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Abstract—Two kinds of channels are considered: 1) discrete time with additive noise
channel, and 2) Poisson and white Gaussian (i.e. continuous time) channels. For the type 1
chanel there are given some sufficient conditions when Shannon and identification capacities
coincide. It is shown that identification capacity of Poisson and Gaussian channels without
bandwidth constraint is infinite. Contrary, in the case of white Gaussian channel with
bandwidth constraint, its identification capacity coincides with Shannon capacity.

Index Terms—Identification, capacity, coding theorem, Poisson channel, Gaussian chan-
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I. Introduction

We consider two kinds of channels. The first is a channel with independent additive noise

zi = ui + ξi , i = 1, . . . , n, (1)

where u = un = (u1, . . . , un) and z = zn = (z1, . . . , zn) are channel input and output blocks,
respectively, and ξ1, . . . , ξn are i.i.d.r.v.’s with density f(x), x ∈ R1, with respect to Lebesque
measure dx on R1. It is assumed that channel input un satisfyes energy constraint

n
∑

i=1

u2
i ≤ na2 , (2)

with a given a > 0. Denote that channel by W (f, a) and by C(f, a) its Shannon capacity.
The second is a continuous time channel W T when we are given some set ST = {S(t) , 0 ≤
t ≤ T} (usually infinite) of possible input signals. According to properties of a channel
W T considered each input signal S ∈ ST generates some probability distribution (measure)
QS = W TS on the output space XT of the channel. We limit ourselves to traditional white
Gaussian and Poisson channels and investigate some their properties when T → ∞.
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Notice that in both models input and output alphabets are infinite (even noncountable).
If u = un is channel’s (1) input then by Qu = W (n)u we denote the generated probability

measure on the channel output Rn. Similarly, if in both models P is some probability dis-
tribution on channel input then by QP = W (n)P (or QP = W (T )P ) we denote the generated
probability measure on the channel output Rn (or on XT ).

Remind now some notions (cf. [1]).
Definition 1. A collection (ui,Di, i = 1, . . . , M) of codeblocks ui ∈ Rn and regions

Di ⊆ Rn for channel (1) is called an (M, n, δ) – dID–code (deterministic) if the following
conditions are satisfied:

Qui
(Di) ≥ 1 − δ and Qui

(Dj) ≤ δ for any i 6= j .

A collection (Si,Di, i = 1, . . . , M) of signals Si ∈ ST and regions Di ⊆ XT for channel
W T is called an (M, T, δ) – dID–code (deterministic) if the following conditions are satisfied:

QSi
(Di) ≥ 1 − δ and QSi

(Dj) ≤ δ for any i 6= j .

Definition 2. A collection (Pi,Di, i = 1, . . . , M) of probability measures Pi on Rn (or
on ST ) and regions Di on Rn (or on XT ) is called an (M, n, δ) (or (M, T, δ)) – ID–code
(randomized) if the following conditions are satisfied:

QPi
(Di) ≥ 1 − δ and QPi

(DSj
) ≤ δ for any i 6= j .

The rate R of the dID (or ID)–code is (1/n) ln ln M for channel (1) and (1/T ) ln lnM for
channel W T .

For channel W with Shannon capacity C(W ) < ∞ deterministic identification capacity
(dID–capacity) CdID(W, δ) and (randomized) identification capacity (ID–capacity) CID(W, δ)
are defined for any 0 < δ < 1 as maximal achievable rate R (when n → ∞ or T → ∞). It
follows from those definitions that

CdID(W, δ) ≤ CID(W, δ) ; 0 ≤ δ ≤ 1 .

Moreover, they satisfy relations

CID(W, δ) ≥ C(W ) ; 0 < δ < 1/2 , (3)

CdID(W, δ) = CID(W, δ) = ∞ ; 1/2 ≤ δ ≤ 1 .

Although usually proof of relation (3) is given for a finite discrete memoryless channel W
[1, 14, 8], the same proof remains valid for any channel W with well–defined Shannon capacity
C(W ). Proof of the last relation [1] does not depend on channel W . Moreover, due to the
last relation only the case 0 < δ < 1/2 is interesting and only it will be considered below.

In the case of a finite discrete memoryless channel W we have also [1, 14, 8]

CID(W, δ) = C(W ) ; 0 < δ < 1/2 . (4)
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CdID(W, δ) = 0 ; 0 < δ < 1/2 . (5)

Remarkable relation (4) (it appeared first in [1]) creates a natural question: does it remain
valid for a wider class of channels W (and, in particular, for channels with infinite alphabets)
? We will show that the answer is “Yes” and “No”.

