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Introduction

One of the main purposes of this work is to analyze stochastic processes which are associ-
ated to a certain class of (in general non coercive) bilinear forms, also called generalized
Dirichlet forms. The bilinear forms themselves are associated to differential operators of
at most second order with measurable coefficients in finite or infinitely many variables. In
general they are not elliptic and not symmetric. As in the classical case functions (in the
domain of the form) observed along the paths of the associated processes will be charac-
terized as a sum of a martingale and a zero quadratic variation part or as a martingale
and a zero energy term and are often called Dirichlet processes. The theory of symmetric
Dirichlet forms (cf. [8]) has proved to be quite effective for the study of such processes
and so robust that even non symmetric cases (cf. [16], [15], [9]) and infinite dimensional
ones (cf. [15], [3]) can be covered. An inconvenience of these generalizations of [8] is that
a sector condition for the bilinear form has to be assumed. Extending the work [23] on
generalized Dirichlet forms, which contains as a main result the construction of an associ-
ated strong Markov process with nice sample path properties, we develop here a detailed
analysis for the study of these processes without the rather restrictive sector condition.
This analysis goes far beyond what had been achieved in [23] and reveals in addition the
probabilistic counterpart of generalized Dirichlet forms as far as the calculus of the asso-
ciated process is concerned. We give, in particular, purely analytic conditions in terms of
the bilinear form to see when the associated processes are stable (in the class of Dirichlet
processes) under composition with C'-functions and develop a change of variables rule
for the martingale part leading to an extension of It6’s formula. We also present a new
localization procedure which seems also to be new for the classical theories. This local-
ization is independent of the topology induced by the sample paths and only depends on
an analytic property of the form.

To give now a detailed overview about this work and about how we proceed let us first
explain (following [23]) what a generalized Dirichlet form is. Right after this we first de-
scribe the theoretical part of our results and then present applications.

Let (F,B,m) be a o-finite measure space and let (A,)) be a coercive closed form on
the corresponding L2-space H := L*(FE;m). Let (A, D(A)) be a linear operator on ‘H such
that

(i) (A, D(A)) generates a Cy-semigroup of contractions (U )s>o.
(i) (Ut)i>0 can be restricted to a Cp-semigroup on V.

Identifying ‘H with its dual H' we obtain that V — H = 'H' < V" densely and continu-
ously. Let (A, F) be the closure of A : D(A)NVY — V' and (A, F) the dual operator. Then
define

)= A(u,v) — (Au,v) forue F, vey
| A(w,v) — (Av, u) forueV, veF



and &, (u,v) = E(u,v) + a(u,v)y for @ > 0. Here, (-,-) denotes the dualization be-
tween V' and V and (-,-) coincides with the inner product (-,-) in H when restricted
to H x V. € is called a generalized Dirichlet form if the associated resolvent (Gg)aso is
sub-Markovian. Hence the class of generalized Dirichlet forms contains in particular sym-
metric and coercive Dirichlet forms (choose A = 0) (cf. [8], [15]) and also time dependent
Dirichlet forms (choose A = % cf. section 4.1 a)) as in [17]. In contrast to the classical
theory (i.e. A = 0) it is not known whether regularity or quasi-regularity alone implies the
existence of an associated process. Here quasi-regularity of a generalized Dirichlet form
is defined similarly to [15] (cf. [23] or Definition 1.3 below). An additional structural as-
sumption on F is made in [23, IV.2, D3] (i.e. the existence of a nice intermediate space )
has to be assumed) in order to construct explicitly an associated m-tight special standard
process M. Since we do not make use of this technical assumption and since it may be
subject to some further progress, we instead prefer to assume merely the existence of M

whenever this is necessary in the theoretical part of this work.

Our first problem is to obtain an appropriate analytic description of £-exceptional sets,
i.e. sets which are not hit by the associated process. For C,D C H let Cp := {u € C|Fv €
D, u < v} and let P (resp. ﬁ) denote the 1-excessive (resp. 1-coexcessive) elements in V.
Using the integration theory of Daniell and Stone we first show (cf. Theorem 1.4 below)
that any 4 € 7/55: is associated to a unique positive measure pu; on (E,B) charging no
E-exceptional set, via the relation

/fd/l,ﬁ = lim 51(f; a@aHﬂ) er ﬁ}‘ - 75]-‘. (1)

Here D for D C ‘H stands for the totality of £-quasi-continuous (:=&-q.c. cf. the paragraph
right before Definition 1.3 for the meaning of this) m-versions of elements in D (conversely
D for D C H stands for the totality of m-classes represented by elements in 5) and
(@a)a>0 is the coresolvent associated to £. Note that we can not assume that F is stable
under normal contractions (e.g. let A be zero and F be the domain of a second order
differential operator). Hence there is no naturally given vector lattice structure in F in
contrast to the classical case where F is a Sobolev space of order one or an abstract
analogue. We compensate this lack of structure by introducing the vector lattice Pz —
Px which goes slightly out of F. Therefore we have to consider a limit in (1). The &-
exceptional sets are then exactly those sets which are annihilated by every element in the
following class of measures

Soo = {ha | € Poyppand pal(B) < oo} 2)

where for a linear operator G on H, D C H, GD := {Gh | h € D} and ‘H; denotes
the positive and bounded elements in H. Note that although our strategy to obtain a
description of £-exceptional sets is similar to the one in [8], the proofs (cf. section 1.2) of
the statements corresponding to (1) and (2) turn out to have nothing more in common
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with the related ones in [8]. In the symmetric case our class of measures §00 is smaller
than the corresponding one in [8,p.78]. A consequence of this is that the uniform conver-
gence in Lemma 2.7 can be determined (cf. Remark 2.9) w.r.t. a weaker semi-norm than
in [8, Lemma5.1.2.].

In section 1.3 we analyze the structure of the space S of smooth measures, i.e. posi-
tive measures p on (£, B) which do not charge £-exceptional sets and for which there
exists an £-nest (Fy)ren consisting of compact subsets of £ such that p(Fy) < oo for any
k. Our main theorem here is the following: given p € S, then we can show the existence
of an E-nest (Fi)ren such that Lpres - pu € Soo for any k € IN (cf. Theorem 1.21 below).
Here 1pres - pu denotes the restriction of u to the regular points I}, of Fy. The proof of
Theorem 1.21 is completely different from the corresponding one in [8]. Our method is, in
particular, based on properties of the associated strong Markov process. Since Fj, \ F}
is semi-polar, we have to emphasize here that from the potential theoretic point of view
there is an important difference between our situation and the symmetric case: semi-polar
sets are not polar in general. Semi-polar sets are also not £-exceptional as we can see from
Remark 1.19. But since (-, (E \ F; ) is E-exceptional by Lemma 1.18 we can see that
any pu € S is “approximated” by 1 Freo - fu, k€ IN. This is what we really need for later
purposes as e.g. the still open proof of the Revuz correspondence (cf. the next paragraph
where a coversion of Theorem 1.21 is used).

In section 2.1 following [20] we associate to every positive continuous additive functional
(PCAF) A of the associated process M = (Q, (F)i>0. (Y2)i0, (P2)zer,) (cf. section 2.1,
section 5, for the exact definition) its corresponding Revuz measure 4 (by abuse of nota-
tion the expressions pa, pg (cf. (1)), are used simultaneously). Theorem 2.1 characterizes
i as the unique positive measure on (F, B), charging no £-exceptional set such that

oo

/ fdus = lim aEm[ / e (V) dAt} for all f € BY. (3)
E e 0
Here E,, (resp. E.) denotes the expectation w.r.t. Py (-) := [, P.(-)m(dz) (vesp. P.). In
particular we obtain that p4 is a smooth measure. In Theorem 2.5 we show similarly to
[8] that the correspondence A — g4 is injective. The bijectivity of this mapping, also
known as the Revuz correspondence, is still an open question but we note that according
to our results in section 1.3 it only remains to show the existence of a PCAF A% such

that U1(1

an £-exceptional set and F,:/e\g are the coregular points of Fy) z € E and any k € IN.
Here Uy (1 e - 1) is some £-quasi-lowersemicontinuous m-version (cf. the paragraph right
k

) (2) = EZ[ I e‘sdAgk)] for £-quasi-every (:=&-q.e. which means up to

reg
Fy

before Lemma 1.7 for the meaning of this) of the 1-excessive function U; (1, e - ) corre-

Fre
sponding to the measure 1 - 1 € Soo and Spg is similarly defined as Spo, but in terms
k

of the coresolvent.

Section 2.2 is devoted to the Fukushima-decomposition of additive functionals (AF’s cf.



section 2.1 for the definition) and its extended version to functions not necessarily in the
domain F of the generalized Dirichlet form. As usual in non-symmetric cases the energy
of an AF A is defined by

[e%s}

1
e(A) = §JLI§OQQEM[/ et A? dt],
0

whenever this limit exists in [0, 00]. We set e(A) for the same expression, but with lim
instead of lim. Let & € H with m-version u (in the sequel w, if it exists, will always
denote an £-q.c. m-version of a function u, converseley u will always denote the m-class
represented by %). The additive functional A" = (u(Y;) — u(Yy))i0 is independent of
the choice of u (i.e. defines the same equivalence class of AF’s for any £-q.c. m-version u

~

of u). Let (G4)as0 be sub-Markovian. We then have

e(AMy < Tim a(u — aGau, u)y,
and by Lemma 2.6 we know that the last term is dominated by (K + 1)?|u||% whenever
u € F. Here || || 7 denotes the graph norm corresponding to A and K is the sector constant

of A. The martingale additive functionals of finite energy ,/\jl and the continuous additive
functionals of zero energy N, are defined as usual (cf. section 2.2). In Theorem 2.11(i) we
show that the AF Al y € F, can uniquely be decomposed as

A[u] _ M[u] + N[U], M[U] E-Ajly N[u] c Nc (4)

The identity (4) means that both sides are equivalent as additive functionals and reduces
to the well-known Fukushima decomposition in the case A = 0. After all our preparations
the proof of (4) is similar to the corresponding one in [8]. Note that for the proof we
only assume the quasi-regularity of £, the existence of an associated process and the sub-

Markovianity of (G4)aso0. No dual process is needed. Let us define the following linear
space

H = {ueH|IMM G/\jl, NU e N, such that AM = prlv 4 NTY

C

~ ~de
If w,, uw € H, n € IN, satisfy the conditions of Lemma 2.7 and u, € H , n € IN, are
~dec
such that (A=) — 0, we show in Theorem 2.11(ii) that then % € H . This pro-

n—oo
cedure to check whether for a given @ € H decomposition (4) extends to A" shows to
be very practical and will be used quite often in the sequel and especially in the examples.

