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ABSTRACT. It is shown that the Kolmogorov distance between the expected spectral
distribution function of a symmetric n X n matrix from a Wigner ensemble and
the distribution function of the semi-circular law is of order O(n~1/2). The bound
is explicit and requires that the fourth moments of the entries of the matrix are
uniformly bounded.

1. INTRODUCTION AND RESULTS.

Let X;;,1 <4 < j < n be independent random variables with E X;; = 0 and
Eij = 1. Denote by A\; < ... < A, the eigenvalues of the symmetric matrix

W= (W(@k) Wi, k) =n"2X 3, for 1< j<k<n,

j7k:1’

and define its empirical distribution by

1™
j=1

where I gy denotes the indicator of an event B. We consider the rate of conver-
gence of the expected spectral distribution E F,,(z) to the distribution function of
Wigner’s semi-circular law. Let g(z) and G(z) denote the density and the distri-
bution function of the standard semi-circular law, that is

T

9(z) = L 4 — 221 5<23, G(2) :/ 9(u)du.
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2 F.GOTZE, A. TIKHOMIROV

Set
A, =sup |[EF,(z) — G(z)|.

By C (with an index or without it) we shall denote generic absolute constants,
whereas C(-, -) will denote positive constants depending on arguments.
Our main result is the following

Theorem 1.1. Assume that X;; satisfies the conditions above and that

M, := sup E[X;;*< . (1.1)
1<,k <n

Then there exists an absolute constant C > 0 such that
A, <CVM, n2.

The investigation of the spectrum of high-dimensional random matrices has a
long history. After the pioneering paper of Wigner (1958) a number of authors have
studied the problem. We can refer to Arnold L. (1971), Bai (1993), Khorunzhy,
Khoruzhchenko, Pastur (1996), Pastur, Figotin (1992), Girko (1998),

Voiculescu, Dykema, Nica (1991) and the survey Bai (1999a). Bai (1993) assum-
ing M = sup M,, < oo proved that A,, < C(M)n~1/%. He noted in that paper that

his result could be improved using higher moments by a similar approach up to an
error bound of order O(n=/3+1) 5 > 0. In Bai (1999) this bound was shown with
n = 0 without assuming the existence of higher moments. In a survey Bai (1999a)
announced a bound of order O(n~'/2) assuming that the diagonal entries of W are
i.i.d. with mean zero and E|X11/® < oo and the elements above the diagonal are
i.i.d. with mean zero and E | X15/® < oc.

In Girko(1998) states Theorem 1.1 as well. In this paper very differs approach
based on the methods of steepest descent and properties Hermitian polynomials is
used.

We shall prove our result using inequalities for the distance between distributions
in terms of their Stieltjes transform which extend results of Bai (1993), Theorem 2.1.
We shall make essential of the fact that the limiting Stiltjes transform, say s(z) of
G(x), solves a quadratic equation, while avoiding certain problems in the approach
of Bai (1993), (4.11), connected with the choice of branches of this equation.

Remark. Consider the Hermitian matric W = (W;;),1 < 1,5 < n. Let

1
lez—(le-i-inj), 1<li<i<n, and Wy =Xy, 1<I<n.
Vn
Assume that X1;,Y 5,1 < 1,5 < n are independent and E X;; = EY;; =0, EXle =
EYZ? =1/2, forl # j and E X}, = 1. The conclusion of Theorem 1.1 still true for
the Hermitian random matriz W too.

2. INEQUALITIES FOR THE DISTANCE BETWEEN
DISTRIBUTIONS VIA STIELTJES TRANSFORMS.

In what follows we shall use the notation Sz and Rz for imaginary and really
part of complex number z respectively.



CONVERGENCE RATE 3

Lemma 2.1. Let F' be a distribution function and let G denote the semi-circular
distribution function. Denote their Stieltjes transforms by f(z) and g(z) respec-
tively, where z = u + tv. Assume that [ |F(z) — G(z)|dz < co. Let v > 0 and a
and € be positive numbers such that

1 1 3
= — du > —, 2.1
7 7r/|y|<au2+1 Y7 1)
and
e >2va. (2.2)
Given € > 0 introduce the intervals I, = [-2+¢,2 —¢] and I, = [-2 + 3¢,2 — i¢].

Then there exist some positive constants C1(7y), Ca(7y), C3(y) depending on -y such
that

A(F,G) = sup |\F(x) — G(z)|

< i) sup 3( [ (1) = g(2)du) |+ Ca)o + Co) /2

Proof. Note that

sup |[F(z) — G(x)] <3 Sup |F(z) = G(2)| +4G(=2 + ¢),
T €

and G(—2 +¢) < Ce32. If (2.1) and (2.2) hold and = € I, then z + va € I..

