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Majorization in Lattice Path Enumeration And Creating Order

I. Introduction

We shall study combinatorial problems, e. g., the enumeration of lattice paths not cros-
sing or touching a periodic boundary and the analysis of a model in creating order as
introduced by Ahlswede, Ye, and Zhang [6], which involve the concept of majorization
(see Marshall/Olkin [72]) or domination (as in the books by Narayana [76] and Mohanty
[73]).

A sequence a™ = (ay, . .., a,,) of nonnegative real numbers is majorized by b™ = (by, ..., b,,),
denoted a™ < b™ if

m

> a :ij= (4)

=1 j=1

» a; <) biforalli=1,2...m—1. (i)
j=1 j=1

i. e., all the partial sums formed by the initial segments of a™ are less or equal to the
corresponding partial sums of 0. If ™ and 0™ are sequences of nonnegative integers,
then we say that a™ is dominated by b™ if (i) and (ii) hold. Via domination a partial
order is defined on all sequences of length m over the nonnegative integers.

Many problems under consideration can be formulated in terms of (possibly infinite)
{0, 1}-sequences

We shall describe the positions of the 1’s in z by the sequence (u;);—o1,.. where the
(¢ +1)-th 1 is found in position u; and denote by (p;)i=o1,2,.. the sequence of differences
Wi = u; — u;—1 (with pg = up). In Coding Theory a number p; is called run—length, since
it describes the size of a run, i. e., a block of consecutive 0’s followed by a 1.

Especially useful are ballot—type sequences, which are {0, 1}-sequences 2™ of length m with
a constant number of 1’s such that in every initial segment 2 = (zy,...,7;),1=1,...,m,
the number of 1’s in 2¢ or — in the language of Coding Theory — the weight wt(z'), is at
least a fraction © of i, i. e., wt(x?) > Oi for some O with 0 < © < 1.

It is well-known that for © = % ballot—type sequences are enumerated by the Catalan

numbers
oo 1 2n+1\ 1 2n
" oan+1 n Cn+1\n /)

and that for © = % the generalized Catalan numbers

o) 1 sn+ 1) 1 sn
"sn+ 1\ n S (s—Dn+1\n)’




are the counting function. (The notion “generalized Catalan numbers” as in [52] is not
standard, for instance, in [49], pp. 344 — 350 it is suggested to denote the Cr(f) “Fuss
numbers” ).

All ballot-type sequences with exactly [m©] many 1’s can be obtained from the infinite
binary sequence y = (y1, ¥, . . .) defined by

0,
y1 =1, Yi = { 1 (1.1)

for all 7 > 1. For instance, if © = % it is y = (1,0, 1,0,...). Any ballot-type sequence z™
of length m with [m©| many 1’s now is obtained from the initial segment y™ of length m
of y, by pushing 1’s in y™ to the left, i. e., if the positions of the 1’s in ™ are ug, ..., ur_ 1
and the positions of the 1’s in 2™ are vy, ..., v,_1 then v; <wujforal j=0,....,k—1.
This pushing operation defines an order, which can equivalently be expressed in terms of
domination (cf. Section III).

if 2y +...+yi—1) > O
else

As shown in [76] and [73] the approach via domination of sequences is especially useful
in the analysis of the number of lattice paths under restrictions on the boundary.

A path starting in the origin of the lattice {(s,t) : s,t integers} of pairs of integers here
is a sequence of pairs (s;,t;) of nonnegative integers where (sg,to) = (0,0) and (s;,1;) is
either (s; 1 + 1,¢;1) or (s;.1,t; 1 + 1). So, a particle following such a path can move
either one step to the right, i. e. s; =s; 1 + 1, or one step upwards, i. e. t; =%, 1 + 1 in
each time unit i. Further path models are discussed, e. g., in [37], pp. 126 128.

A one-to-one correspondence between a {0, 1}- sequence z™ and a path with m steps is
obtained via the bijection s; = s;,_1 +x; = 2321 x; (with initial value sy = 0). So 51, ... Sy,
is just the vector of partial sums obtained from 2™. Observe that t; is obtained from the
complementary sequence (1 —zy,...,1 —z,,) in the same way.

Several methods for the enumeration of lattice paths are discussed in the book by Mohanty
[73]. For the number of paths N (u, n) first touching the boundary (0, ug), (1, u1), (2, ua), . ..
in (n —1,u,—_1) (and not touching or crossing this boundary before) characterized by the
infinite sequence u = (ug, uy, us, ...) there is a determinantal expression due to Kreweras
[67] (as a special case of the same enumeration problem, when additionally there is also
a lower boundary not allowed to be crossed), namely

(un711+1) 1 0 0

Up—2+1 Up—2+1 1 0 e 0
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As pointed out in [76], p. 21, this immediately yields the recursion

n

M) = 3o

j=1

Un,j + 1
J

) - N(u,n — j).

In principle, this settles the enumeration problem. However, one might be interested in
an expression of closed form (e. g., as in [78]). For instance, if the boundary is given
by the sequence u = (1,2,3,...), then N(u,n) is the n — th Catalan number and, more
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generally, for u = (1+(s—1)-n),=0,12... as counting function arise the generalized Catalan
numbers C5.

Note that this describes the case in which the sequence of differences (u, — wn—1)n=12...
is periodic with period length 1. In Section II we shall derive similar identities for period
length 2, hereby following a probabilistic method introduced by Gessel [45], which allows
to apply Lagrange inversion. For instance, it can be shown that if «® and u® are such
that ul) = v = s + i, ugll = $+ pu+ ci and ug)ﬂ = s+ (c—p) +ci, then

Nu®, 2n) + N(u®,2n) = ﬁ ((C + 231" * 1). (1.3)

Several combinatorial applications will be given in Section III.

First of all, it can be shown that by representing binary sequences =™ of constant weight
as paths in a lattice as described above, the number of predecessors of such a sequence
2™ in the left pushing order, which is important in the analysis of intersection theorems
of Erdés-Ko-Rado type, can be determined by the above determinantal identity (with u;
being the position of the (j + 1)-th 1 in z™).

Another application is a new expression for the number of paths not crossing or touching
the line cx = 2y for odd ¢. This allows to analyze combinatorially the recurrence behaviour
of the random walk on the line of a particle which in each time unit is allowed to move
either ¢ steps forward or 2 steps back.

As a last application, sequences y™ of the form (1.1) are studied. First the problem
of enumerating all ballot—type sequences with [©m] many 1’s is addressed, which for
rational © can be approached by the results in Sections II and IV.

If the parameter © in the definition (1.1) of ballot-type sequences is irrational. the
sequence y is obtained in a canonical way from a Beatty sequence. The Beatty sequence for

the golden ratio © = @ plays an important role in the characterization of nonperiodic
tilings. Since Beatty sequences are run-length-limited sequences, namely, the number of
zeroes between two consecutive ones is either p or g+ 1 for some p, one might wonder if
this property can be exploited in Coding Theory. For instance, the irregularity of these
sequences might yield synchronization codes.

Further, an application of (1.3) in the analysis of two—dimensional arrays will be studied.
For i = 1,2,... let )\EU) denote the frequency of the number i in the sequences u®)
describing two boundaries for v = 1,2 and let A*) = (/\§”), AW ). Denoting by v*)(n, k)
the number of paths from the origin to (n,k) not touching or crossing the boundary
described by u®, in the case that AV = (Ae=A A ec—A,...) and A3 = (c—=MAc—
A, A, ...) are both periodic with period length 2 it is

YD (n, k) + 7D (n, k) = 2- <n —]: k) e (Z J_r ’f) (A.2)

which can be derived using (1.3). Further, (1.4) can be regarded as a generalization of

the ballot numbers ("Zk) — (Zf'f)

A further generalization of the ballot numbers for boundaries described by sequences A™,
v=1,...,d periodic with period length d is strongly conjectured.

From (1.4) results are immediate for the numbers o) (n, k) = v*)(n + k, k). Such a two-
dimensional array a(n, k) had been found by Berlekamp [16] in the study of burst error



correcting convolutional codes and thoroughly analyzed by Carlitz, Rosselle, and Scoville
[29]

Two dimensional arrays may also yield fast recursive algorithms for the enumeration of
trees. For instance the ballot numbers count the forests on n vertices consisting of k£ + 1
trees. In Section V, a simple derivation is given for the same counting problem under the
restriction that the degree of each vertex is at most a number d generalizing a well-known
identity for d = 2, where the Motzkin numbers arise (in case k = 0).

A second application in the study of trees will further be given in Section V. There is a
one-to—one correspondence between regular trees in which each inner vertex has degree
exactly s and ballot—type sequences with parameter © = %, s being a positive integer,
which can hence be used in order to represent a regular tree, for instance when it has to
be stored or used in a computer program. For every s, the set of all ballot—type sequences
(taken over all n = 1,2,...) is prefix-free, hence Kraft’s inequality must be fulfilled and
it is well known that equality holds for s = 2. For s > 2 we shall show that % is a lower
bound for the expression in Kraft’s inequality.

In Section VI, we shall present an ordering algorithm for binary sequences in the spirit
of the pioneering paper by Ahlswede, Ye, and Zhang [6]. The difference to the original
model is that a number s > 1 elements arrive at the organizer in each time unit, who has
to put out [ < s elements in the same time unit. This has the effect that the size of the
storage device, in which he can buffer the elements may be variable. If the memory can
store every incoming element, the analysis reduces to a sequence of ballot-type with the
difference that now wt(z') > é only has to hold in those positions ¢ divisible by s. This
model yields the enumeration function (with “<” the domination order)

s s s
a(0,t) = Z (h) . <22) (zt>
Loos) = (i1t

for the number a(0, t) of sequences of input bits yielding an empty memory device at time
t. For [ = 1, the number of such sequences again is counted by the generalized Catalan
numbers — but this time with index ¢t — 1. This fact allows to analyze the stochastic
process for the exhaustion of the memory device.

The matrix in (1.2) is a Hessenberg matrix of a special type (with a;,;41 = 1 for all 4) In
Section VII, a formula for the determinants of such Hessenberg matrices is given. This
is further motivated by the fact that several identities, occurring in the course of this
chapter, can be expressed as determinant of a Hessenberg matrix. Special Hessenberg
matrices are tridiagonal matrices, which for certain parameters are useful in the study of
the above ordering process, when the size of the memory is limited.



I1. Lattice Paths Never Touching a Given Boundary

II.1 GESSEL’s PROBABILISTIC APPROACH

We saw already that the problems under consideration can be transformed into the equiv-
alent problem of enumerating paths in an integer lattice from the origin (0, 0) to the point
(n,u,), which never touch any of the points (¢,u;), i = 0,1,...,n — 1. In [45] Gessel in-
troduced a general probabilistic method to determine the number of such paths, denoted
by f. , which he studied for the case that the sequence (u;);=1 ... is periodic.

In this case the elements of the sequence (u;); are on the d lines

ug; = po + ¢t and ugip1 = po + p1 +Cl, oo Ugipa—1 = fo + 1+ ..+ g1 +

S0 po = up > 0, and ¢ := pg + po + ... + pg, where p; = uj; — u;_.

Gessel’s probabilistic method is as follows. A particle starts at the origin (0,0) and
successively moves with probability p one unit to the right and with probability ¢ =1—p
one unit up. The particle stops if it touches one of the points (i, u;).

The probability that the particle stops at (n,u,) is p"¢** - f,, which is ptgrot-Friten jf
n = 7 mod d. Setting

00 d—1
FO) =) fut® =) # O
n=0 3=0

(so fO(t) = >, Fipdn Y02 o fansjt" are the generating functions for thef,’s with
indices congruent j modulo d), the probability that the particle eventually stops is

7 fO %) + pg" fY ) + pg"2 fP () + ...+ pTrgue fD (pg) = 1

where u; = po + ... + pj.

If p is sufficiently small, the particle will cross the boundary (7, u;)i—o.1,.., or equivalently,
enter the forbidden area, i. e. the lattice points behind this boundary, with probability 1.
So for small p and with t = pg®/? it is

q(0)" FON) + p()g(t) D) + -4 p() T g(t) e fD () = 1.

For p sufficiently small one may invert ¢t = p(1 — p)c/ 4 to express p as a power series in t,
namely p = p(t). Then changing ¢ to w’t, j = 1,...,d — 1, where w is a primitive d-th
root of unity, yields the system of d equations

g fO)  + pt)a(t) fOe)

+- p(t)? g (t)ra-1 =D (4d) 1
gt FOY) 4+ plwt)glwt) fOE) .o+ 1
. : .

p(wt)d—lq(wt)ud,lf(d—l)(td> —

_I_

: : +
()" FO() + (gl ) f O

_'_p(wd—lt)d—lq(wd—lt)ud,1f(d—l) (td) =1

Written in matrix form where A = (p(w't)?q(w't)"7); j=o, 41 this is

o\ (1
a | O]
f(d—l) (td) 1
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Denoting by |A| the determinant of the matrix A, application of Cramer’s rule yields the
solution (if it exists)
| A(j)|

0 (44 —

j=0,....d—1

where AU) is the matrix obtained by replacing the j-th row in A with the all-one vector.