In section 2.3 we assume that the coform & (cf. the paragraph before Lemma 1.20 for
the definition) is also quasi-regular and that there exists a coassociated process M. We
also assume that every M7 h € H, is continuous as an additive functional. We then
show the following: if v = (71, ..., 7,) is a fixed n-tuple of m-essentially bounded elements

in 7' such that d(v) € H for all & € C'(R™) with ®(0) = 0 and such that there



exists (vir)ren C H with g(AMi=CGroal) — 0 as k — oo, 1 < i < n, then we have the
chain rule for the energy measure fi_ ey associated via (3) to the quadratic variation
< MO > of MI®®! This is equivalent to the martingale transformation

" 0D _ ,
M[@(vl,...,vn)] _ (Ula o 7Un) ° M[’Uz] (5)
i=1 O;
where g—i(ﬂ) o M [”i], 1 < i < mn, is a version of the usual stochastic integral of the con-
tinuous process g—z(ﬁ(Y)) w.r.t. to the continuous martingale M i (cf. Lemma 2.15(i)).

As a simple example consider sectorial Dirichlet forms as in [8], [16], [15], [3], where (5)
is satisfied for any n-tuple v = (v, ..., v,) of £-q.c. m-essentially bounded elements in the
domain of the form. More complex examples are given in section 4 (cf. e.g. p.75).

In section 3 a) as a new input we give a condition easy to check in examples (as an
application cf. e.g. Proposition 4.2), whether the associated process is a diffusion (i.e. has
continuous sample paths) up to his life time. According to Theorem 3.2 this is the case
whenever for any U C E, U open, there exists (up)nen C F, up < upy1, supp(u,) C U,
0 < suppen Un < 1y, sup,en Un > 0 E-g.e. on U and

E(tp, v) = 0 for all v € {Uypp — (Uyp)y | o € Soo} and n € N, (6)

Here Uyp is the 1-coexcessive function associated to p € Spo by (1) and ((/jlu)U is the
smallest 1-coexcessive function dominating (71#- 1y. We remark that in the case of quasi-
regular Dirichlet forms in the sense of [15] the existence of a sequence (u,,)nen With all the
above mentioned properties except (6) is always guaranteed (cf. [15, Proposition V.1.7.]).
One only has to check (6) for given U, (uy)nen in this case.

In part b) of section 3 supplementary to quasi-regularity, existence of an associated pro-
cess and sub-Markovianity of (éa)a>0 we assume that & satisfies the following assumptions

Alg There exists a linear space Y C L®°(E;m) N VF N H* of bounded
functions such that u-v € Y for u,v € ).

Diag There exists constants C,~v > 0 such that
e(AM) < C A, (u,u) for any u € Y.

Diag’ There exists constants C,y > 0, and a Dirichlet form (A, D(A)) on H such that
Y CDA)NF, e(AM) < CA, (u,u), A(u,u) < E(u,u), for any u € Y.

Here V7 := {h € H | sup,-ga(h — aG,h,h)y < oo}. Note that Alg and Diag (or
Alg and Diag’) are satisfied in nearly all examples below and in particular for sectorial
Dirichlet forms where ) coincides with the m-essentially bounded elements in the domain
of the form (cf. Remark 3.7). We then show that (4) automatically extends to A®®1on)l
where @ is as above and vy, ... ,v, € Y. In particular, if Y = C}(V) is a dense subset of
F (here £ =V is an open subset of R? and C¥(V') denotes the space of all k times con-
tinuously differentiable functions on V' with compact support) for some k € INU {oo}, by
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Lemma 3.4(ii) (4) extends to A®®1w)l where now vy, ... ,v, are m-essentially bounded
elements of F.

In part c¢) of section 3 we present a new localization procedure. This localization is based
on a property of the energy measure (cf. Lemma 3.5(iii)) which is shown here for the first

time and is given as follows: if 4 € £ := {u € v | I hn)nen C H with g(Al=Gihal)
0asn — oo,and 3C,y > 0 such that V¢ € Cp°(R) with £(0) = 0 we have u, {(u) €

~dec

H and e(ME®N) < CA,(E(u),&(u))} or u € L' (see Lemma 3.5(iii) for the definition) is
constant pi_jsm--a.s. on B € B then

Pents(B) = 0. (7)

Here C;°(IR) denotes the space of all infinitely many continuously differentiable functions
on IR with bounded derivatives of any order. Note that “constant £-q.e. on B” implies
“constant pt_psws-a.s on B”. In particular, if pg_js < is absolutely continuous w.r.t. the
reference measure m “constant m-a.s on B” implies “constant p_,wi~-a.s. on B”. Note
furthermore that in the case of sectorial Dirichlet forms as in [8],[16], [15], the m-classes
of £ (resp. L£') contain the domain of the Dirichlet form. Since also in our situation (cf.
Lemma 3.5(iv), Theorem 3.6(ii) and (iii)) £ (resp. £') is large enough, (7) provides the
possibility to localize w.r.t. closed subsets of . especially w.r.t. some fixed E-nest (F})xren
consisting of compact subsets of E. Concerning the localization our assumptions corre-
spond to the assumption which is known to be equivalent to the strong local property in
the finite dimensional symmetric case (cf. assumptions Dif, anllz{ »l Plt, of section 3 c)).
In addition to the new theoretical results described above we also present new appli-
cations. For example, we present here for the first time a martingale transformation for
time dependent Dirichlet forms assuming only that C§ (V) is a dense subset of F for some
k > 1 (provided that the usual assumptions hold, e.g. that the associated process is a
conservative diffusion cf. section 4.1 a)).

In section 4.1 ¢) we show that the Fukushima decomposition holds for the process deter-
mined by an extension of the differential operator

d d
N0 ou Pl Ou oot
Lu(t, z) == Jz_:l 5z 7z, (t,z) +;bl(t,w) 7. (1,2) + 5 (L 2);u € CF (R,

Here d > 1, b; € L (R x R, dt ® dz), 1 < i < d, b(t,-) € L (R% dz) for all t € R,

loc loc
1<i<d, B:=(by,... by) satisfies [ari (B, Vu)dtde <0 for all u € C(R"),u > 0,
and we assume that there exists a function L = Ly + L, with Ly, € BY(R) N L*(RR, dt)
and Ly, € BY(IR) N L>*(R, dt) and a constant M such that
|B(t,z) — B(t,y)| < L(t)|]x — y|ga for all z,y € R, teR
and |B(t,z)] < M(|(t,z)|gesr +1), 2 € RY, t € R.

In this case since Alg is satisfied with J = C3°(IR™™) for the bilinear form correspond-
ing to L we also know that Fukushima’s decomposition extends to A®®¥n) where
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V1,...,0U, are in Y. But unless we do not make some supplementary assumption on the
divergence of the vector field B we even cannot show the existence of a coprocess.

In section 4.1 d) we consider a positive measure p = ¢?dz on B(IR?) such that ¢ €
H2(RY), e - x € Hy*(RY) for all x € C3°(IR?) and such that supp(p) = R?. Then
the bilinear form given by

E%u,v) = %/(VU, Vo)dp ; u,v € C(RY)

is closable on L?(RY, 11) (cf. [15] for the definition of closability). Let B € L2 (R%: R, p),
ie. B=(By,...,By) : R = R" is measurable and Ji-(B, B) dp < oo for all V relatively
compact in IR?, and such that

/(;B — % Vu) du = 0 for all u € C§°(IR).
Let us further assume that the semi-group corresponding to a suitable extension of Lu :=

TAu+ (3B, Vu),u € Cf° (R%), is conservative. This is for instance the case if there exists
a positive constant C' such that (B(z),z) < O(|z|2.n(|z|2: + 1) + 1) for all z in R
Then using our localization procedure and results of [24] on the existence of an associated
process we can contruct explicitly a conservative diffusion M = (Q, Foos (Yi)>o0, (Pz)zeRdA >

which satisfies
i
Y- Yo =Wt [ 3B ds ®
0

where W, = (W}, ..., W) is the standard Brownian motion on R? and (8) means that
both sides are equivalent as additive functionals. This generalizes a result on the distorted
Brownian motion obtained by Fukushima (cf. [7] where (8) was only shown for B = 2Y£),
Using again our localization procedure we obtain the following extension of Itd’s formula

t

t
1
B(X,) — B(Xy) = Z/ a( MW+/ (5B, VO)(X,)ds + lim Apn(X)ds.
0

n—oo 0

for all t < oy, k € IN. Here (p%)y. .en are polynomials specified as at the end of section 4.1
d), ® € CY(IR?), and oy, is the first hitting time of the complement of the closed ball in
R? with radius k.

We also consider the infinite dimensional analogon of the preceding example, i.e. in section
4.2 we construct weak solutions to stochastic differential equations in infinite dimensions
of the type

1 _
dYy = dW,+ 58y (Yo)dt + (Ydt . Yo = =. (9)

Here (Y;):>0 takes values in some real separable Banach space E, z € E, (W})i>o is an E-
valued Brownian motion, (3 is some square integrable vector field on £ of divergence zero
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taking values in a real separable Hilbert space H C E and (4 : E — F is the logarithmic
derivative of u associated with H (cf. section 4.2). In the symmetric case, when 3 = 0,
equation (9) has been studied intensively in [1].
We then give a first application of (9) for more explicit maps 3}; and 3 using existence
results of [2] on invariant probability measures for some given linear operator L, i.e.
measures g solving the equation [ Ludp = 0 for all finitely based smooth functions wu.
We also use results of [24] on the existence of diffusions associated to extensions of such
operators. More precisely, in this case we assume F also to be a Hilbert space and that
H C E densely by a Hilbert-Schmidt map. We then apply (9) with 3 = (B — 3};) where
B : E — FE is a Borel measurable vector field of the form B = —idg +v, v : £ —
H, satistying (B.1)-(B.3) of section 4.2. Under these assumptions on B there exists an
invariant probability measure p such that the stochastic differential equation

ay, = dW,— %Ytdt + %U(Yt)dt , Yo=12 (10)
admits a weak solution M = (£, (F)i>0, (Yi)i>0, (P.).cr) for p-a.e. (even (quasi-)every)
z € K. In particular, p is absolutely continuous w.r.t. the Gaussian measure v with
Cameron-Martin space H on £ and with Radon-Nikodym derivative ¢? where ¢ is in
H“2(E;7), i.e., the Sobolev space over (E, H,~). Moreover 3}, = —idg —|—2%. It is known
(see [2, Theorem 3.10]) that the generator of M restricted to the finitely based smooth
functions L = %AH + %B -V is p-symmetric if and only if v = 2% or equivalently
B = (3};. In our general (i.e. non-symmetric) situation, 2% is the orthogonal projection

of v onto the closure of the set {Vu | u € FC*} in L*(E, H; u). The diffusion M =
(Q, (F)ez0, (Yo)i>0, (P2):cr), which is in duality to M w.r.t. p, weakly solves
Vp s 1 ~

&Y, = dw,— %ﬁdt + 2= (V)dt — gu(Vdt, Yo == (11)
@

for p-a.e. (even (quasi-)every) z € E, where (/Wt)tzo is an E-valued (F;);0-Brownian
motion starting at 0 € F with covariance given by the inner product of H. Thus (cf. e.g.
6]), adding the drifts of (10) and (11) we obtain 2/3}; as in the symmetric case.

