THE TENSORPRODUCT OF LITTLE CUBES

MICHAEL BRINKMEIER

INTRODUCTION

Operads were introduced by Boardman and Vogt in 1968 to study the
algebraic structure of iterated loop spaces (they called them categories
of operators in standard form) [BV68]. Their results were refined in
[BV73] and independently by May in [May72|. They proved that any
n-fold loop space i1s homotopy equivalent to a grouplike C),-space and
vice versa, where C), is the operad of little n-cubes.

For n > 2 the iterated loop space 2" X has a homotopy-commutative
multiplication, satisfying an increasing number of coherence conditions,
which are codified by actions of the operad C,. This lead to the defini-
tion of E,-spaces, as spaces on which an operad D, homotopy equiva-
lent to C,,, operates.

Since an (n + k)-fold loop space can be regarded as a k-fold loop
space in the category of n-fold loop spaces, one might think that an
E, ir-space is an Eg-space in the category of E,-spaces. This type of
structure, i.e. a D-space in the category of C-spaces, where C' and D
are operads, is codified by the tensor product C @ D of operads (see
section 2 below). Therefore the naive assumption arises, that the tensor
product of an F,-operad with an Eji-operad is homotopy equivalent to
Chik, and hence an E, ;-operad.

In general this is not true. The operad M of associative monoids is
an Fj-operad, i.e. its grouplike algebras are precisely the one-fold loop
spaces. But the tensor product with itself is the operad of commutative
monoids, which is an F.-operad.

A better version of the naive approach is the following

Conjecture. The tensor product of a cofibrant E,-operad with an F,-
operad is an E, -operad.

Here the notion cofibrant has to be made precise. One possible choice
is given in [Vog99].

A step in this direction was made by Dunn in [Dun88]. He proved
that the n-fold tensor product of C; with itself, i.e. CP" is homotopy
equivalent to C),. But unfortunately this result does not imply the
equivalence of C,, ® C,,, and C,,;,,, since the tensor product of operads
does not respect homotopy equivalences.

Remark 0.1. The little cube operads C,, are not cofibrant in the sense
of [Vog99].
1
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In this paper we extend Dunn’s result to our

Main Theorem. For alll > 2, ny,...,.ny € Nandn =ny +---+ny
there exists a map Cy,, @ -+ @ Cy,, — C, of operads, which is a local
Y -equivalence.

In the first three sections we recall the definition of operads in the
topological setting, give a short overview over the interchange and the
tensor product of operads and repeat the definition of the little cubes
operads, which is extended to an operad of compact spaces in section 4.
In addition we introduce a model C,,|C,, for the tensor product C,,@C,,
as a suboperad of C, 4, which 1s based on Dunn’s ideas.

The last three sections contain an analysis of this model, which leads
together with some tools of Dunn to our main theorem.

Throughout this paper we work in the category Top of compactly
generated Hausdorfl spaces in the sense of [VogT71].

During the preparation of this paper the author was supported by
the Deutsche Forschungsgemeinschaft.

1. TOPOLOGICAL OPERADS AND TREES

Definition 1.1. A collection is a family {A(j)},en of spaces in Top
such that ¥; acts on A(j) from the right. For a € A(j) we call j the
number of inputs of .

A map of collections f : A — B is a family {f; : A(j) = B(J)}en
of equivariant maps.

The category of collections and maps between them is called XTop.

Definition 1.2. A local Y-equivalence between two collections A and
B is amap f: A — B of collections such that each f; : A(j) — B())
1s an Xj-equivariant homotopy equivalence.

Definition 1.3. An operad A is a collection, together with a unit id €
A(1) and a series of compositions —o — : A(k) x A(j1) X -+ X A(ji) —
A(j1 4+ 4 ]k) such that
e ao o (Br,...,0k) = o (Be1(1),--+sBo-1(ky) © 0 for each o €
A(k), ;i € A(y;) and o € Ey, where ¢ permutes the blocks given
by j1,-..,Jx) according to o,
e ao(id,...,id) = @ and id o @ = « and

® o (61o(7115'--7%'11)a'--76j0(7{7'“)72))) =

(ao (61"'%61)) © (7113---37z'11a"'v%'jj>
A map f: A — B of operads is a map of the underlying collections
such that f(id) = id and

Fflaoa (B, Br) = Fla)op (F(Br),-. ., F(Br)),

where o, is the composition of A, and o the one of B.
The category of operads and maps between them is called oper%op.
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Remark 1.4. Since we require an operad to have a unit id, our notion
is equivalent to the o;-approach of Markl in [Mar96].

A very good notion for the work with operads - if not the best (free
operads are constructed this way) - are trees. Since all results in the
following are well-known, we just give a short description of all the
terms, ideas and constructions needed. For details the reader is referred
to the literature.

An edge of a graph is called internal if it is bounded by two vertices
and ezternal otherwise. External edges of directed graphs, with no ver-
tex at their starting point are called inputs, and edges with no vertex
at their end point are called output. A tree T is a connected, directed
graph without loops, with exactly one output such that each vertex has
precisely one output. The wvalence of a vertex v in a tree is the number
in(v) of its incoming edges. A vertex of valence 0 is called a stump.

Remark 1.5. The graph with no vertex and only one external edge, is
a tree.

A labeled planar tree is a tree T together with a bijection o : in(T) —
{1,...,|in(T)|} from the set of inputs of T'. We represent it graphically
by

lop] O'J‘

where T is a tree with j inputs.

It 1s well-known that the labeled trees form a topological operad Ttee
such that Tree(j) is the set of trees with j inputs. The composition is
given by grafting the trees along their roots and inputs.