In order to get relation (4) for some channel W it is necessary to establish the converse
of inequality (3). It should be noted that method of “types” used for such purpose in a
finite discrete channel case [8, 14] essentially exploits the fact that input and output channel
alphabets are both finite. When dealing with infinite alphabets channels we need some more
accurate than in [8, 14] methods. One such method was developed in [5] and essential part
of the paper is based on some results from it.

It turns out that for some classical continuous time channels W (i.e. for white Gaussian
and Poisson channels without bandwidth constraints) with finite capacities C(W ) both de-
terministic and randomized identification capacities CID(W, δ) and CdID(W, δ) are infinite.
The reason of such singularity is that their input alphabets are too “rich”. Nevertheless,
formulas (4)–(5) remain valid for those channels if there is a bandwidth constraint.

In Section II some definitions and auxiliary results are presented. In Section III discrete
time channels with additive noise are considered. Section IV contains two examples of
channels with infinite ID–capacities. In Section V we consider white Gaussian channel with
bandwidth constraint.

II. Auxiliary results

For any two probability measures P and Q on a measurable space (X ,B) variational
distance (or L1–distance) is

‖P − Q‖ =
∫

X
|dP − dQ| .

Let {Pα, α ∈ A} (where A is an arbitrary index set) be some collection of probability
measures on a measurable space (X ,B). Convex hull conv{Pα} of the family {Pα, α ∈ A}
is the set of all possible finite convex linear combinations of measures from {Pα}. In other
words, any measure P ∈ conv{Pα} has the form P =

∑n
i=1 cαi

Qαi
with cαi

≥ 0,
∑n

i=1 cαi
=

1, αi ∈ A.
If P is some channel W (n) input distribution then W (n)P denotes its output distribution

(and similarly for channel W (T )). Next notions were introduced in [8] (see also [6]). We give
them only for channel W (n), but their analogs for channel W (T ) are straightforward.

Definition 3. A collection (Pi, i = 1, . . . , M) of probability measures on Rn is called an
(M, n, δ, W ) – pairwise separated collection if the following condition is satisfied:

‖W (n)Pi − W (n)Pj‖ ≥ 2(1 − δ) , i 6= j .

Definition 4. A collection (Pi, i = 1, . . . , M) of probability measures on Rn is called an
(M, n, δ, W ) – completely separated collection if the following condition is satisfied:

‖W (n)Pi − conv{W (n)Pj, j 6= i}‖ ≥ 2(1 − δ) , i 6= j .
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There is a simple relation between ID–code and completely separated collection of mea-
sures [8].

Proposition 1. For any (M, n, δ, W ) – completely separated collection {Pi} it is possible
to define regions {Di ⊆ Rn} such that {Pi,Di} will be (M, n, δ, W ) – ID–code. Conversely,
any (M, n, δ, W ) – ID–code is (M, n, 2δ, W ) – completely separated collection .

Denote by MID(δ, W (n)), Mp(δ, W
(n)), Mc(δ, W

(n)) maximal possible cardinalities of cor-
responding ID–code, pairwise and completely separated families, respectively, for channel
W (n) (and similar, for channel W (T )). From Proposition 1 we have for any 0 < δ < 1/2

Mc(δ, W
(n)) ≤ MID(δ, W (n)) ≤ Mc(2δ, W

(n)) ≤ Mp(2δ, W
(n)) . (6)

Due to bounds (6) instead of upperbounding the maximal cardinality MID(δ, W (n)) of
ID–code it turns out to be sufficient to upperbound the maximal cardinality Mp(δ, W

(n)) of
pairwise separated family of measures at the channel output.

Notice also that any channel W (or W (n), or W (T )) acts like a “compressing operator”
in the following sense [8, 6]

Lemma 1. For any channel W , any pair of input distributions P1, P2 and corresponding
pair of output distributions Q1, Q2 the following inequality holds

‖Q1 − Q2‖ = ‖WP1 − WP2‖ ≤ ‖P1 − P2‖ . (7)

III. Discrete time channels with additive noise

We consider first the channel W (f, a) from (1)–(2). Concerning its noise density f(x) we
assume that there exist some constants K, K1, γ, α such that

∫ ∞

−∞

(

max
|t−x|≤u

√

f(t) − min
|t−x|≤u

√

f(t)

)2

dx ≤ Kuγ , u > 0 , 1 < γ ≤ 2 ; (8)

∫

|x|≥z

f(x) dx ≤ K1z
−α , z > 0 , α > 2 . (9)

1/γ + 1/α < 1 . (10)

It should be mentioned that if condition (8) is satisfyed with some γ > 2 then function
f(x) is identically zero for all x ∈ R1.

