Constructions of
Hereditary Abelian Categories with Serre Duality
using Ray Quivers and Ordered Sets

Claus Michael Ringel

Let k be a field. The categories to be considered are additive k-categories
(always with finite dimensional Hom and Ext-spaces). In the case of k being
algebraically closed, Reiten and Van den Bergh [RV] recently have determined all
hereditary abelian k-categories C which are noetherian and satisfy Serre duality.
Of particular interest seem to be those categories C which in addition are connected
and have at least one indecomposable projective object (the case (c) of [RV]). These
categories C have been constructed by Reiten and Van den Bergh in two different
ways, our aim is to present a third way. In contrast to Reiten and Van den Bergh,
the construction to be presented here does not invoke derived categories, instead
we will use a slight modification (or extension) of the notion of a quiver and its
representation, namely that of a “ray quiver”. Whereas the usual quivers serve to
describe the spaces Extl(S ,T) where S, T are simple objects, the ray quivers are
a first attempt to take care of some additional Ext'-spaces, namely Extl(S, U),
where S is still simple, wheras U is a suitable uniform object without socle. The
ray quiver construction of the categories C considered by Reiten and Van den
Bergh provides additional information on the structure of these categories.

Ray categories can also be used in order to construct the categories of type
(d) in [RV]. Here, we start with the category of all representations of two suitable
ray quivers and obtain the required category as a full subcategory: what we do is
a typical localization procedure.

It has been asked by Reiten and Van den Bergh [RV,Re] whether any heredi-
tary abelian k-category with Serre duality may be derived equivalent to a noethe-
rian one. The last section is devoted to construct many counter examples by
considering representations of ordered sets. All the categories constructed there
will be directed.

Acknowledgement. The author is indebted to Henning Krause and Otto
Kerner for questions and remarks which stimulated these investigations.



IVINGHREL
Part I. Ray quivers.

1. Definition.

A linearly oriented quiver of type A, with a source is usually called a ray,
one with a sink a coray. We will say that a linearly oriented quiver of type A is
a biray. Thus, the upper part of the following picture shows to the left a ray, to
the right a coray, and the lower part is a biray:
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All the quivers we are dealing with will be assumed to be locally finite and directed
(locally finite means that any vertex has only finitely many neighbors, and directed
means that there are no cyclic paths). Given such a quiver, we will be interested
in the subquivers which are rays (thus in infinite paths with a starting point), or
better in ray classes: two rays will be said to be equivalent provided they differ
by only finitely many vertices and arrows, the equivalence classes are called ray
classes. We will use labels for the ray classes: given a ray with arrows «; as above,
we may use the symbol «, as its label; in a graphical presentation, we will use
instead of the symbol «a, a small square box 0O and put it besides the dots needed
to mark a ray; thus it will look like o — o — --- O; we call these squares ray class
bores. A ray quiver is given by the following data @ = (Qo, @1, Qn, Qs), here
(Qo, Q1) is a (usually non-connected) directed quiver, the set Qo serves to label
all the ray classes in (Qo,@1), and the elements of (s are pairs (x,a,) where
r € Qg and a, € Q; these elements of (s are called special arrows and are
drawn in the form = — a, or just o — o. Examples of ray quivers will be seen
below.

Throughout the paper we will fix a field k, all vector spaces will be k-
spaces. In order to define representations of ray quivers, we note the following:
given a ray «, in any quiver and a representation V of this quiver, we can form
the direct limit V(a.) along the ray, such direct limits will now be used. Note
that the direct limit only depends on the ray class. A representation of the ray
quiver Q = (Qo,Q1,Qu, Qs) is of the form V = (V(x),V(v)), where x € Qo
and v € Q1 U Q. As usual, V(z) is a k-space, for every vertex =z € @y, and
V(y): V(z) — V(y) is a k-linear map, for every arrow v: z — y in @);. Given a
special arrow v: x — a,, then V(v) is required to be a k-linear map

V(z) - lim V(a.).

Note that the special arrows do not occur in any ray (by definition, but also since
our ray class boxes are really sinks). Thus, in order to specify a representation of
@, we first may deal with the k-spaces V(x) for z € @, and with all the maps
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V(7), for v € @1, then we determine the direct limits for the rays and finally we
consider the special arrows. Given two representations V, V' of the ray quiver @,
amap f:V — V'’ is given by linear maps f(z) for all x € Qq, with the usual
commutative diagrams for the arrows in ()1, and with corresponding commutative
diagrams for the special arrows v: x — «a, in @ (here we use that f induces for
any ray «, a direct limit map lim_, V(a,) — lim_, V'(a,)).

A representation V' of the ray quiver @ is said to be finitely generated pro-
vided there is a finite subset I C )y and for every = € [ a finite dimensional
subspace U(x) C V(z) with the following property: for any vertex y € @y the
space V(y) is generated by the subspaces w(U(z)) where w runs through all
paths in (Qo, Q1) starting from any vertex x € I and ending in y (note that
in this definition, the special arrows are not considered at all). A representa-
tion V is finitely generated if and only if for any family V; of subobjects of V
with V' =3, V;, there is a finite subset I' C I with V' =3} _._,, Vi. The cate-
gory of finitely generated representations of the ray quiver ) will be denoted by
mod(Q, k).

Remark. We write mod(@, %) and not, as one could expect, the usual
mod k@), since this would suggest that there exists something like a “path algebra”
kQ, but this is not the case. There is another (and related) warning: Given
a subset I C Qo and for every = € I a subspace U(x) C V(x), in general
one cannot define the “submodule generated by these subspaces”. Consider for
example the following ray quiver

oY
Jﬂ
aj (o) Qas
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and its representation V with V(z) = k for all vertices x and V(a) being the
identity map for all arrows « (including the special arrow ~). The subspace
U(y) = k of V(y) will not generate a subrepresentation of V.

Of course, this example illustrates very well the problem of dealing with
intersections of chains of subobjects V = V(0 5 V(1) 5 V(2 5 ... Here, take
for V(® the submodule generated by V(z;) and V (y), this submodule exists, but
the only subobject contained in all V(9 is the zero object.

For the further considerations, it will be sufficient to invoke the following
quite obvious principle for constructing at least some subrepresentations:

Lemma 1. Let I be a subset of Qo with the following two properties: First,
if a:x —y is an arrow and x € I, then y € I. Second, every ray class contains
a ray with all the vertices in I. Then, given a representation V of @, the choice
Vi(x) =V (x) for x € I and Vi(z) =0 for x ¢ I, yields a subrepresentation Vi
of V.
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Given the category C = mod(Q, k), we want to recover information con-
cerning the ray quiver ). First of all, for every vertex = € g, we may define
a corresponding simple representation S, with S,(z) = k and S,(y) = 0 for
x # y € Qo (and such that all the maps S,(a) are zero maps, but there is no
other choice, since there are no loops). Of course, for x # y, the representations
S, and S, are not isomorphic. Also, we obtain in this way all the simple rep-
resentations (up to isomorphism). Namely, if V' # 0 is a representation, choose
some vertex x with V(z) # 0. Now, let I be the set of vertices y of @ with
no path from y to x and let I’ be the set of vertices y of ) with no path of
length at least 1 from y to = (thus I is obtained from I’ by deleting x). Then
according to Lemma 1, V' has submodules Vi C Vi and (Vp/Vi)(x) = V(z),
whereas (Vy/Vr)(y) = 0 for all y # x. As a consequence, Vi//V; is a non-zero
direct sum of copies of S,. In particular, if V' is simple and V(z) # 0, then, up
to isomorphism, V = §,.