Observe that the determinants |A| and |AY)| are alternants, i. e., the corresponding
quadratic matrices (F};(z;));j=o. . 4—1 are such that the rows correspond to variables z;
which are evaluated by a function F; in row No. j. In [11] and [75] alternants are
intensively discussed and algorithms are presented to evaluate such determinants if the
functions F}; are monomials of the form z® . .... 2%~ with positive exponents a; as for
Schur functions. Here we are almost in such a situation. The entries in the matrix A are
of the form

p(wit)jq(wit)#o+u1+...+w _ q(wit)“o H (p(wit)q(wit)‘”)

J J
= gt - [] (Wt)g(w't) =) = w7 - g(w'ty™ [ alw't)" =/
=1 =1

So the determinant |A| = #(%2") . | B| where

B— (wij q(wit)wrz{:l(m—c/d)) -
4,j=0,....,d—1

We shall study the period length d = 2 in the following subsection. For d > 2, however,
these determinants seem hard to determine, since the factors w” do not allow the standard
approach — factoring out all differences (x; — x;) — to work here. For d = 2 via Lagrange
inversion there arise some nice identities, which might be generalizable to larger period
lengths d. For instance, computer results suggest the following observation (which we
shall prove for d = 2)

Observation 2.1: Let n;,...,n4 be all greater than 0 with n; + ...+ ng = c¢. Further,
let f@:0) denote the function f@ as above for the choice of parameters (ugz), .. .ufﬁl) —

M1y s Mict, Mig1y---,ma) for i =1,... d. When u((f) = Lo is the same for all 7, then

FEO@NY 4+ fEOEh) 4 A () = ()T + g(wt) T L+ g(w )T

i dpio (c+d)n+ po 4dn
(c+ d)n + o dn '

n:O
We shall return to this observation in the Section IV, where a different approach yielding
this identity as a special entry in a two—dimensional array will be discussed.

I1.2 BOUNDARIES PERIODIC WITH PERIOD LENGTH 2

Let us denote s = g and g = pq. Then the boundary (n,u,)n—01,.. is characterized by
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Ug; = S+ ci and ug;y = S+ pu + ci, (2.1)

Further, denoting p(—t) by B(t) and similarly ¢(—t) by g(t) and setting g(¢2) = f©(¢2)
and h(t?) = fM(¢?) (as in [45]) we obtain the two equations

¢ - g(t?) +p-g () =1,

¢ g(t?) +p g h(t?) = 1
which for g(#?) and h(t?) yield the solutions

g(tQ) _ p—lq—s—,u _p—lq—s—u _ qc/2—,u—s +GC/2—u—s (2 2)
pfqu‘u — Z_)_lq_ﬂ qc/2—u + 68/27#
and
h(t?) = ¢ " —49 23

te(qn /2 +grel?)’
By Lagrange inversion (cf. e.g. [46], pp. 1032-1034) for any « it is

= i a ((c/2 +1)n + a) o (2.4)

(c/24+1)n+« n

n=0

Actually, Gessel analyzed the case p = A\, c = 2X + 1 for a positive integer A, which arises
in the enumeration of paths never touching or crossing the line y = s — % + 5 -x. For the
special case s = 1 he derived the following nice identity for the function h(t?).

c—

Proposition 2.1 [45]: Let ¢ be an odd positive integer, s = 1 and u = Tl Then

h(t?) = P& 1 (c+2)n+p+2 42n
B t _n:0(0+2)n+u+2 2n +1 '

So, the coefficients in the expansion of h(¢?) have a similar form as the Catalan numbers.
It is also possible to show that for these parameters

_ 1 (c+2n+1\ 50 2. oo
g(t)_;(c—{—Q)nle( 2n )t Z[h(t )

This is a special case of a more general result which we are going to derive now. Since we
are going to look at several random walks in parallel, we shall introduce the parameters
determining the restrictions as a superscript to the generating functions. So, ¢¢*** and
h(e1) are the generating functions for even and odd n, respectively, for the random walk
of a particle starting in the origin and first touching the boundary (7, u;);—o,1,... determined
by the parameters s, ¢, and g as in (2.1) in (n, u,).

Proposition 2.2: Let s, c, u be the parameters defined above with 0 < p < 2.

a)
s,c s,c,c— -5 | =——s - 2s c+2)n+s n
g (E?) + g eT(?) = g7 + g :Z(c+2)n+s(( 231 )tQ’
n=0



b)

g(s,c,c—u)(tQ) . g(s,c,,u)<t2) _ t2 . h(s,c,u)(tQ) . h(c—2,u,c,/,t) (t2)
Proof:
a) In order to derive the first identity observe that with a = § — p it is

(5:601) (42 (sresmpi) (42 qa—s + qa—s q—a—s + q—a—s
g 7))+ g t7) = =a + HF—a
) ) q° +q g +q
B (qa—s _i_qa—s)(q—a _|_q—a) + (q—a—s _+_q—a—s)(qa _i_aa)
(¢ +7") (g +7)
_ 2q—8 + 2@—3 +qa—sq—a + q—a—sGa + qa—Sg—a +q—a—sqa
247+ "
Since by definition §(t) = g(—t), with Lagrange inversion it is

— qfs _*_qfs.

¢+7 =

= i (c/2 +81)n +s ((C/Q +;)n " 8) S g (c/2 +81)n +s ((C/Q +§)n ! 8) (=t)"

B i (c+§;n+s ((C+§31n+8)t2n'

n=0

b) Let again a = § — p. Then

—a—s =—a—s —s == —2a =—2a

g(s,c,c—u) (t2) . t2 . h(s,c,u) (t2) . h(c—2u,c,u) (t2) _ q _ + g_a i t2 q _ - q—_a . q _ - Q__a

T+ 7 tlg~e+q7) g +q)

_ AT (0 a)@ =) TR T TR ey
¢ +q” (=" +7°) ¢ +q " " +7"

There is also a short combinatorial proof of the last identity. Since p < ¢ — p, the
forbidden area (i. e., the area on and behind the boundary) for the random walk of the
particle determined by the parameters (s, ¢, 1) is completely contained in the forbidden
area determined by the parameters (s, ¢, ¢ — p). So a path which is counted by the n —th
coefficient in g(*>*)(¢?) but not counted by the n-th coefficient in g(*>¢=#)(¢?) must enter
the forbidden area in one of the points (i, s+ p+ i) with odd i (for even ¢ the boundaries
coincide). Up to this entrance the path stays beneath the boundary determined by the
parameters (s, ¢, ) and there are h; many possible such initial paths, where h; is the i-th
coefficient in A(®®#)(#?). Then the path stays beneath the boundary determined by the
parameters (¢ — 2y, ¢, u) and there are h/,_,_; many such paths from (i, s+ p+ ci+ 1) to
(n, s+cn) (nis even), where this time A/, ., is the (n—i—1)-th coefficient of h(c=2#:1) (¢2),
So the generating function of interest for the difference is ¢ - R(5&#) (¢2) - ple=2mem) (42),

O

Similar identities can be derived for the case s + u = c.

Proposition 2.3: Let ¢ > 0 be a positive integer, and s + p = ¢ with s > p. Then



a)

1 o0
h(s,c,cfs)(t2) + h(cfs,c,s) (t2) p+p Z

b) In the special case ¢ odd, s = C;rl and p = 5= it is
2
h(cél )<t2) h(cg] ])(tQ) <g( 5 )<t2>>
where
0 c+1
(251, 0550) 2 1 &) = 1 (c+2)n+7 20
Proof:
a) By (2.3)
h(s,c,c—s) t2 + h(c—s,c,s) t2 — q—s — 675 + qs—c — quc
( ) ( ) t- (qc/2—s + 66/2_5) t- (qs—c/Q +§s—c/2)
' ¢ -7 2p+D)—¢7(p+P7¢ ) —Tq P+ pgq )
pec*—pq"  pg® —pq° P*¢° + P — ¢°7°(pP3°) — T°q~* (PPY°)
_ +PC =T (/D) —T¢*(B/P) _p+D
t2(2 - ¢*7*(p/P) — T *(p/D)) t2

since p?q¢ = p*q°¢ = t* by definition of ¢ and since p(p + pg°q=¢) = p(p + ).

b) With s = £+ again by (2.3) as under a)

_ q

h(s,c,c—s)(tZ) o h(c—s,c,s)(t2) _ q_ — q_c_s q - e
Pq°T —pq Pq° —Dpq

S —S S=—S

Pg° g~ ™) + pge* g ) — Pg*q* — pg°q
t2(2 — (pq )/ (P7°) — (P7°)/ (pg®))

__c-1 _ctl el _ _1__1 __c¢c _c £__g)
T (-9 —paT T T (0—7) a7 (-9 (Par e — pgiq T
o 1 _1 _1 1 o 1,1 _1 1

(2 — (tq2)/(—tq2) — (—1g2)/(tq2)) t2(2+q2 /3> +32/q2)

11 — _
g i Hq—q) (D —p) (P—0)° [ (eteety )2
= i1, 11 = T _1 gz (1)
t2q72q 2(2¢7q2 +q+7q)  t*(q2 +72)?
since t =pg2 = —pgz and p=1—¢,p= 1 —q and by (2.2)
—c/2 | =—c/2 = -
et1 et g “*+7q p—D 7—q L
gUE T = = = =@ 4"

q1/2+71/2 o t-(q1/2—l—§1/2) t-(q1/2+§1/2) ¢

Further, several convolution identities for the generating functions can be derived. For
instance:



Proposition 2.4:
a)

(g(s,c,p)(tQ) + g(s,c,c—u)(tQ)) . h(s,c,u)(tQ) _ h(QS’C’M)(t2).

9(0_2“’57“) (t2) . g(“vc7c_ﬁ") (t2) — g(c_u’cuu) (t2)
¢) For s1 + py + po = c it is
g(sl,c,ul)(tQ) . h(sg,c,uz) (t2) _ h(sg,c,sﬁ—yg)(tZ)‘

Especially, for odd ¢

c+]

() hOoT() = Ko (),

Proof: a) is immediate from the fact that g(>#) (t2)4g(&¢c=m)(#?) = ¢=*+§* (Proposition
2.2a)) and b) is immediate, since the nominator of g(®=2%%#)(¢2) in (2.2) is at the same time
denominator of g(*¢c=#(¢2). The nominator of gt*:#1)(¢?) in ¢) by (2.2) is ¢*/>=" =51 4
g*/>~"M~1 and this is the term in brackets in the denominator in (2.3) of h(2:%#2)(2) =

q °2—gq *2 |
t(gr2—c/24g H2—c/2)"

9

II.3 THE CASE ¢ =3

Let us discuss the case ¢ = 3 a little closer and hereby illustrate the derived identities.
The parameter choices (s = 1,u=1), (s =1,u = 2), and (s = 2, u = 1) will be of interest
in the combinatorial applications, we shall speak about later on. By application of the
previous results, the generating functions for these parameters (after mapping t? — )
look as follows. Observe that they all can be expressed in terms of a(z) := g3V (z) and
b(x) :== g2 ().

Corollary 2.1:

- 5n + 1
a(z) = 131 Z = ( n >x”—§-[h(l’3’l)(x)}2 = 14+22+23224+3772%+. . .,

—~ 1 (on+1
b(z) = g3 (z) = Z ( et )x”+g-[h(1’3’l)(m)]2 = 1+32+3722 +6242° +. . .,

> 1 5n + 2
23,0) () — " =145z + 6622+ 11562° + ... = b
pL31) ( <5”+3>xn:1+7x+99x2+1768x3+...:a(a:)Q-b(w),
n:05 2n+1
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- —1 1
A3 (g zjl — < " >x"‘1—§[g(2’3’1)(az)}2 = 14+92+1362°+25042°+. . . = a(x)*-b(z),

= 1 [(5n—1 1
(2,3,1) n—1_, ~ 1,231 2_9.1 9 2 o3
hE3D(z) Y 5n_1< o )x +5 %" (@) + 19z 4 29322 4 53322° +

n=

= K@) + (g @) ~ ale)’ - b(a) +a(@)* - bla)
— (ala) + b(a)) - a(a)? - bla) = (g4I () + g142) (@) - HIED ).

It is also possible to express all six functions in terms of either a(z) or b(x). In order to
see this, two further convolution identities for a(z) — 1 and b(z) — 1 are useful.