Now we shall describe some result from [5], concerning of approximation of channel’s
W (f, a) input by a discrete input. For that purpose we introduce briefly some quantization
of the input alphabet A = [−a

√
n, a

√
n] of channel W (f, a) (see details in [5]).

First we represent input alphabet A as follows (below we use symbol “+” instead of “∪”
in order to emphasize that we have union of disjoint sets)

A = [−a
√

n, a
√

n] = A1 + D−
1 + D+

1 , A1 = [−ak(n), ak(n)] ,

D−
1 = [−a

√
n,−ak(n)) , D+

1 = (ak(n), a
√

n] , k(n) = n(γ−1)/(2γ) .
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We quantize part A1, choosing in it the lattice L1 with span δ1 = (ε2/(nK))
1/γ

. Then
cardinality L1 of lattice L1 satisfyes inequality

L1 ≤ 2an(γ+1)/(2γ)(Kε−2)1/γ + 2 .

We quantize part D+
1 , choosing in it some increasing sequence of points ak(n) = x1 <

. . . < xL2 = a
√

n and denote that set of points L2. In the alphabet D−
1 we choose symmetric

to L2 set of points L3 = −L2. Union of three disjoint sets we denote L = L1 +L2 +L3. Any
input un = (u1, . . . , un) ∈ An we approximate by other input u′ = (u′

1, . . . , u
′
n) ∈ Ln such

that each u′
i is the closest to ui element of alphabet L with |u′

i| ≤ |ui|.
We choose sequence {xi} as follows

xi+1 = a(1 + µ)ik(n) , µ =
(

ε2/(nKa2)
)1/γ

, i = 1, . . . , L2 − 1.

Then for cardinality L2 of set L2 we have L2 ≤ (a2K ε−2n)
1/γ

ln n , and for total cardinality
L of discrete set L we get

L ≤ 2an(γ+1)/(2γ)(Kε−2)1/γ + 2
(

a2K ε−2n
)1/γ

ln n + 2 . (11)

The following result (Theorem 2b from [5]) describes some properties of thus obtained
discrete set L = L(n, ε).

Theorem 1. Let for noise density f(x) of channel W (f, a) conditions (8)–(10) are
fullfilled. Then finite input alphabet L = L(n, ε) ∈ [−a

√
n, a

√
n], ε > 0, n ≥ n0(ε), has

cardinality L, satisfying inequality (11) and, moreover, for any output measure Q(n)
π on Rn

there exist input blocks x(i) ∈ Ln, i = 1, . . . , M , satisfying constraint (2), with n−1 ln M ≤
C(f, a) + ε, such that for their generated measures {W (n)(.|x(i))} at channel output the
following inequality holds true:

∥

∥

∥Q(n)
π − conv

{

W (n)(·|x(i)), i = 1, . . . , M
}∥

∥

∥ ≤ ε . (12)

Proposition 2. Let for noise density f(x) of channel W (f, a) conditions (8)–(10) are
fullfilled. Then for any 0 < δ < 1/2 the following inequalities hold:

CID(W, δ) ≤ lim
n→∞

ln ln Mp(2δ, W
(n))

n
≤ C(f, a), 0 < δ < 1/2 . (13)

Proof. Since MID(δ, W (n)) ≤ Mp(2δ, W
(n)), left of inequalities (13) follows from defini-

tion of CID(W, δ). Therefore it remains to prove the second of inequalities (13). For that
purpose we fix some small ε > 0 such that 2(δ + ε) < 1 and find corresponding finite input
alphabet L = L(n, ε) described above. Let {Qi, i = 1, . . . , M} be some 2δ–pairwise separat-
ed collection of output measures. By virtue of Theorem 1 each output measure Qi can be
ε–approximated (see (12)) by another output measure Q′

i generated by some N = en(C+ε)

input blocks from alphabet Ln. Then collection {Q′
i, i = 1, . . . , M} is 2(δ + ε)–pairwise
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separated. Notice that using N input blocks even on noiseless channel the maximal number
Mp(µ, N) of µ–pairwise separated measures that we can get is upper bounded [8] by (see
more accurate estimates in [2])

Mp(N, µ) ≤
(

2

1 − µ

)N−1

, 0 < µ < 1 .