We have seen that we can recover the set Q¢ from C = mod(Q,k). Of
course, the k-dimension of Extl(Sm, Sy) vyields the number of arrows  — y; this
shows that (Qo, (1) is just the ordinary quiver of C (with vertices corresponding
to the isomorphism classes of the simple objects, and such that the arrows yield
the Extl—groups for the simple objects). So what about the boxes and the special
arrows? We restrict the discussion to the case when the rays are isolated: by this
we mean that any two non-equivalent rays have at most finitely many vertices in
common. In this case, the ray classes correspond bijectively to equivalence classes
of uniform objects without socle: recall that an object in an abelian category is
said to be wuniform provided the intersection of any two non-zero subobjects is
non-zero again; we call two uniform objects Uy, Us equivalent provided there is
a uniform object Us with monomorphisms Us — U; and Us — U,. Given any
uniform object U and a simple object S,, we may look for the dimension of
ling Extl(Sm,Ui), where U; runs through the non-zero subrepresentations of U.

In this way, we recover the number of special arrows from z to the ray class box
corresponding to U .

2. The categories (c) considered by Reiten and Van den Bergh.

The aim of this section is to present a new way for constructing all the
noetherian hereditary abelian k-category with Serre duality which contain non-
zero projective objects. Recall that Reiten and Van den Bergh have classified, for
k algebraically closed, all the noetherian hereditary abelian k-category with Serre
duality, and the categories which contain non-zero projective objects said to be of
type (c).

Construction. The following ray quiver will be the essential ingredient in
our further investigation, we call it a ray-coray.

ao a az c1 c2
a1 (2 a3 Y1 Y2 3
(*) o o o e O o o
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Let A be a connected quiver without paths of infinite length (of course, as all our
quivers, also directed and locally finite). Let m : Ag — Ny be a function. To
every vertex x attach m(z) (otherwise disjoint) ray-corays (* ), always identifying

the source ay with x. The ray quiver obtained in this way will be denoted by
A™,

Theorem A. Let A be a connected quiver without paths of infinite length
and m: Ag — Ny a function. The category C = mod(A™, k) is a connected
noetherian hereditary abelian k-category with Serre duality, with non-zero projec-
tive representations. If k is algebraically closed, then any category C with these
properties is obtained in this way.

The proof will be given in the next two sections. Before we start with the
proof, let us discuss whether it is possible to recover the given quiver A from A™.
This is often possible, the only exception is the following: Assume that x is a sink
of A, that precisely one arrow 2’ — z ends in z, and that m(z) = 1. In this
case, we can delete the vertex = as well as the arrow 2’ — x from A and increase
m(z’) by 1, and we will obtain the same result. In order to exclude this ambiguity,
we can assume that the function m is reduced in the following sense: If x is a sink
of A and precisely one arrow ends in z, then m(z) # 1. Using this additional
assumption, the quiver A is uniquely determined by the ray quiver A™: Given
a reduced function m: Ay — Ny, then a vertex x of A™ does not belong to A if
and only if the following property is satisfied: precisely one arrow starts at x and
if we remove this arrow, then we obtain the disjoint union of a ray quiver with at
least two vertices and of a coray or a copy of (*). Since A is a convex subquiver
of A™, it is sufficient to know its vertices in order to recover it from A™. On
the other hand, it is sufficient to work with reduced functions: For every function
m: Ag — Ny there is a ray quiver A’ and a reduced function m’: Ay — Ny such
that A™ = (A)™,

Let A be a ray quiver and m: Ay — Ny a reduced function, then the ray
subquivers of A™ of the form (%) used in the construction will be called the
normalized ray-corays. These are the ray-corays with ag € Ap, but a1 ¢ Ag.
Since we assume that m is reduced, a ray subquiver of A™ of the form (x) is
normalized if and only if the following conditions are satisfied: (1) If ag is endpoint
of precisely one arrow, then it is starting point of at least two arrows. (2) The
only arrows starting or ending in the vertices a; and ¢; with 7 > 1, or ending in
the ray class box a, are the given arrows a; and ;.

3. The category C is a noetherian hereditary abelian category.

Let A be a quiver without infinite paths and m: Ag — Ny a function, and
let us assume that m is reduced. Let C = mod(A™, k).

Recall that the ray quiver A™ was obtained from A by attaching the ray-
coray quiver (*). We will need similarly defined quivers obtained from A by
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attaching only the ray part (this quiver will be denote by A™") or by attaching
suitably oriented quivers of type As;y; (this quiver will be denoted by A™:?),
Thus, A™T is the ray quiver obtained from A by attaching to every vertex x
precisely m(x) rays:

o) o) o) oo O

always identifying the source ag with x (we could delete the boxes and consider
A™T just as an ordinary quiver). Let C’ = mod(A™F k), of course we may
consider this (in a canonical way) as a full subcategory of C.

Remark. When dealing with the representations of A™" | the ray class boxes
do not play any role; the corresponding quiver (obtained by deleting the ray class
boxes) is the one considered by Reiten and Van den Bergh [RV] as the starting
quiver for constructing the category C.

Lemma 2. Fach representation V. of A™ has a largest subrepresentation
V' which belongs to C' and V/V' is finite dimensional.

Proof: The first assertion follows directly from Lemma 1. In order to see
that V/V' is of finite length, note that (V/V')(z) is non-zero only for vertices
x = ¢; lying on the coray-part of a ray-coray. Thus V/V' lies on a disjoint union
of corays, thus its support is a disjoint union of finitely many quivers of type A, .

Lemma 3. If x is a vertex of A™F, then the simple representation S, has
a projective cover and an injective envelope in C and both lie already in C'.

Proof. Let z belong to A™F. Clearly, S, has a projective cover and also an
injective envelope in C’. Let P, be the projective cover of S, in C'. Let V,W be
representations of A™ and let f: V — W be a surjective map. Let I be the set
of vertices of A™". Any map P, — W factors through W;, and if f: V — W
is surjective, then also the induced map fr: V; — W7 is surjective. Since P, is
projective in C’, the map P, — W7 can be lifted to a map P, — V7.

On the other hand, let I, be the injective envelope of S, in C’. Note that
I, is of finite length. We want to show that I, remains injective in C. Given
a representation V of @, let V' be its maximal subrepresentation in C’. Then
Ext'(V,I,) = 0. Note that Ext'(S,I,) = 0 for all simple representations, since
I, is of finite length and A™" is a connected component of the ordinary quiver
(Qo, Q1). Since V/V" is of finite length, it follows that Ext*(V/V’, I,) = 0. Alto-
gether we see that Ext!(V,I,) = 0.

Note that the indecomposable projective objects P, with = a vertex of A™F
are noetherian. Since all the objects in C’ have a projective cover, we see im-
mediately that the category C’ is a noetherian hereditary abelian category. (Of
course, this is well-known and has been used also in [RV].) For us, the following
consequence of the previous results is of interest:

Corollary 1. If V is in C, then V(«a) is bijective for almost all arrows «.
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Proof: Let V' be the largest subrepresentation of V' which belongs to C’. It
is sufficient to show that both maps V/(a) and (V/V’)(«) are bijective for almost
all arrows «. Since V/V' is of finite length, we only have to consider V. Now, the
objects in C’ have projective covers, let p: P — V' be a projective cover, and P’
the kernel of p. Note that both P, P" are finite direct sums of modules of the form
P, with z a vertex in A™F, thus we only have to consider the case of V = P,.
Since P, is projective, all the maps P,(a) have to be injective. Let us consider
an arrow «:y — z such that P,(«) is not surjective. First of all, this happens
in case z = x, but there are only finitely many arrows ending in z. Second, let
us assume that z # x. In this case, there has to exist another arrow which also
ends in z, say 3: y' — z, and such that there is a path from = to y’. Since there
are at least two arrows which end in z, we see that z has to belong to A (all
the additional vertices in the ray-corays are endpoint of precisely one arrow). But
inside A there are only finitely many paths starting in = (since A is locally finite
and has no infinite path), and therefore there are only finitely many possibilities
for a.