At the end of section 4.2 we show that M also satisfies an Ito-type formula, i.e. if ¥ €

—_~—

CYR™) and f,, ..., f, € D(L), then

~ ~ ~ ~ “OU ~ .
U(Fr F) ) = W(Fr F)O0) =D o (Fr o fo) o M NFP
i=1 "
In particular, Nt[\y(fl""’f”)] = lim,, o Nt[p”(fl""’f”)] where (py,)nen are polynomials as spec-

ified at the end of section 4.2 and the martingale part is a version of the usual stochastic
integral (cf. Lemma 2.15(i)).

Finally, I would like to thank Professor Michael Rockner, who led me to the study of
Dirichlet forms. I am very grateful for his strong interest and steady encouragement. I am
also grateful to Wilhelm Stannat for numerous discussions and valuable comments.



1 Framework and supplementary Potential Theory
of generalized Dirichlet forms

1.1 Framework

Let E be a Hausdorff space such that its Borel o-algebra B(FE) is generated by the set
C(E) of all continuous functions on £. Let m be a o-finite measure on (£, B(F)) such
that H = L*(E,m) is a separable (real) Hilbert space with inner product (-,-)s. Let
(A, V) be a real valued coercive closed form on H, i.e. V is a dense linear subspace of H,
AV xV — R is a positive definite bilinear map, V is a Hilbert space with inner product
Ai(u,v) :== $(A(u,v) + A(v,u)) + (u,v)n, and A satisfies the weak sector condition

| Ay (u,v)] < KAy (u, u)? Ay (v, 0)?,

u,v € V, with sector constant K. Identifying H with its dual H’ we have that V C H C V'
densely and continuously. Since V is a dense linear subspace of H, (V, A1(,-)'/?) is again
a separable real Hilbert space. Let || - ||y be the corresponding norm.

For a linear operator A defined on a linear subspace D of one of the Hilbert spaces V, H
or V' we will use from now on the notation (A, D). Let (A, D(A,’H)) be a linear operator
on H satisfying the following conditions:

D1 (i) (A, D(A,H)) generates a Cy-semigroup of contractions (Up)¢>o-
(ii) (Up)e=o can be restricted to a Ch-semigroup on V.

Denote by (A, D(A,V)) the generator corresponding to the restricted semigroup. From
23, Lemma 1.2.3.,p.12] we have that if (A, D(A, H)) satisfies D1 then A : D(A,H)NY —
V' is closable as an operator from V into V'. Let (A, F) denote its closure, then F is a
real Hilbert space with corresponding norm

lullF = [l + [Aul5-

By [23, Lemma I.2.4., p.13] the adjoint semigroup (ﬁt)t>0 of (Ut)t>0 can be extended to a
Co-semigroup on V’ and the corresponding generator (A D(A V")) is the dual operator of
(A, D(A,V)). Let F := D(A, V') NV. Then F is a real Hilbert space with corresponding
norm R

[l = [l + 1A

Let the form &£ be given by

A(u,v) — (Au,v) forue F,veV
A(u,v) — (Av, u) forueV, veF

and £,(u,v) = E(u,v) + a(u,v)y for a > 0. € is called the bilinear form associated
with (A, V) and (A, D(A,H)).



Here, (-, ) denotes the dualization between V" and V. Note that (-, -) restricted to H x V
coincides with (-, -)y and that & is well-defined. It follows, from [23, Proposition I.3.4., p. 19],
that for all a > 0 there exist contlnuous linear bijections W, : V' — F and W Y S F
such that EaWofiu) = (f,u) = Eal(u, W, of), Vf € V', u € V. Furthermore (W,,),>0 and

(Wa)a>o satisfy the resolvent equation
Wo—Ws=(8—a)W, W5 and W, —Ws=(8— a)W,Wj.

Restricting W, to ‘H we get a strongly continuous contraction resolvent (Gg)as0 on H
satisfying lim, oo aGof = f in V for all f € V. The resolvent (G, )a>o0 is called the
resolvent associated with €. Let (G )aso be the adjoint of (Ga)aso in H. (Ga)aso is called
the coresolvent associated with £.

A bounded linear operator G : H — H is called sub-Markovianif 0 < Gf < 1forall f € H
with 0 < f < 1. By [23, Proposition 1.4.6., p.24] we have that (G )a>0 is sub-Markovian
if and only if

D2 ueF=u"AleV and E(u,u—u"Al)>0

is satisfied.

Definition 1.1 The bilinear form £ associated with (A,V) and (A, D(A,'H)) is called a
generalized Dirichlet form if D2 holds.

Example 1.2 (i) Let (A, V) be a Dirichlet form (cf. e.qg. [15]) and A = 0. Then F =V =
F.And € = Aisa generalized Dirichlet form since the resolvent of A is sub-Markovian
and therefore D2 is satisfied.

(ii) Let A =0 onV :=H and (A, D(A)) be a Dirichlet operator (cf. e.g. [15]) generating
a Co-semigroup of contractions on H. In this case F = D(A), F= D(K) and the corre-
sponding bilinear form & (u,v) = (—Au, v)y if u € D(A), v € H, and E(u,v) = (u, —Av)x
ifueH, v e D(/AX), is a generalized Dirichlet form.

An element u of H is called l-excessive (resp. l-coexcessive) if 8Gziiu < u (resp.
BCA?BHU < ) for all 8 > 0. Let P (resp. P) denote the 1-excessive (resp. 1-coexcessive)
elements of V. Let C,D C H. We define D¢ := {u € D | 3f € C, u < f}. For an arbitrary
Borel set B € B(F) and an element u € H such that {v € H |v>u-1g} NF # 0 (resp.
u € 7333) let up = e,.1, be the 1-reduced function (resp. ip = €51, be the 1-coreduced
function) of u-1p (resp. @ - 1p) as defined in [23, Definition I11.1.8., p.65]. Here we use
the notation 1z for the characteristic function of B. Note that in general only if B is
open our definition of reduced function coincides with the one of [8, p.92], [15, Exercise
I11.3.10(ii), p.84]. In particular, if B € B(F) is such that m(B) = 0, then ugp = 0. We
will use the following quite often in the sequel (cf. [23, PropositionIII.1.6.and proof of
Proposition II1.1.7.]): for @ € 73@ B € B(E) there exists 4% € F N P such that 4% < al,
0<a< B, uf — 4, a — oo, strongly in ‘H and weakly in V., and

E1(v,af) = a((uy —u-1p)",v)y for any v € V (12)

10



where f~ denotes the negative part of f. Similarly for u € Pz there exists ug € F NP
such that u® < u%, 0<a<fB, ug — u, a — oo, strongly in H and weakly in V and

E1(uf,v) =a((ufy —u-1p)7,v)y for any v € V.

Since by [23, PropositionI11.1.7.(ii)] g - 1p = @ - 1, up - 15 = u - 15 we then have for
any a > 0
E1(up,u) = E1(u, up).

Note that then (by our definition of reduced functions for not necessarily open sets)
23, Lemmalll.2.1.(ii)] extends to general Borel sets, i.e. £1(f5,f) = E1(f, fz) for any
feFNP, feFNP, BeBE).

If B = E we rather use the notation e, instead of ug.

Let A C E. We set A¢:= F'\ A, i.e. the complement of A in E. An increasing sequence of
closed subsets (Fy)g>1 is called an E-nest, if for every function v € P N F it follows that
upe — 0in'H and weakly in V. A subset N C E is called E-exceptional if there is an E-nest
(Fy)k>1 such that N C Mg>1 £\ F). A property of points in E holds £-quasi-everywhere
(E-q.e.) if the property holds outside some £-exceptional set. A function f defined up to
some E-exceptional set N C E is called £-quasi-continuous (€-q.c.)(resp. E-quasi-lower-
semicontinuous (£-q.l.s.c.)) if there exists an E-nest (Fj)ren, such that (J,o, £, C E\ N
and fip, is continuous (resp. lower-semicontinuous) for all k. N

For an E-nest (F)g>1 let

CH{F:})={f:A—=TR| U F, C ACUE, fip, is continuous Yk}

k>1

Ci{F})={f: A= R | U F, C ACE. fip, is lower-semicontinuous Vk}

E>1

We denote by f an &-q.c. m-version of f, conversely f denotes the m-class represented
by an £-q.c. m-version f of f.

Definition 1.3 The generalized Dirichlet form E associated with (A, V) and (A, D(A, H))
is called quasi-regular if:

(i) There exists an E-nest (Ey)p>1 consisting of compact sets.

(ii) There ezists a dense subset of F whose elements have £-q.c. m-versions.

(iii) There ezist u,, € F, n € N, having £-q.c. m-versions u,, n € N, and an & -exceptional
set N C E such that {u, | n € N} separates the points of E'\ N.

1.2 Measures associated to coexcessive functions

Let us first make a remark about a notational convention: in the sequel before each state-
ment we will name the assumptions on the generalized Dirichlet form which we need to
show the statement. We do this in the following way: we define abbreviations for these
assumptions and put the abbreviations in brackets just before the statement (cf e.g. The-
orem 1.4 below).
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From now on we assume that we are given a quasi-regular generalized Dirichlet form. We
write QR as an abbreviation for this assumption. We remark that QR will not be subdi-
vided in weaker assumptions, i.e. QR will be the weakest assumption on the generalized
Dirichlet form which we will make.