Since the channel W (n) is a compressing operator (Lemma 1), the maximal number of 2(δ+ε)–
pairwise separated measures, generated by every collection of N = en(C+ε) input blocks, is
upperbounded by the same formula (with 2(δ + ε) instead of µ). Total number of collections
of cardinality N on the alphabet of cardinality Ln does not exceed LnN . Therefore for
number Mp(2(δ + ε), W (n)) we get

Mp(2(δ + ε), W (n)) ≤
(

2

(1 − 2δ − 2ε)

)N−1

LnN ≤

≤ exp

{(

ln
2

(1 − 2δ − 2ε)
+ n ln L

)

en(C+ε)

}

.

Since ε can be chosen arbitrary small, we get formula (13). 4.
Combining now formulas (3) and (13) we get
Proposition 3. If for noise density f(x) of channel W (f, a) conditions (8)–(10) are

fullfilled then
CID(W, δ) = C(f, a), 0 < δ < 1/2 . (14)

It is clear that among conditions (8)–(10) (that were used in Theorem 1 and Proposition
3) only condition (8) looks a bit complicated for use. We demonstrate that, in fact, it is not
so difficult and that condition characterizes some “smoothness” of function f(x). For that
purpose we consider some examples and the first of them is, probably, the most natural case
when condition (8) is fullfilled.

Example 1. Assume that density f(x) is absolutely continuous and there exists Fisher
information I(f) =

∫

f ′2/fdx < ∞. Notice that

(

max
|t−x|≤u

√

f(t) − min
|t−x|≤u

√

f(t)

)2

≤

≤




∫ x+u

x−u

|f ′(v)|
2
√

f(v)
dv





2

≤ 1

2
u
∫ x+u

x−u

f ′2(v)

f(v)
dv .

Therefore

∫ ∞

−∞

(

max
|t−x|≤u

√

f(t) − min
|t−x|≤u

√

f(t)

)2

dx ≤ 1

2
u
∫ ∞

−∞

∫ x+u

x−u

f ′2(v)

f(v)
dv dx =
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=
1

2
u
∫ ∞

−∞

f ′2(v)

f(v)

∫ v+u

v−u
dx dv = u2I(f) .

Therefore condition (8) is fullfilled with γ = 2, K = I(f). Then condition (9) (i.e.
1/γ + 1/α < 1) will be fullfilled if α > 2.

Example 2. Assume that: 1) density f(x) is absolutely continuous for x ∈ R1;
2) there are k “irregular” points −∞ < x1 < . . . < xk < ∞ such that outside of small
vicinities of those points Fisher integral converges;
3) in small vicinities of “irregular” points x1, . . . , xk density f(x) behaves like |x−xi|γi , γi > 1.

Then condition (8) is fullfilled with γ = mini{γi}.
Example 3. Assume that density f(x) has points of discontinuities (e.g. f(x) = 1 for

|x| ≤ 1/2 and f(x) = 0 for
|x| > 1/2). Then condition (8) is fullfilled with γ = 1 and therefore condition (9) (i.e.

1/γ + 1/α < 1) can not be fullfilled. It means that we can not claim that Theorem 1 (and
therefore Proposition 3) remain valid for such density.

IV. Two examples of channels W with infinite CdID(W )

a) White Gaussian noise channel without bandwidth constraint

Consider first white Gaussian noise channel (of unit intensity). If S(t), 0 ≤ t ≤ T , is
its input signal then output observation XT

0 = {X(t), 0 ≤ t ≤ T} is described through
stochastic differentials

dX(t) = S(t)dt + dWt , 0 ≤ t ≤ T ,

where Wt is a standard Wiener process. It is assumed that input signals S(t), 0 ≤ t ≤ T ,
must satisfy only the energy constraint

∫ T

0
S2(t) dt ≤ AT ,

where A > 0 is some prescribed constant (see Remark 1 below about peak power constraint).
For Shannon capacity C(A) of such channel we have [12]: C(A) = A.
Contrary, we shall prove that deterministic dID–capacity
CdID(A) of that channel is infinite. For that purpose it is sufficient to show that for

any δ > 0 there exists an arbitrary large system of signals {S1, . . . , SM} that serves as
deterministic (M, T, δ) – dID–code.

Let {si(t), 0 ≤ t ≤ T ; i = 1, . . . , M}, be an arbitrary orthonomal system of functions,
i.e.