We denote by C; the full subcategory of all finitely generated representations
V of A™ such that for any normalized ray-coray (*), the map V(ay) is an iso-
morphism and V(es) = 0 for all s > i. It is eays to see that the category C; is
equivalent to the category of representations of the quiver A™’ obtained from
A by attaching to every vertex z precisely m(z) copies of the following quiver,
always identifying the source a¢ with x:

ao a1 a;—1 a; Cc1 Ci
(k) 0—>0 +++ 0O—>0=<—0 +++ 0=<—0
o [e73 71 Vi

To be more precise, define functors
Fil Am’i —C

as follows: Given a representation V of A™? let (F;(V))(x) = V(z) for all
vertices * € Ay and (F;(V))(B) = V() for every arrow [ € A;. Also, given a
normalized ray-coray (), let (F;)(V))(x) =V (z) for x = as; with s <4, and for
x = cgs with s <i; let (F;)(V))(as) = V(a;) for s > i and (F3)(V))(cs) = 0 for
s > i; similarly, let (F;)(V))(8) = V(B) for 8 = a5 and 3 = 7, with s < 4, finally,
let (F;)(V))(as) be the identity map for s > i (and, of course, (F;)(V))(vs) the
zero map for s > i). Clearly, the functor F; is a full exact embedding and its
image is dense in C;.

The quiver A™ has no paths of infinite length, thus mod(A™* k) is a
hereditary abelian k-category.

Corollary 2.

czU C;.

7
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Proof: This is an immediate consequence of Corollary 1 and Lemma 2.

Corollary 3. The category C is a noetherian hereditary abelian k -category.

Proof: Since all the categories C; are hereditary abelian k-categories, the
same is true for the union: all the conditions to be checked involve only finitely
many objects. That C is noetherian follows from Lemma 2: Given any object V',
there is a unique maximal subobject V’ which belongs to C’ and V/V"’ has finite
length. But, as we know, the category C’ is noetherian, thus V'’ is noetherian.
Since V/V' is of finite length, it follows that also V' is noetherian.

4. Serre duality for C.

Recall that the simple objects in C = mod(A™, k) are the one-dimensional
representations and that they are of the form S, , with = a vertex of A™.

Proposition 1. The following assertions are equivalent for a vertex x of
Am
(i) Sz has a projective cover.
(ii) S, has an injective envelope.
(iii) « is a vertex of A™F.

Proof. According to Lemma 3, we know that (iii) implies both (i) and (ii).
Conversely, let us show that for a vertex x of A™ which does not belong to
A™r " the simple representation S, has neither a projective cover nor an injective
envelope.

The vertex x is of the form =z = ¢; for some t and some ray-coray ().
First, assume that S, has a projective cover P, in C. There is an i such that
P, belongs to C;. Of course, P, is the projective cover of S, also in C;. But
then we know precisely the structure of P,, namely P, is a representation of @)
such that Py(a;) =k for j >4 and P,(c;) =k for all j <t, whereas P,(y) =0
otherwise. However, such a representation is not local, it has two different simple
factor modules, namely S, and also S,,. This is impossible.

Next, assume that S, has an injective envelope I, in C. Then I, is an inde-
composable representation with socle S, . It is easy to see that any representation
with socle S, is of finite length and uniserial, say with top S., for some vertex c;
belonging to the given coray. But then Ext'(S,, 1 Iz) # 0, impossible.

We know in this way that there is a bijection v between the indecomposable
projective modules P and the indecomposable injective modules I = v(P) such
that P/rad P is isomorphic to socI. Thus in order to know that the category C
has Serre duality, it remains to be shown that C has almost split sequences (see

[RV]).

We can assume that m # 0, since it is well-known that for any locally finite
quiver () without infinite paths, the category mod k() has almost split sequences.
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Recall that the categories C; with ¢ € Ny are abelian categories, and we
will use their properties. First of all, note that the category C; has almost split
sequences, since A™? is a locally finite quiver without infinite paths. Let us
denote the Auslander-Reiten translation in C; by 7; and the inverse by 7, .

Lemma 4. Let 0 < ¢ < j be natural numbers. Assume V belongs to C;.
Then both 7;V and T;V belong to C;y1.

Proof: We work in the category mod kA™J and denote the Auslander-Reiten
translation in this category by 7 and its inverse by 7. Let V' be a representation
of A™J . Note that F;(V) belongs to C; if and only if V(as) is an isomorphism
for all s > ¢ and V(cs) = 0 for all s > i. Thus, we have to show: If V(a,)
is an isomorphism for all s > ¢ and V(cs) = 0 for all s > i, then for both
representations W =7V and W = 7=V, the maps W(as) are isomorphisms for
all s>7+1 and W(cs) =0 forall s >i+41.

We know that for every indecomposable representation W of A™J the
maps W(as) are injective or surjective, thus in order to show that W(as) is
bijective, we only have to check that dim W (as—1) = dim W (as). This shows that
it is sufficient to look at the dimension vector of W. Now the dimension vectors
of 7V and 77V are obtained from the dimension vector of V' by applying the
corresponding Coxeter transformations ® and ®!. Here are the calculations for
such an arm: the upper line shows the labels = of the vertices, below are the
dimensions dim(7V)(z), dim V' (z), and dim(7~V)(z).

Qi1 G A1t G S Cp G G G G
TV "'ul—>u—>v]_:"‘vl<_v2<_"'vi<_0<_0<_0<_"'
V ...Uiﬁvo :/1)0 :...UO(—Ul (—...Ui_l(— UZ — 0 — 0 — o ..
TV e W = W = W = s W Vg VeV U — 0 e— -

with v = v; +v] —vy and suitable v/, w (they depend on the dimensions dim V' (y)
with y € A).

Corollary 4. Assume that V is indecomposable and belongs to C; 1 for
some i > 0. If V' 1is not projective in C, then V is not projective in C; and the
almost split sequence in C; ending in V is an almost split sequence in C. If V is
not injective in C, then V 1is not injective in C; and the almost split sequence in
C; starting in 'V is an almost split sequence in C.

Proof: Let V be an object of C which is indecomposable and not projective,
and assume V belongs to C;_; for some i > 0.

First, let us assume that V' is projective in C;, say V = F;(P,), where P,
is the indecomposable projective representation corresponding to the vertex x of
A™? Tt follows that z cannot be one of the vertices a; or ci,...,c; on an arm
(*x), since V belongs to C;_; and this means in particular that V(a;—1) and

9
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V(a;) have the same dimension, whereas F;(P;)(a;—1) = 0 and F;(P;)(a;) = k,
for these vertices x. But for the remaining vertices x, one easily sees that F;(P;)
is projective in C, in contrast to our assumption.

Since V is not projective in C;, there exists an almost split sequence 0 —
=V =W —V — 0 in C;. We want to see that this is an almost split sequence in
C. Since C=J f Cj, it is sufficient to show that the sequence is almost split in any
C; with j > 4. Let j > 4. Since V belongs to C;_;, the previous lemma asserts
that 7;V belongs to C;. Since C; is closed under extensions, the almost split
sequence in C; ending in V' lies inside C; and thus coincides with the sequence
0— 7,V —-W — V — 0. This completes the proof of the first assertion.