Proposition 2.5: With = = ¢?

a)
%(a(m)—w—a(:c) B2 () = a@)" - b(x) + af2)* - b(x)
b)
—(b(@) = 1) = (b(x) + 2a(2)) - [§**V (@))* = a(2)? - b(z)* + 2a(2)* - b(2)?,
)
b@)%[ ) = 1)+ V/(a(z) —1)2 +4)], a(x)%[umy

Proof: The formula in a) is equivalent to
e B R A (VARG B R RN U B (U o )

which can be easily verified taking into account that ¢t = pg*/? = 7 - §/%. We omit the
somewhat lengthy derivation of b). In order to prove ¢), observe that with a) and b) it is

L (b(x) — a(a)) = a(@)? - b(a)? + alx)* - ba)? — ala)* - b(a)

X

On the other hand, from the previous corollary we know that

~(b(z) — a(z)) = a(z)* - b(z)’

X

So we have the identity

a(z)? - b(x) - [b(2)* + a(z) - b(z) — a(z)” — a(z)? - b(z)] = 0

The term in brackets yields quadratic equations for a(z) and b(x), which can be solved
as in ¢). O
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ITI. Combinatorial Applications

IT1.1 SIZE OF IDEALS IN THE PUSHING ORDER

We are going to consider {0, 1}-sequences 2™ = (x1,...,2,,) of length m and weight
wt(z™) =k, i. e., (x1,...,x,,) consists of k ones and m — k zeros.

These can equivalently be regarded as k elementary subsets of the m-elementary set
m] = {1,...,m}, namely via z; = 1 exactly if ¢ is contained in the subset corresponding
to ™.

On the set ([’]Z]) of all sequences of length m and constant weight & we define an order
relation <, in the following way. Let {uo, ..., ux_1} and {u(, ..., u;_, } denote the sets of
positions of the 1's in the sequences 2™ and y™, respectively. Then 2™ =<, y™ exactly if
u, <wul forall=0,...,k—1. So for all  the r-th 1 in 2™ is not allowed to occur later
than the r-th 1 in y™. This can be interpreted in such a way that ™ can be obtained by
“pushing” the 1’s in y™ to the left (if 2 and y™ are written as row vectors).

The problem we are going to address is to determine the size of special upsets in this
order, namely we are interested in the number

v =l e () s o

preceding a given element y™ € [7'].

This order plays an important role in the analysis of intersection theorems of Erdos-Ko-

Rado type, e. g. [4], [5] or [19]. We shall see now that it can equivalently be defined in

terms of domination (or majorization)

Obviously, via domination a partial order is defined on all sequences of length m over

the nonnegative integers. On the set of binary sequences of length m this just yields the

inverse of the “pushing” order <, defined above, i. e., y™ <, 2™ since by condition (i) in

the definition of majorization (see Introduction) the sequences ™ and y™ must have the

same weight and by (ii) every 1 in ™ must precede its counterpart in y™.

A second equivalent order in terms of domination is obtained by adding a final 1 to each

sequence x and y™, i. e., introducing x,,.1 = ¥,,+1 = 1 and interpreting the sequences

™ =(0,...,0,1,0,...,0,1,...,0,...,0,1) and y™ = (O,...,1,0,...,0,1,...,0,...,0,9
~ ' - g ~ ' o ' ~ o ~ '

g

Mo p1 M Ao A1 Ak
as two partitions m + 1 = pg + p1 + ... + g = Ao + A1 + ... + A of the integer m + 1
into k + 1 positive integers, where each summand A; or p; is just defined by the number
of u; — 1, resp. A; — 1, consecutive 0’s preceding the i-th 1 in 2™ and y™, respectively.
Then 2™ <, y™ exactly if (uo, ..., ) is predecessor of (Ao, ..., ;) in the domination
order < (where now the elements are sequences of length k of positive integers, for several
properties of this order cf. also [94], pp. 288-289).
In order to attack our enumeration problem, the sequences will be represented as a path
in the lattice {(s,t) : s,t integers} of pairs of integers.
The one-to-one correspondence between the {0, 1}- sequence ™ and a path with m steps
is obtained via the bijection s; = s;_1 + z; = Z;Zl x; (with initial value sp = 0) as in the
introduction.
The fact that 2™ =< y™ in the lattice model translates to the property that the path
obtained from 2™ never crosses the path obtained from y™. So, the path corresponding

12



to y™ is not crossed by any other path obtained from a sequence in the set {z™ < y™ :
The size of upsets or even general intervals in the pushing order can of course be obtained
as a determinant of the form (1.2) derived by Kreweras [67] for the equivalent lattice
path problem as mentioned in the introduction (There are also determinantal identities
for further lattice path problems, e. g., for non — touching paths as studied in [47] or
[10]).

By our previous considerations, for periodic sequences one might obtain further results.
When 2™ = (0,...,1,(0,...,1,0,...,1)™) with period length ¢ and two 1’s in positions

—— —— ——
S cC—
pand ¢ — p in each segmeni of the p:riodic part, the number of predecessors of 2 in this
pushing order is the m—th coefficient of g(*“*(z) and the m-th coefficient of h(*%")(z)
gives the number of predecessors of z™ = (0,...,1,(0,...,1,0,..., 1)1 0,...,1).
—— —— —— ——

m

s B c—p B

IT1.2 LATTICE PATHS NOT TOUCHING THE DIAGONAL cx = dy

As pointed out before, as an example to illustrate his probabilistic approach Gessel in
[45] analyzed half-integer slopes for odd ¢ and d = 2 hereby counting paths starting in
the origin and not touching the line y = r + $x before (n,u,). This line determines
a boundary, which is given as in (2.1) by the parameters s = r + %,,u = %1 if ris a
half-integer and s = r, u = %1 if r is an integer. The number of paths first touching the
line y = r + £z in (2n, uz,) then obviously is the n-th coefficent of g**)(z).

Observe that the original approach only works for s > 0, since for s = 0 the system of
equations g(t?) + pg"h(t?) = 1, g(1?) + pg"h(t*) = 1 does not yield a solution.

Several authors studied the number of paths starting in the origin and hereafter touching
the line cx = dy for the first time in (nd, nc) (the only intersections of the line with the
integer lattice when ¢ and d are coprime). In [73] on pp. 12 14 a recursive approach due

to Bizley [20] is described. Namely, denoting by f,, the number of such paths to (nd, nc)
it is
c+d 2(c+4d) c+d
(c+d)fi ( d ); (c+d)fa < 9 ) < d )fl/

(et d)fy = (3(03; d)> _ (2(022 d)> fi— (C Z d> Foreon!

As an example, let us consider ¢ = 3, and d = 2, where this recursion yields the numbers
fi=2.f, =19, f3 =293,... . These are just the coefficients in h>*"(z) studied in the
previous section and this holds in wider generality.

Let us consider d = 2. Assume that the first step from the origin is to the right (by
reversing the paths, i. e. mapping the path (0,0),...(nd,nc) to (nd,nc),...(0,0) the
analysis for a first step upwards is analogous). Then, after this first step, the boundary
is given by the parameters s = c;—l and p = % where contrasting to the original model

now s = u; (and not s = ug). This has the effect that the generating function for the
paths to (n,u,) with even n now is RS e ), By our previous considerations hence

Theorem 3.1: The number of paths from the origin first touching the line cx = 2y in
(2n, cn) and not crossing or touching this line before is the coefficient of #2™~Y in

13



00 00 c 2
1 (c+2)n—1 _t2(n71)_‘_1 Z 1 : (c+2)n+ |
(c+2)n—1 2n 2 (c+2)n+ <4 2n+1

n=1 n=0

[11.3 RANDOM WALKS ON THE LINE WITH STEP SET {c, —d}

Consider a random walk on the real line of a particle starting in the origin and then
moving successively either ¢ steps to the right or d steps to the left, where d and c are
coprime positive integers. If d = ¢ = 1 this random walk, of course, is folklore, cf. [39].
For d = 1 and ¢ > 2 an equivalent birth-and—death process had been introduced in [51].
The question whether the expected recurrence time exists for p = % can be analyzed
combinatorially, e. g. with the bounds from Dvoretzky and Motzkin [35] on the size of
so called a—heads. An easy analysis for d = 2 now is also possible with Theorem 3.1
by constructing a bijection to paths studied in the previous subsection II1.2 and then
applying Stirling’s formula to the binomial coefficients in g(ﬁzl’c’%l) and h(FHe 5,

In order to study the recurrence behaviour one is interested in the proportion of positive
paths within the set of all paths. A path as concatenation of single steps from {c, —d}
obviously can be represented as (1,21), (2,1 + x2), ..., (m, Y ;- &) with a; € {c, —d}.
Such a path is positive when all partial sums in the second coordinates are positive.
Note that this is a different path model as the one considered so far, but via the mapping
¢ — 1,—d — 0 a one-to—one correspondence between these two models via sequences
in the pushing order can be obtained. Left pushing of a 1 then corresponds to placing
steps of size c earlier and steps of size —d later in the path, which obviously increases the
partial sums.

Let us again examine the example ¢ = 3 and d = 2 a little closer. Here the positive path
P obtained from the sum 3 —-2+3—-24+3-2—-243-2+3-2—-2+3—-2+3+...
is extremal in the sense that replacing any 3 by a —2 would yield a nonpositive path and
that the same does not hold for any path obtained from P by pushing 3’s to the left.
P hence yields the minimal sequence (1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,...) whose initial
segments are extremal in the pushing order.

Obviously, the first step must be ¢ and hence w. 1. 0. g. we can omit the leading 1
yielding a sequence described by the parameters s = 2 (since the leading segment is 0, 1)
and g = 1 (since the remaining part of the sequence is periodic as considered in Subsection
IIL.1).

In our original path model (with steps from {0,1}), this just yields the path beneath
the boundary (n,u,), as in Section II1.2, where the paths were counted, which for the
first time touch the diagonal cx = 2y at wus,. But touching the boundary in this model
is equivalent to the property that the corresponding path consisting of steps {c, —d}
becomes nonpositive. This can, of course, also occur in positions us,,; with odd index,
which would yield the total path sum —1 (whereas in even positions this sum would be
0).

IT1.4 BALLOT AND BEATTY SEQUENCES

“Arrangements of m things of one sort and n things of another sort, under certain condi-
tions of priority” had been studied by Whitworth [103] (see also [104]) in 1879. Regarding
the “things of one sort” as votes for a candidate P; and the “things of another sort” as
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votes for candidate F, in a ballot may lead to the ballot problem, studied by Bertrand
[18] and D. André [12] in 1887, i. e, the enumeration of ballots, in which there were al-
ways more votes for the winner P; than for Fy. Clearly, the sequence (z1,x,...) of votes
(where z; = v if the j th vote was for candidate P,) then forms a sequence usually
called ballot-sequence  where the fraction of 1’s in every initial segment (z1,xo,...,x;)

is greater than %

The ballot problem of Bertrand was generalized to the case that the number of votes for
Py is always greater than ¢— 1 times the number of votes for Fy, where ¢ > 3 is an integer,
by Barbier [14] in the same year 1887. This problem was solved by Aeppli [2] in 1923.

In our notation (cf. the definition in the introduction), sequences where this fraction is
not less than © for any 0 < © < 1 are denoted as ballot—type sequences. Observe that
contrasting to the original ballot problem now “greater than” is replaced by “not less
than”. In this setting ballot problems had been considered by Erdés and Kaplansky [38]
for © = %, by Motzkin [74] for © = % where ¢ > 2 is an integer, and by Dvoretzky and
Motzkin [35] for arbitrary (even irrational) ©. Indeed these two variations are very closely
related.

Most authors studying the ballot problem were rather interested in the probability that
the number votes for P; are always greater than é — 1 times the number of votes for
Py during the counting. D. André derived the ballot numbers which give the the exact
number of desired ballots. An excact formula is also obtainable if the paramater ¢ = %
is an integer, for instance by Sulanke’s approach in Section IV or by application of the
“cycle lemma” due to Dvoretzky and Motzkin [35] (cf. also [83] or [33]).

For noninteger ¢ an exact formula is not known. However, as seen in Section IV, our
results allow to generalize the ballot numbers (in a rather averaging fashion) also for

rational numbers © = ﬁ‘ld for rational numbers with nominator greater than 1.

In the introduction we saw that ballot-type sequences with [mO] can be obtained from
the initial segment y™ of length m of the ininite sequence

y=(y.y2-..)=(10,...,0,1,0,...,0,1,...)

defined by

B _Jo, it tyia) >0
y1 =1, yi—{L clse

by pushing 1’s in y™ to the left. So the number N(m, ©) of ballot-type sequences of length
m with [mO] many 1’s is the number of predecessors of y™ in the pushing order, which

by the considerations in Section III.1 is just the number of {0, 1}-sequences dominating
ym.