Repeating the proof of Theorem 2.1, inequality (2.6) forward, in Bai (1993) (called

B93 for short) we obtain the result. For the readers convenience we include these

arguments here. First note that for each = € I,

T

sun | 3( [ (@) - g ) = 23( [ () - g2 du)

$€Ié ™ — 00

:%/; /_Zvd((y u)? +v2)

17 [ 2(u(y — w)(Fy) — G(y))dy
[/ ]du

du

T oo |/ =0 ((y—u)2+v2)2
=1 [T rw-aon| [ Reun

7T—OO

1 /00 (F(:c —vy) — G(r — 'uy))dy
R y2+1 '
Since F' is non increasing we have
l/ (F(x—vy)—G(x—vy))dy
lyl<a y?+1

> 'y(F(:v —va) —G(z — va))

—l/ ‘G(m—vy)—G(x—va)‘dy
T Jlyl<a

> fy(F(a: —va) — G(z — va))
1

_ e ‘G(ay—y)—G(m—va)‘dy.
y|<wva
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Write A (F,G) = sup,er. |F(z) — G(z)|. Let z, € I. such that F(z,) — G(z,) —
A (F,G). Then z = z,, + va € I.. We have

([ U@ -gE)m)

™ — 00

sup
el

> 9(Floa) = Gloa)) = sw [ (Gl +y) = Gy~ (1= )AEG)

VT g
— YA (F,G) — Cav — 3(1 — 7)A(F,G) — Ce®/?
> (47 — 3)A(F,G) — Cav — Ce%/2.
Similar arguments may be used for the sequence z,, € I. such that
(F(zn) — G(zy)) =& —A:(F,G). This completes the proof. [
Lemma 2.2. For any V > vy > 0 the following inequality holds

swp [ [ 30 —genau] < [ (7wt iv) - gt i) du
14
+51€1})’ %{/ (f(a:—l—w)—g(a:—i—w))dv}‘

Proof. Since the function f(z) and g(z) are analytic in the upper half-plane, it is
enough to use Cauchy’s theorem. We can write

| U@ -genau= tn 3 [ (16 - g

By Cauchy’s integral theorem we have

/ " (=) - g(2))du = / " (Pt iV) = g(u+ iV))du

—L —L
14

A%
+/ (f(—L—i—z'v)—g(—L—l—iv))dv—/ (F(z + iv) — g(z + iv))dv.

0 vo
Denote by ¢ (n) a random variables with distribution function F(z) (resp. G(x)).

Then we have

1

2
<o {lEl> L2y + 2
£+L—w‘ v PE > L/2b+ 7

|f(=L+iv)| = |E

Similarly,
. _ 2
lg(=L + )| < v P {|n| > L/2} + I

This inequality implies that

%
/(f(—L+iv)—g(—L+iv))dv —0 as L — oo,

Vo

which completes the proof. [
Lemmas 2.1 and 2.2 together imply
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Corollary 2.3. There exist some absolute positive constants Cy, Cy and C3 such
that for nay V > vg > 0 the following inequality holds

o0

A(F,G) <C; (/ |(f(u+1iV) —g(u+iV))|du

— 00

v
+sup|%{/ (f(:v+iu)—g(:c+iu))du}|)+C2v0+0353/2.

zell

(2.3)

3. AUXILIARY LEMMAS

In order to make the paper self-contained we collect here some auxiliary Lemmas
similar to those used in B93. In the following we shall denote by I with subscript
or not the identical matrix.

Lemma 3.1. Let A = (akj) denote a non-degenerate matrixz of order n and let
Ay, denote the major sub-matriz of order n — 1. Assume that Ay is nonsingular
too. Let A~! = (ajk) . Let ay, denote the vector obtained from the k-th row of A
by deleting the kth entry and By the vector from the kth column by deleting the kth
entry. Then we have
kk _ 1 .

ark — ) Ay ' B

a

Proof. Consider the obvious equality

—ca! 1||lc p|~T 0 D-CA'B|’ (3.1)
[ I oHA B} [ A B }

which implies
A B

det[c D

} =det (A)det (D—CA™'B). (3-2)
Since
a** = det (Ay)/ det (A),

applying equality (3.2) with A = Ay, D = agg, C = o) and B = [ concludes the
proof.

As a trivial corollary of a Sturmian separation theorem, see for example Bellman
(1970), we formulate the following

Lemma 3.2. Let A be a symmetric matriz and Ay its main sub-matriz. Let A1 <
o< Ay and py < -+ < pp_1 denote the eigenvalues of A and Ay respectively.
Then

A S pr S A< K a1 < A
Lemma 3.3. Let z = u+ v, and A be an n X n symmetric matrixz. Then

| Tr(A-21,)" —Tr (4 —zIn_l)_l\ <ov!
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Proof. We consider a nonsingular block matrix

S11S12
S = .
[521322}

Then we have o
_ S11S
g-1_ [~11~12] ’
S21S22

where

Su=Su"'+ S11_1512(522 - S21511_1512)_1521511_1,
Si2 = —S11_1512(S22 - S21511_1512),

Sy = —S11_1512(Sz2 - S21511_1512);

Sas = (522 - 521511_1512)_1

Applying this formula with S11 = Ag—2I,_1, So1 = ag, S12 = ¢}, and Say = agr—2
a direct calculation yields

1+ a;c(Ak — 2l 1) 20y
agk — 2 — af (A — 2In_1)"lag

Tr(A—21,)" ' = Tr(Ag —21,1) ' =

(3.3)

Let T be an orthogonal transformation which transforms A into diagonal form.
Denote by p1 < --- < pp—1 the eigenvalues of A; and let

Y1y s Yn—1) = . T".

Then

\1+a§c(Ak—zIn 1 ak\ ‘l-l-Zyl(,ul—z 2|

n—1

<1+ oy ((m—u)® +0°)
=1

<1+ aﬁc((Ak — UIn—1)2 + UzIn—l) _lak

-1

Since for any matrices A, B such that A2 + B? is non-degenerate
(A+iB)"!' = (A-iB)(A*+ B*)™!
we can directly verified that
%(akk —z—ap(A- zIn_l)_lak) = —’U(l + aﬁc((A —ul, )%+ vzln_l)_lak).