(si, sj) =
∫ T

0
si(t)sj(t) dt = 0 for any i 6= j ; (si, si) = 1 for any i .

We put
Si(t) =

√
AT si(t), 0 ≤ t ≤ T ; i = 1, . . . , M . (15)
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In order to describe now decision making process at the channel output we fix some
parameter z > 0 and introduce the following system of sets {Di(z)}

Di(z) =

{

XT
0 :

∫ T

0
Si(t) dX(t) ≥ z

}

, i = 1, . . . , M .

We make a decision in favor of signal Si if at the channel output we have XT
0 ∈ Di(z).

Now if signal Si was transmitted then for the probability that received signal XT
0 will

not belong to the decision set Di(z) we have

P{XT
0 6∈ Di(z)

∣

∣

∣Si} = P

{

∫ T

0
Si(t) dX(t) < z

∣

∣

∣

∣

∣

Si

}

=

= P

{

AT +
∫ T

0
Si(t) dWt < z

}

= Φ

(

z − AT√
AT

)

; i = 1, . . . , M .

On the other hand, if signal Si is transmitted then for the probability to make also
decision in favor of signal Sj we have for any j 6= i

P{XT
0 ∈ Dj(z)

∣

∣

∣Si} = P

{

∫ T

0
Sj(t) dX(t) ≥ z

∣

∣

∣

∣

∣

Si

}

=

= P

{

∫ T

0
Sj(t) dWt ≥ z

}

= Φ

(

− z√
AT

)

.

If we put now z = AT/2 then for any j 6= i and any AT ≥ 8 ln(1/δ) we get

P{XT
0 6∈ Di(z)

∣

∣

∣Si} = P{XT
0 ∈ Dj(z)

∣

∣

∣Si} = Φ

(

−
√

AT

2

)

≤ e−AT/8 ≤ δ .

Since on [0, T ] there exist arbitrary large number M of orthonomal functions {si(t)}, we
get

Proposition 4. If δ > 0 and AT ≥ 8 ln(1/δ) then for white Gaussian channel the

maximal cardinality M of deterministic dID–code is not limited, and therefore CdID(A) =
CID(A) = ∞.

Remarks. 1) It is clear that if there is an additional peak power constraint (like |S(t)| ≤
K , K > 0), we will still have CdID(A) = ∞.

2) From that example it may seem that any system of signals {S1, . . . , SM} will be a
good dID–code, if any pair Si and Sj of those signals is “well-separated” (i.e. can be tested
with small error probabilities). But it is not true. Indeed, compliment the system above
by zero–signal S0(t) ≡ 0. Then in the new system {S0, S1, . . . , SM} any two signals are still
“well-separated”. That new system {S0, S1, . . . , SM} will be (M + 1, δ, T )–dID–code if we
can test (with small error probabilities) zero–signal S0 (as simple hypothesis) against all
remaining orthogonal signals {S1, . . . , SM} (as composite hypothesis) [8]. But it is possible
only if the number M is not too large (more exactly, only if M ≤ eAT/4, see details in [4, 7]).
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b) Poisson channel

The Poisson (direct–detection photon) channel [16], [17] is described as follows. The
channel input is a waveform S(t), 0 ≤ t ≤ T, which satisfies

0 ≤ S(t) ≤ A < ∞ , (16)

where the parameter A is the peak power. The waveform S(·) defines a Poisson counting
process x(t) with ”intensity” equal to λ0 + S(t), where parameter λ0 ≥ 0 represents the
”dark current”. Thus x(t), 0 ≤ t ≤ T, is a random process with independent increments
such that x(0) = 0 and for any 0 ≤ t1 ≤ t2 ≤ T

Pr {x(t2) − x(t1) = j} =
e−ΛΛj

j!
, j = 0, 1, 2, . . . ,

where

Λ =
∫ t2

t1
(λ0 + S(τ)) dτ .

Let XT denote the space of right continuous (i.e. x(t+) − x(t) = 0 for any 0 ≤ t ≤ T )
nondecreasing step functions x(t), 0 ≤ t ≤ T, with x(0) = 0 and x(t) − x(t−) = 0 or
x(t) − x(t−) = 1. Then with probability 1 any path (trajectory) x(t), 0 ≤ t ≤ T, of a
Poisson process with finite intensity belongs to XT . Denote ST the set of all Lebesque–
measurable functions S(t), 0 ≤ t ≤ T , satisfying the ”peak power constraint” (16).