Definition 1.6. The j-the space of the free operad F A of a collection
A is the quotient of the space of all labeled trees with vertex labels,
L.e. each vertex v of a tree is assigned a label a, € A(in(v)), under the

relation
T,| -- E To_l(]).‘. Tt )
Jao € A(k) o a € Ak)

5

The topology on F'A(j) is the topology of the according quotient

space of
1T <H A(M@))) .

TeZree(j) \weT
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The unit of F'A is the trivial tree with no vertex.

The free operads imply a functor F' : ¥Top — operTop, which is
left-adjoint to the forgetful functor U : operTop — XXop.

Remark 1.7. Since we need an order to define the product, we use the
natural order on the vertices of a tree, given by left-traversion.

For our purposes we need a slight extension of this notion of trees.

Definition 1.8. A bi-colored tree (T, ¢) consists of a tree T and a map
c:ver(T) — {0,1} from the set of vertices of T'. The number ¢(v) is
called the color of the vertex v. An internal edge is called monochrome,
if 1ts vertices have the same color.

Graphically we represent bi-colored trees by trees whose vertices are

white (¢(v) = 0) or black (¢(v) = 1).

Ezample 1.9. \J/ l
N\
AN

The sets Bi%ree(y) of labeled bi-colored trees form an operad Bi%ree.
As in the monochrome case the composition is given by the grafting of
trees.

Bi-colored trees are very useful in the description of the direct sum
AU B of operads. Let T be a bi-colored tree with j inputs and (A, B)r
the space

(A,B)r=[[ Alnw)x [] Blin().

v € ver(T) v € ver(T)
c(v) =10 c(v) =1
Then the free operad F(A Uy B), generated by the coproduct A Ly B
of the underlying collections, is given by the spaces HTe%iiCree(j)(A’ B)r
modulo the relations of definition 1.6. The composition is induced by
the grafting of trees. The identity (or unit) is the trivial tree with no
vertex.

Ezample 1.10.

\l>°5/€ B(2)

a € A(3)

Lemma 1.11. AUl B(j) is the quotient of F(AUsx B)(j), by the rela-
tions
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1. Monochrome edges may be shrunk and their vertices composed,
2. the identities of A and B are identified with the trivial tree and
3. The relation of definition 1.6

2. INTERCHANGE

The concept of interchange of operad structures and the tensor prod-
uct of operads is well-known. Boardman and Vogt used it in [BV73] to
describe homomorphisms between theories and algebras over theories,
and May’s notion of a pairing of two operads is closely related to the
interchange of the two structures.

Definition 2.1. Let A, B and C be operads and f : A — C and
g : B — C two maps of operads. We say f and ¢ interchange, if the
diagram

idxA - fixgj,

A(j) x B(k) — A(j) x B(k)) —=C(j) x C(k)’

|

B(E) x A(j) -

idxAl

B(k) x A(j)* 5 O(F) x Ol —-

C(sk)
commutes for all 5,k € N. Here A always means the appropriate diag-
onal.

If we apply this definition to algebras over A and B, i.e. if we choose
C = Endx, then the structures of A and B on X interchange if and
only if the diagrams

gj

(x*y b
(X — = Xk ———> X

commute for all o € A(j) and 8 € B(k).

The tensor product A ® B of two operads A and B is an operad,
which codifies the interchange of operad maps (cmp. [BV73]). This
means that there exist two mapsi14: A > A®@ Bandig: B—+ AR B
such that the operad maps f : A — C and ¢ : B — C interchange if
and only if there exists a map h : A® B — C such that f = hoiy and
g = houp. Its j-th space A ® B(j) is the quotient of ALl B(j) under
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the additional shuffle-relation
T, "'Tl,k‘ le""Tjk‘ Tl,l""le‘ le""Tjk‘
Ge o e
\oa/ B \oﬂ/

As Dunn noted in [Dun88| the tensor product A ® B is universal for
pairings of operads in the sense of [May80)].

3. THE LITTLE CUBES

For convenience we will use the following mnotations. The n-
dimensional interval [a1,b;] X -+ X [ap, b,] of R” will be denoted with
[a,b]. For a = (ai,...,a,) and b = (by,...,b,) in R™ we will write a < b
if a; < b; for each 5. In the same fashion we will write @ < b. we denote
the vector (aiby, ..., ayb,) with ab.

FIGURE 1. The left example is an element of C5(3) the
right 1s not

Definition 3.1. Let C,(j),7 > 1, be given as the set of ordered j-
tupels of n-dimensional intervals [a*,b'] in I" = [0,1]" with disjoint
and non-empty interiors, i.e. with @’ < b'. The space C,(0) consists
only of the empty tupel ().

The composition ao(fy, ..., k) of @ = ([al, bY,. .., [da*, bk]) € C,(k)
with 3; = ([¢!, dY], ..., [¢7, d%]) € Cu(y;) for 1 < i <k is given by
replacing the i-th interval [a;, b;] of a with the following j-tupel

([a* + (b — a)e", @' + (b — a’)d"],...
a4 (B =) e+ (b - ai)dji,i])

(recall that the a',b’, ¢ and d'7 are vectors). This operation corre-
sponds to the replacement of the i-th interval of o with a scaled-down

copy of ;.
Definition 3.2. A little cube ¢ € C,,(j) is called decomposable, if ...
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FiGurg 2. Example of a composition in Cy

1. ... j€{0,1,2} or
2. ... there exist a d € C,(2) and decomposable ¢, ¢, with ¢ €
Crn(jk) for jr > 0,k = 1,2 such that ¢ = u(d; ¢, ¢z).

It is easy to see that the decomposable cubes of C,, form a suboperad
D,,. Furthermore Dy = C; and D, (j) = C,.(y) for 57 < 3.