Let © = ?‘ld be a rational number such that d and c¢ are coprime integers. Then the
sequence (g1, fi2, i3, - - .) will be periodic (with py = s = 1 since by definition the sequence
y™ must start with a 1) and the results from Sections II — [V may be applied. For instance,
for © = 25, the generating functions for N(m, 25) is g2 (12) 4 ¢ - hhe 2 (12)

For irrational ©, the sequence (p1, fia, i3, - - .) is not periodic any more, which makes the
analysis of the number N(m,©) much more difficult. In each case, a two-dimensional

array can also be constructed in this case allowing a fast recursive procedure to obtain
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the number N (m, ©) (cf. Section IV). Moreover an upper and lower bound on the number
N(m, ©) can be obtained from results by Dvoretzky and Motzkin [35].

In turn, for irrational © the sequence y because of its irregularity is more interesting
compared to the periodic sequences for rational ©.

Let © and  be irrational numbers. A Beatty sequence is a set of the form {|n-© + 7] :
n € N} | where |z] denotes the integer part of the real number z.

Beatty sequences are named after Samuel Beatty, who in [15] demonstrated that for
any irrational © every positive integer is contained either in {|[n©| : n € N} or in
{Ln%J :n € N}, 1. e., these two sets form a partition of the integers, hence

N = {[n0] :n e N}U{|n | :neN} (8.1)

)

0-1
where the union is disjoint. The two sequences in (8.1) are also said to be complementary.
Beatty sequences found applications, for instance, in Number Theory [1] and the theory of
semigroups [82]. Especially useful they turned out to be in the analysis of Wythoff’s Nim
game and the characterization of nonperiodic tilings as intensively discussed by Martin
Gardner in [43], Ch. 1,2, and 8.
A sequence y as defined under (1.1) in the introduction for any irrational 0 < © < 1
corresponds in a natural way to the Beatty sequence [nO] :n € N = {a;,as,...}, since
obviously a, = max{m € N: m < On} and hence a,, + 1 = min{m € N: m > On}. Thus
y has 1’s exactly in the positions u, = a, + 1 for all n.

Let us take a closer look at the golden ratio, i. e., © = \/52_1. For this parameter, Beatty
sequences have been studied, e. g., in [96]. The sequence y here looks as follows

10110101101101011010110110101101101011010110.. . ..

Gardner describes several properties of this sequence in Ch. IT of [43]. It can be obtained
as the limiting sequence of the set of sequences r™, where r) = 1 and r™ is obtained
from (™= by replacing every 1 by 10 and every 0 by 1 (cf. also the papers [31] and [32]
by De Bruijn and the reference in them).

The irregularity of Beatty sequences could be of interest in synchronization problems.
Observe that the sequence y for any irrational © is run—length limited, since the difference
between two consecutive 1’s in y is either a number py or p + 1.

_ V61
=

As an example, for , we obtain the sequence y" = (1,95, ¥3, . ..) of the form

21221212212212122121221221212212212122121221 . . ..

As described, if y; = 2 in the last sequence 3’ then the next occurrence of 2 is either y;_,
or Yi,q, so y' is a quasi-Langford sequence as defined in [36] with even a regularity in the
description of the next occurrence. Namely, the sequence v’ is again obtained as sequence
of differences of two consecutive 2's in g’ -

By the prescription ygl) = 1 if the difference between the (i 4 1)-th 1 and the -th 1iny
(1)

is 1 + 1 and y; 7 = 0 if this difference is p;, we obtain a new {0, 1}-sequence g(l). This
sequence g(l) again is such that the differences between two consecutive 1’s are either some

2 or e+ 1 and again one gets a {0, 1}-sequence g@) from {0, 1}-sequence g(l) in the same
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way g@) was obtained from y. Iterating this procedure yields a collection of sequences
(y(”))nzlyz,m with parameters g, po, ... describing the possible differences between two
consecutive 1’s.

It is well known that Beatty sequences are closely related to the continued fraction ex-
pansion of ©. For instance, 1, fio, . .. just seems to be this expansion - we couldn’t find
a reference.

Via y by definition the closest approximation to © by a rational number greater than ©
with denominator n is obtained. Namely if this fraction is €=, then y; = a;41 — a;.
In the same spirit, one might be interested in a {0, 1} sequence z = (z1,x2,...) such that

for all n the closest approximation to © with denominator n is %" with z; = b1 — b;.

The sequences y and z seem to be closely related. For instance, for © = @ it is

z = 010110110101101101011 .. ..
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IV. Two-Dimensional Arrays Generalizing the Ballot Numbers

IV.1 SULANKE’s APPROACH

We saw that we have to enumerate lattice paths not touching a given boundary. This
immediately yields a fast algorithm to determine these numbers recursively. Since the
lattice paths arriving in (n, k) - by definition of the single steps - must pass either (n, k—1)
or (n—1, k), the number 5(n, k) of paths from the origin (0, 0) to (n, k) obeys the recursion
ﬁ(na k) = ﬁ(nvk - 1) +ﬁ(n - 17k)
with initial values
£(0,0) =1, B(n,u,) = 0 for all n.
The initial values just translate the fact that the boundary (n,u,),n =0,1,2,... cannot
be touched.

For the boundary (n,(s — 1)n+ 1), n = 0,1,2,..., the arising arrays have been studied
under various aspects in Combinatorial Mathematics, Let us start with the case s = 2.
Here the array looks as follows.

Example 1:
01 2 3 4 56
0j1 0
1111 0
211 2 2 0
3113 5 5 0
411 4 9 14 14 0
511 5 14 28 42 42 0

The entries here are the ballot numbers

n+k n+k n+l—k(n+k
k) = — e —
B, k) < k ) (k—l) n+1 ( k )
first presented by Bertrand [18], then derived by D. André [12] by application of the
reflection principle. Especially, on the diagonal n = k the Catalan numbers ((n,n) =
! (QnH) appear. The ballot numbers have further been studied, e. g. by MacMahon

2n+1\ n
[70] and by Carlitz and Riordan in [28], cf. also [85].

From Sulanke’s paper [97] can be obtained a simple method to derive the formula for
the ballot numbers, which extends to further arrays defined by different boundaries. We
extend the array beyond the boundary using the same recursion 3(n, k) = B(n, k — 1) +
B(n — 1, k) and hence obtain negative entries 3(n, k) for k > n, namely

o 1 2 3 4 ) 6
-1y17 -1 -1 -1 -1 -1 -1
o0jr 0 -1 -2 -3 -4 =5
1yr 1 0 -2 -5 -9 —-14
211 2 2 0 -5 —14 =28
313 5 5 0 —14 —42
411 4 9 14 14 0 —42
511 5 14 28 42 42 0
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Observe that in the first row now G(—1,k) = —1 for all k& > 0, from which B(n,k) =
(") — (1) is immediate.

More exactly, Sulanke [97] considered two-dimensional arrays § with 3(n,0) = 1 for all
nand B(ck—1,k)=0forall k =1,2,....

For instance, when ¢ = 2, the array looks as follows.

Example 2:

0o 1 2 3 4 5 6
-1/1 -2 -2 -2 =2 —2 -2
ojr -1 -3 -5 -7 -9 —11
11 0 -3 -8 —-15 —-24 —35
211 1 -2 —-10 —25 —49 —84
3|11 2 0 —-10 =35 —84 —168
411 3 3 -7 —42 —-126 —294
51 4 7 0 —42 —-168 —462
611 5 12 12 =30 —198 —660
7116 18 30 0 —198 —858
8|1 7 25 55 55 —143 —1001

which is an array defined for d = 1 by the recursion

with initial values
B(n,0) =dforallm > —1,8(—1,k) = —c for all k£ > 1.

For any d it can be easily verified that
B n+k n+k\ dn+1)—ck/n+k+1
5(”’k)_d'< k >_C'(k—1)_ ntktl ( k )

IV.2 THE APPROACH OF BERLEKAMP AND CARLITZ/ROSSELLE/SCOVILLE

Berlekamp at the Waterloo Combinatorics Conference presented an algorithm for com-
puting numbers of the form [(n, k), which seemingly arose in the study of burst—error
correcting convolutional codes [16]. This algorithm was thoroughly analyzed by Carlitz,
Rosselle and Scoville in [29]. The idea is to consider a two-dimensional array with a recur-
sion like in Pascal’s triangle. This array can be obtained from ( via a(n, k) = B(n+k, k),
e. g. for the ballot numbers it looks like
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14 14 0 —-14 -14 —6 -

The recursion is hence
a(n, k) =a(n—1,k)+an—1,k—1).

Actually, in [29] was considered the part of the array « consisting of positive entries, which
are described by the conditions a(n,0) =1 for all n and a(o(k) + 1,k + 1) = a(o(k), k).
(Indeed, the array d(k, j) in [29] was presented in a slightly different form. With n taking
the role of j and by placing the elements of the k-th chain in the £-th column of our array
a, the two arrays d and « are equivalent). It should be mentioned that the arrays, o and
B are special cases of a more general model discussed by Sulanke in [97].

In order to describe the boundary o (k) from [29] in terms of our boundary (u,,),, we need
some preliminaries. Let

u= (Uo, Uy, Uz, . . )

be the vector representing the boundary (m, wy,)m=o,1,.. which is not allowed to be crossed
or touched by a path in a lattice and let

H= (,ulalu%ﬂ’& - )

be the sequence of differences p; = u; — u;_1. Let us denote

A= (A, A2, 23,1 0) (4.2)

where A; counts the frequency of the number 7 in u and let

U= (U07U17U2 .. )

with v; = vy + Zj-:l Aj.

By interchanging the roles of n and k (mapping (n, k) — (k,n)), the pairs (u, 1) and (v, A)
are somehow dual to each other. For instance, in Example 2 the subarray of positive values
B(n, k) is below the boundary u = (1,1,2,2,3,3,...) which is obtained from the condition
that the path should never touch the line 2z = y. On the other hand, A = (2,2,2,...)
determines the boundary for a path never touching the line z = 2y 4 vg just by reversing
(going backwards) the path from (0, 0) to (k, vy = Ag+Ag—1+... A1 +17p). In the analogous
way, u and A are related. Hence:
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Proposition 4.1: The number of paths from the origin (0,0) to (n, k), where n = v, =
Vo + A1+ A2+ ... Ax never touching or crossing the boundary (0, wug), (1,u1), ... is the same
as the number of paths from the origin to the point (k,n) which never touch or cross the
boundary (0,vg), (1,09 + Ag)s ..oy (kyvo + Mg + Ap1 + -+ Ap).

With the above discussion, it can now be seen that
O(k) = Vg + k—1

Observe that we extend the array « by introducing the row a(—1, k). The reason is that
in this row the numbers d;, from [29] are contained. These numbers are defined recursively
via

5= — zk: <U§ak))5k,« (4.1)

r=1
with initial value 6y = 1.
Reading out the numbers 0y, as entries a(—1, k) is a second method to derive the defining
recursion. In [29] a different approach was chosen. Also it was derived that

a(n, k) = zk: <” ’ 1) S .

r=0

Of course, the array a can be defined for any boundary o(k),k = 1,2,... or equivalently
by the differences By = o(k) — o(k — 1) (this notation was used in [29]). In the special
case that the difference By, takes the constant value ¢, the entries a(n, k) were shown in

29] to be
own-()-+)

which can be regarded as a generalization of the ballot numbers, cf. also [52].

IV.3 GENERALIZATION OF THE BALLOT NUMBERS

When d > 2, the model studied in [97] is no longer valid, since the arrays contain rows
with all entries different from 0. Observe that in each case the entries G(ck — 1,dk) = 0,
when d and ¢ are coprime. However, the results in the previous section now allow us to
derive similar identities for the case d = 2.

Theorem 4.1: Let v(Y(n, k) denote the number of paths from the origin to (n, k) not
touching or crossing the boundary (m, u%))m determined as defined above by AW =
(/\§1>, ,\S), ...) and let ¥®(n, k) denote the number of such paths where the boundary
(m, u$?),, is determined by A® = AP AP ). IFAD = (A e— A A c—A,...) and
A2 = (e =X X c— M\, ...) are periodic with period length 2, then for all & and n >
max{>F_ AN STF APt s

J=17G 0 Zuj=17"
/O (n, k) + 42 (n, k) = 2- (”Zk) —c- (Zf’f)-

Proof: In order to prove the theorem we shall compare the array v defined by ~v(n, k) =

7D (n, k) +~+3(n, k) with the array 3 where 8(n, k) = 2- ("Zk) —c- (Zf’f) and show that
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v(n, k) = B(n, k) for all n > max{Z?zl )\gl),Z?:l )\5-2)}. W. L o. g let Z§=1 )\5-1) >
Z?:1 )\5-2). Then we are done if we can show that y(A + ...+ g+ 1k) = B(M + ...+
Ak + 1, k) for all k, since both arrays from then on follow the same recursion. Namely,
y(n, k) = y(n,k — 1) + v(n — 1,k), because v (n, k) = v (n,k — 1) + v (n — 1,k)
for v = 1,2 and B(n, k) = B(n,k — 1) + B(n — 1, k) was seen to hold even beyond the
boundary.