The proof of the second assertion is similar. We consider an object V' of
C which is indecomposable and not injective, and we assume that V belongs to
C; 1 for some i > 0. We claim that V' cannot be injective in C;. Namely, assume
that V = F;(I,), where I, is the indecomposable injective representation of A™*
corresponding to the vertex x. Again, it follows that z cannot be one of the
vertices a; or ¢q,...,c¢; on an arm (*x ), since V(¢;) = 0, whereas F;(P,)(¢;) = k
for x € {a;,¢1,...,¢;}. But for the remaining vertices =, one easily sees that
F;(I;) is injective in C, in contrast to our assumption.

Now take an almost split sequence 0 — V — W’/ — 7=V — 0 in C; and, as
in the first part of the proof, we show that this sequence is almost split in any C;
with j > 4. Of course, here we use again the previous lemma.

Proof of Theorem A. We have shown that the category C has all the
required properties. Conversely, assume that k is algebraically closed. Let D be
a connected noetherian hereditary abelian k-category with Serre duality and with
non-zero projectives. We may consider the full subcategory D’ of all objects in D
generated by projective objects. According to [RV], this category D’ is of the form
mod(A™* k) for some connected locally-finite directed quiver A without infinite
paths and a function m: Ay — Ny. Since both categories D and mod(A™, k)
have Serre duality, any equivalence mod(A™ k) ~ D’ lifts to an equivalence
mod(A™ k) ~ D, again referring to [RV].

Remark. We may use these considerations in order to provide an effective
recipe for calculating 7V and 7~V for any indecomposable representation V'
of A™. Namely, choose ¢ > 0 such that V belongs to C;_1, thus V may be
considered as a representation of the quiver A™’. Since A™* is a locally finite
quiver without infinite paths, the usual procedures for determining 7V and 7=V
work: we either may use the Auslander-Reiten constructions D Tr and Tr D,
respectively, or else we may work with the Bernstein-Gelfand-Ponomarev reflection
functors, taking into account that the corresponding Coxeter functors yield D Tr
and Tr D up to the use of signs, see [Ga].

For i € Ny, let C;; be the full subcategory of all representations V' of A™
such that V(ecs) = 0 for all the coray vertices labeled ¢, with s > i. Note that
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Cr.0 = C'. In addition, we denote by C” = C,,_; the full subcategory of all finite
dimensional representations in Cy o = C’.

Corollary 5. Let i € Ng. Then 7(Cr;) C Cp 1. If V belongs to Cy it1\Cr,
then TV belongs to Cy; \ Cri—1 -

For i = 0, this means that 7(C") C C”. In particular, 7(C") C C".

Proof: This is a direct consequence of our calculations and we may reformu-
late the last sentence also in the following way:

Corollary 6. Let M be indecomposable in C and i > 0. Then the following
assertions are equivalent:
(i) M belongs to Cy;, but not to Cypi—1 .
(i) 7°M is infinite dimensional and Tt M is finite dimensional and belongs to
C'.
(iii) For any j € Ny, the representation 7=/M belongs to Cyiyj, but not to
Criitj—1-

Here another consequence of our calculation of 7 and 77 :

Corollary 7. The functor T maps injective maps to injective maps. The
functor 7= maps surjective maps to surjective maps.

Proof: Given any map f: V — V'’ in C, we may suppose that V,V’ both
belong to C;—1 for some i > 0, then we can construct 7(f) and 7~ (f) inside C;.
Instead of looking at C; we may work in the module category mod kA™* and
there we know that 7 preserves injectivity and that 7= preserves surjectivity.

5. The components of the Auslander-Reiten quiver.

Let us recall the following observation which is valid in any hereditary abelian
category with almost split sequences: Let X,Y be indecomposable and let X — Y
be an irreducible map. If Y is projective, then X is projective. As a consequence,
we also see that X projective implies that either Y or 7Y is projective. Also
dually, if X is injective, then Y is injective. And if Y is injective, then X or
7~ X is injective.

The preprojective component. Any arrow ~: x — y in the quiver A™"
gives rise to an irreducible monomorphism P, — P,, this shows that all the
indecomposable projective objects lie in one component, which we denote by P.
Using the observation just mentioned, we see that for any indecomposable object
Z in P, there exists some t € Ny with 7'Z projective. For any vertex z lying on
a ray, the representation P, is infinite dimensional, and Corollary 6 implies that
the 7-orbit containing P, is infinite. If we assume that m # 0, then we obtain
in this way 7-orbits in P which are infinite. But using the injectivity part of the
observation, we see that then all the 7-orbits have to be infinite. Also for m =0,

11
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usually all the 7-orbits in P are infinite, the only exceptions are the cases where
A is of type A,, D,, Egs, E7, or Eg.

The objects in the preprojective component P generate C. Proof: Given any
indecomposable object M in C, there is some t € Ny such that 7!M is non-zero
and belongs to C’. Any object in C’ is generated by the projective objects, thus
there is a surjective map f: P — 7'M with P projective. Now apply 7! and
note that 7—! maps surjective maps to surjective map, according to Corollary 7.

The preinjective component. Any arrow v: x — y in the quiver A™F
gives rise to an irreducible monomorphism I, — I, this shows that also all the
indecomposable injective objects lie in one component, which we denote by Q.
For any indecomposable object Z in Q, there exists some t € Ny with 7717
injective. Again, all the 7-orbits are infinite except in case m = 0 and A is of
type An,D,, Eg, E7, or Eg. Of course, in the latter case, Q@ = P is the only
component.

The regular components. Let us consider now the shape of the regular
components. The following extends the main result of [R1].

Proposition 2. Any regular component of the Auslander-Reiten quiver is of
the form ZA .

Proof. If we deal with a component which contains only representations of
finite length, then we can use the arguments as presented in [R1]. Thus, let us
assume that we deal with a component which is not contained in C”. Let X be

indecomposable and 0 — X J, Y 4 Z — 0 an almost split sequence. and assume
that Z does not belong to C”. Thus Z belongs to Cy j, but not to Cy j_1, for some
J,and X = 77 belongs to C; j_1. Decompose ¥ = @le Y; with indecomposable
direct summands Y;, and write f = (f;);, where f;: X — Y;.

(1) Not all maps f; are surjective. For, otherwise X’ maps onto Y, thus also
onto Z (using the map ¢); but Z does not belong to Cy j_1, whereas X = 72
belongs to Cy ;1. Impossible.

(2) If t > 2, then the map (f1,f2) : X — Y7 @ Y; is injective. For the
proof, assume (fi, f2) is not injective. Then it has to be surjective, since it is an
irreducible map. Applying 7, we also obtain a surjective map (7~ f1,7~ f2): Z —
77Y1 @ 7 Ys. Using the exact sequence 0 — X — Y1 ®0Yo ®Y’ — Z and the
almost split sequences 0 = Y; — Z® C; — 77Y; for 1 = 1,2, we see that for any
vertex x of A™, we have

dim X (z) + dim Z(z) > dimY;(x) + dim Ya(x) + dim7 Yi(z) + dim7 Ya(x)
> 2dim Z(x),
thus dim X (z) > dim Z(x). But this contradicts again the fact that Z does not
belong to Cy j—1, whereas X = 77 belongs to Cy j_1.