A more geometrical description of decomposability is given by the
insertion of a hyper plane. ¢ € C,(7) is decomposable, if and only if
there exists an 1 < ¢ < n and a hyper plane L of codimension 1, parallel
to the s-axis, which hits no interior of the component cubes of C, such
that each of the two parts is decomposable and contains at least one
component cube (cmp. [Dun88]). We call such a hyper plane separating.

Proposition 3.3. (¢mp. [Dun88, Prop. 2.3.]) The inclusion D,, — C,

s a local Y-equivalence.

_
|
|
|

F — — — + — — — -
|
|
|

FIGURE 3. The left cube is decomposable (the dashed
lines are separating hyper planes), the right is not.

Now let H C C,, and V C C,, be two suboperads. Each of them can
be embedded into C, 4., as a suboperad. For H we use the inclusion

([a1,01], - -, Jak, be)) = ([(a1,0), (b1, 1), ..., (ax,0), (bg, 1)]),
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where (a;,0) is the (n 4 m)-tupel (a},...,a?,0,...,0) and (b;,1) is the
tupel (b},...,b7,1,...,1). Similar we have an inclusion of V' into Cyqrm
with

([ersdal, -y [en i) = ([(0, 1), (1,d0)], -, [(0, ), (1, dr)]).

Graphically the two inclusions 1y and 7y are described by figure 4.

1 1] )Z-H

h|v

FIGURE 4. The inclusions iz and iy and the cube hlv =

i (h) o (iv(v),iv(v)).

These two operad morphisms induce two maps H(j) x V(k) —
Crim(jk) of collections for each pair j,k of natural numbers, given
by

(h,v) = tg(h) o (tv(v),...,1v(v))

k—times

and

(h,v) = iv(v) o (tg(h),...,ig(h)).

-

[—times

The image of the first map is called A|v.
It is easy to check that the first morphism is given by

<([a1,b]], e [ak,bk]), ([c1,d1], e [cl,kl])> —
([(alvcl)’ (bbdl)]a cee [(alacl)7 (bhdl)]a [(a2acl)7 (b27d1)]7 - )
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and the second by

(([alabl]a---a[akabk]), ([cl,dl],...,[c,,kl])> =

([(ahcl)? (biydi)l; s [(aks e1), (bry di)], [(ar, e2), (br,y do)], - )

If we order the tupels (a;,¢;) and (b;,d;) lexicographically by their
indeces, the we see that the two images coincide up to a transposition.
Comparing this with the interchange condition shows that ¢z and iy
interchange. This leads to the existence of a morphism HQV — Cpypm.
Let H|V C Cytm be the image of this morphism and ¢ : HQV — H|V
the induced map of morphisms.

Since this construction is based on the addition of “trivial™ coordi-
nates, it is easy to see that the suboperads (H|M)|V and H|(M|V) of
Chtiym with H C C,,, M C Cy and V' C C,, are equal.

4. THE CLOSED CUBES

For the proofs of the main theorem we need an extension C, of the
little n-cubes such that each C,,(j) is a compact subset of R*". We start
with an alternative description of Cy(5). Let a = ([a',b'],...,[a’,¥’])
be an element of C,(j). The property that all intervals [a',b'] have
non-empty interiors can be described by the inequalities a' < b'. The
disjointness of the interiors of different cubes is more difficult.

Let Cr(f’k)(j) be the space of tupels ([a',d'],...,[a’,b’]) € I*™ with
non-empty interior for 1 <i < k < j such that [a’,b'] and [a*, b*] have
disjoint interiors. Obviously we have

Cu()= () CYR().

1<i<ks;

The cube [a’, b'] defines 2n parts of I", which are of the form

([(0,...,0),(1,...,a;',...,1)]> or ([(0,...,b;’,o),(1,...,1)]>,

whose union is the complement of the interior of [a,b'] (recall that
al = (ai,...,a’) and b' = (b},...0)). Let Al(i’k)(j) be the subspace of
Cr(,,i’k)(j) such that [a¥, b*] lies in the [-th part of the first form and let
Bl(i’k)(j) be the subspace of C,(f’k)(j) such that [a®, b*] lies in the [-th
part of the second form.

[a*,b*] and [a’,b'] have disjoint interiors, if and only if [a*,b*] lies
in one of these parts. Hence Cr(f’k')(j) is the union of the 2n subspaces

AP (5) and BI"™(5) of R*™,

Ca(i) = ) (U Al("”“)(j)uB,(i"“)(j))-

1<i<k<j \1<i<n
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AGH) i BH

FIGURE 5. The A"s and B"Ms

Now we use this (quite complicated) description to obtain a closed
(and hence compact) subset C,,(j) of I*™, which contains C,(j). We
define

)= () | U A0 uB™au |,
1<i<k<j \<i<n
where Al(l’k)(j) is the set of all tupels ([a',b'],...,[a?,#]) in I?™ such
that a' < b, i.e. the interiors are allowed to be empty, and [a*,b¥]
lies in the /-th part of I?™, generated by [a’,d']. Bl(l’k)(j) is defined
accordingly. Since these properties can be described by the inequalities
ai <b forl <i<jandl <m <n,andeitherb* < (1,...,a,...,1)
or (0,...,b,...,0) < a* , these two spaces are closed in I?".

Remark 4.1. C,(2) does not consist of all little n-cubes with arbitrary
interior. For example the configuration in figure 6 is not an element in
C3(2), since each of the intervals does not lie in one of the four parts
defined by the other.

In C5(3) and C3(4) the same configuration can appear, since then we
can split one or two of the intervals at their intersection.

In fact a tupel a = ([a',b'],...,[a’,]) of j intervals in I™ is an
element of Al(l’k)(j) if and only if the inequality bf < a} holds. And it
1s an element of Bl(l’k) if and only if b < aF. Hence « is an element of
Cn(7) if and only if there exists an 1 <1 < nfor each pair1 <1<k < j
such that either bf < ai or b} < af.

