)(min(s,t;) = st;) Vi, {VE) F} s+ Vo)

1<i,j<m



where vgf{vng } € R" ® R™ denotes the unique element in R” @ R™ such that

<a ® b, vgf{vg,jF}> =V AVELFY

RP @R

for any a,b € R™ and Uy, Uy € O(M). Moreover, for p-a.s. v € E we have

TrigVan /() = D (minlti t;) = tt;)VE AVE FYOu. -+ ). (25)

1<ij<m

By (2.5) we know that 77y, V5. f € L>(p). By (2.1) we have for p-as. v € E

—(@h, Vo (1)) = D (o () Vi) F(hse++ Ve hag)en,

1<k<m

and hence

W*
O*f(hu)(v) = (Vau, S (V) h@u) o — (@) (1), Vo f(7)).  (2.6)
The following is the main result of this paper:

Theorem 2.1. Let us define U : [0,1] x E — C([0,1};R") by

UT), = B — 81 — Ry + R(T),

t 1 (2.7)
+/ s(1 — t){Ricy,Vuy,logp1—s(-, yo) — EVUSH}dS
0
for any t,T € [0, 1], where
Ky 1= Z Ve, Ricyer, (VU € O(M)),
1<k<n
{ex : 1 <k <n}is an ONB of R,
t
R, = / s(1 — t)Ricy, dfs,
0
and
R ro L 2
R(T); == / (min(t,s) — ts){ngcUs — Vi, log pi—s(-, yo) }dBs,
0
for any t, T € [0,1]. Then for any f € FC®(FE) we have:
(i): fe€D(L), and
Lf =Tru,Vig,f — U1), V5" f). (2.8)
(ii): There exists a constant ¢ := e(f) > 0 such that
/ exp{e|Lf|*}dp < oo. (2.9)
E



Moreover,

maziepy UL € [ LP(w). (2.10)

1<p<oo

(iii): If we set: for any 0 <t <1

t
b(t) == B +/ Vv, logpi—s(-, yo)ds,
0

then for any t € [0, 1]

U(1); =b(t) — tb(1) + % /l(min(t, s) — st)Ricy,db(s) — R:
. 0 . (2.11)
—i—/o s(1 —t){RicVy, logpr (-, yo) — émUs}ds.

Hence, for the compact Lie group M = G with the right Cartan connnection, we
know that Ric =0 and

U1), = b(t) — th(1), (2.12)

for any t € [0,1]. In particular, we can write the L. Gross’s Schrddinger operator

on FC®(E) as
—Try V2 g, + (0(-) — -b(1), Vo O) + alb(1) 2, (2.13)

for any a > 0.

(iv): Let D be a nonempty connected component of E. By the facts that 1p €
D(Vy) and Volp = 0 we know that 1p € D(L) and L1p = 0. Hence, flp € D(L),
L(f1p) =1pLf. flp € D(Lp). Lp(flp) = (Lf)|p. and

[ explelLo o) dup < o0 (2.14)

for some € :=¢e(f) > 0.

3 The proof of Theorem 2.1

In this section we prove Theorem 2.1.
For convenience, we recall the following estimates which are proved in [Dr94],
[Sh91], and [St96] respectively:

max {|V10gp1—s(', yo)|2, [|[Hess 109p1—s(',y0)||H.s.}

o)’ 3.1
gc(lis+é(’_y8;2), sel0,1) (3.1)

and
E[d(vs, 90)*] < e(p)(1 = )P, s€[0,1), pel,00), (3.2)

where d(-, -) is the Riemannian distance on M.
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Proof. (of Theorem 2.1) We formulate the proof in two claims.

Claim 1: (2.8)-(2.9) and (iii) hold.

Proof of Claim 1: We prove Claim 1 by six steps. The proof of (2.8) with (2.7)
is a slight modification of that of Theorem 3.13 in [ES96].