By quasi-regularity every element in F admits an £-q.c. m-version (cf. [23, Proposi-
tionIV.1.8.]). For a subset G C 'H denote by g~ all the £-q.c. m-versions of elements
in G. In particular ﬁf denotes the set of all £-q.c. m-versions of 1-excessive elements in

——~——

V which are dominated by elements of F. Note that 7 NP C 7,5/1 and that 73f. — ﬁf is a
linear lattice, that isuAa € Pr —Px for all « > 0 and all w € P — Pr. We emphasize
that an element in Pz not necessarily admits an £-q.c. m-version.

We denote by B the B(E)-measurable functions on £ and by By, BT the bounded respec-
tively positive elements in B. We also set B := B, N1 B*. Let D C H. We denote by D,,
D the bounded respectively positive elements of D. As above we set D} := D, ND*. We

are now in the situation to state an integral representation theorem for elements in 7333

Theorem 1.4 (QR) Letu € 73ﬁ Then there exists a unique o-finite and positive measure
wa on (E,B(F)) charging no £-exceptional set, such that

/fdﬂql— lim &(f, Oééaﬂﬂ) VJ,FG ﬁf_ﬁf-

Proof Set I; (f) = lim, o &1(f, a@aHQ) ]7 € Pr — Pr. The limit exists since
E(f, aGa+1u) splits into two parts which are both increasing and bounded. Then I

is a nonnegative linear functional on 77; P]—' Let ( f Jnen C Pf 73; such that f 10
pointwise on F for n — oco. Similar to the proof of Theorem 1 in [5] we will show that

I(f,) 1 0 as n — oco. (13)

Fix ¢ € L*(E;m) N B such that 0 < ¢ < 1. By [23, Lemma I11.3.10., p.73| there exists
an E-nest (F})ren, such that C/T‘;g/o > % everywhere on Fj for all £ € IN. Since & is
quasi-regular we may assume that Fy, k& € IN, is compact. We may further assume by
23, Lemma 3.5., p.71] that (f,)nen C C({F,}). From Dini’s Theorem we know that given

ko € N there exists n(kg) € IN, such that for all n > n(k)
1
fn < —Gip  m-ae. on Fy,.
ko
Since f, < fi1 € P — Pg there exists f € F such that f, < f and therefore we have for
alln € N
fn < k—Glgo + fFC m-a.e..
Let fG F such that @ < f. Then
]ﬂ(fn) = lim El(fn,oz@aﬂﬂ)

a—00

1
< limsup &1(—

a—00 kO

Gip + fre aGos1t)

IA

1 .
51(k—0 G + frg 5 [)-
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Since limg_oc 3 G1 + fre = 0 weakly in V we conclude that lim,_. I:(f,) = 0 and
(13) is shown. By the Theorem of Daniell-Stone there exists a unique measure say fi; on
(73f - ﬁ]—‘) (i.e. the o-Algebra generated by 77; — P]—‘) such that Pz — Pr C L (1)
By [23, Proposition IV.1.9., p.77] we know that 77; — P separates the points of £\ N
where N is an &- exceptlonal set and consequently as in [15, Remark IV.3.2.(iv), p.102] we
have o(Pr — Ps) D B(E \ N) where B(E \ N) is the Borel o-Algebra of E\ N. Since
pa(N) = lima_e 51(1N,a@a+1ﬁ) = 0 for every E-exceptional set N we may assume
that pg is a Borel-measure. Finally fE(/}Tgodyﬁ < £1(Gro, f) < oo implies that pg is

o-finite.

UJ
Let D C H. For a linear operator G on ‘H with domain D(G) D D we set GD := {Gh |
h € D}.

Remark 1.5 In the time dependent case (cf. section 4.1 below), whereas in the case of
classical Dirichlet forms we have Pr = P and 7333 = P. More generally this holds for any
generalized Dirichlet form with F = F and —Af = ]A\f for any f € GiH U GiHy. We
only show that Pr = P. Indeed let u € P, h € H; . Since (Gy)aso is positivity preserving
by the assumption F = F we have f=aG.1h € FrNGHy hence 0 < Ei(u, f) by [23,
Proposition I11.1.4.]. Now

0<E(u f) = 2Ai(u, f) = Ei(f,u)
y < 241 (u, ), f >y —E1(f. )
= gl(f,/‘ivl(QAl(uv'))_u) L
= (b AW12A(u, ) — u} — aGap {1 (241 (u, ) — u}).

implies that Wl(Q.Zl (u,-)) —w is 1-coexcessive. In particular we have u < Wl(Q.Zl (u,-)) €
F and therefore w € Pr. The converse inclusion is trivial and Pz = P can be shown
similarly.

From now on we fix an m-tight special standard process M = (€2, (F1)>0, (Y2)i>0, (Ps)2cE,)
with lifetime ¢ and shift operator (6;):>o such that the resolvent R,f of M is an &£-q.c.
m-version of G, f for all @ > 0, f € HN B,. M is then said to be properly associated in
the resolvent sense with £. The exact definition of such a process M is given in the Ap-
pendix. Recall that we always assume that (F;);>¢ is the (universally completed) natural
filtration of (Y;);>o and that any real-valued function u on E is extended to Fa by setting
u(A) = 0. We use the abbreviation M** for the assumption that such a process exists.

In addition to quasi-regularity a structural condition on the domain F of the generalized
Dirichlet form is imposed in [23, V.2, D3| in order to construct explicitly an associated
m-tight special standard process. Since we make no use of this technical assumption and
since it may be subject to some further progress we instead prefer to assume the exis-
tence of M. We will use the resolvent of M in the proofs of Lemma 1.6, Lemma 1.7 and
Theorem 1.9 below but we remark that the statement of our main result Theorem 1.9 is
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independent of M and only depends on the generalized Dirichlet form.

Let P be a probability measure on (2, F). Let A, B € F, be two events. We say that A
holds P-a.s. on B, if P(A; B) := P(AN B) = P(B). An (F;)-stopping time 7 is called a
terminal time provided t+ 7060, = 7 P,-a.s. on {7 > t} for any z € E. Define for A C Ex

oa:=inf{t >0|Y, € A}, Da:=inf{t >0|Y; € A}.

A terminal time 7 is called ezact provided ¢,, | 0 implies that ¢, + 706, | 7 P,-a.s. for
every z € E. Note that if A C Fj is such that o4, D4 are (F;)-stopping times, then o4
is an exact terminal time, whereas D4 is in general only a terminal time and may fail to
be exact since limyjot + Dy o6, | o4 P,-as. for every z € E. For (F;)-stopping times o,
7 define

RO f(2) = E[ / e—wf(y;)ds}, a>0, € B, feBE)"

and
PEI(2) = B[ f(V)lpen |, 1> 0, z€ B, feBE)*

In particular (p$)io := (pi)iso is then the transition semigroup of M and (R%¢),~q is
the resolvent of M. Here we rather use the notation p; instead of pf (resp. R, instead of
R%¢). We will show explicitly in Lemma 1.7(i) below that the terminal time property of
an (F;)-stopping time 7 implies the semigroup property of (p])i~o hence the Resolvent
equation for (R%),s0-

Let B € B(E). Then {op = 0} € Fy and according to Blumenthal’s 0-1 law we know that
P,(op =0) =0 or 1. Let us denote the regular points for B by

B :={z€ E| P,(op=0)=1}.

From its definition we see that B"Y is universally measurable. Also obviously by right-
continuity of the associated process we have B™ C B where B denotes the closure of B
in F.

Lemma 1.6 (QR, M®*) Let B € B(E). Then m(B \ B"Y) =0 and P,,(Dp = o) = 1.

Proof Let ¢ € L2(E;m)NB,0 < ¢ < 1. Then 0 < RYPF¢ < Ry and therefore RYPF ¢ e
L*(E;m) N Bf. By strong continuity of (U;);~o we may subtract a decreasing sequence
(tn)nen C (0,00) converging to zero such that lim,_., U, R"P7p(z) = RYPFo(z) for
m-a.e. z € E. Since p, R"PT¢ is an m-version of U, RYPT for every n we have also
limy, a0 pr, RYPF0(2) = RYPTp(2) for m-a.e. z € E. Note that limy o Dg o 6, +t = op.
Now, using the strong Markov property and Lebesgue’s Theorem we have for any z € £

lim ptnE.[/ODB e o(Y)) ds](z) — lim EZ[EKH[/ODB e5(Y2) ds”

n—oo n—oo
DBootn+tn
= lim et"Ez[/ e *p(Ys) ds}
n—oo tn

— E. [ /OUB e "p(Y5) dS] -
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It follows that Ez[ o2 e p(Yy) ds] = 0 for m-a.e. z € E. But
B

B . =0 for z € B™9 U B¢
E[/DB () ds | i { >0  forze B\ B

and therefore m(B \ B™) = 0. Clearly P,(Dp = o) = 1 for all z € B™ U B° hence
Pm(DB = O'B) =1.

O
Given a finite measure pu on measurable space (G, G). The completion of G w.r.t. p is
denoted by G". An element of B*(E) := (\pep(p B(E)? where P(E) denotes the family
of all probability measures on (F,B(F)) is called a universally measurable set. Let B*
denote the B*(E)-measurable functions on F.
Let v > 0. A function f € HNB** is called y-supermedian for (Ry)aso if aRasrf < f,
a > 0. In particular y-supermedian functions f € H N B*" are m-versions of y-excessive
elements in H. f € H N B*" is called y-excessive for (Ry)aso if f is y-supermedian for
(Ra)aso0 and if im, o aRu4~ f = f.
We already remarked that v € P not necessarily admits an &-q.c. m—X(f{sion. By quasi-
regularity however we know that there exists an an £-q.c. m-version aG,1u of aG,q1u.
Since aGy41u increases m-a.s. if « increases we know from [23, Corollary I11.3.3.] that

aGy1u increases £-q.e. if a increases. Hence we may define an £-q.l.s.c. m-version of u
by

u = sup aGay1u
a>0

u is called an &-q.l.s.c. regularization of u € P. Surely any two &-q.l.s.c. regularizations
of u € P coincide £-q.e. hence any £-q.l.s.c. regularization of u € P coincides £-q.e. with
the “canonical” regularization u = sup,., aR,+1u. If not otherwise stated we will always
choose the canonical regularization for u € P.
Let p be a positive measure on (E, B(F)) charging no £-exceptional set. Since by assump-
tion there exists an £-nest consisting of compact sets support of p supp(p) is defined.
Let us remark here that Lemma 1.7(i) will not be used until later in Lemma 2.4 and there
only in terms of the coassociated process.