Now Let a = ([a",b"],...,[a’?,b]) be an element of C,(j) and v; =
([e", d" ], ..., [®, d*]),1 < i < 4, elements of C,(k;). As in C,,, we
can define o o (y1,...,79%). It is not very hard to see that this is an
element in én(kl + -+ k;). Therefore the én(]) form an operad C,,
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FiGURE 6. A non-example of a closed cube

which contains C, as a suboperad. We call C, the operad of closed
n-cubes.

As for C, and C,,, we obtain a suboperad C_'n|C_'m of C_'n+m, which
contains C,,|C,, as a suboperad. Again C’n|6'm is given as the image of
a morphism Con®Cm — C’n+m.

Definition 4.2. Let
a = ([al, b', .., [aj, bj]) and [ = ([cl, dl,..., [ck, dk])

be two elements of C,. o is called a frame of 3 if there exists a surjective
map ¢ : k — j such that

[}, d] C [a?®), b#0)]
for all © € k. The map ¢ is called a framing of 3 into a.

Definition 4.3. Let o € C’n(j) and o € C_'n(l) be two frames of 3 €
Cn(k). If o' if a frame of o, then o is called tighter than «'.

Lemma 4.4. Let o € Cn(j) and o' € Cu(5') be two frames of B €
Cn(k). Then there exists a frame o N o' of B, which is tighter than o
and o' .

Proof. Let a be of the form (...[a",b']...) and o of the form
(...[a',b']...) and B of the form (...[c',d"]...). Furthermore let ¢,
and 4 be two framings of  into a and o'.

The intervals of @ N o' are all intervals of the form

[asaa(i)’ bsaa(i)] N [&saa/(i)’ Esoaf(i)]

for each 1 < i < k. Then each interval [¢',b] of 3 is contained in the
i-th intersection. The intervals of @ N o' can be ordered arbitrarily. In
addition the map (@a, @a) : k = j X j' implies a surjective map from k
into its image. This map is a framing of 3 into aNa’ (the latter one has
as many inputs as the image has elements). The maps k — jx j’ — ]
and k — j x j’ — J' induce framings of a N o’ into o and «'. O

Lemma 4.5. Let o € C,(j) and o' € C,(j') be two frames of 3 such
that a is tighter than o and vice versa. Then a and o' coincide up to
a permutation, i.e. there exists a permutation T such that ot = o.
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Proof. Let v : J — J' be a framing of « into o’ and ¢ : J' — j a framing
of o' into a. Since both maps are surjective, their compositions are.
This again implies that 1) and ¢ are bijective and that 5 = 5’

Let o € &; be the map 1. We know ¢7' = id and furthermore

[, d'] C [a?D,650] C ["D),d"D] - C [, a7 D] = [, d],
where [c', d'] is the i-th interval of o and [a*, b'] the one of o. The i-th

interval of « is precisely the (i)-th interval of . Since ¢ is bijective
the statement follows. O

Obviously we have

Proposition 4.6. If 3 € Cy(j) is of the form a o (y1,...,7x) with
a € Cu(k) such that each ~; has at least one input, then o is a frame
of 5.
Lemma 4.7. Leta € C(1) be a frame of B € Cpn(7). Then there exists
a ' € Cn(j) such that B = ao f'.
Proof. Let [a,b] be the only interval of o and let [¢',d'],1 <1 < j, be
the ¢-th interval of 5. We define
ci—ay . di—ay .
o —’?ll‘l“l ?f b # ap and di — I_’;_“l %f b # ap
l;—. if by = a 3 lfbl:ala
for1 <i < jand1 <1< n. Nowlet B be given by ([¢',d"],..., [, d]).
We have to check, that this sequence of intervals is a complete cube.
Choose <1 < k < j. Following remark 4.1 we have to find 1 <7/ <n
such that either dF < ¢ or d} < &F. We know that there exists an [ such

that either df < ¢} or di < ¢f holds. If a; # b we are done. Otherwise
we have two cases. In the first, £ <7 — 1, we have

1 —1

| o

f =-<—=g¢.
J J
For 1 + 1 < k we have
. ' k—1
di=l<i 2 _G
J J

O

Corollary 4.8. Let o € Cn(k) be a frame of B € Cn(j). Then there
exist 3] € Cyn,1 <1 <k such that B = ao (8,...,5;)-

Proof. Let ¢ be a framing of 3 into a. Let I; C {1,...,5} be the
preimage of + € {1,...,k} of under . Then we can kill all inputs of 3,
except for the inputs whose label i1s in I;, by composition with stumps.
We obtain 3; € C,,. Furthermore the i-th interval [a’, '] of o is a frame
of ;. By lemma 4.7 exists a 3! such that 8; = ([a’, b']) o 8. This implies

B=ao(fi....0)
U
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Lemma 4.9. Let a € C,(k) and 8 € C,(j) and ([a,b]) € Cn(1) such
that ([a,b]) o a is a frame of ([a,b]) o 8. Then there exists a B’ such that

a is a frame of ' and such that
([a,b]) 0 B = ([a,B]) o B'.
Proof. Let [a*,b'] be the i-th interval of o and [¢!, d'] the i-th interval

of # and ¢ a framing of ([a,b]) o 8 into ([a,b]) o a. We chose 3’ to be
the tupel ([¢*,d],...,[¢,d]) with

{c; if ar # by {d;‘ if a; # by
D . _

ol gl
% if a; = bl,

forl<:<jand1<I<n.