The last two relations together imply the result.



CONVERGENCE RATE 7

4. THE BOUND OF THE FIRST INTEGRAL IN (2.3).

We shall follow the notation of B93. Let

1 < 1
s(z) = —E(z — V22 —4), su.(2)= /_oo o ZdEFn(a:). (4.1)
By definition of F,,(z) we can write
1~ 1 1 1 —
n(z)=E(- =—-ETrR(z)=—) ER(j,j), 4.2
@ =B(;3 ) = B TRE = L SERG, (42

where R(z) = (W - ZIn)_l = (R(j, k))n

gik=1"
Let W (k) be the matrix obtained from W by deleting the kth row and kth
column, and let o/ (k) = (Xlk, o s X k—1)ks X (k4 1)k» - - - ,Xnk). Set

1 1 -1
€k = %ka - ﬁal(k)(W(k) — 21 n—l) o + 5n(2), (4.3)
where I,,_; denotes the (n — 1) x (n — 1) identity matrix. Introduce
1 1
5.(2)=—--S"E . 4.4
(2) n,; Ft 50(2) (2 + 50(2) — ) (44)
and the matrix .
Rp=(W(k)—21n_1)
By Lemma 3.1 and relations (4.2) and (4.3) we may write
1 1 €;
R(j,j) = — =— — ! . (45
(-9) z+ sp(2) —¢j z2+sn(2) (24 sn(2))(2+ sn(2) —¢€5) (4:5)
This implies that
1
=———— +,(2). 4.
sul2) = =3y + 0009 (4.6

To prove the Theorem 1.1 we shall use the result of Corollary 2.3. We start from
the bound of the first integral on the right hand side in (2.3). We need some
inequalities, which were proved in B93, but for the readers convenience we repeat
the proof here.

Lemma 4.1. Under condition of Theorem 1.1 for any v > 0 and for any k =
1,...,n we have

C
E < —. 4.
By < = (47)

Proof. Since a(k) and W, (k) are independent, the equalities (4.2) and (4.3) to-
gether imply

Eey| = %|E [Tr (W — 21,) " = Tr (Wa(k) — 2La1) .

Using now Lemma 3.3 we obtain the inequality (4.7). O

Write
M :=M,:= sup E|X;|*
1<i<j<n
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Lemma 4.2. Assuming the conditions of Theorem 1.1 for any v > 0 and for any
k=1,...,n we have

E |ex]* € % (4.8)
Proof. By the definition of € we have the following inequality
Ele,? < 2(%13 Xixl? + %E o (k) Riau(k) — Tr Ry |2
+%E|TrRk—TrR|2+%E|TrR—ETrR|2). (4.9)
By Lemma 3.3 we have
%E | Tr Ry, — Tr R|? < n21v2. (4.10)

To bound the last summand in the right hand side of (4.9) we repeat some argu-
ments in B93. Let E; denote the conditional expectation given {X;;,d+1 < i <
j < n}. Introduce the (n—2) x (n—2) matrix W (d, k) obtained from W by deleting
of d-th and k-th rows and columns. Let a(d, k) denote the vector obtained from
the d-th column of /nW by deleting the d-th and k-th entries. Let

Yk(k) =0 and for d#k
’yd(k) = Ed—l TI‘Rk — EdTI'Rk = Ed_lad(k) — Eddd(k),

where
O'd(k) = Tl“Rk — TI‘Rd(k).
By Lemma 3.3
1
k) < —.
o) < 1
This immediately implies that
rah)] < -
Yd S v
Since the random variables v4(k) are uncorrelated for d = 1,... ,n and
n

TrRy — E Tr Ry, = D va(k) we get
d=1

1 4
—E|[TrR, — E Tr Ry|* < —5. (4.11)
n nv

Finally

1 CM
B | (k) Riu(k) — Tr Ry,|* < — E | R ||

We can write

oo 1
2 _ k -2
E||Ry|* = n/_oo - z|2dEFT§ )(z) < nv~2.
This implies

CM

o (4.12)

1 2
=5 (B|o/ () Ralk) - Tr Ryl <
The inequalities (4.9)—(4.12) conclude the proof. [
U
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Lemma 4.3. For any v > 0 the following inequalities hold

CM _
u() < glsa(2) + 2172

and

Proof. The equalities (4.4) and (4.5) together imply that

5n(z):—m( ZEek—l— ZEskRkk)

Note that
(2 + sn(2)) = Sz + Ssp(2) = Sz =v.

This implies that
|2+ sn(2)| 2 v.

In addition by the equality (3.3) we have

(2 +5a(2) — )| = v( 140! () (W () =uTn1)*+0*T1) a(k) ) >

The relations (4.15), (4.17) and Lemmas 4.1 and 4.2 together imply that

650(2)] < Clsn(z) + 2172 (o + o).