So let us proceed by induction in k. The induction beginning for £ = 1 and k£ = 2 is easily
verified. Assume that for all k = 1,2,...,2K — 2 it is y(n, k) = B(n, k) whenever n is big

enough as specified in the theorem.
Now observe that since the period length in A and M@ is 2, it is

2K 2K
2N =D N =K,
j=1 j=1

This means that for v = 1,2 by the Proposition 4.1 Y*)(cK +1, 2K) is the number of paths
from the origin to (cK + 1, 2K) never touching the boundary (0, 1), (1, )\g;z +1), (2, )\g}z +
A D)L RN A A ),

These boundaries now are periodic with period length 2 as we studied before. The pa-
rameters as in (2.1) are s = 1, c and A for v = 1 (or ¢ — A for v = 2, respectively).
The generating functions for the numbers of such paths are gt“"(¢2) and g(*¢=M(¢?) as
studied above and by Proposition 2.2

2 (c+2)K+1
K+ 1,2K) = vY(cK + 1,2K DK +12K)= ——
V(K +1,2K) ="V (cK + 1,2K) + v (cK + 1, 2K) C KTl oK
5 (c+2)K\ (c+2)K
- 2K “\a2k—1
Now observe that also
2 (c+2)K +1
K+1.2K—-1) = K+12K) = ——M

because in both arrays v and 4 all paths from the origin to (cK + 1,2K) must pass
through (cK + 1,2K — 1). It is also clear that

B(cK+1,2K—1):ﬁ(cK+1,2K):(C+2)+H((C+§)[§(+1>

Thus we found that in position ¢cK + 1 in each of the columns 2K — 1 and 2K the two
arrays v and [ coincide. Since v and 3 obey the same recursion under the boundary
(m, u%))m, the theorem is proven. O

Corollary 4.1: Let vV and 7® be defined as in the previous theorem. Arrays o)

for v = 1,2 are defined by o™ (n, k) = v")(n + k, k) for all n,k with n > v, + k. The

corresponding parameters 6V (k) and §® (k) as defined under (4.1) fulfill for all & > 1.
W (k) + 6P (k) = (=1)F - (¢ +2).

Proof: Extend the array beyond the boundary by the recursion a(n, k) = a(n — 1,k) +
an—1,k—1)if n+k < u,. As seen in the example for the ballot numbers, the numbers
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SW(k) = aW(—1,k) and 6® (k) = a'®(—1,k) can be found as entries of row No. —1. in
the arrays a¥). (]

Example 3: For d = 2, ¢ =3 and p = 1 the arrays o) and o look as follows.

0 1 2 3 4
1|1 =2 0 7 —40
01 -1 =2 7 =33
11 0 -3 5 =26
2|1 1 -3 2 =21
311 2 -2 -1 -19
411 3 0 =3 =20
51 4 3 -3 =23
6|1 5 7 0 —26
711 6 12 7 —26
811 7 18 19 -—19
911 8 25 37 0
0 1 2 3 4
1|1 =3 5 —12 45
011 =2 2 =7 33
111 -1 0 -5 26
2|1 0 -1 -5 21
311 1 -1 -6 16
411 2 0 =7 10
511 3 2 =7 3
611 4 5 —H —4
711 5 9 0 -9
811 6 14 9 -9
911 7 20 23 0
The sum array a = o + o® hence is

0 1 2 3 4
-112 -5 -5 =5 =5
012 -3 O 0 0
112 -1 -3 0 0
212 1 -4 =3 0
312 3 -3 -7 =3
412 5 0 —10 —-10
5|2 7 5 —10 —-20
612 9 12 -5 =30
712 11 21 7 =35
812 13 32 28 =28
912 15 45 60 0
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Via
77(”7 k) = —a(n + kvn + 1)

we obtain the array

0o 1 2 3 4 5 6 7 8
-1/3 -2 -2 -2 -2 -2 =2 =2 -2
o3 1 -1 -3 -5 -7 -9 —-11 —13
{3 4 3 0 -5 —12 =21 =32 —45
213 7 10 10 5 —7 =28 —60 -—105
313 10 20 30 35 28 0 —60 —165
413 13 33 63 98 126 126 66 —99
513 16 49 112 210 336 462 528 429

with 1(0,k) = 3, n(n,—1) = =2, and n(n, k) = n(n,k — 1) + n(n — 1, k).

Proposition 4.2: The positive entries n(n, k) > 0 are the sum

n(n, k) = nP(n, k) +1®(n, k) + 1% (n, k)

where ) (n, k) enumerates the number of paths from the origin to (n, k) not touching

()

or crossing the boundaries (m, Ug:))m:()’l with sequences uy,’ being periodic of period

length 2 defined for v = 1,2, 3 by

geee

uS = 14 3i,uS) | = 2430 us) = 1+ 3i,ush, = 34 3i,ul) = 2+ 3i,ush,, = 3 + 3.
Proof: Observe that the boundaries via u arise for the parameter ¢ = 3 and the choices
(s=1lpu=1forv=1 (s=1p=2)forv =2 and (s = 2,4 = 1) for v = 3,
respectively, which we studied intensively in Subsection I1.3.

The proposition is easily verified, when for all k some n is found where n(n, k) = 0V (n, k)+
1@ (n, k) +n®(n,k). In order to do so, observe that application of Corollary 2.1 yields

5j +2
2j + 1

1
2737 +1)=n®(24.35 +1) =
n(25,35 + 1) =n" (24,35 + 1) 5j+2<

the j-th coefficient in ¢>3"(z) and

1 55 —1
0023 = 137 = )= 1/2(2) = 1.3 = 1) 09025 - 13- 1) = = (V)

j —

the sum of the j-th coefficients in A"3? and A>3,

Further, for all j it must be 7(2j — 1, 35) = 0, since for all v = 1,2, 3 it is %) (27,3j — 1) =
n")(27,35) (all paths to (27,3;) must pass through (27,35 — 1)). O
Unfortunately, this is the only array with d > 2 for which we could prove an identity similar
as in Theorem 4.1 . We conjecture that such identities hold for every choice of d and ¢
(see the open problem below). Actually, the analysis here was possible since the sequences
u® are periodic with period length 2 and this case was considered. The parameter d is
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the period length of the corresponding sequences A*) in (4.2), which for (d = 3,c = 2)
are AV = (1,1,0,1,1,0,...), A® = (1,0,1,1,0,1,...), A® = (0,1,1,0,1,1,...),

IV.4 OPEN PROBLEMS

1) Computer observations strongly suggest that the generalization of the ballot numbers
holds for all positive integers d. More exactly, let A(“), v =1,...,d be periodic sequences
of period length d, such that the initial segment of length d in A*” is a cyclic shift of order
v — 1 of the initial segment of A(l), i. e.

AY = (A Aoy et Adds AL Ags - Ade1s Ads Az,
A? = Mg Ags e A A A2y A Aas A Ags )

A(d) = ()‘da )\17 s Ad—25 >‘d—17 )‘da >‘13 ceey )‘d—2a Ad—la >‘da >‘19 e ')7

Further, let the sequences A*) describe the boundaries u™, v = 1,...,d as in (4.2),1 .e.,
the points (n, u,)n—0,1,.. are not allowed to be crossed or touched by paths enumerated in
the arrays v (n, k), v =1,...,d

Conjecture 4.1: Whenever n > )\g") +...+ )\,g") forallv=1,....d

YW, k) +4P (0, k) + ... 4D (0, k) = B(n, k)
where
5(”70):d7 ﬁ(_lak):)‘l++)‘dv ﬁ(nak)zﬂ(n_lvk)+ﬁ(nak_1)

We tried several approaches to solve this problem. Observation 1 from Section I1.1 would
follow from the conjecture. Vice versa, if Observation 1 would hold, the sum array
A 4 4@ L+ 4@ would coincide with the array 3 on the columns (n,7(A; + ... +
Ad))n>r(A+...42,) for all positive integers 7.

A second approach was discussed in [99]. One could consider the arrays a®) defined by
a¥(n, k) =y (n+k, k). As mentioned before in Subsection V.2, the entries a*)(—1, k)
are just the numbers 6%)(k) discussed by Carlitz, Rosselle, and Scoville [29] arising in the
analysis of the subarrays of positive entries in the v*)’s. So, it would suffice to derive
that for all £ > 1

SV + .. 4+ 6D (k) = (=D M+ ...+ X)

The proof then would follow the lines of the derivation of the ballot numbers in [29] as
pointed out in [99].

2) The array o we presented for the derivation of the generalized Catalan numbers P
corresponds on its positive values with the number of paths not touching or crossing
the diagonal y = 2x. Analogously, one can consider the array with entries counting the
number of paths not touching or crossing the diagonal x = 2y. Extending this array by
allowing negative entries above the boundary we obtain

25



o 1 2 3 4 5 6
-1/1 -1 1 =2 5 —14 42
of(r 0 0 -1 3 -9 28
1jr 1 0 -1 2 —=6 19
211 2 1 -1 1 -4 13
3;(13 3 0 0 =3 9
4/1 4 6 3 0 -3 6
51 510 9 3 -3 3
6(1 6 15 19 12 0 O

Observe that the first values
5(k) = a(=1,k) = (=1)* - Chy

for k= 1,...,6, which might hold for all k.
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V. Ballot Sequences and Pascal-Like Triangles in the Enumeration of Trees

V.1 BALLOT SEQUENCES AND REGULAR TREES

It is well-known (e.g. [46]) that the Catalan number (), counts the binary, regular,
rooted trees on m inner vertices (where each inner vertex has exactly 2 successors). More
generally, s—ary regular trees on n inner vertices, in which every inner vertex has exactly
s successors, are enumerated by the generalized Catalan numbers c

There is a one-to—one correspondence between s—ary regular trees and ballot — type
{0, 1}-sequences x°" = (x1,...,Zs,) of weight (= number of 1’s) wt(x*") = n fulfilling
the condition wt(xy,...,2;) > L foralli=1,...,sn— 1.

This correspondence can be exploited to store regular trees, for instance, as context trees
[105] in data compression, by assigning to them as codewords the ballot — type sequence.
The codes thus obtained form a prefix code and for the set of codewords representing all
binary trees there is equality in Kraft’s inequality. We shall discuss this coding procedure
now. For further methods of binary tree codings we refer to [71] or [61].

We shall take a closer look at the case s = 2. We introduce a code function ¢, : 7,, —
{0,1}2"*! on the set 7,, of all rooted, binary trees on n inner vertices and n + 1 terminal
vertices. by assigning a 1 to every inner vertex and a 0 to every terminal vertex.

There are several possibilities to define such a code. In a breadth — first algorithm first
the root is labelled, then to the vertices on the first level (from left to right) a 0 or a 1 is
assigned, then we proceed with the second level, and so on.

However, for practical purposes a depth — first approach may be more suitable, i. e.,
after having labelled a vertex, we proceed with its successors (if this is possible, i. e., the
vertex was an inner node). The algorithm, which we shall denote as Tree Code proceeds
as follows.

Tree Code: Starting with the root, we label a vertex and proceed with its left successor
if this is possible. If the left successor is already labelled, we proceed with the right
successor. If both successors are labelled or if the vertex is a terminal node, we trace back
the path to the root until we find a vertex whose right successor is not yet labelled and
label this right successor. The algorithm stops, when we successfully check that the right
successor of the root has a label.

So, for n = 0,1, 2,3 the possible trees are encoded as follows.

Let C, denote the set of codewords which can be formed by this prescription. Further,
(e.0)

we denote by C = t_JO C,, the set of codewords for all possible binary, rooted trees.
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Remarks:

1) Observe that from the algorithm “Tree Code” a recursive algorithm to label the vertices
is obtained in the following way. Let a tree T on 2n + 1 vertices be obtained from a tree
T* on 2n — 1 vertices via appending two successors to a terminal node of 7™ and let

Cn1 (1) = (z1,...,2; =0,...,22,1) be the codeword for 7, which has a 0 in position
7 which corresponds to the terminal node manipulated in the way described above. Then
the codeword ¢, (T') = (27, ..., 25,,,) is obtained from ¢(7™) by replacing the 0 in position

7 by the sequence “100:, i. e.,

=z fori=1,....j—1La,=1La,, =a ,=0andz; =a; ,fori=j+3,....n

2) The (of course, well known) bijection between trees and ballot sequences is easily
obtained by dropping the last digit (which is a 0) in all codewords in C,, This way we
obtain a set of {0, 1} — sequences (xy,...,xs,) of length 2n containing exactly n many 0’s
and 1’s with the property that for all initial segments (x1,...,2;),7 < 2n the number of
I’s in this subsequence is always at least 3.