First we prove, that Bisin C,(7). Let 1 <i < k < 5. Since 8 € C,.(j),
we know that there exists a 1 < [ < n such that either di < ¢f or
df < (,; If a; # by, we are done. If a; = b we have Ef = CZ; and E;C = d7f
Hence one of the necessary inequalities holds.

Now let ¢ be the framing of ([a,b]) o § into ([a,b]) o . Then the

inequality
ar+ (b — a)af” < ar+ (b —a)e; < ar+ (b — ar)dy < ag+ (b — ar) b

holds for each 1 <1 < n and 1 < < 5. If ¢; # b this immediately
leads to

If b; = a; we have ' ) '
aofV <& =dj <v?.
Thus « is a frame of 4’ and ¢ is a framing of 3’ into «a.
The fact that ([a,b]) o § is equal to ([a,b]) o B’ is easy to see. O

Together with corollary 4.8 this leads to

Corollary 4.10. Leta and 3 be two elements of Cy, such that ([a, b])oa
s a frame of 3. Then there exists a 3" such that o is a frame of 8" and

B = ([a,b]) o B.
5. REDUCED REPRESENTATIONS

Obviously the map C, U C,,(j) — C, @ Cra(4) is a surjection for
each j € N and the map C, @ Cn(j) — C,|Cwm(j) is surjective by
definition. Therefore every element of C,|C,,(j) and every element of
C, ® ém(]) can be represented by an element of (C’n, Cm)T with T a
labeled, bi-colored tree with j inputs.

Remark 5.1. In the following we denote an element of F(C’nl_lg C’m) and
the trees underlying its representations with the same name. It should
be clear from the context whether the vertex labels are of importance.

Definition 5.2. A labeled, bi-colored tree with 5 > 1 inputs is reduced,
if
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e it contains no monochrome edge,

e it contains no vertex of valence 0 and

e it contains no sequence of valence 1, i.e. there is no subtree with
more than two vertices which all have valence 1.

A tree with 0 inputs is reduced if and only if it is a stump, and a tree
with one input is reduced if it contains at most two vertices of valence
1 and different colors.

There are only finitely many reduced trees with 7 inputs. The maxi-
mal number of vertices a reduced tree with j inputs can have, is given by
the number of vertices of a binary tree with j inputs, plus the number of
all edges (split an edge by one vertex of valence 1), i.e. (j—1)+(25—1).

Lemma 5.3. For each ¢ € C_Yn|C_’m(7j) exists a reduced tree T with j
inputs and an representation T. € (C,, Cp)r of c.

Proof. For j = 0 the statement is trivial, since Cpy,,(0) consists only of
one point. For a given representation S. € (C_'n, Cm)S of ¢ € C’n|(_7m(])
for 3 > 1, we construct a reduced representation T.. If S contains
monochrome edges, we can shrink them them by composing the labels
at their vertices. Hence we can exchange S. by a representation which
contains no monochrome edge.

Now assume that S, contains no monochrome edge. Since the images
of vertices of valence 0 of both colors coincide in én+m (0), their colors
can be changed without affecting the image of the tree. Hence all out-
going edges of a vertex of valence 0 can be assumed to be monochrome.
Therefore we can shrink them by composing their vertices. This kills
one input of the root of the according edge and the stump.

Now we assume that S, contains no monochrome edge and no stump.
It 1s easy to see that the two trees

represent the same element in C,4,,(1). Therefore we can change the
order in a sequence of valence 1 arbitrarily. Thus we can sort them by
color and then shrink the obtained monochrome edges. Hence we can
assume that each sequence of valence 1 consists only of two vertices of
different colors. For j = 1 we are done now. For 7 > 1, this sequence is
connected to another vertex of arbitrary color (either at the input or
at the output). If the connecting edge is not monochrome, we exchange
the two vertices of valence 1 and obtain at least one monochrome edge,
which again can be shrunk. This last step kills (at least) one of the two
vertices of valence 1. 0

Corollary 5.4. C,|C..(5) is the union of finitely many compact sub-
spaces and hence compact.
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Proof. For each reduced tree T with j inputs, the space (Cn,Cn)r
is compact, because it is a product of compact spaces. Therefore its
image K7 in C,|Cp(4) is compact. Since each element is represented
by a reduced tree, C,|Cp(4) is the union of the finitely many K7. O

In the same way we get
Corollary 5.5. C, @ C,.(7) is compact.

Since there exists a continuous morphism C, @ Cp, — Cn|gm, two
elements of F(C,,UsCar), which represent the same element in C,, @ C,,,
represent the same element in C,|C,,. For the prove of the converse

situation, we construct “minimal” representations.

6. MINIMAL REPRESENTATIONS

Definition 6.1. A o-representation of a € C,|Cn(5),5 > 0, is a repre-
sentation of o in (C’n, C’m)T such that the root vertex of T' has the color
o (or 0). Similarly a e-representation is a representation of «, whose
root has the color e (or 1). If there exists a o-representation of «, with
h € C, as root, then h is called a o-root of a.

Definition 6.2. A o-frameof a € C’n|ém(j) is an element h € C,, such
that hlid is a frame of a. Similarly a e-frame of a is an element v of

Cy such that id|v is a frame of a.
The following lemma is a consequence of the proof of lemma 4.4.

Lemma 6.3. Ifh and b’ are o-frames of «, then the intersection h|idN
B'|id is given by a o-frame h N A'.

Lemma 6.4. For o € Cn|Cr(j) with j > 1, exists a o-root h € Cp(k)
or a e-root v € Cy, (k) with k > 1.
Proof. If o has more than one input, then there exists a reduced rep-

resentation (either o or e), which has at least one vertex of a valence
higher than 1. In general 1t is of the form

where O 1s either o or . Since we know that the trees

represent the same element in C,|C,,, we can push the lowest vertex
of valence > 1 down to the root. O
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Lemma 6.5. h € C,(k) is a o-frame of a € C,|Cn(j) if and only if
it is a o-root.