Lemma 1.7 (QR, M*)

(i) Let T be a terminal time. Then (RY7),~o satisfies the resolvent equation. If f is -
supermedian for (Ra)aso (v > 0) then f is y-supermedian for (RY™)a>o-

(ii) Let T be a terminal time. Let f € L*(E;m)" N BT, Then RY™f is 1-supermedian
Jor (Ra)as0 and RYf € PN B;. If in addition T is exact then RT™ f is 1-excessive for

(Ra)a>0- In this case we have in particular that RT™ f(z) = R f(z) for every z € E.
(iii) Let g € L*(B;m)™, F C E be closed. Then p E\ F™9) = 0. In particular

supp(Ké, ) C F-

(é1g)F(

Proof (i) Since (R%7),~¢ is the Laplace transform of (p])iq it is enough to show the
semigroup property for (p])iso. Let s, ¢ > 0. The terminal time property of 7 implies
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{s+t <1} ={s <706, }N{t <7} P.,-a.s. for any z € E. Hence, using the strong Markov
property of M and the monotone convergence theorem, for any f € Bt, z € E

p;+sf(z) = E& _f(}2+s)1{t+s<7}]
_f(};+6)1{s<ro&}1{t<r}]

— B\ By S0 1 pery | | = winiS(2).

Let f be y-supermedian for (R,)a>0 then

aRYL f < aRosrf < f.

(ii) Since 7 is a terminal time we have 7 0 0; +t > 7 P,-a.s. for any z € E. Hence the
strong Markov property of M implies

e 'p R f(2) = E, [e’tEyt [ /TOO e’sf(Ys)ds] }

- & / T s | < BEUAG).

00t+t
It follows that R} f is l-supermedian for (R,),~0 because

aRaHRI’OOf(z):/ oze_ath[/
0 T

Furthermore RT™ f < R, f implies BT f € VN B* by [23, LemmaII1.2.1.(i)]. Note that
RT™ f is finite £-q.e.. Then, using the exactness of 7 and Lebesgue’s Theorem we have

T f(y;)ds]dt < RT°f(2).

o@t +t

o0

O}erolo aR,1 R f(z) = lim ae(@F Dty R £(2)dt

a—00 0

o0

=l [ et B [ e (i)
0

a—00 0

= R} f(z) forevery z¢€ E.

Clearly limgy—,00 @Ra+1 R f(2) = sup,-o @Ra+1 R f(2) for every z € E hence R f =
RY™T.

(iii) Fix ¢ € L'(E;m) N B such that 0 < ¢ < 1. Since op is an exact terminal time we
know from (ii) that R7""*p is 1-excessive for (R,)a>0 and R7""*¢ € VN B*. Furthermore
by Lemma 1.6 R{""* ¢ = Rjp m-a.s. on F and therefore by [23, Proposition II1.1.7.(ii)]
R7"*¢ > (G1p)F m-a.e.. Hence

(Gho)p = sup nRy41(Grp)r < sup nR, 11 R77 0 = R{" ¢ E-qee.. (14)

n>1 n>1
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Furthermore

_ poree . ) >0 E—qe onE\F"
RlSD Rl ¥ 18 { =0 on Fres.

Since g, does not charge &-exceptional sets it follows from (14) that

/ Rip — R{™ ¢ du g, o, / Rip = (G19)p dig, ),

but the expression on the right hand side is equal to zero since by (12)

[ Bodng,y, = lm alGie ()i~ Gig-16)

= lim a((G1p)r, ((é1g)a — é19 1p) 7 )n

a— 00

= lim lim &; (ﬁRg.H(GlSO)Fa(Glg) )

a—00 3—00

SUP/ﬁRﬁH(GlSD)FdPJ(éIg)F :/(Gl‘P)Fd“(élg)p

B>1

IN

Now g, (B \ F7¢) = 0 follows by a standard argument, because p g, . is o-finite.

O
We will need the following remark in the proof of the following theorem.

Remark 1.8 (analogous to [15, Remark1V.3.2, p.101]) By quasi-regularity we may con-
struct an E-nest (Fy,)ren of compact sets and a sequence (U, )nen C C({Fr}) such that

22 (|tn(x) —un(y)| A 1); 2,y € Fy,

defines a separating metric on Fy, for each k which is compatible to the trace topology on
Fy. inherited from E.

To show the equivalence of (i) and (ii) in Theorem 1.9 below we will use another equiva-
lent description for £-exceptional sets via a finite Choquet capacity called the p-capacity.
To explain this let ¢ € L*(E;m)NB, 0 < ¢ < 1. For U C E, U open let cap,(U) =
((G19)u, p)x and for arbitrary A C E'let cap,(A) := inf{((G1¢)v,¢)n | U D A, U open}.
It is shown in [23, Proposition [11.2.10.] that an increasing sequence (Fy)ren of closed
subsets of E is an E-nest if and only if limy .. cap,(Fj) = 0. Hence the E-exceptional
sets are exactly the zero sets of the set function cap,, restricted to B(E).

As a generalization of [8, p.78] we introduce the following class of measures

Soo:={pa| U € 73@17{;{ and pg(E) < oo}

where @17'(: = {Gih | h € H; .
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Theorem 1.9 (QR, M®*) For B € B(E) the following conditions are equivalent:
(i) B is E-exceptional

Proof (i) = (ii) is clear. We show —(i) = —(ii). Fix ¢ € L*(E; m)NB such that 0 < ¢ < 1.
If B is not £-exceptional then cap,(B) = inf{((G1¢)v,¢)n | U D B, U open} > 0
where we used that by the discussion below (12) ((Gi)v,¢)n = ((algp)U,gp)H. Since
cap,, is regular by Choquet’s capacibility theorem there exists a compact K C B with
cap,(K) > 0.

Let Dj — D = {fu;n € IN} be a countable dense subset of bounded functions in F
with £-q.c. m-versions Eg — E(T = {fn, ne N} C 53 — 5:; C Pz — P which separate
the points of E'\ N where N is an £-exceptional set (cf. [23, Proposition IV.1.9.(ii), p.77|
for the existence). There exists further ( cf. [23, Lemma [V.1.10.,p.77]) an E-nest (Fi)ren
consisting of compact metrizable sets such that {R¢, f,;n € N} C C({F};}) and such
that Ryp > % E-q.e. on [y, for all £ > 1. We may assume, that N C (-, F§. Since
cap,(K) = limy_. cap,, (K N Fy) we may choose ng € IN such that cap,(K N Fy) > 0 for
all k > ng. Since cap,,(F) . 0, there exists kg > ng with

cap, (K N Fy,) — cap,(Fy,) > 0. (15)

Let p Fi be a metric on Fj, which is compatible with the relative topology on Fj, inherited
from E (cf. Remark 1.8). Define for n € IN

1
By i={z € Fi, | pr (2, KN Fyy) < ﬁ}’ By ={z € Fi, | pr, (2, KN Fy) < =}

S|

Then B, U Fy, C E is open for all n and thus

cap,(K N Fy,) = inf cap,(U)

KﬁFkOCU
U open

S Tllgfi Capw(Bn U Flgo)
= inf £(Gip, (Gr9)mury,)

ey E—

since (élgo)BnUpgo < (élgo)ﬁn + (élw)pgo. It now follows from (15) that

0 < /ngod/,L@W)OO (16)

where (G1¢)x is defined to be the weak limit of ((algo)gn)neN in V. Note that (G1¢)s €
ﬁém;r and thus there exists a unique (G by Theorem 1.4. For convenience we set
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i = HiGrpyg, ™ € N, and fix == p g, - Note that by Lemma 1.7(iii) we have that

supp(fi,) C B, for any n. We have to show supp(fi) C K N Fy,, because then by (16)
0< [ Rigditne = [ Rug linn, die < i (K 0 Fo) < e (B).

Clearly supp(fise) C K N Fy, implies fioo(F) < 0o and thus fie € Sgo. We will proceed in
several steps.

1. Step : There exists a subsequence such that fi,, converges weakly to some pu:

By Lemma 1.7 we know that supp(fi,) C F, for all n € IN and thus we have for all
f S CO(F ko)

sup | [y, | < Hf”oosup/ln(Fko)
neN neN
< ||f||msug51(k0 Gip, (Gip)z,)
ne

< N f o1 (ko Gip, Gro)

< oQ.

It follows that {/i,;n € IN} is relatively compact for the vague topology. Let us choose a
subsequence (fi,, )ren Which is convergent to some p with respect to the vague topology.
Since Fy, is compact it follows that (fi,, )ren is weakly convergent to pu.

2. Step : p is finite and supp(p) C K N F,:

Since 1, € Cy(F,) it follows that

M(Fko) - ]}LI&ﬂnk(Fko) < kO gl(GISO: al@) < 0.

Further, since B;* 1 (KN F,)® as j — oo (the complements are taken in Fy,) we conclude
by the Porte-Manteau-Theorem and Lemma 1.7 that

u((K N Fy)) = lim u(B)") < lim liminf f,, (B;") = 0.
j—o0 J—00 ng>j
3. Step : pu does not charge E-exceptional sets:
Setting 1(A) = u(ANFy,) for A € B(F) we may interpret  as a Borel measure on £. We
will make no distinction between g and i in the following. Let (Ej)ren be an arbitrary
E-nest. Then (with the complements in F)

< lim liminf fi,, (E})

k—oo j—oo

IN

lim lim inf / ko Rip djiy,

k—oo j—o0 BE

< ko Jim Tim inf / E[ / e oY) dt | djiy,
:—00  J—00

ko kli_)I{.lo cap,(Ey)

= 0
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implies that u(N) = 0 for every E-exceptional set N € B(FE).