It is known that the Shannon capacity C(A, λ0) of such channel is finite and it monotone
decreases with λ0. Moreover, [16], C(A, 0) = A/e (for λ0 > 0 case see explicit formulas in
[11, 17]).

Contrary, dID–capacity CdID(A, λ0) of such channel is infinite for any λ ≥ 0. For proof
it is sufficient to show that for any δ > 0 and T ≥ T0(A, δ) there exists a system of signals
{S1, . . . , SM} that serves as (M, T, δ) – dID–code and, moreover, its cardinality M can be
made arbitrary large.

For that purpose we construct the following system of step signals {S1, . . . , SM}. We
devide [0, T ] on N equal segments ∆ of length T/N . Each signal Si(t) on every segment ∆
take on only extreme values 0 and A. Denote

mi = {t ∈ [0, T ] : Si(t) = A} , mij = mi ∩ mj ,

and let mes {m} denotes the Lebesque measure of the set m. Support mi of each signal Si

consists of εN segments ∆ and therefore, mes {mi} = εT , where the value ε < δ will be
chosen later. Therefore total energy of each signal Si is µ = εAT .

We demand that the system of supports {m1, . . . , mM} satisfyes condition

mes (mi ∩ mj) ≤ δεT for any i 6= j .
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Lemma 2. Maximal possible cardinality M of such system of supports {m1, . . . , mM}
satisfyes the lower bound

M ≥
√

√

√

√

2(δ − ε)

δ(N + 2)
exp

{

ε(δ − ε)2N

4δ(1 − δ)

}

, 0 < ε ≤ δ , (17)

Remark. Similar lower bounds (but in a weaker form) was proved already in [1] (State-
ment 1) and [2] (Theorem 1) by an “exhaustive” method. For the sake of variety we prove
the inequality (17) by random choice arguments.

Proof. Indeed, we consider a binary code of length N and constant weight εN . Assume
that we choose all M codeblocks randomly. Then the probability P that there will be at
least two codeblocks with number of common ones > εδN satisfyes the inequality

P ≤ M(M − 1)
∑

i>εδN

(

εN

i

)(

N − εN

εN − i

)[

2

(

N

εN

)]−1

.

Notice that for i > εδN we have

(

εN

i + 1

)(

N − εN

εN − i − 1

)[(

εN

i

)(

N − εN

εN − i

)]−1

≤ ε(1 − δ)2

δ(1 − 2ε + δε)
≤ ε

δ
.

Therefore replacing that sum by the geometrical progression we get

P ≤ M(M − 1)δ

(

εN

εδN

)(

N − εN

εN − εδN

)[

2(δ − ε)

(

N

εN

)]−1

<

<
δ(N + 2)M2

2(δ − ε)
exp {Nf(δ, ε)} ; (18)

f(δ, ε) = εh(δ) + (1 − ε)h

(

ε(1 − δ)

1 − ε

)

− h(ε) , 0 < ε ≤ δ ,

where we used inequality [10]

1

n + 2
≤
(

n

k

)

exp{−nh(k/n)} ≤ 1 .

Now for function f(δ, ε) we have

f ′
δ = ε ln

1 − δ

δ
+ ε ln

ε(1 − δ)

(1 − 2ε + εδ)
,

f ′′
δ2 = − 2ε

(1 − δ)
− ε

δ
− ε2

(1 − 2ε + εδ)
.
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Notice also that f(δ, δ) = f ′
δ(δ, δ) = 0 . Therefore from Taylor formula we get the upperbound

f(δ, ε) ≤ − ε(δ − ε)2

2δ(1 − δ)
, 0 < ε ≤ δ . (19)

Now from (18)–(19) for the probability P we have

P <
δ(N + 2)M2

2(δ − ε)
exp

{

−ε(δ − ε)2N

2δ(1 − δ)

}

, 0 < ε ≤ δ ,

from where lower bound (17) follows. 2 .

In order to describe the decision making method at the channel output XT , we consider
first a simpler case of no ”dark current” (i.e. when λ0 = 0).

Introduce the following system of decision sets

Di =
{

xT
0 ∈ XT : there is at least one photon (event) on time set mi

}

, i = 1, . . . , M .

We make a decision in favor of signal Si if xT
0 ∈ Di (i.e. if observation process x(t) has at

least one jump at some point belonging to mi).
Now if signal Si was transmitted then for the probability that received signal xT

0 will not
belong to the decision set Di we have

P{xT
0 6∈ Di

∣

∣

∣Si} = P{no photons on mi|Si} = e−εAT ; i = 1, . . . , M .