Proof. By proposition 4.6 each o-root of « i1s a o-frame.

Now let h € én(k) be a o-frame of o € (7”|C_'m(j) and @ a framing
of a into hlid. Assume that the statement is true for & = 1. Then for
k> 1 we can kill all inputs of «, which do not lie in the -th input of
hlid,i.e. alll € jwith p(j) # i. We obtain a; € C,|C,n, which is framed
by h; := ([a',b']), where [a’,b'] is the i-th interval of h. Therefore we
can find a o-representation of a; with the root h;, i.e. it is of the form

Shy -

If B; is the cube represented by T;, we obtain (h|id) o (Bi,...,Bk).
Therefore h is a o-root of a.

We still have to prove the theorem for & = 1. For 7 = 1 the statement
is quite obvious, since each reduced o-representation is of the form

|,
v

If h is a o-frame of «, it is obviously a frame of A’, and by lemma 4.7
exists a h" € C,, with A’ = h o h".

For 7 > 1 and k& = 1 we have to use the fact that there exists at least
one representation (o or e), whose root has a valence greater than 1
(cnp. lemma 6.4). Let it be of the form

oR’

If h is a frame of A, then we are done, since by corollary 4.8 exists an
h" € C,(1) such that b/ = h o h".

If h is not a frame of A/, we consider o; := ([a’,b'])[ido 3; for each 1 <
i < I, where [a', b'] is the i-th interval of 2’ and f3; is the cube represented
by T;. Since «; can be obtained from «a by the composition with stumps
at all inputs, which do not belong to T}, it is an element of C,|C,.(J:),
where 1 < 5; < j. By induction there exists a o-representation of «;, of
the form

S
‘([aa oI N [a, b))

because ([a, b] N [a',b']) is a o-frame of a;.
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The o-frame h N A’ of a consist of the intervals [a,b] N [a?, '], and
hence «a is represented by

Since h is a frame of hNL/, we can find a b” € C,(I) with hNA' = hoh”.
If the root of valence greater than 1 has the color e, we can proof
the statement by similar means. O

Lemma 6.6. Let a € C,|Cru(5),h € Cu(k),H' € Cn(K') and [a,b] C
I™ an interval such that

e h is a o-frame of a,

e ([a,b])oh is a frame of H' and

e H' is a o-frame of ([a,b]) o a.
Then there exists h' € Cy(k') such that

o H = ([a,b])o I,

e I is a frame of h'.

e 1/ is a o-frame of a and

Proof. Let ¢ : j — k be a framing of a into h|id and hence from
([a,b])|idoc into (([a, b])oh)|id and &' : j — k' a framing from ([a, b])|ido
a into H'|id and ¢ : k' = k a framlng of H' into ([a,b]) o h. We can

assumne that ¢ o ' = . B
We define b’ € C, (k') to be the tupel (...[¢",d']...) with

if a # b
mzn s e DT 1( )) if a; = b

and

-~

—1 dt_al if aj 7é bl
ma:c bs 1S € @’_l(i)) if a; = by,

for 1 <1< n, where [d',b'] is the i-th interval of @ and [¢!, d'] the i-th
interval of H'. B

First we prove that %' is an element of C,,(k'). Let 1 <@ < h <K'
If [a},b'] is the i-th interval of A, then there exists an [ with 1 <1 <n
such that either &f(l) > [—);p(h) or Zz;b(h) > l_);p(t). Since @ is a framing of
H' into ([a,b]) o h, we know

a+ (b — )y < ¢ < dj < ar+ (b —a)b.

If by # a;, this immediately leads to
iV <a<d<p'

The same inequality follows for & instead of :. Together they imply that
either ¢ > di' or ¢ > di holds.
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If a; = by, we use the fact that [¢*,b*] C [@, '] and hence
a < aj <bj <
for all s € ®7'(i). Since & = ¥p®’ we also have @'_l(i) C o(y¥(2)),
and therefore
¢ =min(aj : s € ¥7'(i)) > min(qf : s € 7' ((i))) > Zz;l’(i)
and

di = ma:c(bls 18 € @'_1(i)) < max(bf 18 € @“1(;/)@'))) < B;/j(i).

This implies that either a > ZL;W) > B;b(h) > B;‘ or ¢ > Zz;b(h) > B;b(i) >
di. From these observations also follows, that 1 is a framing of A’ into
h.

To prove that &' is a o-frame of a with framing ®’, we have to check
that for each 1 <1 <n and 1 < < j, the inequality

&'V <a <ty < d
is true. If a; # by this follows from
C?I(i) <ar+ (b —a)a; < ar+ (b — )b < d;I)/(i)a

which again holds, because @' is a framing of H'|id to ([a,b]) o a. For
a; = by the inequality is fulfilled since i € &'~ (®(1)).

It remains to check, that H' = ([a,b]) o A'. But this is an immediate
consequence of the definition of A'. O

Theorem 6.7. For each a € C,|Cn(j) there exists an (up to per-
mutations) uniquely determined o-frame h € C,(k) of a and a o-

representation of the form
T'1 . Tk
oh

such that each o-frame h' of a is also a frame of h.

Proof. We prove the theorem via induction over the number j of inputs
of a. For 7 = 0 the only reduced o-representation is the stump of color
o. Hence the theorem holds trivially.