Applying inequality (4.16) we get

. This completes the proof of the Lemma. [
It is well known that for v > 0, s(z) satisfies the following equality

1
z+s(z)

s(z) = —
By the last equality and equality (4.6) we have

s —s0) ]
(8 =58 =~ @G 1) T
G-,

(z + sn(2))

From (4.20) it follows that if |s(z)[v™! < 1 then

|s(2)]|

v

) = sn(2)l < (1= 20 Vg a))

(4.13)

(4.14)

(4.15)

(4.16)

v. (4.17)

(4.18)

(4.19)

(4.20)
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It is not difficult to check that for |u| >4 and v =1

This implies that for |u| > 4 and v =1

[sn(2) — 5(2)[ < 2[0n(2)]. (4.21)
For |u| < 4 and v = 1 we rewrite the relation (4.6) in the form

s2(2) + 28n(2) + 1 = (sn(2) + 2)0,(2).
use the equality (4.19) we arrive at
(sn(2) = 5(2))(sn(2) + 5(2) + 2) = (5(2) + 2)0n(2) + (sn(2) — 5(2))0n(2).
By (4.14) for v =1
10n(2)] < 1/4.
In addition, for v =1
|z 4+ sn(2) + s(2)| > %(sn( )+ s(z) +z) > 1,

and

2+ 5(2)| S 1+ ]2/ <6
These inequalities imply that for |u| < 4 and v =1

|sn(2) — s(2)| < 8|6, (2)]- (4.22)

Inequalities (4.18)—(4.22) together imply that for v =1 and any u
|sn(2) — s(2)[ < Clon(2)]. (4.23)

Now we can bound the first integral in the right hand side of (2.3). Choose V' = 1.
By (4.23)

/OO (s (1 + V) — s(u + V) |du < c/oo G(u+iV)|du.  (4.24)

— 00 —0oQ

The relations (4.13) and (4.6) together imply that

/ \5n(u+iV)\du<%/ $n(u+ V) +u+ V| ?du

C o (e.e)
< —(/ \sn(u+iV)\2du—l—/ \én(u+iV)|2du).
=00 —o0 (4.25)
For n > 2C this implies that
/ uu+ V) du < 25 [ Jsuu+ iV Pdu

Repeating the arguments in B93, inequality (4 27), we get

/_Oo |8n(2)Pdu < / / @ —u)? +U2duan(:c) <vh (4.26)

The inequalities (4.24)—(4.26) imply that for z =u+ iV and V =1

/00 |sn(2) — s(2)|du < % (4.28)

—0o0
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5. AN IMPROVED BOUND FOR 0, (2).
To prove the result of Theorem 1.1 we need the following

Lemma 5.1. Under the conditions of Theorem 1.1 there exists an absolute positive
constant C' such that for any 1 > v > CvVMn=3 and u € [—2,2] the following
inequality holds

S(z 4+ 0n(2)) >0, where z=u+ iv.

For some positive constants a; < as we shall use the following condition
a1 < [sn(2) + 2| < as. (5.1)

Lemma 5.2. Assume that (5.1) holds. Then there exist some positive constants
C1(a1,a2) and Cs(ay,as) depending on a; and as such that for u € [—2,2] and

1

1>2v>Ci(ar,a2)VMn~2

Cy(a,as)
nv )

16n (2)] <

To prove the Lemmas 5.1, 5.2 we need some additional results. Recall that the
matrix W (d, k) is obtained from W by deleting the d-th and k-th rows and columns,
and «a(d, k) denotes the vector obtained from the d-th column of /nW by deleting
the d-th and k-th entries. Following B93 set

-1 1 1
Ra(k) = (W(d,k) = 2In_2) , sna(2) = B TrRa,  snaey(2) = B Tr Ra(k),
and . .
€d(k) = %de — Ea'(d, k)Rd(k)a(d, k) + snd(z).

Lemma 5.3. Assume that (5.1) holds. Then there exist some positive absolute
constant C1 and positive constant Cs(a1,as) depending on ay and as such that for
we[-2,2and1>v>Cin2

C
Eleq(k)]> < Eleq* + M.
nv
Proof. We have the obvious equalities
Eleq(k)|* = [Eea(k)]” + E lea(k) — Eea(k)[” (5.2)
and
Eleq? = |Eeq|> + Eleg — Egq4). (5.3)
By Lemma 4.1
1
max{|Eeq(k)|, Eeq|} < e (5.4)
Furthermore,

Bleq(k) — Beg(h)? = % + %E o/ (d, k) Ra(R)a(d, k) — Tr Ra(k)[?

1
+ EE | Tr Ry(k) — E Tr Rq(k)|?. (5.5)
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Similarly,
2 _ 1 1 / 2
E |€d — Eé‘d‘ = ; + EE ‘O.’ (d)Rda(d) — TI‘Rd|
1
+ SE|Tr Ry — E Tr Ry|%. (5.6)
n
Note that

E|o/(d)Raa(d) — Tr Rg|* = Y EX5|Ra(5,5)*+2 D [Ra(i,5)[?

j#d i#j,
i#d,j#£d
This implies that
E |o/(d)Rga(d) — Tr Rg|> < CME Tr|Ry/%. (5.7)
Similarly,
E |o/(d,k)Ry(k)a(d, k) — Tr Ry(k)|> < CME Tr|Ry(k)|*. (5.8)

The relations (5.2)—(5.8) imply that

cC M
+ 7(E Tr|Rq* + B Tr |Ry(k)[?)