4. Step : [t = jloe:

Let f € F. There exists (fm,)ren C Dy — Dg such that limy_o frn, = f in F. By
123, Corollary I11.3.8.,p.73] we may assume that (.fmk)kEN C 53 — Eg converges &-
g.e. to some &-q.c m-version fof f. We will show that (fmk)kEN is L'(p)-Cauchy. Since
| fmk —fml | € Cyp(Fy,) and | fmk — fml |< € o frmy T Chomy—frmy E-q.e. (cf. the proof Lemma
2.8 for this estimation) where €y,, 1, , €, - fn, are canonical regularizations we have

/ | fmk o fml | d/'L S Jli)rgo éfmk _fml + éfml_fmk d/:bn]
S El(efmk*fml + efml *fmka GlSO)
<

1€ fomy,—Fomy € frmy = g 12|14

and we conclude by [23, Lemma [11.2.2.(), p.66]. Then for a new subsequence eventually

/ fdy = lim lim / o, i,

k—o00 j—00

= lim lim & (fm,. (C19)5,)

= &/ (Gip));

but since p does not charge £-exceptional sets by 3.Step the equality holds for every
E-q.c. m-version f of f. Now let f € Px. Then since lim, .o, aR,11u(z) = u(z) for £-q.e.
z € Fif u is £-g.c. and bounded we have

/fdu = sup/f/\ndu
n>1

= sup lim [ aRus1(f An)du

n>1 a—0o0

= sup lim & (aGay1(f An), (61%0)00)

n>1 ¥~

= lim &(f.aGasi(Gro)0)-

Hence p = i by Theorem 1.4.
O

Remark 1.10 (i) A C FE is called nearly Borel if there exists By, By € B(F) such that
By C A C By and By \ By is E-exceptional. Then Theorem 1.9 extends to nearly Borel
sets. Indeed, we have A C By U (By \ By) and

capw(A) = capw(Bl) = capw(Bg)

hence if cap,(A) > 0 by Theorem 1.9 there evists p € Soo with p(By) > 0 but then
w(A) = u(By) > 0. The fact that A is in general not B(E)-measurable doesn’t matter
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since for convenience only we restricted ourselves to (F,B(FE)) in Theorem 1.4. Actually
e g§\00 is defined on muE§00 0(75].— — 737.-)“ (cf. the paragraph before Lemma 1.7 for the
meaning of this) which contains any nearly Borel measurable set. Finally, we can call the
nearly Borel set A E-exceptional if cap,(By) = 0.

(i) Since we may divide each p € Sy \ {0} by its total mass the assertion of Theorem
1.9 remains true if we replace Sog by {1 € S | p(E) = 1}. Note also that if (Go)aso is
sub-Markovian we may replace Soy by the larger class {pa | ||]|oe < 00 and pa(E) < 0o}
and then our definition coincides with the one of [8,p.78].

(iii) Note that if every element in Pg 3 admits an E-q.c. m-version (e.g. in the case

where € is a quasi-reqular (semi-)Dirichlet form in the sense of [15],[14]) then before
1.Step : in the proof of Theorem 1.9 one can show directly supp(fiso) C K. Indeed we

may assume that G1p, (Glgo)gj, a Ra+1(G190)§j are continuous on Bj for every j, a € IN.
We may also assume that G1p > % on each Ej. We then have for each j € N

/Glgo — (G19)p, dfic = lim lim lim /(Gl@)ﬁj — a Roi1(Giy)g, A,

B
a—oo n>j 3—oo Bn

< lim |(Gio)p, @ Rus(Gaglp e, [ KiGr die

and the last expression is zero by Dini’s Theorem ( here || - || 5, denotes the sup norm
on the compact space B;). We then conclude as in the proof of Lemma 1.7.

1.3 Smooth measures

In this subsection similar to [8], [18] we will define smooth measures and measures of
finite (co-)energy integral and show that these measures have properties similar to those
in [8], [18]. Throughout the whole section we assume that we are given a quasi-regular
generalized Dirichlet form (QR) and an m-tight special standard process M which is
properly associated in the resolvent sense with £ (IM®*).

Definition 1.11 A positive measure p on (E,B(E)) is said to be of finite 1-order co-
enerqgy integral if there exists Uyp € V, such that
/ Gihdp = E(Gih, Urp) (17)
E
for all h € 'H and for all £-q.c. m-versions (f}'ﬁz of G1h. The measures of finite 1-order
co-enerqy integral are denoted by Sy.

Let w4 € 73]? and pg be the associated measure of Theorem 1.4. Then Uluﬁ = u. Hence
obviously Spg C Sp. Clearly u € Sy does not charge E-exceptional sets. Furthermore
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(/J\'lu € P because for any f € H* we have

(f, ﬁl# - Oé@aﬂﬁlﬂ)?i = / é\l?d# - (aGa+1fa (71#)71
E

— [ Gif — aGuirGifdp >0
FE

since_é\lj" — aGa1G1f >0 E-q.e. hence p-a.e..
Let PG1H,,+ denote the totality of £-q.l.s.c. regularizations of the elements in PG1H,,+- Let
uE fGlH;r. Then [, Udp = sup,g [ @Rar1udp = lima o0 €1 (u, aéa+1(71u) exists as a

bounded and increasing limit for all w € famj- Now let @ € P. Since limg, oo @R 10 =0
E-q.e. for any v € C({F}}) N B, we have E-q.e.

w=supwAn = sup lim aR,1(WAN)
n>1 n>1 Q=00

= supsup aR,1(Ww A n)
n>1 a>0

= supaR,jw.
a>0

Hence if a function u € P H admits an £-q.c. m-version then this m-version coincides
E-q.e. with its canonical regularlzatlon Thus [, udp = [, udp and therefore - (17) extends
to all f € PG T PG H+ in the sense of Theorem 1.4. Note that PG M~ PGlH;r is also
a vector lattice Wthh separates the points of £\ N and hence could have also been used
as a space of test functions in Theorem 1.4.

On the other hand only if U1 e 73 Slmllarly to 4.Step of the proof of Theorem 1.9 we
can show that (17) extends to all f € F. Also only ifue 79 (and not for all & € P 1) by
Theorem 1.4 we can show the existence of p; € So.

In the following proof (ii) = (i) of Lemma 1.12 we shall see that p € Sy can be identified
with some L, € (V'), i.e. the bidual of V.

Lemma 1.12 (QR)) The following statements are equivalent for a positive measure [ on
(E.B(E)):

(i) p is of finite 1-order co-energy integral.
(ii) There exists C > 0, such that

| [ Gihdul < C|Gib»
E

for all h € H and for all £-q.c. m-versions é\;h of G1h.

Proof (cf. [18]) Let us assume that (ii) holds. Clearly x then does not charge E-exceptional
sets. Define L,(h) = [, Gihdp, h € H. Since |L,(h)| < C||G1h|z < C|WillLon Ry
where ||W1|| () denotes the operator norm of W, : V' — F. Since H C V' dense we may
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extend L, to a continuous linear functional L, on '. But then by [28, TV.8.Theorem 1]
there exists a unique Uy € V, such that L,(f) =< f,Uip >y for all f in V' and (i)
holds. (i) = (ii) is clear.

O

Definition 1.13 A positive measure 1 on (E,B(E)) charging no E-exceptional set is
called smooth if there exists an E-nest (Fy)ren of compact subsets of E, such that

u(Fy) < oo forall k€ N.

The smooth measures are denoted by S.

Until the end of the section we assume that the coresolvent (G, )as0 is sub-Markovian. We
abbreviate this assumption by SUB. The following lemma will be needed as a preparation
for Lemma 1.15 below.

Lemma 1.14 (QR, S/UT3) Letu e F, o € H, 0 < ¢ < 1. Then cap,(lu| > ) <
o (K+1)? |2

e F

Proof Let U := {u > 0}, V := {—u > 0}. Then, since G1¢ < § m-a.e. on U, G1p < =%
m~a.e. on V

cap,({| w [> A}) < cap,({u > A}) + cap,({—u > A\})
E1(Grp, (Gip)v) + E1(Grp, (Gip)y)

< &5, Gig) + €5, (Gre)v)
< D1 @oly + 1@yl

~

By sub-Markovianity of (éa)a>0 we have in particular that (Gi¢)% < 1 m-a.e. on U,
hence
(Gl < lim E1((Gip)i, (Gie)p)

a— 00

T u -~ a
< lim gl(x, (G1QO)U)

- a—oo

K+1 ~
D o @il

Therefore [|(Gio)ully < Y52 |lul|z. Similarly we get [|(Gro)vlly < P52 |jul|F and the
assertion follows.

<

0
Using the preceding Lemma 1.14 and Lemma 1.12(ii) the following lemma can be shown
exactly as in [8, Lemma 2.2.8.,p.81].

Lemma 1.15 (QR, S/UT3) Let p € H, 0 < < 1. Let v be a finite positive measure on
(E,B(E)) such that there ezists C' > 0 with

v(B) < Ccap,(B) for all B € B(E).
Then v € §0.
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Since cap,, ¢ € H, 0 < ¢ < 1 is a Choquet capacity and the proof of [8, Lemma
2.2.9.,p.81] only uses general properties of Choquet capacities the following lemma can be
shown exactly as [8, Lemma 2.2.9.,p.81]. Note that for the proof we need much less then

QR.

Lemma 1.16 (QR) Let v be a finite positive measure on (E,B(E)) charging no E-
exceptional set (i.e. a finite smooth measure). Let o € H, 0 < ¢ < 1. Then there exists
an E-nest (Fi)ren, such that

v(A) < 2kcap¢(A) for any Borel set A C Fy,.

Theorem 1.17 (QR, S/U\B) Let p be a positive measure on (E,B(E)). Then the follow-
ing statements are equivalent:

(i) pes.
(ii) There exits an E-nest (Fj)ren consisting of compact subsets of E, such that

Ip, -1 € §0 for each k
where 14 - (B) == p(ANB) for ACE, B € B(E).

Proof Let us assume (i). Then there exists an E-nest (Ej)ren consisting of compact
subsets of E, such that 1g, - i1 is a finite positive measure charging no £-exceptional set
for any k. Let ¢ € H, 0 < ¢ < 1. By Lemma 1.16 we can find an £-nest (Ek)keN such that
g~ - 1(A) < 28cap,(A) for any k and for any Borel set A C E}, but then also for for
any k and for any A € B(E). Therefore (i) follows by Lemma 1.15 with F}, := E}, N Ej.
Let us assume (ii). Let ¢ € H, 0 < ¢ < 1. There exits an E-nest (Ej)ren consisting
of compact subsets of £ and an £-q.c. m-version of élvgo of Gip, such that 1g, - p €
Sy and such that ké:p > 1 on Ej, for each k. Therefore pu(FEy) < k:fEéIplEk dpy =
E1(Grp. Ui(lg, - p)) < oo.