On the other hand, if signal Si was transmitted then for the probability to make also
decision in favor of signal Sj we have for any j 6= i

P{xT
0 ∈ Dj

∣

∣

∣Si} = P{there are photons on mi ∩ mj} ≤ 1 − e−εδAT ≤ εδAT .

We put now εAT = ln(2/δ) and then for any i 6= j we get

max
{

P{xT
0 6∈ Di

∣

∣

∣Si}; P{xT
0 ∈ Dj

∣

∣

∣Si}
}

≤ δ max {1/2, ln(2/δ)} = δ ln(2/δ) .

Now if AT ≥ 2δ−1 ln(2/δ) then ε ≤ δ/2 and we get from (17) that the number of maximal
possible signals M satisfyes lower bound

M ≥ 1
√

(N + 2)
exp

{

Nδ ln(2/δ)

16AT

}

, AT ≥ 2δ−1 ln(2/δ) . (20)

Since the number N may be chosen arbitrary large, we get from (20)

Proposition 5a. If AT ≥ 2δ−1 ln(2/δ) then the cardinality M of (M, T, δ)–dID–code is

not limited, and therefore for Poisson channel with λ0 = 0 we have CdID(A) = CID(A) = ∞.

11



Consider now the case when the ”dark current” λ0 > 0. We fix some parameter z > 0
and introduce the following system of decision sets

Di =
{

xT
0 ∈ XT : the number of photons on mi is ≥ (λ0 + A − z)εT

}

, i = 1, . . . , M .

We make a decision in favor of signal Si if xT
0 ∈ Di.

Now if signal Si was transmitted then for the probability that received signal xT
0 will not

belong to the decision set Di we have

P{xT
0 6∈ Di

∣

∣

∣Si} = P{the number of photons on mi is < (λ0 + A − z)εT |Si} ≤

≤ e−(λ0+A)εT
(λ0+A−z)εT

∑

n=0

((λ0 + A)εT )n

n!
≤

≤ e−zεT

(

λ0 + A

λ0 + A − z

)(λ0+A−z)εT

≤ exp

{

− εz2T

2(λ0 + A)

}

, (21)

where we used simple inequalities (1 − x) ln(1 − x) + x − x2/2 ≥ 0 ; 0 ≤ x < 1, and

n
∑

k=0

bk

k!
≤
(

be

n

)n

; b ≥ n .

On the other hand, if signal Si is transmitted then for the probability to make also
decision in favor of signal Sj we have for any K > λ0 and z + K ≤ (1 − δ)(λ0 + A)

P{xT
0 ∈ Dj

∣

∣

∣Si} = P{the number of photons on mj is ≥ (λ0 + A − z)εT |Si} ≤

≤ P{the number of photons on mij is ≥ (λ0 + A − z − K)εT |Si}+
+P{the number of photons on mj \ mij is ≥ KεT |Si} ≤

≤ e−(λ0+A)εδT
∞
∑

n=(λ0+A−z−K)εT

((λ0 + A)εδT )n

n!
+

+e−λ0ε(1−δ)T
∞
∑

n=KεT

(λ0ε(1 − δ)T )n

n!
≤

≤ e−((λ0+A)(1−δ)−z−K)εT

(

(λ0 + A)δ

λ0 + A − z − K

)(λ0+A−z−K)εT

+

+e((K−λ0(1−δ))εT

(

λ0(1 − δ)

K

)KεT

≤

≤ exp

{

−εT [(λ0 + A)(1 − δ) − z − K]2

2(λ0 + A − z − K)

}

+ exp

{

−εT [K − λ0(1 − δ)]2

2K

}

≤

12



≤ exp

{

−εT [(λ0 + A)(1 − δ) − z − K]2

2(λ0 + A)

}

+ exp

{

−εT [K − λ0(1 − δ)]2

2(λ0 + A)

}

, (22)

where we used simple inequalities ln(1 + x) ≤ x − x2/2 ; −1 < x ≤ 0 , and

∞
∑

k=n

bk

k!
≤
(

be

n

)n

; b ≤ n .

Choose now z = A(1− δ)/3, K = λ0(1− δ)+ z. Then all exponents in right sides of (21)
and (22) will be equal and we get for any i 6= j

max
{

P{xT
0 6∈ Di

∣

∣

∣Si}; P{xT
0 ∈ Dj

∣

∣

∣Si}
}

≤ 2 exp

{

−ε(1 − δ)2A2T

18(λ0 + A)

}

.