EBlea(h) ~Blea| < —
1

+ —|B|Tr Ry — E Tr R4|” — E| Tr Ra(k) — E Tr Ra(k)[?|.
n

(5.9)

Denote by )\? (respectively )\?’k) and by F%(z) (respectively F%F(z)) the eigenvalues
and the spectral distribution function of the matrices W (d) (respectively W (d, k)).
With this notation we have

* 1

1 Cx
E—TI'|Rd|2 :/ 7dEFg($) _ \fSnd(z) < |Z‘|‘Snd(z)|‘ (510)
n oo |T— 2|2 v v
Similarly,
93
ElTI“Rd(k‘)F _ n \ssnd(k)<z) < |Z+3nd(k)(z)|. (5.11)
n n v v
The inequalities (5.10), (5.11), (5.1) together imply
1 C(ay,a
(BT IR4|? + E Tr|Ra(k)?) < (#2) (5.12)

Finally note that
1 2 2
—2‘E| TrRy—E Tt Ry| — E| TrRa(k) — E Tr Ra(k)| ‘
n
2
< 5E| Tr Ry — Tr Ra(k) || Tr Rg + Tr Ra(k)|
n

C
< ——E|TrRg+ Tr Ra(k) |. (5.13)
n<v
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The last inequality follows from Lemma 3.3. It is obvious that

1 1 1 1
“E|TrRy| < —|E TrRy| + (5E|TrRs — E Tr Ry|?)”.
n n n

Following B93 we introduce the random variables v, (k) = 0, and for k # d

’)/k(d) = Ek—l TI'Rd - Ek TI‘Rd = Ek_lak(d) - EkO'k(d),

where
O'k(d) = TI'Rd - TI'Rd(k).
By Lemma 3.3
log(d)] < vl
Since

TrRy—E TrRg=»  v(d)
k=1
and random variables v, (d), k = 1,...n are uncorrelated, we have

E|TrRs— B Tr Ra| < S E )
k=1

Inequalities (5.14)—(5.17) together imply

1 C
SE|TrR; — E TrRy> < —;
n nv

From (5.19) it follows that for v > Cn~1/2

1
ﬁEde—E TrRy* < C

Similarly,
1
—E | Tr Rq(k) — E Tr Rq(k)|* < C.
By (5.1) and (4.1) we have
|sn(2)| < lsn(2) + 2+ [2] a2 + 2] < a2 + 3,

1
10n(2)] < |

_ <Cl4C <all+a3+3
Z+Sn(z)|+|sn(z)|\ . +C+ 2z <al +as

and by Lemma 3.3 we have

max{ | $nd(2) — sn(2) ‘, ‘Snd(k)(z) — $n(2) | } < %

Inequalities (5.1)and (5.22) together imply that

1 1 1
max{—|E TrR|, —|E Tr Ry|, — |E Ter(k)|}
n n n

= max{ ‘Sn (Z)|, ‘Snd( | ‘Snd(k) ‘ } C(ah Clz
From the relations (5.13), (5.14) and (5.19)—(5.23) it follows that
C(al, a2)
nv
The inequalities (5.9), (5.12) and (5.24) together complete the proof. O

1
E|E|Ter—ETer|2—E|Ter(k)—ETrR a(k))?] <

Now we shall improve the bound (4.8) for E |g4]2.

13

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)
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Lemma 5.4. Assume that condition (5.1) holds. Then there exist a positive abso-
lute constants C1 and positive constants Ca(a1,az2) depending on ay and as such
that for any 1 > v > Cin~"2, u € [-2,2] we have

C M
Bl ¢ L2l
nv

Proof. We start from the following equality

1 1
E|e4? = - + EE la(d)' Rgx(d) — Tr Rg|?

1 1
+E| TrRy - E Tr Ra|” + [Eeql> (5.25)

Since the random matrix R4 and the random vector a(d) are independent, we have

1 oM
—E lo(d) Rger(d) — Tr Ry|? < —ETr |R4|%. (5.26)

By inequalities (5.1) and (5.10) inequality (5.26) yields

20(@1, a2)M

1 2
EE la(d) Rga(d) — Tr Rgq|” < "

(5.27)

For the sake of completeness we repeat here some arguments of B93. Introduce the
random variables 7y (d) such that v¢(k) = 0 and for d # k

’yk(d) = Ek_lak(d) — EkO'k(d),

where
O'k(d) = TI‘Rd — TI'Rd(k),

and E; denotes the conditional expectation given {Xz-j, E+1<1<5< n} It is
obvious that

1 1 1 &
E|-TrR;— —-ETrR;?< — Y E|w(d? 5.28
|n a= d| "2;—:1 vk (d)] (5.28)
By definition of o (d) and Lemma 3.3 we get

1+ 20/ (k, d)Ry(d)’a(k, d)

%+ Snk(d) — €k(d)

or(d) = : (5.29)

where a(k, d) is the vector obtained from the kth column of W by deleting kth and
dth entries. We can represent oy (d) in the form

ox(d) = otV (d) + o (d) + 1P (d) (5.30)
where

w _ 1+ L Tr(RR(d))
z+ Snk(d) (Z)
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ex(d)o(d)
z+ Snk(d) (Z) ’
Lo/ (k,d)RE(d)a(k,d) — L Tr(RZ(d))
Z + Snk(d) (2) '

o (d) = -

oP(d) = -

Similar to (5.27) we obtain

1 2M
—E o/ (k,d)Ri(d)a(k,d) — Tr R2(d)|* < —SETr |R2(d)|2. (5.31)