For 7 = 1 the reduced o-representation of « is uniquely determined

L,
3

Obviously A is tighter than any other o-frame of a.

and of the form
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If o has more than one input we have to differentiate between two
basic cases. First let all o-representations of a have a root of valence
0, 1.e. every o-representation is of the form

T
‘ h
For each 1 < i < k we can chose an interval &' = ([¢', d']) € C,(1) such
that d: — ¢! is minimal under all o-roots. (Intervals of this kind exist,
since C’n|ém(j) is a Hausdorff-space and since (C’n,ém)T i1s compact
for each bi-colored, labelled tree T.) Each A’ is a o-frame of a. Hence
their intersection h is a o-frame and therefore a o-root of a.

If A" is another o-frame of a, then the intersection h” := AN A’ would
be a frame, which is tighter than - and &’. Hence there exists a o-
representation with A" as root. Since h is the intersection of "minimal”
roots A', this implies k" = h, because otherwise there has to exists
a coordinate such that A” is "smaller” in the ¢-th direction than the
according h'.

In the second case we assume that there exists a reduced o-
representation of « of the form

Th

for £ > 1. Then each T; has k; inputs with 1 < k; < j. By induc-
tion we can find h; € Cy,(l;) and o-representations of 3; € Cy|Cp(ki),
represented by T}, of the form

5; Slz

such that every o-frame of f3; is wider than h;.
Together these form a o-representation

Sh|... Sﬁ

o ho(h,... hi)=:H

of a.

Now let H' be another frame of or. Without restriction we can assume
that H' is tighter than H (replace it with HNH'). By composition with
stumps, we can kill all inputs of o, H and H', which are represented by
inputs on another subtree than T;. We obtain o; € C,|C,n(k;) and two
o-frames H; and H! such that H is tighter than H;. The cube «; is the

composition ([a’,b'])[ido 3; and H; the composition ([a’,b']) o h;, where
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[a},b] is the i-th interval of h. By lemma 6.6 there exists an h! € C,
such that

o H! = ([a',b]) o R,

e 1! is a o-frame of 3; and

e h; is a frame of Al
The second property implies that A/ is a frame of h;. Together with the
third property and lemma 4.5 this implies that A; and Al coincide up
to permutation. Hence we can assume that they are equal. Therefore
we have H; = H!. This again implies that H and H' are equal up to a
permutation. Hence H 1s a minimal o-root.

The uniqueness of H 1s an immediate consequence of lemma 4.5. [

Definition 6.8. We call the (up to permutation) unique root of theo-
rem 6.7 the minimal o-root. We define a minimal ®-root analogously.

Definition 6.9. A reduced representation T of a € C_’n|C_'m 1s called
manimal, if every vertex is a minimal root of the element represented
by the subtree with the vertex as root.

The algorithm for the construction of a minimal representation 1s
quite clear. We choose the color of the root, construct the minimal root
of this color, and then recursively construct the minimal representations
of the subtrees whose root has the other color. Since the minimal roots
are uniquely determined (up to permutation) we obtain the following

Proposition 6.10. There exists an (up to permutations) uniquely de-
termined minimal o-representation for each o € Cp|Cpy(7)-

Remark 6.11. With "up to permutations” we mean one permutation
for each vertex of the tree.

Theorem 6.12. The images of an arbitrary reduced o-representation
T € F(C,Us Cn) of a € CulCn(j)ys > 0, and the minimal o-
representation under the projection p : F(én Ly, C’m) — C, @ C
coincide.

Proof. First recall, that the application of a permutation to a vertex of
a tree in F(én Ly, C’m) does not change the image under p. Hence we
can ignore ambiguities which occur when choosing permutations.

For 5 = 1 the reduced o-representation is minimal. Hence the state-
ment is trivial.

If @ has more than one input and its minimal o-root h,,;, has more
than one input, then, as seen in the proof of theorem 6.7, ki 1s the
composition of the root h of T and the minimal o-roots h; of the 3; :=
pr(T;), where T is of the form

"



THE TENSORPRODUCT OF LITTLE CUBES 21

Since each T; has at least one input and less than j, the statement
follows by induction.

If o has more than one input and its o-root only has one input, then
its e-root has more than one input (follows from lemima 6.4). As above
we can prove that each reduced e-representation has the same image
as the minimal e-representation, if the minimal e-root has more than
one input.

T has to be of the form

o h

where S is a e-representation of an element 3 € C,|C,, (7). The minimal
e-root of T' has more than one input (otherwise the minimal o-root of
T has to have more than one). Thus p(S) = p(Smin), where Sy, is the
minimal o-representation of 3.

Let the minimal o-representation T),;, of a be of the form

with [ > 1. We know that h is a frame 9f the minimal o-root A, of
a. By corollary 4.8 we can find an 2’ € C,(1) such that A, = hoh'.

Thus the tree
7} J]

o v
i1s a representation of . Since the interchange condition holds, the
image of this tree coincides with the image of the tree T”, which is of

the form
EAgEd
B '
oo

which is a e-representation of 5. Hence we now that it image under p
coincides with the one of S,,;, and hence with the one of S. Since p is a

map of operads, it follows that the images of T and T, coincide. [

The construction of a reduced from an arbitrary representation in
lemma 5.3 shows that their image under p coincide. Hence we obtain

the following

Corollary 6.13. Let T and S be two o-representations of a €
Cn|Cm(g) for 3 < 0. Then p(T) =p(S) € C, @ Ci ().



22 MICHAEL BRINKMEIER
7. THE TENSOR PRODUCT OF LITTLE CUBES

Now we use the minimal representations, to construct a homeomor-
phism between the two operads C’n|(7m and C, @ C,,. We then show,
that C, ® C), 1s locally ¥Y-equivalent to C,4n. One direction of the
homeomorphism, namely C, @ Cp, — Cn|Cpn, is already known. The
minimal representations make it possible to construct an inverse map.

Theorem 7.1. The morphism ¢ : Cn®Chm — én|ém 15 a homeomor-
phism of operads.