Step 1. Let {ex}1<k<n be an ONB of R™. For any m N we set: for any t € [0, 1]

5
(1) - Y25in(mt)
mm
and for any m,k € N, 1 <k <n, and t € [0, 1]
V2sin(mmt)
ho(t) :=h )i = ——=
a(t) = hm (1) 2

where « := (m, k). Then
{ho ra=(mk),1 <m<oo,1<k<n}CW

is an ONB of Hy, and for any ¢, s € [0, 1]
> () hin(s) = min(t, s) — ts, (3.3)

where the convergence is absolute and uniform on [0, 1]2,
For any a = (m, k) and f € D(E) we set Oy f := Op, f and 02 f := 02 f(hy, hy)-
Now, for the fixed Fpr-measurable f,g € FC>(E) with 0 < T < 1 we have

~£(9) == [ ufongin (3.4)

Since 0, f € D(E) = D(Vy) and gO2:f = 0.,{g0uaf} — OafOng for any a, by (2.2)
with (2.3) and the fact f, g € Fr we get: for any «

—/ OnfOn0gdp = / gdivy(hy)O0afdu + / g2 fdu. (3.5)
E E E
Step 2: Using (2.6) and f,g € Fr we get: for any o and p-a.s. vy € E
83.][(7) - <v(2);H0f(7), h'a & ha>
o R XOR ARG
0,

Hence, by the fact that for any a and p-a.s. vy € E
9OV, (1) B @ ha)| < € < 0

we obtain that

> / 9o fdp = / 9T 11,V 1, f g
o JE E

. (3.6)
- /E 9(®(ha)ha, Vo © f)dp.



Step 3: Note that for any a € R" and U € O(M)

Ricya = Z Qu(a,er)er.

1<k<n

Hence, it follows from (3.1) and (3.2) that there exists a ' € F; with pu(E') =1
such that for any ¢ € [0,1] and vy € £’

S =4[ s = 045r, = Riew, Vo, o1 i)}ds}0)

= 3 {hnlt) [ () = Ricw, T o pu_o(c.u)}s} ).

m<oo

t €10,1] — S(v); is continuous, and

mazep|Sil € () L7(w). (3.7)

1<p<oo

Since for any N € N and t;,t, € [0, 1] we have

/E Ya(ty) — Y (ta)Pdu < Cylts — taf

for any p > 1, where
t
Yv(t) == ) hu(t) / hn(8) Ricy, dgs,
m<N 0

for any N € N and ¢t € [0,1]. Hence, by (3.3), the Burkholder-Davis-Gundy in-
equality, and the Kolmogorov’s continuity criterion, we know that there also exists
a B' e Fy with p(E') =1 such that for any ¢ € [0,1] and v € F’

S ()1 /0 hon(s) Ricu, dB,} ()

¢
= RO = { [ (1= ORiew.d3.) (),
0
t €10,1] — R(y): is continuous, and

mazicioq|Re| € ﬂ LP (). (3.8)

1<p<¢
By the definition of h,, (3.3), and the above facts, we obtain that for any ¢t € [0, 1]
- Z (I)t(ha)ha(t)

3.9)

t 1 ) (

= (SR)¢ =Ry +/ s(1— t){ﬁlst — Ricy,Vy, logpl—s('yyo)}d&
0



€ [0,1] — (SR); is continuous p-a.s. on F, and

mazepy| (SRl € () L7 (w). (3.10)

1<p<oo

Step 4: Recall that for any m € N and ¢, s € [0, 1]

/0 Pn () (' (8))d By = (—1)™ R () By + / Bssin(mrt)sin(mms)ds.

Hence, we obtain that

llmN_m/ Z . s5))dBs = By — 16

m<N

uniformly with respect to ¢t € [0,1] in LP(u), (V1 < p < 00), and

; /E 90a/{ /0 (e A5t = /E a{ /0 (G 18,9 (e

Note that
mamsE[O,T],mE]\l|v2 logpl—s(xv y0)| < o0.