Let RE(d) = (pi;j(k,d)), . Since |o(d)| < v* and

i,j=
(1) 1) _
Ek—lak(d) - Ekak(d) =0,
we get

2E |ej(d) 2 AM 32 i1 E |pij (K, d)

E|v:(d)? < (5.32)
First note that

|2 4 sn(2)| = [sn(2) = Snk(a) (2)| < [2 4 sni(a) (2)] < |2+ 50 (2)] + |sn(2) = Sk (2)]-

(5.33)
Using Lemma 3.3 we obtain that
3n(2) — Sk ()] < - (5.34)
_ zZ) < —. .
$n\Z) = Snk(d) o
The condition (5.1) and inequalities (5.32) and (5.34) together imply that
aq 3a2

Note also that by the relations (5.11)

Bkl = [

ij=1 -

1]
dFE%F(z)

oo [ =2t "

(@) 1 —
< '”_2/ |z — |2def’k(:v) <7 snka) (2) + 2| < Clar, az)v™>.
o |T—2 (5.36)

The inequalities (5.32)—(5.34) together imply that

Cla1,a2)E|ex(d)|?  Cl(ay,a)M
E [y (d)? < T a2)2 x| Cla C?) (5.37)
v nv
Using Lemma 5.3 we get
E |ey,|? M
B ()2 < COnBlal, Clo) (5.39)
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The equality (5.25) and the inequalities (5.27), (5.28) and (5.38) and Lemma 4.1
together imply

C(al,ag)M C(al,ag) Zk 1E‘5k‘ 4 (al,ag)M

E |e4)? < 5.39
2 nv n2y? n2v3 (5:39)
If we choose v > /2C(aq, ag)n_% we get
ca)M  20(a1, as)M
ZE\ekF o “2) + (‘“U“Z) (5.40)
and 20 M 2C M 2C M
E |€d|2 < (al?a’2) + (al':; C?) + (a127 C?) )
nv n3v n2v
From the last inequality it follows that for v > nz
M
E |y < Cla0a)M (5.41)
nv

This proves Lemma 5.4. [J

Lemma 5.5. Assume that condition (5.1) holds. Then there exrist some positive
constants Ci(a1,az2) and Cs(ay,as) depending on a1 and as such that for any 1 >
v > C1(a1, a2)vV/Mn="? the following inequality holds

1 n
- Y E|R(k, k)|* < Ca(a1, a0).
k=1

Proof. We represent ¢ for £k =1,...,n in the form

e = Zs('/) (5.42)

where

NG
0 _Lly § Xi: X Re (4.1
k nzl Z ki Xri B (4, 1)
IR AR

e = (TrRk—TrR) el — (TrR ETrR)

The relations (4.5), (5.42), and (5.1) together imply

5
E |R(k,k)|* < 2072 + 2 Elel”) R (k, k)| (5.43)

v=1
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By equality (4.5) and inequality (4.17) we have

|R(k, k)| < vt
From here it follows that
Bl ? R(k k) < . (5.44)
nv
By Lemma 3.3 we have .

E eV 2| R(k, k)2 < (5.45)

n2yp4’

Using the Rosenthal’s inequality for quadratic forms or direct calculation we get

E‘s,(f)rgcn—]\fE( zn: |Rk(l,m)\2)2. (5.46)

We can write

n
2
E( Y |R(l,m)]?)” < |E Tr[Ry*|* + E|Tr|Ry|? — B Tr Ry |**.
I,m=1
1#£k,m#k
By inequalities (5.42) and (5.421) we have

C(ai,a2)n

B[R < =22

(5.47)

Similar as bounds for E ‘ TrR;— E Tr Ry |2 we introduce the random variables
’A}/Jk(d) = Ek—l Tr |Rd|2 - Ek Tr |Rd|2 = Ek_lgk(d) - Ek5k(d)

with
ox(d) = Tr|Ry|? — Tr |Rg(k)|?

Since 7k (d) are orthogonal k = 1,... ,n, then

1 1 e~
—B|Tr|RY| — B Tr |Ra** < — > B [i(d).
k=1

Note that

1
| Tr |Ral* = Tr [Ra(k) | = —

1
S(Tr Ry — TrRy(k))| < =
This implies that [7x(d)| < & and
C

n3vd’

1
—E|Tr|Rj| — E Tr|R4*|> < (5.48)
n
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The inequalities (5.46)—(5.48) together imply that

2
E \5,(:’)|4 < —CM

e (5.49)

Using Cauchy’s inequality we obtain

—ZE|5(3)| R(k, k) |2<U—1( ZE| @4 ) (%zn:Em(k,k)P)l/Q
k=1
—U(EZE|R(k,k)|2) 2. (5.50)
k=1
Notice that
—ZE|e<5’| R(k, B E|s§5>\2(%éu%<k,k>|2)
<E[EP)? ( Z IR(k, 7) ) :v_1E|s§5)\2%(%TrR)

k,j=1

vE PP 4+ [5n (2 )‘E| ()2, (5.51)

By Rosenthal’s inequality for martingale (see Hall and Heyde (1980), p24) we obtain
E[TtR-ETrRP?<CVn ) E|wf. (5.52)