(3) Assume that we can decompose Y =Y’ @Y"” and write f accordingly as
f=("f") with f': X -Y" and f”: X — Y”. Then it is impossible that both

12
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maps f’, f” are injective. Proof: We write also g = (¢/,¢”) with ¢: Y — Z, and
g":Y" — Z. Let us assume that both f’, f” are injective. Then also ¢’,¢” are
injective maps, thus we have a proper monomorphism 77 = X — Z. Applying
7t with ¢t > 1, we obtain correspondingly proper monomorphisms 7¢+127 — 7¢Z.
But for some t > 1, the module 7tZ is finite dimensional, and then the infinite
chain of proper submodules

7 >tttz 5 rttiz 5.

yields a contradiction.

(4) Altogether we see that ¢t has to be 1 or 2, and in case t = 2, one of the
maps f;: X — Y; with ¢ = 1,2 is injective, the other is surjective. For, we know
from (1) that at least one of the maps f;, say f;, is injective. If t = 2, then we
use (3) in order to see that f; cannot be injective, thus it has to be surjective. If
t > 3, then consider the property (3) for the decomposition Y’ = @f;i Y; and
Y"” =Y;. According to (2), we know that f': X — Y’ is injective. Again, we get
a contradiction. Thus the case t > 3 cannot happen.

Coordinization of regular components. Let us stress a quite interesting
phenomenon for the components which contain at least one infinite-dimensional
representation, namely that they have well-defined coordinates: Thus, let M be
an infinite-dimensional representation and consider the component Rj; which
contains M . Of course, at least one of the quasi-simple objects in Rj; has to be
infinite-dimensional too, say N (recall that N is said to be quasi-simple provided
the almost split sequence ending in N has an indecomposable middle term), and
according to Corollary 5 we may assume that 7N is finite-dimensional. We call
such a representation central. We label the indecomposables in the R, inductively
by pairs ¢ < j of integers as follows: Let X;; = 77°N and if X;; is already defined,
let X;_1 ; be the indecomposable representation with a surjective irreducible map
Xi—1,; — Xij;. It is clear that all the objects X;; with j < 0 are of finite length,
whereas those of the form Xj;y are infinite-dimensional. Of course, it follows that
all the objects X;; with ¢ < 0 < j are infinite-dimensional. Here are the labels of
such a regular component:

The dark coray marks the infinite dimensional indecomposables M’ with 7M’
being finite dimensional; the encircled co-cone is the part of the component which

13
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belongs to C’. The representation with label (0,0) is the central one. We can
reformulate Corollary 6 as follows: Let j € Ny. An indecomposable representation
M’ belongs to Cy ;, but not to C, ;1 if and only if M’ is labeled by a pair of the
form (i,7).

The simple representations outside of C’. The only indecomposable
representations of finite length outside of C’ are those living on one of the corays
attached to A and these are serial objects. In order to point out the position of
these representations, let us label the ray-coray quivers (*) attached to A at the
vertex x € Ay by the pairs (z,i) with 1 < i < m(¢). The vertices of such a
ray-coray will be labeled as follows:

T (z.3,a1) (z,%,a2) (z.3,¢1) (z,i,c2)

o o o .- O o o

Consider the projective representation P, ; q,)- It is uniform and has a relative
injective envelope I EM) inside C’ (note that in C’ there are two kinds of inde-
composable injectives, namely the injective envelopes I, of the simple objects S,
with = a vertex of A™", and the objects of the form I (/a:,i) and one obtains in
this way sufficiently many injective objects). The representation I (’x ;) is no longer
injective when considered as an object of C, we have

T_tI(z,i) = S(z,i,ct) for all t € Nj.

Thus, if I(, ;) is regular, then [(, ;) is central in its component and carries the label
,0), whereas S, ;. carries the label (f,t). As the first example in the nex
0,0 h S(z.i,cr) ies the label (¢,t). As the first le in th t

section shows, I, ;) may be preprojective, then also all the simple representations

S(z,i,c;) are preprojective.

Proposition 3. If A™" is not of type A, then all the simple objects of the
form S(zia,) OF S(,ic,) With t > 1 are reqular. If A™" is of type A, then the
objects S(z.i,qa,) are preinjective, those of the form S, ;.,) are preprojective.

Proof. For the second assertion, we refer to the next section, where the full
Auslander-Reiten quiver will be displayed for this case. Also, the cases where A™F
is of type A will be treated in the next section. Thus, we assume that A™F is
not of type A, or AY. Let ¢t > 1. First of all, we note that the object S, ; 4,
cannot be preprojective, since 77(S(4,i,0,) = S(z,i,ar4;) for any j > 0. Second, the
object S(;.,) cannot be preinjective, since @ C C”. Since A™" is of not of type
A or A, thus there is some braching vertex x in A™F. It is easy to construct
an indecomposable representation V' of A™ with subobject S, ;) and factor
object S ;.c,)- Namely, start with an indecomposable representation V' of A™*
with dim V/(z) = dim V'(z,4,a;) = 2 and dimV'(z,4,a;) = 1 for all j > t and
extend it by the simple objects Sz ;.,) with 1 < s <t in order to obtain V. The
non-zero maps S(z.i.a,) — V — S(z,i,c,) show that S, ; q,) cannot be preinjective
(since S(z,4,c,) is not preinjective) and that S(, ; .,) cannot be preprojective (since
S(z,i,a;) 1S DOt preprojective.)

14



LCONSTRUCITIONS OF IMTEREDITARY UALTRGORIES
6. Bounded representation type.

We say that a ray quiver @ (or also the category mod(Q, k)) is of bounded
type provided there is a bound b € N such that for any finitely generated inde-
composable representation V' of @, we have dimy V(z) < b for all vertices z. If
we want to specify the bound b, we say that @) is b-bounded.

Consider the following quivers A and functions m; always, the non-oriented
edges may be oriented arbitrarily (but in the case A, we have to use infinitely
many arrows in either direction) and we list only the values m(xz) (below the
vertex x) provided these values are non-zero:

A, (n>2) 0o—>o0 0 ... 0 o Ay o
1 1
A, (n>3) 0o—>o0 0o .-- 0 o=<—o0 A, o
1 1 2
A 0—>0 0 --- 0 o
1
o o
D, (n=>4) 0—>o0 0 ... 0 o/ Ds o/
1 \O l\o

We are going to present the corresponding Auslander-Reiten quivers.

(1) First, consider the A4 quiver:

= O Q
O
(]
]

Here is the Auslander-Reiten quiver:

(2) The next case, again we start with an A4 quiver:

a b c d
o (] O )
1 1

15
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Here is the Auslander-Reiten quiver:

el

Py /P,

(3) The third case; we start with an A, quiver:
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Always, the dark shaded area shows the infinite dimensional representations

M with 7M finite dimensional. In addition, we have shaded the cones .=
contain the simple representations corresponding to the vertices on the corays and

the co-cones . which contain the simple representations corresponding to the

vertices on the rays.

If we want to visualize the four categories of bounded type, it is not sufficient
to deal only with the Auslander-Reiten components, but we also have to consider
the maps between objects which belong to different components, (and also maps f
between objects in one component which cannot be written as a linear combination
of compositions of irreducible maps — but, as we will see, this does not happen).
Here is an attempt to present a global picture of these categories (inside the
corresponding derived categories):
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Of course, a better feeling for these categories may be obtained by using the
quilt approach of sewing together the components, as described in [R2].

Recall that an additive category is said to be directed proved all objects are
finite direct sums of indecomposables and given any sequence My, My, ..., M, of
indecomposable objects and any sequence of non-zero maps f;: M;_1 — M;, for
1 <7 <n,then My= M, implies that all the maps f; are isomorphisms.