O
In the following we will need some preparations in order establish a relation between the
classes Sy (which we defined in section 1.2) and S. The methods in [8], [16] to develop
such a relation rely heavily on the symmetry of the domain of the form, the sector con-
dition and the invariance of the Dirichlet space under truncation. Since in general none
of the above mentioned properties are available for generalized Dirichlet forms we have
to develop a different procedure. We remark that this procedure takes advantage of the
behaviour of the associated process in an essential way.

For B € B(F) let
B :={z¢€ E| P.(op: > 0) =1}.

If I C F is closed then F is called the fine interior of F.

In the following Lemma 1.18 we shall not make use of the sub-Markovianity of (@a)a>0.
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Lemma 1.18 (QR, M®*) Let (Fy)ken be an E-nest. Then

ﬂ(E\F,S) and ﬂ(E\F,:eg) is E-exceptional.

k>1 k>1

Proof Let B € B(F). We first remark that B°, B" is nearly Borel. To show this let
o€ L*(E;m)NB, 0 < ¢ <1. Then

1.

S|

{Rip — R7%%p > 0} = | J{Rip — R7® ¢ >

neN

Thus, since by Lemma 1.7(ii) R7? ¢ is £-q.l.s.c. it is easy to see that { Rijpo— R{"Fp >
0} is nearly Borel. Since {R;o — R7?*™¢ > 0} = B’ up to an E-exceptional set B is
nearly Borel too. The same is also true for B™ since B™9 = ((B¢)")¢. Now let p € Sgp.
Then

o0

/R?F’smwdu > / E[/ e *p(Y) ds | p(dz)
E E\F} o

i
= / Rypdp.
E\F?

By [23, Lemma I[V.3.9.] R:Fﬁ’oogo is an &-q.l.s.c. m-version of (Gip)re and since (Fy)ren
is an E-nest we have limy,_.o(G1¢)re = 0 weakly in V. Therefore

0= lim RTF’?OOQO dp > / Ripdu

hee Ni>1 (E\FY)
which implies p(Mg>1(E \ FP)) = 0. By Remark 1.10(i) we then have that N> (E \ FP)
is E-exceptional. Since B C B™ for any B C E we have Mi>1(E\ F{) C Mi>1(E\ FY)
and then N> (E\ F;%) is E-exceptional too.
]

Remark 1.19 Note that the assertion of Lemma 1.18 is not trivial as one might suspect

p.-139]) Fy, \ Fy% is not polar. In our framework, as it is well known from the parabolic
case, semi-polar sets are not polar in general. This is from the potential theoretic point of
view an important difference to the case of classical Dirichlet forms in the sense of [8],
[16], [15]. As an example consider the uniform motion to the right on the real line, i.e.
H =YV =I13R.dz), F = F = H3(R), p.f (z) = f(z +1), z € R.t > 0. Let [a,b] be the
closed interval from a to b. Then [a,b] \ [a,b]"®9 = {b} is semi-polar but surely hit if we
start at ¢ < b. Thus [a,b] \ [a,b]" is not polar. Furthermore, since the Dirac measure 6,
is in Sy for any x € R we have also that [a,b] \ [a,b]" is not €-exceptional.

For the rest of the section let us assume that in D1 (ii) the adjoint semigroup ((7,5),520
of (Up)i>o can also be restricted to a Cy-semigroup on V. Let (A, D(A,H)) denote the
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generator of (U,)i=o on H, A(u,v) := A(v, u), w.v € V and let the coform & be defined as
the bilinear form associated with (A4, V) and (A, D(A, H)). Note that since (Go)aso was
assumed to be sub-Markovian the corresponding statement of D2 holds for the coform.
The coform is hence a generalized Dirichlet form too. Let us further assume up to the end
of this section that the coform £ is quasi-regular too. We will abbreviate the assumption
that € is a quasi-regular generalized Dirichlet form by QR

We fix an m-tight special standard process M = (€, (ft)t>0, (Y})DO, (P.).eg,) with life-
time ¢ and shift operator (Gt)t>0 such that the resolvent R, f = Elf, T emalf ()7}) dt] is
an S—q.c. m-version of Gy f for all f € HNDB,. M is then said to be properly coasso-
ciated in the resolvent sense with £. Recall that we always assume that (]—A})tZO denotes
the (universally completed) natural filtration. Necessary and sufficient conditions for the
existence of such a process are given in [23]. M is then in duality to M w.r.t. m. We will
use the abbreviation Me* to express our assumption that such a process exists. Symbols
with a superposed hat as

~

El..],08, EB, B67 B, /é’\—nest, g—exceptional, E—q.c., ... ete.

correspond to the coassociated process or the coform and are defined analoguous to the
corresponding objects in terms of the associated process M.
We remark that by the discussion right below (12) we have for any open set U that

cap,(U) = E1((G19)v, Grp) = E1(Grp, (Grp)) =: @b, (U).

But since analoguous to the corresponding statement for £ (cf. paragraph before Theorem
1.9) we have that an increasing sequence of closed sets (F)ren is an E-nest if and only
if limy, . cap,,(Fi) = 0 we can see that E-nests and E-nests coincide hence E-exceptional
sets and £-exceptional sets coincide.

Lemma 1.20 (i) (QR, M®) Let g € L*(E;m) N B, . Let F C E, F closed. Then there
exists relatively compact subsets (B, g)nk>1 of E (resp. compact subsets (B, )nx>1 of E)
such that By C Bryik C Bug C Bugrts Pu(Ugsi Nzt Buk) = Bu(F) for any p € Spo
and

RY™™g(z) = lim lim R "7 g(2) = lim lim R nk’oog( )= lim lim (Gig)5, ( )

k—o00 n—o00 k—o00 n—00 k—o00 n—o00

for E-q.e. z € E. In particular there exists open subsets (Uy )nx>1 of E such that

RPF>¢(z) = lim lim R, ”kvoog(z)

k—o00 n—oo

for E-q.e. z € E.
(ii) (QR, M*®*, QR, Mex) Let F C E, F closed. Then

SUpp(uE_[ )CF

fBOF e*Sg(Ys)ds:|

for any g € L*(E;m) N BT,
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Proof (i) By quasi-regularity there exists an E-nest (Fy)ren of compact sets. Let py,
k > 1 be a metric on Fj, compatible with the relative topology on F}, inherited from E
(cf. Remark 1.8). Define for n,k > 1

1
Bn,k = {Z € Fy, | pk(FﬂFk,Z) < ﬁ}’ Bn,k = {Z € Fy | pk(FﬂFk,Z) < }

S|

Obviously lim,,_, DBn,k < Dpnr,. Also note that since DBn,k is increasing in n and
Bn,k O I'NF}, for all n we have {hmnaoo DBn,k: < C} = ﬂnZl{DBn,k < C} D) {DFka < C}
Fix z € E. Since M is special standard by quasi-left continuity up to ¢ we have

lim YDBM = Yimn—o D, P,-a.s. on {nh_)rgo Dp,, <}

n—oo

But on {lim, . Dp,, < ¢} we have P.-as. Ypp , € B, and hence lim,_ ., Yp
Vi o D5, € s1 By = F N F. It follows that

Bn,k:

lim Dank = DFﬂFk Pz—a.s. on {nh—>nolo Dank < C}

n—oo

Since z € F was arbitrary this holds for every z € E. For A € F,, f Fo-measurable, let
Opc,

Ez[f;A] = Ez[flA] Now using that limg_, Ry *
¢} D {Dpnr, < ¢} we obtain for E-q.e. z € E

oog =0 E—q.e. and {hmn—»oo DBn,Ic <

RY*%g(z) = Jim B (2)

k—o0

= lim EZ[ / e *g(Ys)ds;{ lim Dp,, < C}]

k—o0

Drnr,
= lim EZ[ / e g(Ys)ds;{ lim Dp,, < C}]
k—oo Drnr, /\O_FIS n—0o00
= klim lim EZ[/ e *g(Y;)ds;{ im Dp, , < C}]

Dank/\O'F;;:
. . Dp kAUFC7OO
= lim lim R, ™ %

k—o0 n—00

9(2)

where the last identity followed since by Lebesgue’s Theorem for £-q.e. z € E

lim_ lim .| / e=*g(Y;)ds; { lim Dy, , > C}

k—o00 n—00
DBn,k /\LTF]g

= lim EZ[ / e *g(Yy)ds;{lim Dp_, > C}]
1 n— 00 ’

k—o0 imp— oo DBn k/\aFﬁ

< lim EZ[/ e g(Ys)ds;{ lim Dp, , > C}] =0.

k—o0 UF,S
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Observe that U,y := By U F is open in E hence Dp, , A ope = 0p,, N 0pe = oy, -
Therefore
k/\UF;c:,oo

D D oo
lim lim R, Fn, g(z) = lim lim R, Bk 9(z)

k—o00 n—00 k—o00 n—00

= lim lim R; ™ g(2)

k—00 n—o00

for £-q.e. z € E. Finally, we also have (recall that the bar over an 1-excessive function de-
notes when not otherwise stated the “canonical” £-q.1.s.c. regularization) (G1g)5 i (2) <

(G5, (=) < Crg)s, (=) and (Crg) s, wore() < (Gi9)p, ,(2) + (Gig)el2) for E-c.
2 € F. Hence

. . DBnk/\(ch,oo . .
lim lim R, ™ *g(z) = lim lim (Glg)BnkuF,g‘(z)

k—o00 n—o00 k— o0 n—00

= klim lim (Glg)Bnk(z)

= lim lim (Gig)g_, (2)

k— o0 n—00

for £-q.e. z € F and (i) follows.
(ii) Let (B x)ni>1, be asin (i). Let ¢ € L*(E;m) N B, 0 < ¢ < 1. By (i) but in terms of
the coassociated process we have

E(/ﬁ e_sg(?;)ds) = kh_}I{.lo 7111_%10(619)§nk m-a.s..
Now similar to the proof of Theorem 1.9 (alg)ﬁn . converges weakly in V' (as n — 00) to

some (alg)gm . such that supp(u(@lg)E ) C F'N Fj. Hence
’ 0,k

k—o0

/ Rupdig pp csg@na = 0 [ Rapdpg,

Eoo,lc

k—o0

. Dpnp, ,00
= Jim f R odug,,

Define for k > 1 .
By, = {2 € Fpn| pm(FNFy,z) < 7}

Then by (i) and since op; 1, m>1, is exact we have

lim RIDFﬁFk’Ong dp

k—o0 (Glg)ﬁoo,k

Opr 00

= lim lim lim lim aRa+1R1Bl’m SOdM(élg)E
o0,k

k—00 m—00 [—00 a—00

28



< lim T lim lm [ aRan By @dpg s g
F

k—00 m—00 [—00 a—00

o Dp,00 N R
- / Rl i ¥ d/‘LE (fgoF e~ 5g(Ys)ds)

and the assertion follows.