Hence, again by using (3.3), the Burkholder-Davis-Gundy inequality, and the Kol-
mogorov’s continuity criterion we obtain that there exists a £’ € F; with u(E') =1
such that for any v € E’ and t € [0, 1]

> halo / (Re)sdB)en} (1)
— (RL)(T. ), = { / (min(t, s) — ts)(Rc)«dfs} (7).

€ [0,1] — (RL)(T,~); is continuous, and

mazieo | (RO € () I(1).

1<p<oo

where for any s € [0, 7]

L.
(Rc)s = iRZCUs - V?]s 10gp1—s('7 yO)

It follows from above facts that

— Z/Egdz'vT(ha)aafdu

§ (3.11)
_ /E ol / (B — tfy + (RL)(T):, Vo © f(dt))zn}.



Step 5: According to (3.4)-(3.6), (3.9), (3.11) and the fact that

VY (o) ([? 1]) 0, (4~ a5y € E)

we know that for any Fr-measurable functions f, g € FC®(FE) we have

E(f.g) = /E ATV | — WU(T). VY )y, (3.12)

In order to prove (2.8) with (2.7) we need to prove that for the fixed f € FC>®(F)
the following equation

E(f.g) = [E AT Vo — UL, 9 )} dp (3.13)
holds for any g € FC*(F), and
Trm V2 f — U1, VI f) € 12(u). (3.14)

By (2.4) we get that for any 0 < T < 1

U(T), Vo f) =3 U, Vi) Flen. (3.15)

i

Hence, by (2.7) and (3.15) we know that (3.13) holds.
Step 6: Let us define J; := Vi, logpi_s(-,v0). By Ito’s formula one can prove
that (or see [GMR99])

1
dJ, = Vi logpi—s(-,yo)dBs + ERicUs Jyds.

It follows from (3.1), (3.2), and the above formula that (2.11) holds. According to
(2.11) we get (2.12) and (2.13).

By (2.5), (2.11), (3.1), (3.2) and (3.15) we obtain (3.14). Hence, f € D(L) and
(2.8) with (2.7) holds. Moreover, by (3.1) and the fact that

1
d(vss
/exp{5|/ Mds|2}du<oo
E 0 -5

for some € > 0 (see [Dr94|) we know that there exists a constant ¢ > 0 such that

/Eexp{s (/01 |Js|ds>2}du < c0. (3.16)

According to (2.5), (2.8), (2.11), (3.16), and exponential inequality of martingale
IV-(3.16) in [RY91] we obtain (2.9).

By Steps 1-6 we get (2.8)-(2.9)

Claim 2: (2.10) holds.

and (iii). This completes the proof of Claim 1.
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Proof of Claim 2: We prove Claim 2 by three steps.
Step 1: For any 0 < T} < Ty < 1 and t € [0, 1] we have

. . L 1_.
R(Ts); — R(T1): = / (min(t,s) — ts){échUs — V?}S logp1-s(+, yo) }dBs.

T

By using the similar trick as in the proof of Proposition 3.6 in [GRWO00] we get
R(T2); — R(T1): = I1(t) + I>(t). where

S 1o
L(t) := / (min(t,s) — ts){ichUs — Hess}, log p1—s(-, yo) }dBs,

T

T X
Ir(t) = —/ (min(t,s) — ts){Zy. (Vv logpi_s(-,y0), dBs) — Ty, dBs},

T1

Ric is the Ricci curvature of the Levi-Civita connection V on M, T T, -) is the torsion
tensor of the TSS connection V on M, V =V + 1T(-,+), Ric = Ric+ T, and T is a
tensor determined only by 7" and VT'. Hence, it follows from the Burkholder-Davis-
Gundy inequality and (3.1)-(3.2) that for any 1 < p < oo there exists a constant
Cp,1 > 0 such that

[ 1R~ R Py < Gyl — 13 (3.17)
FE

for any 71,75 € (0,1) and ¢ € [0, 1].