Proposition 4. The category C is of bounded type if and only if C is directed.

Proof: If the quiver A™* contains a Euclidean subquiver, then the category
mod(A™ k) is neither of bounded type nor directed. Thus we only have to discuss
the cases where no FEuclidean subquiver is involved. In case m = 0, these are the
finite quivers of type A,, D,, Eg, E7, Eg as well as the infinite quivers of type
Asy, AZ, Dy . In all these cases, the category mod kA is known to be both of
bounded type as well as directed. Now assume that m # 0. Then clearly we are
in one of the four cases exhibited above. We know that C = |JC; with C; being
equivalent to mod kA™?. Now in the cases (1), (2), (3), these quivers A™* are
of type A,,, in the case (4), they are of type D,,, thus always C; is directed. As a
consequence, also C is directed.

Remarks. If C is of bounded type, then it is of 6-bounded type. If C is of
bounded type and has infinitely many simple objects, then C is even of 2-bounded
type. If m # 0 and C is not of bounded type, then C is wild.

7. The categories (d) considered by Reiten and Van den Bergh.

The aim of this section is to use ray quivers in order to present also a new
construction of the two categories listed by Reiten and Van den Bergh as case (d).
First, consider the following ray quiver @:
B-1 Bo B

O O oo O

We denote by D the full subcategory of mod (@, k) given by all representations V'
such that both maps V() and V(v') are isomorphisms. Clearly, D is a hereditary
abelian category, and it is noetherian. Of course, D has neither non-zero projective
objects nor non-zero injective objects.

Similar to previous considerations, we write D as a union of an ascending
chain of subcategories D;, for ¢ € N. Here, D; is the full subcategory of all
representations V' in D with V(3;) and V(8}) being isomorphisms, for all j >
1. Of course, D; has as full and dense subcategory the category of all finitely
generated representations V' of @ such that all the maps V (v), V(v'), V(8;), V(5})
with j > ¢ are even identity maps, and this subcategory may be identified with
the category of finitely generated representations of the following quiver Q)

18
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512 ﬂzl
. —>0—>o0 B

. ﬁoﬁo ﬂ;
Bi*? ﬂi*l

This is a quiver of type A, and we know very well all its indecomposable repre-
sentations as well as the maps. In particular, the category mod kQ(® is directed.

As a consequence, we obtain the full classification of the indecomposable
objects as well as the maps in D. Thus, we see that for V' indecomposable in D,
all the vector spaces V(z) are one-dimensional or zero, that D is directed and
that it is a category with Serre duality.

To be more precise, let us consider the indecomposable objects of D in detail.
The objects of finite length have their support either on the upper biray (formed
by the arrows ;) or on the lower biray (formed by the arrows ;). We obtain in
this way two Auslander-Reiten components of the form ZA.,. In addition, given
a pair (z,2’) of integers, there is a unique indecomposable object M, ./ in D such
that 8; # 0 iff ¢« > z and (] # 0 iff ¢ > 2’. The inclusion maps M, ,» — M,_1 .
and M, ., — M, ., all are irreducible, and we obtain in this way an Auslander-
Reiten component of the form 7AZ .

NN N

\/\/10\/
AN SN N

Remark: Note that the known components of the form ZAZ which occur in
the Auslander-Reiten quiver say of a special biserial algebra, all contain a unique
module of smallest length, the so called Geifl module [Gei,Ri]. The component
constructed here is quite different: all the maps are injective.

Altogether, the Auslander-Reiten quiver of D looks as follows:
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This picture looks familiar to us: Clearly, the derived category of D coincides with
the derived categories of the ray quivers of type (2) discussed in section 6.

Second, let us consider the following ray quiver Q’:

B-1 Bo B1 Be /

(@) O e O

R

od

(when necessary, we will label the vertices different from ¢, d by the integers, with
Bi:i — i+1). Let us denote by D’ the full subcategory of mod(Q’, k) given by
all representations V' such that the map

V(7)) V(9)]: V(e)@ V(d) = V(A)

is an isomorphism. Clearly, D’ is a hereditary abelian category, and has neither
non-zero projective objects nor non-zero injective objects.

Again, we write D’ as a union of an ascending chain of subcategories D},
for i € N, with D] being given by all representations V in D’ with V(5;) an
isomorphism, for all j > i. Of course, up to isomorphism, the objects in D, are
those finitely generated representations V' of @’ such that all the maps V(3;)
with j > i are identity maps, and such that the maps V(v) and V(§) are the
inclusion maps of the direct summands in a direct sum decomposition V(3,) =
V(e) @ V(d). The category D, may be identified with the category of finitely
generated representations of the following quiver

Y _OocC
Bi—2  Bi—1 g; b =
. O O o
\
s od

with the corresponding direct sum condition: that the maps V() and V(J) are
the inclusion maps of the direct sum decomposition V' (b) = V(c) @ V(d).

Of course, this quiver is of type D.,, thus again we know very well all the
indecomposables and all the maps. And again, we deal with a directed category.

As a consequence, we obtain the full classification of the indecomposable
objects as well as the maps in D’. We see that for V' indecomposable in D', all
the vector spaces V(x) are at most two-dimensional, that D’ is directed and that
it is a category with Serre duality. The objects of finite length have their support
on the biray (formed by the arrows f3;), and we obtain in this way one Auslander-
Reiten component of the form ZA.,. In addition, there is one component of the
form ZD., formed by those indecomposable representations V' with V(3,) # 0.
There are two kinds: V(3,) may be one-dimensional or two-dimensional. The first
ones we may denote by N¢ or N¢ with z € Z: these are those indecomposables
V with V(i) = k iff i > z and with N¢(c) = k, and NZ(d) = k, respectively.

20
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Those with V(,) two-dimensional may be denoted by M, ./, where z < z’; here
M, .(c) =M, (d) =k and, for i € Z,

0 1< 2,
M, . (i)=<% k in case z<i<Z2,
k2 Z <.

Here is part of the Z D, -component:

Also in this component, nearly all the maps are monomorphisms. The only excep-
tions are the maps of the form M, .4y — NS and M, .41 — Nj.
The Auslander-Reiten quiver of D’ looks as follows:

Again, this picture is familiar to us: Clearly, the derived category of D’ coincides
with the derived categories of the ray quivers of type (3) discussed in section 6.

Part II. Examples using representations of ordered sets.

Let I be a (totally) ordered set. Let k[I] be the incidence algebra of I;
it is the k-algebra with basis the pairs (i,j) where i,5 € I and ¢ < j, with
multiplication (i,5)(7,j") = (i,j’) provided j = ¢’ and equal to zero, otherwise.
In case [ is an infinite set, then the algebra k[I] does not have an identity element,
but it always has sufficiently many idempotents, namely the pairs (i,7) with ¢ € I.
The aim of this section is to show the following result.
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Theorem B. Let T' be an ordered set, let I = TXZ be the product T'X 7, with
the lexicographical ordering. Then the category D(I) of all k[I]|-modules which are
finitely generated and finitely cogenerated is a hereditary abelian k-category with
Serre duality and does not have non-zero projective objects. This category D(I) is
derived equivalent to a noetherian hereditary abelian category only in case T is of
cardinality at most 2.