It is also easily seen by Remark 1) that the set C is prefix free and hence the union of
ballot sequences over all n (with an additional 0 yielding the above code) form a prefix
code. Recall that for a prefix code it must hold Kraft’s inequality. Kobayashi, Hoshi, and
Morita [65] gave a combinatorial proof that the set C fulfills Kraft’s inequality even with
equality, i.e., if we denote by L(T') the length of the codeword assigned to a tree 7', then

Z 2—L(T) _ f: On2_(2n+1) -1
T n=0

We shall derive this identity as a special case of a more general result for s—ary trees.
The above coding procedure can be generalized in an obvious way (now replacing a 0
in the codeword ¢,_1(T*) by a 1 followed by s zeros to obtain a codeword ¢, (7)) to
yield a procedure for representing s-ary trees by ballot-type sequences. Now there is no
longer equality in Kraft’s inequality if s > 3, however, with Kobayashi we could derive
that Y, 2740 > 1 for all s, see [64]. In order to see this, observe that the generalized

Catalan number C’T(f) enumerates the trees on sn + 1 vertices and that hence there are
O trees with codeword length L(T) = sn + 1.
Proposition 5.1: For s > 2 it is

< Zcﬁs)27(5n+1) < 17

n=0

DO —

with equality on the right hand side only for s = 2.

Proof: We shall first show the right-hand inequality in the theorem. In order to do so.
observe that 3°° O (snt1) — g Cﬁs)(%)"(%)(s*”"“, which is just the probability
that a particle moving in the integer lattice and never touching the boundary (i, (s — 1) -
i+1)i=1,2,... will eventually stop in the model described in Section 2 for the special
parameter choice p = % This probability is 1, only if p < %, So Kraft’s inequality is
fulfilled with equality only if s = 2, i. e., if the counting function is determined by the

Catalan numbers, and strict inequality must hold on the right-hand side for s > 3.
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In order to show the inequality on the right-hand side, let Gs(z) = > 7, C¥ 2 denote
the generating function for the generalized Catalan numbers. Then obviously,

> 1 1
($)g=(snt1) _ 2 (v (=
;:o: Cf 5 Gul5;)-

It is well known that G fulfills the functional equation G4(z) = 1 4 2G4(2)*. This just

means that G4(5) is a root of

=242 = (2 —2) (2" 2252 4 42572 — 27

=2 (y—1)- (T YTty —1) =2 (y—1)- Fi(y)

by setting x = 2y and defining F,(y) = y* ' +y* 2+ ... +y — 1.
Now, for s = 2 obviously 2 is the only root of 22 — 4z + 4, which means that GQ(Q%) =2
and hence Kraft’s inequality must hold with equality. For s > 2 observe that Fy(y) is

monotonous on the positive reals with Fy(1) = s —2 > 0 and F(0) = —1 < 0. Hence
F,(y) can have only one positive root yés), say. Since >_.2,(3)" = 1, obviously yés) > 1,
and the theorem is proven. O
Remarks:

1) Indeed y((]s) quickly tends to %, e. g., for s = 3 the golden ratio y(()3> = 0.61.. is attained.
2) In [65] a prefix code representing s-ary trees is presented, for which equality holds in
Kraft’s inequality for all s.

3) Observe that we enumerated the ordered, regular, rooted trees, in which permutations
of the successors of an inner vertex may yield different trees. The enumeration problem is
much more difficult if these permutations are considered to yield isomorphic trees, i. e.,
we want to determine the number £,, of unordered trees on n inner vertices. In this case,
a closed expression as for the Catalan numbers is not known. The asymptotic behaviour
of t,, has been analyzed by Flajolet and Prodinger [41].

4) It might be interesting to find a one-to—one correspondence between ballot—type se-
quences in which every initial segment x’ has weight w(z’) > ﬁ and some class of trees
for the rationals g with [, s coprime integers and [ > 2.

5) The connection between the enumeration of trees and forests to branching processes
and random walks is studied, e. g., in the recent paper by Pitman [80)].

V.2 PASCAL-LIKE TRIANGLES AND MOTZKIN NUMBERS

We saw that the Catalan numbers count the rooted, regular, binary trees. There is another
application in the enumeration of trees, namely the Catalan number C), also counts all
rooted trees (with no restriction on the degree) on n + 1 vertices (cf. e.g. [58]).

This fact can be derived by interpreting the entries b(n, k), which are just the ballot
numbers (cf. Section 3), of the array obtained by the recursion

o0

b(n+1.k) =Y b(n,k+j)

with initial values b(0,0) = 1,b(n,k) = 0 for £ < 0 and & > n, as number of forests
consisting of exactly k+ 1 trees on n + 1 vertices. Recall, that the Catalan numbers here
arise as the entries b(n, 0) of the triangle
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-1 0 1 2 3 456
0O O 1 0 0 0 00O
1] O 1 1 0 0 00O
21 0 2 2 1 0 000
31 0 ) 5 3 1 00 0
41 0 14 14 9 4 1 00
o 0 42 42 28 14 5 1 O
6 0 132 132 90 48 20 6 1

which since b(n, k) = B(n,n — k) can be regarded as the “inverted” two — dimensional
array (3 studied in Section IV. This “inversion” has the advantage that now the columns
are (k + 1)-fold convolutions of column No. 0 (b(n,0))p=12...-

This interpretation of the ballot numbers will occur as the extremal case s = oo of a more
general result counting the forests consisting of trees in which there is a limitation on the
degree, namely, a vertex is allowed to have at most s successors.

The number of trees with n vertices, in which every inner node has at most 2 successors,
is the Motzkin number M,, [34] or total information number as in [90].

The Motzkin numbers were first introduced by Motzkin in [74]) in the analysis of an
enumeration problem concerning the number of different triangulations of an n—gon, they
arise as the enumeration function for another kind of trees [68] and have many further
applications see [34], [8] and [94], pp. 238 239 .

The sequence (M,,)>2, starts with 1,1,2,4,9,21,51,.... Here a closed expression as for
the Catalan numbers is not known, however in [34] it was also derived that the numbers
M,, can be obtained as the entries b (n,0) of the Pascal — like triangle defined by the
recursion

VP (n+1,k) =02 (n,k — 1) + b2 (n, k) + b@(n, k + 1)

with initial values 5@ (0,0) = 1,b®(0,k) = 0 for k # 0 and b®(n, —1) = 0 for all n, so
they define the triangle

-1 0 1 2 3 456
oL 0 1 0 0 0 000
110 1. 1 0 O 0O0O
200 2 2 1 0 000
31 04 5 3 1 000
410 912 9 4 1 0 0
50 0 21 30 25 14 5 1 O
6 0 51 76 69 44 20 6 1

In the same spirit the numbers M®)(n) = b()(n, 0) defined by the recursion
VO (n+1,k) =0 (nk—1)+ b9 (n. k) + b (n,k+ 1)+ ...+ (n,k+5—1)
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(with initial values as above) can be considered. For s = 3 this yields the following table

O = = O

O — O
w—_ o ol
—_ o o olw

13 14 9 4
36 40 28 14

4
0
0
0
0
1
)
104 118 87 48 20

1
0
0
0
0 ) )
0
0
0

L0 O W N~ O
OO OO O OOt
RO OO OO0 O

Carlitz in [25] (cf. also [27]) in the study of a problem concerning lattice path enumer-
ation analyzed the equivalent recursion 3% (n + 1,k) = > 70 B (n, k — 5), 39(0,0) =
1,8®)(n,k) = 0 for k < 0 and k > n, which just yields 8 (n, k) = b (n,n — k). He
could derive the generating function for the rows (3%)(n, k))n=o1,.. of the corresponding
triangle. Sulanke [97], who studied a more general recurrence, which just yields 5 (n, k)
as a special case, gave 3)(n,n — k) = b*®)(n, k) as number of forests consisting of k trees,
in which every vertex has at most s successors. We want to derive this identity using a
functional equation due to Klarner [60] for the generating function of such trees.

Proposition 5.2 Let b(n, k) denote the number of forests on n + 1 vertices consisting of
exactly k£ + 1 trees, in which the degree of each vertex is from a given subset D of the
natural numbers with 1 € D. Then (with 5(0,0) = 1 and b(n, —1) = 0 for all n)

bn+1,k) =) bnk+d—2) (1)

deD

Proof: Let -
z) = Zb(n,O) -t
n=>0

be the generating function for these trees. Then clearly T%(x) = >~>° b(n, k)z"™ is the
generating function for the forests consisting of exactly k + 1 such trees. In [60] it was
derived that T'(z) obeys the functional equation

Then T*(z) = T(x) - T (2) = 2 - T*Ha) + 23 jep g TF?(2), which just yields the
recurrence for the numbers b(n, k).

Now when each vertex has maximum degree s+ 1, then of course recursion (3) arises and
hence

Corollary 5.1 ([97]): The numbers b*)(n, k) count the ordered forests on n + 1 vertices
consisting of exactly k+1 trees, in which each vertex has degree at most s+ 1. Especially,
b (n,0) is the number of trees on n+ 1 vertices in which every vertex has degree at most
s+ 1.
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Remarks:

1) Although the proposition is immediate from Klarner’s recursion, we couldn’t find a
reference to this method of proof, which makes use of the fact that the rows (b(n, k)),—o1,...
of the triangle defined by (6) are (k+ 1) — fold convolutions of row number 0. In a series
of papers Hoggat and Bicknell et. al. intensively studied such convolution arrays, e. g.
(53], [54]. They are also a special case of the Riordan group studied in [92], where the
generating function of the k-th row is g(z) - f(z)F with g(z) = 1 + g12 + go2® + ... and
f(@) =z + fou® + fsa®. To see this, choose f(z) = T(x) and g(z) = 1T(z) .

2) Further two - dimensional arrays in which the Catalan numbers occur as entries have
been studied e. g. by Aigner [9] and Shapiro [91].
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VI. Generalized Catalan Numbers and Creating Order

VI.1 CREATING ORDER

Ahlswede, Ye, and Zhang [6] introduced the following model for creating order in sequence
spaces. We are given a box containing (a fixed number) 3 balls labelled by letters from an
alphabet of size a. In each time unit a person O — denoted as organizer — takes out one
ball of the box which is replaced by a new ball thrown into the box by a second person
Z. The aim of the organizer is to reduce the space of possible output sequences. As a
measure for the efficiency of the ordering process the number of possible output sequences
and the entropy of the output space have been studied (cf. also [7], [57], [101]). A related
model in which the output sequence is regarded as a message from person Z to a decoder
D was considered by several authors studying the permuting channel, e. g. [3], [63], and
[79].

Here we are going to discuss a multi—user version of the original model for creating order.
Now there are s > 2 persons 71, ..., Z,, say, throwing balls labelled either 0 or 1 into the
box. We shall present the model using a slightly different terminology. In each time unit
s sources 7, ...,Z, produce one bit each. These s bits arrive at an organizer who in the
same time unit has to choose [ bits for output, where 1 <1 < s. These output bits may
be among the s arriving bits or may be taken from some memory device (the box), in
which the bits not used so far may be stored. The organizer follows a simple strategy: if
it is possible the output must be a 1. So if one of the arriving bits is a 1, the organizer will
put out a 1 for sure. The bits not used for output he may store in the memory device. If
all the s sources produce a 0, then the organizer will take a look at the memory. If there
is still a 1 contained he will put out a 1, otherwise he must put out a 0.

We assume that in the beginning the memory device is empty. At some point it may occur
that no further 1 can be stored, since the device is full of 1’s (a 0 may be replaced by a 1).
In this case there is a maximum size or capacity of M bits which cannot be superceded.
Of theoretical interest is also the not very realistic model, in which the memory device
can store all incoming (hence infinitely many) bits.

Observe that contrasting to the original model for creating order the size of the memory
device (or box) now may vary in time. A natural question is: how much influence does
the maximum size of the memory have on the behaviour of the sequence of bits arranged
by the organizer? Of course, in the strategy considered the organizers aim is to produce
the all-one sequence and we shall study how well he can manage to achieve this goal. As
a new measure for the influence of the memory we consider the expected value of the first
occurrence of a 0 in this sequence. We shall denote this expectation (if it exists) as

Ey = Z t - Prob(first 0 at time t).

t=1
Further, we shall denote the sequences of bits produced by the sources Z; by
l(Z) - (x:(ll)7$gl)’ . ')7
The results below are mainly derived from properties of the sequence
)= ( (1) (s) (1) (s) (1) )

2= (215 Zsy Zstls vy 225 2251y - - - Ty e Xy Ty Ty
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which is obtained by merging the sequences 2.7 = 1,...,s into one sequence z, where
the bits in the positions =7 mod s are those produced by Z;.

We assume that all s sources are memoryless and independently produce their outputs,
where the probability for producing a 1 for each source is the same P(X = 1) = p (and
hence the probability for a 0 is P(X = 0) = 1 — p). The ordering procedure then defines
a random walk, namely, if X; denotes the random variable for the size of the memory at
time unit £, then

Prob(Xis1 = m+j — | X;=m) =p - (1 =p)* 7,5 = 0,....s.