Inequalities (5.39) and (5.42) together imply that for 1 > v > Ci(ay,az)n /2

E |y |* < 70((11’3&2)-
nv
Since |yx| < 2071, we get
B |y < C10102) (5.53)
S ot '
From inequalities (5.52) and (5.53) we obtain
1
—E|TrR—E TrR* < Clay, az) (5.54)
n n2vt
Inequalities (5.42), (5.25), (5.51) and (5.53) together imply
LS .02 2 _ Clar,a9) | Cla1,02)

k=1

Finally, note that

1 2 C(al,a2
Elei IRk W) < 5Blef) < T( Z E|Ri(j,)?). (5.56)
J=1j#k
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The inequalities (5.43), (5.44), (5.45), (5.50), (5.55) and (5.56) together imply that
for 1 > v > Cyn—1/2

1 — Clar,a2)M ;1 o~ /1 — .
Ly mire < QML (S B iRG2)) + Ol ),
n nv n n 4=
k=1 k=1 j=1,j#k

(5.57)
Introduce now some integer number m = m(n) depending on n such that
m((n —m)v)~! < ay/4. Without loss of generality we can assume that m < n/2.
Since

|$n_1(2) — sp_1—1(2)| < 2/(n —1)v we get

a 3a
7 <3 Pt 42 < e sact() 42 <

Let j(r) = (J1y---,Jr) With 1 < j1 # jo2... # jr < m, r = 1,...,m. Denote by
W (") the matrix which is obtalned from W by deleting the ji-th, ..., j.-th rows
and columns, and let

Ry = (\/:L/_LWG(T)) - ZIn—r)_l-

—r
Arguing similar as in inequality (5.56) we get that uniformly for r =1,... ,m — 1,
1 " C’(al, CLQ)M 1 - 1 - N2
” Z Ry (k. B)? < =22 — > (; Y. ElRjn(d)] )
k=1, J=1,j¢jr+1
k¢ ki
-+ C(al, Clz). (558)

Applying inequality (5.58) recursively we get for 1 > v > Cin~1/2

r=1

1< Clay,a2)M "=, C(ay1,a2)M \r
- E 2 L XA\ AT it Sab b etV imied
n kzzzl BB < =0 2 ( nv? )

C(ar,a)M \m [ 1 “ 1 .
+(7( 1, 0) )12 > (5 X ERjmG:0)2) | +Clar, az).
o " k=1, " j=1, (5.59)
kgjtm=t o jeitm)

Without loss of generality we can assume that

0(0,1, az)M < 1

X

O |

nv?

Similar to inequality (5.12) we get that

|Q

— Z E [Ryom (4,7)1* < E || Rjm ||* <

J¢J(m)

(5.60)
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The inequalities (5.59) and (5.60) together imply that

1 " C(Cbl GQ)M 1 C
— Y E P = 5.61
= _E|R(k ) et om (5-61)

Choosing m = [C'log n] such that 2= < Cv concludes the proof. [
Proof of Lemma 5.1. The equalities (4.4) and (4.5) imply that

|<sn<z>\<‘z+s (s Z|Esk\+ stk\ R(,j)). (5.62)

According to Lemmas 4.1 and inequality (5.1) we get

ol Ema) 9B e

Using the representation (5.42) and inequality (5.1) we obtain

v%( ZEW R(j, )|) < Clar, a2) i( ZEW\ R(j,9)1)-

(5.64)
Similar to inequality (5.44) and by Lemma 5.4 we arrive at

ZE\ OB < (o > Bl ) (LS B RERE)
k=1

< M (5.65)

By Lemma 3.3 |€,(c4)| < (nv)~! and we have
1 12 ¢
—ZE|5(4)\ IR(k, k)| < M(—ZE\R(k,k)F) < Clavas) g

Similar to inequality (5.65) we get

n 1/2
ZE| )21 R(k, k)| ( ZE| (3))4 ) (%ZE|R(k,k)|2)
k=1

k: 1

Applying inequality (5.48) and Lemma 5.4 we have

—ZE|5(3)| Rk, k)| < Sl0092). (5.67)
nv

Finally note that

—ZE\EP\IRM)I ZEls(”\ aralM( LS mimG.i)P).

j=1,5#k
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Applying Lemma 5.5 to the matrix W (k) we get

ai, a2)M

1 n
LS B Rk R < < (5.68)
k=1

nv

The inequalities (5.62)—(5.68) together imply that for 1 > v > Cy(ay, ag)n=1/2

n(a)] < S22

nv
which proves Lemma 5.2. []

Proof of Lemma 5.1. Assume that the imaginary part of z + d,,(z) satisfies

S(z + 0n(2)) = 0. (5.69)
Since )
sn(2) +2z= i@ +0p(2) + 2

this immediately implies that

Sz + s (2)) = —S{ ——— 1.

z+ sn(2)
Note that if a a complex number such that Sa # 0 and Sa = —%{ % }, then |a| = 1.
Indeed,
1 Sa
g — 21— 27
Sa \s{ . } al

Since Ja # 0 this implies that
la| = 1.

Let a = z + s, (2). Since I(z + sn(2)) = Sz = v > 0 this implies that
|2+ sn(z)| = 1.