1. The serial representations of an ordered set.

Let T # () be an ordered set. Let us construct the serial k[T]-modules
(recall that a module is said to be serial provided its submodules are ordered).
As usual, we call a subset J C T an ideal provided for any j € J any element
1 €T with ¢ < j belongs to J. If J is an ideal of T, we may consider the vector
space M(J) = kJ with basis J as an k[I]-module with scalar multiplication
(i,4') x j = i in case i/ = j and zero otherwise (here, (i,4') is considered as a
basis element of k[T, thus we assume that i < i’, whereas the letter j as well
as the letter ¢ on the right side of the quality sign are basis elements of M). Of
course, if I C J are ideals of T', then M (I) is a submodule of M(.J). We denote
M(J/I)= M(J)/M(I). Note that we obtain a bijection between the submodules
of M(J/I) and the ideals I’ with I C I’ C J; in particular, all these modules
M (J/I) are serial, and any serial modules is obtained (up to isomorphism) in this
way. We denote by S(T") the full subcategory of Mod k[T'] given by all finite direct
sums of serial modules.

Let us consider some maps and some extensions in the category S(T"). If
I CI'" C J areideals of T, there is the canonical projection M (J/I) — M(J/I"),
and such a map will be denoted by m; if I C J C J’, there is the canonical
inclusion M (J/I) — M(J'/I). it will be denoted by ¢. In general, we have

k incase ICI'cJC.J,

Hom(M (J/I), M(J'/1")) = { 0  otherwise

Incase I CI' Cc J C J', anon-zero map M(J/I) — M(J'/I') is given by the

composition map in the following commutating diagram:

M(J'/T)
/ K

M(J/T) M(J'/T')

M(J/I'

Of course, the commutative diagram yields also the following exact sequence

L]

(*) 0 — M(J/T) == M(J'/I)® M(J/T')

[m —]

M(J'/T') — 0
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A similar exact sequence is obtained in case we deal with I C I' = J C J':
0— M(J/I) = M(J'/I) = M(J'/I') — 0.

Actually, we don’t have to distinguish the two cases, the exact sequence () exists
for all quadruples I,I’,J,J" with I C I’ C J C J’, and reduces to the second
one in case I’ = J so that M (J'/I) = 0. In general, the sequence () is non-split
provided I C I’ and J C J'.

The description of the Hom-sets of indecomposable objects has the following
consequence: For any ordered set T, the category S(T') is directed.

We will use certain full subcategories G of S(T') which are constructed as
follows: Let Z = (Io, I,...,In») be a chain of ideals of T', thus Iy C I; C --- C
I,,. Denote by G = G(Z) the full subcategory of all k[T]-modules which have a
finite filtration with factors of the form N, = M(I./I. 1), for 1 <r < m. This
subcategory G will be said to be the grid subcategory given by Z. Note that G
is a full exact abelian subcategory and the objects N, are simple objects in G.
Since dimy Ext'(N,,N,) =1 for s = r — 1 and 0 otherwise, we see that G is
equivalent to the category of finitely generated B-modules, where B is a factor
algebra of the path algebra k() of the linearly oriented quiver ) of type A,,. The
module M(1,,/Iy) belongs to G; it is indecomposable and has a filtration with all
the factors Niy,..., N,,. This shows that actually B = kQ).

Let My,..., M, beserial k[T]-modules. Let M, = M(J,/J.),for 1 <r <mn
and ideals J. C J. of T'. Let {J,.,J. | 1 <r <n} = {ly,...,I,} =7 with
IycIy C---CI. Of course, m < 2n—1. Let G = G(Z) be the grid subcategory
given by Z, we call it the grid subcategory generated by M, ..., M, and write
G=G(My,...,M,).

These considerations may be interpreted as follows: The category S(T') is a
filtered union of grid subcategories, and any of these subcategories is equivalent to
the category of mod k(@ where () is the linearly oriented quiver of type A,, for
some finite m. We will use this observation quite often.

Remark: As we have seen, the grid category G generated by the serial k[T']-
modules Mj, ..., M, is a full exact abelian subcategory of S(T") containing the
given modules My, ..., M,, but it is not necessarily the smallest such subcategory.
For example, if we start with ideals Jy C J; C Jo C J3 and take My = M(J3/Jy)
and My = M(Jy/Jy), then the category of all direct sums of copies of M; and
M is a full exact abelian subcategory and contains both M; and Ms, but this is
a proper subcategory of G(M;, M>).
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2. The diamond category D(T') of an ordered set 7.

Since (i,7) with ¢ € T is a primitive idempotent of A = k[T'], the module
P(i) = A(i,1) is projective and serial. Of course, P(i) = M((i)), where (i) is the
ideal generated by i, namely the set of all elements j < i. Also, let (i) be the
ideal of all elements j < i. Then S(i) = M((i)/(i)) is a simple module and one
obtains all the simple modules in this way.

Let us denote M(i,j) = M({j)/()). In general, the module M(i, ) has
a simple top isomorphic to S(j) and a simple socle isomorphic to S(i). The

following assertion is quite obvious:

Lemma 5. The following assertions are equivalent for an A-module M .
(i) M is finitely generated and finitely cogenerated.
(ii) M is a finite direct sum of modules of the form M(i,j).

We denote by D = D(T') the full subcategory of modk[T] given by all
modules which are finitely generated and finitely cogenerated (the modules M (i, 7)
are said to be the diamonds of mod k[T]). Note that D(T') is a full subcategory
of S(T).

In general, the category D(T) is not closed under kernels or cokernels.

Lemma 6. The following conditions are equivalent:
(i) D(T) is closed under kernels.
(ii) For any non-minimal element j € T, there exists j' < j such that j' and j
are neighbors (i.e. there is no t € T with j' <t < j).
(iii) The k[T)-modules M(i,j) are finitely presented, for all i < j in T.
Proof: (i) == (ii): If 4 € T is non-minimal, let i < j. The kernel of

A

w: M(i,j) — S(i) is M((2)/(j)). The latter module belongs to D(T’) only in case
(3) is of the form (j’), but this means that j' < j is a neighbor of j.

(ii) == (iii) is clear: M (4, j) = P(j)/P(i —1).

(ili) = (i): Let f: N — N’ be a map in D(T'). It follows from (iii) that
the kernel of f is finitely generated. As a submodule of N, the kernel is also
finitely cogenerated. Thus, the kernel of f belongs to D(T).

3. Ordered sets which are locally discrete.

Let I be an ordered set. Let ¢ < j in I be neighbors, then we write j =i+1
ori=7—1.

We say that I is locally discrete provided no element of [ is an accumulation
point: this means, first, that for any non-maximal element i € I, the neighbor
i+ 1 exists, and second, that for any non-minimal element i € I, the neighbor
1 — 1 exists.

The previous lemma together with its dual yields the following result.
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Corollary 8. D(I) is an exact abelian subcategegory of S(I) if and only if
I is locally discrete.

Lemma 7. Let I # () be a locally discrete ordered set. The following condi-
tions are equivalent:
(i) I has a minimal element.
(ii) D(I) has at least one indecomposable projective object.
(iii) D(I) has projective covers.

Proof: (ii) = (i): Let M(i,7) be indecomposable projective. Assume i
is not minimal. Then there is ¢’ < i and the canonical projection 7: M(i', j) —
M (i, j) is an epimorphism which does not split. This contradiction shows that 4
has to be minimal.

(i) == (iii): Let ¢t be minimal in /. Then the canonical projection
m: M(t,j) — M(i,j) is a projective cover for any i < j.

Of course, there is also the dual assertion: I has a mazimal element, if and
only if D(I) has at least one indecomposable injective object, if and only if D(I)
has injective envelopes.