We shall be able to analyze the case [ = 1 output bit per time unit Clearly an empty
memory at time ¢ here is a necessary condition for the occurrence of the first 0 at time
unit ¢+ 1, so we are interested in the probability that the memory is empty in some time
unit t and X; >0 foralle=1,...,t— 1.

We denote by a(m,t) the number of sequences z produced by the s sources leading to the
all-one sequence as output with actual memory size (= number of 1’s in the device) m at
time ¢ — 1. So the combinatorial analysis reduces to determine the number a(0,¢ — 1)

VI.2 EVERY INCOMING BIT CAN BE STORED

Recall that there are two necessary conditions for the occurence of the first 0 at time unit
t: 1) there are no further 1’s in the memory device after the ¢—th bit has been put out by
the organizer, 2) up to time ¢ the all-one sequence has been arranged by the organizer.
In case that the memory device can store every incoming bit, these conditions can be
translated into conditions required from the sequence z, namely

wt(z1, ..., 2q) =1 -1, (6.1)

wt(zy, ..., 25) > L-ifori=1,...,t — L (6.2)

As usual, here the weight wt(2%") of a {0, 1}-vector 2* denotes the number of 1’s in z*.
By condition (6.1) no 1's can be left in the device, since ¢ 1’s have arrived at the organizer
and t 1’s have been used for output. The second condition (6.2) assures that at all time
units before it was possible to put out a 1 (by the same argumentation).

For the analysis of the numbers a(0, t) the concept of domination (or majorization) defined
in the introduction comes into play.

Proposition 6.1: When in each time unit s bits arrive at the organizer who in the same
time unit has to put out a fixed number [ < s bits (using the strategy which prefers a 1
towards a 0), then the number a(0,t) of sequences fulfilling (6.1) and (6.2) is

a0,t)= ) (Z) ' <:2) (j)

(L 1) 2 (21 - u08t)

Proof: For j = 1,....t the binomial coefficient (Z) is the number of possible ways in

which exactly 4; bits can arrive at the organizer in time unit j. In order to assure that

the memory is exhausted at time ¢, i. e. (i’) holds, it must be ¢; + ... 44, = [-¢ and in

order to guarantee (ii’) for all j < ¢, it must hold ¢y +...+¢; > [-¢. This just means that

the sequence (iy,...,4;) dominates the sequence (,...,1). O
~——
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We shall see that for [ = 1 outgoing bit in our model for creating order the expectation Ej
can be determined, since the underlying stochastic process can be reduced to a random
walk on the line, where in each unit one can move either 1 step forward or s — 1 steps back
such that finally the same counting function - the generalized Catalan numbers - arises.

If there are | > 2 (ged(l,s) = 1) outgoing bits per time unit, the counting functions
for the nonnegative paths in the corresponding lattice and the exhaustion of the memory,
respectively, are different. Let, e. g., s = 5 and [ = 2, then the numbers a(0, t) of sequences
fulfilling (6.1) and (6.2) for s = 5 and [ = 2 start with «(0,1) = 10, a(0,2) = 155,
a(0,3) = 2335.

On the other hand, we know from the considerations in the previous sections that for the
parameter choice s = 5 and [ = 2, the generating function for the nonnegative paths is
g3 (z) =1+ 2z + 2322 + 3772 + .. ..

For the random walk on the line, usually there are different counting functions for the
nonnegative paths corresponding to the walks in which the single steps are from {{, —(s—
D)} or {—I, s — [}, respectively. For instance, for s =5 and [ = 3 the generating function
for the walk with steps from {3, —2} is ¢"%?(x) = 1 + 32 + 3722 + 6242 + .. ..

In contrast, the counting function for the exhaustion of the memory with the parameters
s,l and s, s —1 are the same, since (,1,...,1) = (i1,49, ..., 1) exactly if (s—{,s—1,...,s—
[) (S =i, 8 —dgg,y ..., 8 —i1).

As mentioned before, for the choice [ = 1 the number a(0,¢) of all sequences of length s
fulfilling the conditions (6.1) and (6.2) are well known in Combinatorial Theory, these are
just the generalized Catalan numbers.

Proposition 6.2: For t = 1,2, ... the number of sequences z of length st, which fulfill
(6.1) and (6.2), is the (¢ + 1)—th generalized Catalan number Ct(i)l = %(S(HU).

s—1)(+1) \ t+1
Proof: As a generalization of the ballot theorem, Motzkin derived in [74] that C’t(i)l is the

number of {0, 1} — sequences y = (y1, ..., ¥Ys@+1)) consisting of exactly £+ 1 many 1's and
(s —1)(t+ 1) many 0’s such that

Wt(yl,...,yi)foorizl,...,s(t+1). (6.3)
s

(So condition (6.1) must hold for every every initial segment and not only for those
segments of size divisible by s.) Now, since (6.3) holds for ¢ = 1 each such sequence y
must begin with a 1 and it must end with s — 1 consecutive 0’s, because otherwise (6.3)
would be violated for i = st + 1.

Now we add a leading 1 and s — 1 final 0’s to a sequence z with the properties (6.1) and
(6.2) in order to obtain a sequence y fulfilling (6.3). To see this, let y = (y1,¥2, .- ., Ys(e41))
with yy =1,y; =21 for j=2,...,st+1land y; =0 for j = st +2,...,s(t + 1), where
z=(2z1,...,2s) fulfills (6.1) and (6.2).

Then for each initial segment (yi,...,%;) = (1,21,...,2;1) wherei—1=s-m+k,k <s
it is wt(1,21,...,2.1) > m+ 1, since by (6.2) wt(z1, ..., Zgn) > m. So

m+1 1

1
Swh(yp, ) S — > T

since k+1 < s.
On the other hand, if z is a sequence consisting of exactly ¢ many 1’s and (s — 1)t many
0’s, which does not fulfill (6.2), let m be the first number with wt(z1,...,25,) < m — 1.
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Then wt(1,21,...,2sm) < m and hence (y1,...,Ysu+1)) defined as above cannot fulfill
(6.3) since

m 1
<
sm—+ 1 S

WY1, oy Ysma1) = Wt (1, 21,00y Zom) <

sm+1 m+1

So there is a one-to—one correspondence between sequences z with the properties (6.1)
and (6.3) and sequences y fulfilling (6.3). O

With Proposition 1, the following identity for the generalized Catalan numbers is imme-

diate.
() _ AT R T
= > ()C)C)

Corollary 6.1:
(17"'71)5(7'1"“7”)

Theorem 6.1: Let there be s identical sources 7, ..., Z, producing one bit each per time
unit with Prob(X = 1) = p, Prob(X = 0) =1 — p. If the memory device can store every
incoming bit, then the expected value for the occurence of the first 0 in the sequence
arranged by an organizer (if he puts out a 1 if possible) is

W [ =

_ _Sp
T 1-sp? p<

Proof: Recall that the sources 71, ...,Z; each produce a 1 with probability p. Hence with
probability (1 — p)® only 0’s arrive at the organizer at time unit ¢ + 1. In this case he has
to put out a 1 if the memory device is empty, which happens by the preceding discussion
with probability a(0,t) - p*(1 — p)®=Y% So the probability that the first 0 is put out at
time ¢ + 1 is

- s 1 s o
a(0,t) - p'(1—p)= V- (1—p)* = = O ptti(1 — p)le DL

which yields the probability generating function

ZProb (first 0 at time ¢) - 2 = - Z Cpt( (s=D)t+l , 5t=1

t=0

Now it is known (see [73], p. 129), that for p <  the numbers ¢, = C’t(s)pt(l—p) (s=D)t+1 ¢ —

0,1,2,... yield a probability distribution (¢, ¢,...) on the nonnegative integers with

expected value —2—. This distribution has probability generating function
p—

1
th p _ZC (s t+1 St

and with the above remarks, of course

p

H(l)zlandH'(l):1 :
“sp

Now observe that



Obviously, G(1) = % -[1—=(1—=p)] = 1 and hence we have a probability distribution whose
expected value is obtained via the derivative

G'(:) = -+ (L) = 5 (H(:) = (1= )
By = G/(1) =~ [H'(1) = (HO) = (= p) =5 (12— =l = = 1= 2
0 T p P Cp ‘l—sp p_l—sp C1—sp

s s’ s

In [65] it is shown that Y .=, Ct(s) . [w]t = % Hence for p=1,1—p==1

- 1, s—-1 S
1)=(s—1)- Sl ) L (| Col Ny P D —1)=1
G = (= 1) AN = (- (5 -
and hence again we have a probability distribution. The expected value here does not
exist by application of Stirling’s formula. ]
Remarks:

1) Obviously, Proposition 1 can be extended to a model, in which the number of incoming
and outgoing bits per unit may vary in time.

2) It should be mentioned that the Catalan numbers occur as the enumeration function
in a related ordering model, namely in sorting of permutations using a stack, which can
be regarded as a memory device, since the elements can be stored in the stack and then
will be retrieved according to the rule “first in - last out”. The Catalan numbers just
count the number of permutations which can be sorted when one stack is allowed, as
already shown by Knuth [62]. There has been lot of recent interest in two-stack sortable
permutations, e. g., in [102], [106], and [22].

3) Recall that the analysis was carried out via properties of the sequence z obtained by
merging the input sequences 2V, i = 1, ..., s, into one sequence. Such merging procedures
also play a role in interleaving codes applied to correct burst errors, cf. e. g. [21], or in
codes with the “identifiable parents property” as in [56].

VI.3 CHEBYCHEV POLYNOMIALS AND CREATING ORDER

The above ordering process with limitations on the size of the memory device can be
analyzed with the help of the Chebyshev polynomials (¢, (2))n=12.. and the Chebychev
polynomials of the second kind (u,(x))n=12,. (cf. e. g. [30], p. 228), where

L

0|3

]

tn(az):g-i_ogl_l)i (”Z ’)(zx)"—%z det T, ()
with
z 1 0 .0 0 O
1 22 1 0 0 O
T, (x) = s
000 ..12 1
000 .. 01 2
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1=0
with
2¢ 1 0 .0 0 0
1 2z 1 .0 0 0
Un(x) = O
0O 0 0 ... 1 22 1
0O 0 0 ... 0 1 2z

Proposition 6.3: If Z; and Z; are memoryless, symmetrical sources, then the expectation
Ej for the occurrence of the first 0 in the sequence of outputs obtained from the ordering
procedure in the previous section when at most M 1’s can be stored in the memory device
is

| M \(1+D)
i -2
By =+ ; ci(l = =——)
where )\EMH) =4- siHQﬁ,i =1,..., M +1 are the eigenvalues of the matrix (M + 1) x
(M + 1) matrix
210 .00 0
121 ...000
Appr=| 8 0 o
000 ...121
000 ...013
e . 21 :
(with initial matrices A; = (3), A = | 3 ) and the numbers ¢;,i =1,..., M +1 are

appropriate constants.

Proof: The changes in the memory size can be expressed by the recursion formulae for
the numbers a(m, t) defined in the previous section

a(0,1) a(0,t —1)
: = Any- f
a(M,t) a(M,t—1)

In [88] it is shown that
Up () + up—1(z) = det V, (),

where

2z 1 .0 0 0

1 2z .0 0 0

Va(z) = S :

0O 0 0 ... 1 2z 1

0 0 0 0 1 22+1
Observe that the transition matrix A, = V(1) occurs for the special value z = 1. and
the eigenvalues of V,,(1) are 4 - sin’ 2:;11,1' =1,...,n (cf. [88]). O]

38



The Fibonacci numbers F),, occur in the analysis of the expected value Fj for maximum
memory size M = 1. Obviously, if there is no memory (M = 0), then the number a(0,t) =
3, where 3 is also the largest eigenvalue of A; = (3). In this case Ey = Y o, t-(3)1-2 =4
is just the expected value of the geometric distribution with parameter i, since with

probability i two 0’s arrive at t.
Corollary 6.2: For maximum memory size M = 1 the numbers a(0,¢) and a(1,t) are

(l(O, 2t) = 5t . Ft; a(l/t) = 5t . Ft+17 (l(O, 2t + 1) = 5t . (2Ft + Ft+l)7
CL(l, 2t + 1) = 5t . (Ft + 3Ft+1)'

. (21N, . o (5 5\ 11
Proof: For the transition matrices Ay = ( 1 3 ) it is A5 = ( 5 10 ) =5- ( . 2 >,

11\ F, F
from which A3 = 5¢. ( 1 9 ) = ht. ( K i+ ) by a well known property of the

Fibonacci numbers. (]

Finally, let us take a closer look at the matrices A,. Observe that these matrices can be
obtained as submatrices of the squares of matrices Bs,, 11, where

010 ... 000
101 ...000
Bo=| i i i iii |
000 1 0 2
000 010

More exactly, letting B2, +1 = (bij)ij=1,..2n+1, by an appropriate enumeration of rows and

columns y
0
2 _ n
By = < 0 Chpu )
where
1 10 .0 00
1 21 .0 00
Ay = (bij)ij even, Crq1 = (bij)ivj odd=1 : + + . oo,
0 00 .12 2
0 00 .01 2
1 92 1 10
01 2
Analogously, we can consider the matrices
21 ... 00 01 ... 00 11 ... 00
1 2 ... 00 1 0 ... 00 1 2 ... 00
Zn _ . . . 7§n _ . . . ’677/ — . . . . ,
0 0 2 1 0 0 01 0 0 1
0 0 1 2 00 1 0 0 1
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o A, 0 o _
Bopi1 = ( 0 Un+1 ) . where A, = (bij)i,j even and C, 1 = (bij)i’j odd-
The matrices B,, and B,, are well known as transition matrices_ for random walks on the
line (cf. [59] and [93], pp. 238-240) and the matrices A, and A, have an application in
geometry (cf. [88]). Think of the vertices Py, ..., Py of a regular N-gon drawn on a unit
circle. Then the eigenvalues of A No (if NV is odd) or A N2 (if NV is even) give the squares
of the different distances P;, P;,4,5 = 1,..., N.
Since we couldn’t find the following identities for the characteristic polynomials of the
matrices under discussion in literature, we shall present them as our final proposition.