Hence the condition (5.1) holds with a; = a2 = 1 and we have

CM
0n(2)| < .
n(2)l < T2
Then for any v > 2n_%\/CM,
1
|5n(z)| < -V <,
4
holds. But condition (5.69) implies that
6n(2)| 2 v,

which is a contradiction. Hence we conclude that S{z + d,,(z)} # 0 in the region
v > 2n"2v/CM. From inequality (4.18) it follows for example that for v = 1
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Xz + dn(2)} > 0. Since the function I{z + 0,(z)} is continuous in the region
v > Cin~% we get that ${z + 6,(2)} > 0 for v > Cin~2. This proves Lemma
5.1.01

Proof of Theorem 1.1. Let vy = max{’yOAn,n_%C’lvM} with a v such that 1 >
Yo > 0 to be choose later. The constant C; we choose such that the conclusion of
Lemma 5.1 holds, that is for any 1 > v > vy we have

Sz + 6,(2)} > 0.

Note that the constant C; does not depend on 7. In addition we have

se) = sl =| [ (B R - FW)|
| [ D < S <

This implies that for z = u + iv such that v € [-2,2] and 1 > v > vy,

1
|sn(2) + 2| < ~ + 5. (5.70)
0

We set ¢ = v¢. From the equality (4.6) it follows that

%(z-l—sn(z)) = —%( = Tt

The last equality and the equality (4.1) together imply that for v > v

1
From (5.71) we immediately obtain that
|z + sn(2)] > 1. (5.72)

From the inequalities (5.70) and (5.72) it follows that condition (5.1) holds with
ar =1, and ag = 7—10 + 5. By Lemma 5.2 there exist constants Cy (7o) and Ca(7o)

such that for any v > C1(vy9)V M we have

()] < 200 (5.73)

Now we redefine vy as follows
vo := max{vg, C1(v0)VM}.
For |u| < 2 and 1 > v > vy we rewrite the relation (4.6) in the form

$2(2) + 28n(2) + 1 = (8n(2) + 2)0,(2).
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use the equality (4.19) we arrive at
(sn(2) — 5(2))(sn(2) + s(2) + 2) = (sn(2) + 2)0,(2).
Inequality (5.74) implies that

2 + sn(2)]
|sn(2) + s(z) + 2|

|sn(2) — s(2)| <

16n (2)]

By inequality (5.70) we have
|sn(2) = 5(2)] < Cv™8a(2).
This implies that for z = u + v such that u € I. and 1 > v > vg
|sn(2) = 8(2)] < Cv™ 8 (2)].
From (5.76) and (5.73) it follows that

n(2) = ()] < SN

Choosing in Corollary 2.3 V = 1 and using the inequality (4.28) w

integrating in u and v
A, < Cin~t 4+ Covg + Cg(’)fo)M’rL_l’Uo_l.
Since vg > n_%Clx/l\_l we get
A, < C(y0)VMn~? + Cyug

Recall that C3 does not depend on 9. We choose vy = ﬁ
If vy = max{Cy, C1(v0) }V/Mn~% then

1

A, < max{C1, C1(70)}VMn~z.

If vo = v0A,, then

M=

A, < C(y)VM( — 0270)_171_% < 2C(y0)VMn~
This completes the proof of the Theorem 1.1. [

REFERENCES

23

(5.74)

(5.75)

(5.76)

get after

1. Arnold L., On Wigner’s semicircle law for the eigenvalues of random matrices random ma-

trices., Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 19, 191-198.

2. 7.D. Bai, Convergence rate of expected spectral distributions of large random matrices. Part

I. Wigner matrices., Ann. Probab. 21 (1993), 625-648.

3. Z.D. Bai, Methodologies in spectral analysis of large dimensional random matrices, a review,

Statistica Sinica 9 (1999a), 611-677.

4. Z.D. Bai, Remarks on the convergence rate of the spectral distributions of Wigner matrices,

Journal of theoretical probab. 12 (1999), 301-311.



24

10.

11.

F.GOTZE, A. TIKHOMIROV

V.L. Girko, Convergence rate of the expected spectral functions of symmetric random matrices
s equal to O(n_1/2), Random operators and stochastic equations 6 (1998), 359-408.
Bellman, Richard, Introduction to matrixz analysis, McGraw-Hill Book Company, New York,
1970, pp. 403.

Eugene P. Wigner, On the distribution of the roots of certain symmetric matrices, Annals of
Mathematics 67 (1958), 325-327.

P.Hall, C.C. Heyde, Martingale limit theory and its application, Academic Press, 111 Fifth
Avenue, New York, NY 10003, 1980, pp. 308.

A.M. Khorunzhy, B.A. Khoruzhenko, L.A. Pastur, Asymptotic properties of large random
matrices with independent entries, Journal of Math. Phys., 37 (1996), 394-397.

M. L. Mehta, Random Matrices, Academic Press, Inc., 1250 Sixth Avenue, San Diego, CA
92101,, 1991, pp. 562.

L. Pastur, A. Figotin, Spectra of random and almost-periodic operators, Springer-Verlag,
Berlin Heidelberg, 1992, pp. 587.

D.V. Voiculescu, K.J. Dykema, A. Nica, Free random variables. CRM Monograph series,
American Mathematical Society, 1991, pp. 70.



CONVERGENCE RATE

FRIEDRICH GOTZE
FAKULTAT FUR MATHEMATIK
UNIVERSITAT BIELEFELD
33501 BIELEFELD 1
GERMANY

E-mail address: goetze@mathematik.uni-bielefeld.de

ALEKSANDER TIKHOMIROV
FAKULTY OF MATHEMATICS
OKTJABRSKYI PROSPEKT 55
167001, SYKTYVKAR
Russia

E-mail address: tikhomir@ssu.komi.com

25