Also we remark: If we start with a finite number of diamonds M;,..., M,,,
then the grid subcategory of S(I) generated by the modules M;,..., M, is a
subcategory of D(I). Namely, we write M, = M (j,,j.), for 1 < r < n, with
elements j, < ji. in I, and consider the set {j, —1,j. |1 <7 <n} = {ip,...,im}
with ig < i1 < -+ <. Then G(M;,..., M,) is the full subcategory of all k[I]-
modules which have a filtration with factors M (i,_1 + 1,4,), where 1 <r < m.

Construction. Let T # () be any ordered set and consider the product
I = T x Z with lexicographical ordering (we will write [ = T'xZ), thus if t,t' € T

and z,z' € Z, then

(t,2) < (t',2') <= either t<t or t=t, z<7.

Given i = (t,z) € I and 2’ € Z, we denote by i+ 2’ = (t,z + z’). Note that the
operation +z’' provides an automorphism of I.

We obtain in this way an ordered set I with no minimal nor maximal element,
and [ is locally discrete. Also conversely, if I is an ordered set with no minimal
or maximal element and such that I is locally discrete, then I is obtained in
this way. Namely, we can recover T from I as follows: Call two elements 7,4’
equivalent provided the sets {j | i < j < i} and {j | ¥/ < j < ¢} are both finite
(one will be empty), then 7" may be identified with I/~ (see also [Sch]).

The Auslander-Reiten translation. Let I be a locally discrete ordered
set. Then D(I) has Auslander-Reiten sequences and the Auslander-Reiten trans-
lation is given by TM (i,7) = M(i—1,5—1), for i < j and i not minimal.
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Remark. If i € I is minimal, and ¢ < j, then M (i,7) is projective and its
radical is M(i,7—1) (using again the convention that M (i,i—1) = 0). If I has
no minimal element, then ¢ — i—1 is an injective map I — I, and 7: D(I) —
D(I) is the induced functor. If I has neither a minimal nor a maximal element,
then ¢ — i—1 is bijective and the induced functor 7: D(I) — D(I) will be an
equivalence!

Proof. Let us assume that ¢ < j and that ¢ is not minimal. Then M (i—1, j—1)
is defined. Of course, we may consider the exact sequence

() 0 M(i—1,j-1) 25 1,5y MG, j—1) 2L (i, ) — o,

we claim that this is an almost split sequence in S(I). Consider an indecomposable
object N in S(I), and take G = G(M(i,j5), M(i—1,j—1), N). This category is
equivalent to mod k@), where (Q is a linearly ordered quiver of type A,, with
m < 5. The sequence () lies in G, and clearly is an almost split sequence in G.
Thus it has the desired lifting properties with respect to the maps N — M(i, j)
and M(i—1,7—1) — N.

The Auslander-Reiten quiver T' of D(T;Z). Note that two modules
M((t,z),(t,2")) belong to the same component of T' if and only if ¢ = ¢/, thus
the components of T' correspond bijectively to the pairs (¢,¢') of T with ¢ < ¢'.
For t < t', we denote by I';, the component which contains all the modules of
the form M((¢,z2),(t',z")). There are two kinds of components: For ¢t = t’, all
these modules are of finite length and I'y ;s is of the form ZA.. For t < t’, the
modules M ((t, z), (#,2")) are neither artinian nor noetherian and the component
It is of the form ZAZ.

Let us sketch the structure of the Auslander-Reiten quivers in case |T'| < 3.

Observe that the second category (that for |T'| = 2) is one which we know already
very well: its derived category has been considered both in sections 6 and 7 of
part L.

Corollary 9. D(T;Z) 1s derived equivalent to a moetherian hereditary
abelian category if and only if the cardinality of T is 1 or 2.

Proof. As we have seen, the category S(I), and therefore also D(I) is di-

rected, for any ordered set I. Now, let I = T;Z, thus D(I) is abelian. Since D(I)
is directed, also the derived category D®(D(I)) is directed. Now assume D(I) is
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derived equivalent to some noetherian hereditary abelian category H. With D(I)
also ‘H is a k-category and satisfies Serre duality, thus H is one of the categories
classified by Reiten and Van den Bergh [RV]. We have to see which of the categories
listed under (a),(b),(c),(d) in [RV] are directed. In case (a), consider the category
of finite dimensional representations of the linearly oriented quiver of type AZ,
but this category is just the category D(Z), thus we deal with the case |T| = 1. In
case (b), no category is directed. The case (c) has been discussed here in part I, at
least provided we deal with at least one ray. According to section 7, the directed
categories are just those of bounded representation type. As we have seen, there
are three essentially different cases. In one of these cases, we encounter Auslander-
Reiten triangles with three middle terms, this is for D®(D(I)). In the remaining
two cases D?(H) has 1 or 3 shift orbits of Auslander-Reiten components, and for
IT| = n, the number of shift orbits for D*(D(I)) is (5), thus n =1 or n=2. Of
course, in case (¢) without rays, we deal with the category of representations of
a quiver () without infinite paths: Again, only the cases where @) is of type A,
or A% are of interest, and the corresponding categories D’(mod kQ) have 1 or 3
shift orbits of Auslander-Reiten components. Finally, the categories noted in case
(d) are derived equivalent to categories already mentioned.

4. Krull-Gabriel dimension.

The construction presented in this section seems to be of interest also for
another reason: we may construct in this way nice abelian categories with arbitrary
finite Krull-Gabriel dimension. Recall that the existence and then the value of
the Krull-Gabriel dimension of an abelian category A is defined inductively as
follows: The zero category has dimension —1, and A is said to have Krull-Gabriel
dimension n + 1 provided the full subcategory Ay of objects in A of finite length
is non-zero, and A/ Ay has Krull-Gabriel dimension n. (Here, B = A/ Ay is an
abelian category with an exact functor 7: A — B such that any exact functor ¢
from A to an arbitrary abelian category which sends all finite length objects to
zero, factors uniquely via 7.)

Proposition 5. Let T' be any ordered set. Then

D(TXZXZ) )| D(TXZx Z)o ~ D(TXZ).

Corollary 10. Let T = Z"™ with lexicographical ordering. Then D(T) has
Krull-Gabriel dimension n — 1.

Proof of Theorem. We define an exact functor
n: D(TXZXZ) )| D(TXZX Z)g — D(TXZ)
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as follows: Let t,t' € T, and z,2',y,y" € Z, with (¢,z,y) < (¢',2',y’). Define

M((t,x), (' a'—1)) in case t < t/,
nM((tv xz, y)a (tlaxlv y,)) = ort=t and z < CL‘/,

0 incase t =t and z = 2.

The indecomposable modules of finite length are the modules M ((t, z,y), (t,x,y’))
with y <3/, thus we see that 7 vanishes precisely on the modules of finite length.
In order to see that n is exact, we may restrict to a grid category G C D. In
order to see that the restriction of 1 to G is exact, it is sufficient to show that the
almost split sequences in G are sent to exact sequences, see [B]. Thus, we have to
consider only the exact sequences in D with indecomposable end terms, they are
of the form (), and it is straight forward to check that these sequences remain
exact when we apply 7.

Note that two indecomposable objects of D(T;Z;Z ) which are not of finite
length have images under n which are isomorphic if and only if they belong to the
same Auslander-Reiten component.

Finally, consider any exact functor ¢ from D(T;Z;Z ) to an abelian cate-
gory which sends all finite length modules to zero. But this means that under ¢
all the maps in a given Auslander-Reiten component are sent to isomorphisms. It
follows easily that ¢ factors through n.
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