Proposition 6.4: The characteristic polynomials of the matrices we consider are

) = () = S (M s (6.4

X5 () =2 1a(=3), (65
= o= e o 69
X ) = =M (). X, (N = =M, (V) (67

| £ ) 1=l X2, ) | | 0 W =g )] (68)

Proof: By definition, (6.4) follows from the fact that B, = U, (0).
Using the following well-known properties of the Chebyshev polynomials (cf. [88] and
[86], p- 9)

to(z) =22 t, 1(2) — th o(x),up(z) = 22 - up 1 () — uy_o(x),

2ty (x) = up(z) — up_o(x),

(6.5) follows via
X8, (A) = =A-xg,,(N) =2 x5, ,(N)
A A A

=)\ un1(%) -2 uan(E) = Un(g) - 'Unf2(§)-

The characteristic polynomials in (6.6) can be derived using the recurrence x4, (A) =
(2=A) * Xa,_1(A) = xa,_,(N) which is the same as for x4 , only the initial values differ:
X4, (A) =3 =X, xa,(A) = A2 = B5A+5, whereas x4, (A) =2— X, x4,(A) = A2 —4X+ 3.
(6.7) can be obtained using x¢, (A) = (2 = A) * x1_,1)(A) — 2 - X1, 1)(A) and xz (X)) =
(L=X) - X1o () (A) = X700 (1) ().

Finally (6.8), follows from (6.6) and (6.7). O]
Let us conclude with some reflection about the matrices U, (z) and V,,(z). As pointed out,
they describe the transitions for certain elementary random walks of a particle moving
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on the set {0,1,...,n} with absorption at 0 and either reflection (for V,(x)) or absorp-
tion (for U,(z)) at n, where the particle moves one step forward or one step back, each
with probability #2, or remains in its position with probability —%5. More exactly, the
largest eigenvalue Ay, ) or Ay, (s), respectively, determines the asymptotic behaviour of
the number of positive paths that start and end in 0 but never return to 0 in between.

Letting n tend to infinity, the limiting process does not have a boundary n at which
the particle is reflected or absorbed, any more. The counting functions a,(m) for this
limiting random walk might be of interest. Here a,(m) denotes the number of positive

paths consisting of m steps

It is well known that the Catalan numbers arise as ag(m), the Motzkin numbers as a;(m)
and the Catalan numbers with even indices as ag(m). It might be interesting to study
the numbers a,(m) for integers x > 3.

For instance, is there some regularity in the sequence of their generating functions C,(z),
say? Tt is Cp(2) = 14 2C0y(2)?%, C1(2) = 1+ 2C1(2) + 22C1(2)% and Cq(2)? = 1+ 420,(2)*
In order to analyze if the expected recurrence time exists, the asymptotic behaviour must
be determined. Since the limiting random walk will return to the origin with probability
1, it must be a,(m) ~ (x+2)™ the largest eigenvalues of U, (z) or V,,(x) tend to (z+ 2)
for n — oo.

However, for the Catalan and Motzkin numbers, the asymptotics can be determined more

exactly, namely C} ~ \/;kfl/QQk for the Catalan numbers and M, ~ y/-2k73/23F (cf.
[95]) for the Motzkin numbers. What can be said for x > 37
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VII. Hessenberg Matrices and Chebychev Polynomials

VII.1 THE DETERMINANT OF A HESSENBERG MATRIX

In this section we shall present an explicit (not recursive) formula for the determinant
of a Hessenberg matrix (in normalized form), which we could not find in literature, and
point out by recalling several examples its use in various fields of mathematics, as Geom-
etry, Number Theory, Probability Theory, and Combinatorics. Especially, it is related to
generating functions of the form H(z) = ﬁ(z)

A Hessenberg matriz H, = (a;;)i,j = 1,...n is a quadratic matrix with a;; = 0 for
j > i+ 1. We present the concept of the Hessenberg matrix in a normalized form , i.e.
a;;+1 = 1 for i =1,...,n. Usually arbitrary coefficients a; ;41 on the upper side diagonal
are allowed (even 0, in which case the normalization does not work). Rearranging the
indices such that the entries now are enumerated according to the column and the diagonal
yields

a1 0 0
a((f) agl) 1 0
(3) (2) (1)
a a a 1 0
o, — (? 1 2
agnq) agn—2) aén—3) o GSEQ 1
o oY o o, d,

Further, by H/ is denoted the matrix obtained from H,, by replacing the 1’s on the upper
side diagonal with —1’s, i.e. a;;41 = —1fori=1,...,n.
Hessenberg matrices play an important role in numerical mathematics, because their

determinants can be calculated very fast by the following recursion (for the normalized
case with d, = det(H,))

n

det(H,) = dp = > (1) "a,dy 1.

t=1

Since there also exist fast algorithms, which allow to transform a given quadratic matrix
to a Hessenberg matrix, the evaluation of the characteristic polynomial of an arbitrary
quadratic matrix can be reduced to the same problem for an equivalent Hessenberg matrix
(cf. [42], pp. 251 — 258).

Special determinants of this form are discussed in [75] under the name recurrents and in
the theory of continued fractions as continuants.

By analyzing the above recursion or by evaluating the determinant by the last row, the
following proposition is immediate.

Proposition 7.1: The determinant of a Hessenberg matrix H,, defined as above is

n

t t t tn
det(Hn) - Z(_l)k Z a(() 1)a§12)a7£13:2t2 U a§1+)...+tn_17
k=1 t1+...+t=n

t t t tn
det(H;L) - Z Z a(() 1)617512)617511)@ e a7§1+)-..+tn71'

k=1 t1+4...+t=n
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Remark. It can also be verified that det(H,,) equals the permanent of the matrix H),.

VII.2 SOME APPLICATIONS
This determinant is quite interesting, since many formulae, which occur in various fields
of mathematics, have this special form, for instance, n-fold summation (Example 1) and
n-fold integration (Example 2) of the 1. The first example was already presented in the
introduction.

Example 1 (e. g. ,[50]).

ao al an—1
a; + 1
D DD T 1 (S IR
z0=0 z1=m0 Tpn—1=Tn—2
is the number of sequences of nonnegative integers (b, ..., b, 1) dominated by the se-
quence (ag,a; — ag...,0, 1 — @y 2). Another application of Hessenberg matrices in the

theory of majorization can be found in [23].
Example 2 (cf. [76], p. 82).

Y et n atl atz ats CLtn
e dl‘ d_/L' e d.r dl' e _1 k _OL t1+ta L t1+...Ftn—1
/// / e =D (D" 3 tl to! ] !
0 o1 @2 Ty k=1 tt..Atp=n
: j
which is the determinant of a Hessenberg matrix H, with agj ) = % Observe that for

the special choice a; = 1 for all ¢ this is just the volume of an n—dimensional simplex.
For arbitrary choice of the a; > 0 the volume of a more general n—dimensional body is

obtained.
(j

For the special choice a; ) = b; for all 7, i.e. on each diagonal all the elements are the

same, we have

b1 1 0o .- 0
bo by 1 0 --- 0
det(H,) = bf b 0 “SEE Y byeeby. (1)
: : k=1 t1+...+tp=n
bn—l bn—2 bn—3 Tt bl 1
bn bn—l bn—2 Tt bQ bl

Example 3. As already pointed out above, if we set a; = 1 for all ¢ in Example 2, we

obtain the volume % of an n—dimensional simplex, which can be represented as such a

determinant with b, — %

Example 4. By choosing b; = (]+—11), in (7.1) we obtain the following identity for the
Bernoulli numbers B, recursively defined by By = 1, By = —35 - 2.1 (") - B,

B, = (=1)""*(2n)! - det(H,,).

This example is taken from the book [75], where in Chapter 21 many more examples for
determinants of Hessenberg matrices of the form (7.1) (under the name recurrents) are
presented.
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The determinant of a Hessenberg matrix of the form (7.1) also arises in Combinatorial
Theory (enumeration of trees [89] and lattice paths [73], theory of partitions) and Prob-
ability Theory (renewal theory, random walks) because of its connection to generating

functions of the form H(z) = y—5q; (or H(z) = fc(,*z()

z)
Let there be given two sequences (h,)n=12.. and (gn)n=12,. . where the elements b, are
obtained from the first sequence by

hn=>_ > gngn

k:]_ tl ++tk=n

which we shall use later on).

It is easy to verify the inversion

which is of the form (7.1). Now if
G(2) = g1z + g2 + g32° + . ..

is the generating function for the g;’s then the generating function H(z) = hyz + hyz? +
hsz® + ... for the coefficients h;, 7 = 1,2,3,... is obtained from G(z) via

H(z) =) G(2)F = %

k=1

It is clear that g, = det(H,), when H,, is defined in the form (7.1) (with h; taking the
role of b;).

Such generating functions play an important role in the analysis of random walks, when
((z) is the generating functions for the steps of a random walk and H(z) is the generating
function for the paths arising from this set of steps (cf. [44]). Also, in the renewal equation
(e. g., [39], p. 272) are involved generating functions H(z) and G(z) related as above.

Example 5. The standard example in this context are the Catalan numbers C; =
(%), i=0.1,....

For instance, if g; = C} is the j—th Catalan number, then h; = (2;)

It can also be shown that if g; = C;_; is chosen as the (j — 1)-th Catalan number
(hence gy = Cy = 1 and g = C; = 1), then h; = C; is the i-th Catalan number, which
follows immediately from the well — known functional equation G(z) = 1+ zG(z) for the
generating function of the Catalan numbers.

Example 6. For ¢g; = (j+§71) where [ € {1,2,3,...} it is h; = Zt(((lﬂt)i*”)).
The last formula arises as the solution of “Simon Newcomb’s Problem” in the theory of
partitions (e. g. [13]). Observe that for [ = 1, i. e. a; = j, the even Fibonacci numbers

bl == 1,62 :3,b3 — 8, occur.
Example 7. A special Hessenberg matrix is a tridiagonal matrix H,, = (a;;) j=1,.» With

a;; = 0 for |i — j| > 1, whose determinant d,, is usually evaluated by exploiting the three
— term recurrence
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dn = Qpn * dnfl — Qpn—1-°A0p-1n" dn72-

A three — term recurrence occurs, for instance, in the theory of continued fractions and
of orthogonal polynomials, which can hence be expressed as determinants, e. g. the
continuant corresponding to a continued fraction (cf. [77], p. 11) is a determinant of a
matrix H], (with -1’s on the upper side diagonal). A very useful property of a sequence
(P,), of orthogonal polynomials is that their eigenvalues interlace. This extends to Her-
mitian Hessenberg matrices. For a recent result on interlacing properties in the context
of Hessenberg matrices see [24].

The explicit form of the Hessenberg determinant, e. g., allows to calculate directly

(without using the above recurrence) the identities from the previous chapter for the
Chebyshev polynomials (¢, (2))n=12.. and the Chebychev polynomials of the second kind

(Un(2))n=12,... (cf. e. g [30], p. 228)

,_
nl3

]

n (=1)' (n—1 iy
_ . 2 n 13 — T
tn() S n—i( ; )( x) det T,,(x)
with
z 1 0 .0 0 0
1 22 1 0 0 O
T, (x) = : :
0 0 O .1 22 1
00 0 ...0 1 2z
15 o
Up () = (—1)’( ; )(2 )" = det U,(z)
=0
with
2¢ 1 0 . 0 0 0
1 2z 1 0 0 0
Un(z) = : :
0 0 0 ... 1 2z 1
0O 0 0 ... 0 1 2
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