Step 2: By the Burkholder-Davis-Gundy inequality and (3.1)-(3.2), we obtain
that for any 1 < p < oo there exists a constant ¢, o > 0 such that for any 0 <7" < 1,
0<t1 <t <1

L/mam—ﬁ@m%ms%ﬂ/|amm www/ Coltanla) o gy
FE 0
(3.18)

where Gy(t1,t9) := {min(ta, s)—tas}—{min(t1,s)—t1s}. Butforany0 < s < T < 1
we have

T
G, (b, t2) =Ly (T) / Sty — t)ds
0

T
+ Lt 1) (t1 — ty)ds -l-/ s(1+t; —tg) —t1)ds

t1

([ )
+ 1) (T) ( Ot (t; — to)ds + /52 (14t —ts) — t1)ds )
(ﬂl}

tg — tl)(]_ — S)dS.

t1
1

+ 1(,5271)

Hence, there exists ¢, 1 > 0 such that

T
/ |Gs(t1,t2)|2pd8 S Cp,lltl - t2|2p (th,tg € [O 1] T e (O 1)) (319)
0
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In the following we prove that for ¢ := 1% there exists ¢, > 0 such that

T Gyt t
/ | 1( 1’32) ds < ¢palts —ta| (V1,2 €[0,1], T €(0,1)). (3.20)
; _

In fact, for 0 < T < t; we have 2= <1 and

/h'L juas
0 1—s

|ty — |71

< |ts =1
R VR (e S
<|t1_t1|.

qg—1

Similarly, fgl |%|qu < % for t; < T < ty, and

/tl |3(t1 )|qd |t2 —t1|
0 1—s - qg-—1

for t < T < 1. Note that for t; < s < 1+tt11—t2 < ty we have t1(t; — tg) <
S(l + tl - tg) - tl S 0, and

t1
/1+t1t2 |S(1 + tl — tg) - tl |qd3
t1

1—s
lta —t4]"!
< |to —t
_|2 1|(q—1>(1—t2)q_1
< |t2_t1|.
==

< S < T < tg we have 0 < 5(1+t1—t2)—t1 ~ (tg—tl)(l—tg),

T
14+t —ty) —t
[ P
t

Moreover, for
and

1+t

oty 1—s
T+t —ty

|ty — t1]77"
<ty —t
< It =~ bl g s
<7|t2_t1|.
S

Hence, we get: for t; < T <ty

T

s(14+t —tg) =1

/ | ( 11 e |“ds < cplts — 1.
t1 —$

Similarly, for any t, < T < 1, f wrlds < ¢palta — t1]. By the above
inequalities we get (3.20), and by (3 18), (3.19), and (3.20) we know that for any
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1 < p < oo there exists a constant ¢, > 0 such that for any 0 < 7'< 1,0 <t <
ta <1

[ IR = R PP < eyt = 321)
E

Step 3. Using (3.17) and (3.21) we get: for any 1 < p < oo there exists a constant
Cp2 > 0 such that for any 0 < 77,75 < 1,0 <1?;,t, <1

/ IR(T2)1, — R(T1) |*dp < Cpoflta — [P + |To — Th["}. (3.22)
FE

By (3.22) and the Kolmogorov’s continuity criterion we obtain that there exists
a mapping (T, 1),7) € [0,12 x E — R(T,~); € R™ such that R(T,~), is continuous
with respect to T,t € [0,1] for p-a.s. v € E, and it is an extension of {R(T)}o<z<1.
Moreover, for any 2 < p < 0o

[ supren R gy < 0 (323

Using (3.7), (3.8), and (3.10) we get: for any 2 < p < oo

/ mazicoU(1); — R(1)Pdp < . (3.24)
E

Claim 2 follows from (3.23) and (3.24).
Claims 1, 2 imply (i) — (iii), and (iv) follows from (ii). O
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