Choosing finally

ε =
18(λ0 + A) ln(2/δ)

(1 − δ)2A2T
,

we get
max

{

P{xT
0 6∈ Di

∣

∣

∣Si}; P{xT
0 ∈ Dj

∣

∣

∣Si}
}

≤ δ .

Notice that only the case δ < 1/2 is interesting (otherwise, the number of possible signals M
is obviously infinite). Therefore if for δ < 1/2 we have also T ≥ 144A−2(λ0 + A)δ−1 ln(2/δ)
then ε ≤ δ/2, and we get from (17) that the number of possible signals M satisfyes lower
bound

M ≥ 1
√

(N + 2)
exp

{

Nδ ln(2/δ)

AT

}

, if
A2T

(λ0 + A)
≥ 144 ln(2/δ)

δ
. (23)

Since the number N in (23) may be chosen arbitrary large, we can generalize Proposition 5a
as follows

Proposition 5. If T ≥ 144A−2(λ0 + A)δ−1 ln(2/δ) then the cardinality M of (M, T, δ)–
dID–code is not limited, and therefore for Poisson channel with λ0 ≥ 0 we have CdID(A, λ0) =
CID(A, λ0) = ∞.

V. White Gaussian noise channel with bandwidth constraint

When we showed in Section IV a) that for white Gaussian noise channel without band-
width constraint CdID(A) = ∞, it was crucial that the set ST of possible input signals has
infinite (more exactly, very fast growing with T ) dimension. Now we shall show that if
that dimension grows linearly with T then CID(A, δ) = C(A), 0 < δ < 1/2. Moreover, we
obviously have CdID(A, δ) = 0, 0 < δ < 1/2.

Assume that the set ST of possible input signals has dimension 2WT , where W > 0 is
a given constant. In other words, we are given a set (basis) {si(t), . . . , s2WT} of orthonomal
on [0, T ] functions and as an input signal we can choose any function of the form

S(t) =
2WT
∑

i=1

uisi(t) , 0 ≤ t ≤ T ,
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with
2WT
∑

i=1

u2
i ≤ AT .

Shannon’s formula [12] gives capacity of such channel: C(W, A) = W ln(1+A/(2W )). Using
standard procedure [12] we can reduce that continuous time channel to a discrete time
additive Gaussian noise channel. For that purpose we replace channel output X(t), 0 ≤ t ≤
T , by WT outputs

xi =
∫ T

0
si(t) dX(t) = ui + ξi , i = 1, . . . , 2WT ,

where {ξi, i = 1, . . . , 2WT} are i.i.d. r.v.’s with N(0, 1)–Gaussian distribution. We loose no
information in that transition (it is sufficient statistics in the problem). Denoting n = 2WT
we come to the model when received (output) signal is

xi = ui + ξi , i = 1, . . . , n ,

and input signal (u1, . . . , un) satisfyes constraint

n
∑

i=1

u2
i ≤ na2 , a2 = A/(2W ) .

Capacity of such channel is given by formula [12]: C(a) = 1/2 ln(1 + a2). Both formulas for
capacities differ only by normalization.

Such discrete time additive Gaussian noise channel is a particular case of a more general
model considered in Section III. Moreover, Gaussian density f(x) satisfies assumptions of
Example 1 with I(f) = 1. Therefore Theorem 1 and Proposition 3 are valid for such channel
and we get

Proposition 6. Let dimension of input signals set ST linearly grows with T . Then

CID(W, A, δ) = C(W, A, δ), 0 < δ < 1/2 . (24)

Remark. Main surprising feature of ID–codes for finite channels [1] was that their
cardinality MID(n, δ) grows as “double” exponent of blocklength n. In the case of white
Gaussian channel, let N(T ) be dimension of input signals set ST . Then we have

eN(T ) ≤ MdID(T, δ) ≤ MID(T, δ) ≤ eeN(T )

.

It is clear that choosing in this case ln . . . ln N(T ) = KT , we can get any “number of
exponents” in MID(T, δ).

VI. Concluding remarks

14



1. Based on paper’s results I would like to make the following

Conjecture. For any channel W the following alternative is valid: CID(W, δ) = C(W, δ)
or CID(W, δ) = ∞.

Unfortunately, the author has not been able to prove (or disprove) that conjecture.

2. Prof. Te Sun Han informed me that in his book [13] it was shown by using a very
different method that the identification capacity of stationary white Gaussian noise channels
coincides with the usual transmission capacity.
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