Proof. First we construct an inverse map v : Cp|Crn(5) — Cn @ Cra(5)
for each 3 > 0. For 5 = 0 the map is trivial, since both spaces are. For
§ > 0 we choose 1 to be given by ¥ (z) := p(T) where T € F(C,Us Cp,)
is a o-representation of z, and p : F(C’n Us ém) — C, @ C,, and
q: F(én Ly, ém) — én|ém are the projections. Let T and T" be two o-
representations of € C,,|C, (7). By corollary 6.13 this implies p(T) =
p(T") and hence v is well-defined for each j.
Since ¢ o p = ¢ holds, we have

popop(T)=1oq(T)=p(T)
for each o-representation T. Every element of C, ® Cy has a o-
representation and this implies ¢ o ¢ = 1d. On the other hand we
have

poog(T)=yop(T)=qT).
which leads to ¢ o ¢ = id. Hence ¢ and 1 are bijective maps of set
operads.

It remains to prove that ¢ is continuous. By corollary 5.5 C, ®

Cn(j) is compact. Since ¢ is continuous and bijective and C,|Cpn(7) is
a Hausdorft-space, ¢ 1s a homeomorphism. O

Since ¢ : C, @ Cpy — C’n|(7m maps non-degenerated cubes, i.e. ele-
ments of C,, ® C,,, surjectively to non-degenerate cubes, i.e. elements
of Cy,|Cn, we obtain

Corollary 7.2. ¢ : C,, ® C,, — C,|Cy, is a homeomorphism of oper-
ads.

Up to this point we just examined tensor products of two little cubes
operads. But a closer look at the results of the preceding sections re-
veals, that it is possible to adapt the proof to the tensor product of
three or more little cubes. In the following we just give a short overview
over the necessary changes.

In the combinatoric part, i.e. the construction of the minimal rep-
resentations, we just have to use multi-colored trees instead of trees
with only two colors, i.e. we need one color i for each factor C,, in
the tensor product C,,, @ ---® C,,. In addition we have to modify the
notion of reduced representations. They still are not allowed to have
monochrome edges and vertices of valence 0. But they are allowed to
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have sequences of valence 1 of a length less than [ such that each vertex
of this sequence has a different color. As in the bicolored case we can
find a reduced representation for each element of C_'m |... |C_'nl c C,
withn=n; +---+mn;.

With this modifications the results of sections 5 and 6 remain valid.
We just have to take the increased number of colors into account. Ba-
sically this results in more bookkeeping. But we still obtain

Corollary 7.3. The map ¢ : Cpy @ -+ ® Cpy, = Cpy|...|Cp, is a
homeomorphism of operads for each | > 2 and each choice nqy,...,n; €

N

In the following we use the suboperad of decomposable cubes
D, (j) C Cn(j), to obtain our final result.

Lemma 7.4. D,|D,,(j) is precisely the space Dy (7).

Proof. For j = 0,1 the spaces D,(j) and C,(j) coincide. Hence the
equality of D,,|D,,,(7) and D,,4,,(7) follows directly from the fact that
CalCo(j) = Cogo(3) for j = 0.1.

An element a of Cym (), > 2, is decomposable, if and ounly if there
exists an ¢ € {1,...,n + m} and a hyper plane orthogonal to the i-th
axis, which separates a into two non-trivial parts (i.e. parts with at
least on input each). This is equivalent to the existence of 8 € Cpym(2)
of the form

and fr € Dpym(ji) for £ = 1,2 such that 1 < jp < j and a =
Bo(B1,32). Obviously 8 is an element of C,,|C,,,(2). It even is of one of
the forms h|id or id|v with h € D,,(2) = C,,(2) or v € D, (2) = Cpa(2),
depending whether ¢ is less or equal to n or not. Hence we see, by
induction over the number of inputs of «, that D4, (j) is a subspace
of D,|D,,(7) for each j.

On the other hand each element of the form h|id with h € D, () is
decomposable in Cpim(7) and the same holds for id|v for v € Dy, (7).
This implies that each element of D,|D,,(j) is a composition of de-
composable elements in Cp4,,(7) and hence itself decomposable, what
again leads to Dy|Dpm(j) C Dypym(g) for each j. O

Corollary 7.5. Dy, |...|Dy(J) C Cn,|...|Cn(J) is precisely the space
D,(j) C Cn(j) for all jyny,...,ny e NJI >2 and n =ny + -+ n.

Lemma 7.6. For each j € N, I > 2 and all ny,....,n; € N
the space D, |...|D,(j) is a Ej-equivariant deformation retract of

Coy |- 1Cni(5)

Proof. Since D, (3) = C,(j) for all n and j = 0,1,2, the statement is
trivial in this cases.
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Now let n = ny + -+ - + n;. Following [Dun88, Lem. 2.2.] there exists
an equivariant deformatlon retraction b : I x Cp(5) — Cn(g) of Ci(7)
to Dyn(j) and a map u : C,, — I such that

h(37 Oé) =ao (6su(a)7 cee 7ﬂsu(a))7
where f3; € C,(1) is of the form

o (i)

h maps Cy,|...|Cp(J) into itself, because Cy,|...|Cp (1) = Cy(1).
Together with the equality of D, |...|D,,(j) and D,(j), this implies
the statement. 0

Putting together all the collected pieces, we obtain the diagram
Cnl ® ® Cnl

Dy, |Dm

Cy | 1Cni (4

for each y > 0. Since all maps, except for the diagonal and the
map at the top, are known to be either homeomorphisms or local -
equivalences, we obtain

Main Theorem. The operad-map C,, @ -+ @ C,, — C, is a local
Y-equivalence for all 1 > 2,ny,...,ny E N andn =n; +--- + ny.
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