O
We are now in the situation to formulate the main theorem of this section.

Theorem 1.21 (QR, M, C)I\{, ﬁex) Let i € S. Then there exists an E-nest (Fy)ren
consisting of compact subsets of E such that

Lprea - p € §00 for each k> 1.

Proof By Theorem 1.17 we know that there exists an £-nest (Ej)r>1 consisting of
compact subsets of E, such that 1g, - p € Sy for each k. Choose kg > 1. Let ¢ € H,

0 < ¢ < 1. Let Gy be an E-q.c. m-version of Gy, let (71(1Ek0 1) be an &-q.ls.c.

regularization of (71(1 Ery w). We may assume that both m-versions are chosen w.r.t.
(Ek)r>1 and that @190 > % E-q.e. on E;, for each k. Observe that ﬁl(lEko ), @190 are
finite £-g.e. and that CA?lgp > 0 &-q.e.. Define

Fk = {Z € Ek | ﬁl(lEko . /J) S ]{3261@}

Obviously (Fy)ren is an increasing sequence of compact subsets of E. We first show that
(Fy)ken is an E-nest. Indeed

lim cap, (Fy) = lim cap,(E{U{= € By | Ui(1g,, - 1) > K*G1p})

k—o00

IN

lim cap,,(Ey) + kll_{lgo cap,({z € Ej | (71(1Ek0 ) > k})

k—oo

Ijirgocapw({ﬁl(lEko “p) > k})

IN

IN

.1 7
Jim =l U1 (1, - 2)loe = 0

where the last inequality followed form [23, Proposition 3.6.,p.71].
Since Fy C Ej implies lpres - p(B) < 1g, - p(B) for any B € B(E) we know further

from Lemma 1.16, Lemma 1.15 that 1 Frev - jL € §0 for each k. Lemma 1.6 implies that
R p(2) = RlDF’“’Oogo(z) for m-a.e. z € E. By Lemma 1.20(ii) we have

(0. Ol = [ Baplagos d
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= [ etotas] (o u)

Fy,
(o.0)

= lim aRa+1E.[/ e_sgo(}/;)ds](z) 1prea(2) pu(dz)

a—0o0
O'Fk

= O}LI& a§a+1ﬁl(1F£eg cp))du

E. [ f;oFk eisW(YS)d3:|

- /ﬁl(lFieg ) AR Ghp dp
NP

< (o [71<1Fk“9 1) ARG

Therefore U, (1 pres s f) < Uy (1 Fres © ) A k2G o which implies the assertion.
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2 Stochastic analysis by additive functionals

2.1 Positive continuous additive functionals and Revuz measure

We assume that we are given a generalized Dirichlet form £ which is quasi-regular and
an m-tight special standard process M which is properly associated in the resolvent sense
with £.

A family (A;)i>o of extended real valued functions on  is called an additive functional
(abbreviated AF) of M = (£, (Fy)i>0, (Ye)t>0, (P2)zemy ), if:

(i) As(-) is Fr-measurable for all ¢ > 0.

(ii)) There exists a defining set A € F,, and an E-exceptional set N C E | such that
P.JA] = 1 for all z € E\N, 0;(A) C A for all t > 0 and for each w € A, t — A;(w) is
right continuous on [0, c0) and has left limits on (0, ((w)), Ao(w) = 0, |As(w)| < oo for
t <((w), A(w) = A¢(w) for t > ((w) and Ay s(w) = Ar(w) + Ay(bw) for s, >0

Two additive functionals A = (A;)i>0, B = (By)i>0 are called equivalent (notation
A = B) if for each t > 0 P,(A; = B;) = 1 for £-q.e. z € E. We can then find a common
defining set A and a common E-exceptional set N, such that A;(w) = By(w) for all w € A
and t > 0. An AF A is called a continuous additive functional (abbreviated CAF), if
t — Ay(w) is continuous on [0, 00), a positive continuous additive functional (abbreviated
PCAF) if it is a CAF and A;(w) > 0 and a finite AF, if | A;(w) |[< oo for all t > 0,w € A.
For a PCAF A and a function f € Bt we set (f-A); = fot f(X) dA,. For a Borel measure

voun E and B € B(E) let P,(B) := [ P,(B)v(dz) and let E, be the expectation w.r.t.
P,. The energy of an AF A of M is then defined by

oo

1
e(A) = §JL%a2Em[/ e_”‘tAfdt], (18)
0

whenever this limit exists in [0, 0o]. We will set 2(A) for the same expression but with lim
instead of lim. As usual we set

o0

U f(z) = E[/ e‘atf(Yt)dAt]

0

for a PCAF A of M and f € B*. Then we have the following resolvent equations (cf. e.g.
22,36.16]) for 0 < a < B and f € B*

Usf=ULf+ (B— a)RULF = ULf + (B — a)RaUS S, (19)

but one has to be careful not to subtract when no finiteness assumptions on Uﬁ f are
made.

From now on up to the end of this section let us assume that the coresolvent (G\a)a>0
associated with & is sub-Markovian. As before we use the abbreviation SUB for this
assumption.
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Theorem 2.1 (QR, M*®*, S/UT3) Let A be a PCAF of M. Then there exists a unique
positive measure pa on (E,B(F)), charging no E-exceptional set and called the Revuz
measure of A, such that

[ee]

/EfduA = o}gganm[/ e_o‘tf(Y})dAt] for all f € B*. (20)

0

Furthermore, there exists an E-nest of compact sets (Fy,)n>1 such that pa(F,) < oo and
such that Uilg, is an E-q.l.s.c. m-version of some element in PGmb*fOT each n.

o~

Proof By sub-Markovianity of (Ga)as0 and (19) we have
/ aUgfdm = / QU f + aR U™ fdm < /(a + 1)U f dm.
B B B

Hence p4 exists as an increasing limit. Clearly pa does not charge £-exceptional sets. Fix
© € LY(FE;m) N B such that 0 < ¢ < 1. For z € F set

¢

O(z) := Ez[ / e p(Y,)e 4 ds]
We have for £-q.e. z € E
¢
e 'pi(Rip — @) (2) = Ez[ / e p(Y,) (1 — e~ Aeet) ds]

¢

E[/ e_sgo(Ys)(l—e_As)ds] (21)
< (Rip —9)(2)

IA

and
lme p(Rap = ®)(z) = (Rup = )(2). (22)

By (21) we know that R;p — ® is 1-supermedian for (R,)aso. Since Ry — ® < Ryp €
L*(E;m) it follows from [23, Lemma I11.2.1., p.65] that Ry — ® is an m-version of some
l-excessive element in Pg .+ It is easy to see that (21) together with (22) imply

sup aRo 1 (Rip — @)(2) = (Rip — @)(2)

a>1

for £-q.e. z € F and therefore Ry — ® is £-q.l.s.c.. A simple calculation (cf. the original
proof [20, p.509]) gives
Ui® =Rip—® E&-qe.

hence —® is E-q.ls.c.. Let (E,),>1 be an E-nest of compact sets such that —® € C;({E,.}).
It follows that

1
F,=E,N{®>—-}, n>1,
n
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is closed in E,, hence compact. We will show that (F},),>1 is an E-nest. To see this set
1
B,=E,N{®d <=}, n>1,
n

Then F¢ = B,, U E¢. Let {t;}ien C (0, 00) dense and define for A C B(FE) stopping times
ok == min{t; | 1 <i < k,Y;, € A}, k > 1, with the convention min ) = oco. Also set
e~ f(Yy) = 0 for f € Bf. Observe that for U C F, U open oy = limy_ of:. Then,
using Lebesgue’s Theorem

¢ ¢

EZ[ / e *p(Y,)e s ds] = lim F, — / e *p(Y,)e ds]
ope k—oo L U%nUE%
S
= lim F, / e *p(Ys)e ds}
k—oo L G%n
r —ok —A
— lim B[ P by, )]
k—oo L Bn,
1
S —
n

for £-q.e. z € E. Using again Lebesgue’s Theorem and that e *¢(Y;)e™ > 0 on

5 < ( P, —a.s for £-q.e. z € I/ we obtain P, (lim,_.op: < ¢) = 0 and consequently
(F)n>1 is an E-nest by [23, Remark IV.3.6.,p.91].

Finally (as in [20, Lemme I1.2,p.508]) Uilp, < nUi® < nRyp E-q.e. implies that
wa(F,) < 0o, n > 1. Indeed, by the resolvent equation (19) and the sub-Markovianity of
(éa)a>0 we have forall 6 >1,n>1

[8Bame—Uitn)am = [ B(Rine-Ul1n) - (3 - 18 RalRin g — UiLs,) dm

> /ng@—Ulendm > 0,

hence [ B Rgnpdm > [ U1, dm for all B > 1, and therefore p4(F,) < [nedm < oo,
n > 1. Clearly U1, is £-q.Ls.c. and by [23, LemmaII1.2.1.(i),p.65] U} 1F, is an m-version
of some element in P, HE for each n.

0

Remark 2.2 (i) (QR, M, S/UT3) Let A be a PCAF and let pa be the associated Revuz
measure of Theorem 2.1. We know that there exists an E-nest of compact sets (F,)nen
such that p(F,) < oo and such that U\1f, is an E-q.l.s.c. m-version of some element in
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Peayn; - Hence by (19) for any p € Spo, t > 0

t

Eu[At] — lim E[/ 1Fn(Ys)dAs}dp

n—oo

oo

< ¢ lim E[/ e‘len(YS)dAs}du
0

n—oo

= €' lim lim & (aRai Ulen,ﬁlp)

n—00 d—00

— ¢ lim lim & (Ry(aUS 1), Urpt) = €Ul oepia(E).

n—oo x—oo

where | - | denotes the L>°(E;m)-norm.
(i) (QR, M®*, SUB) Since pa is o-finite there exists g € L*(E;pua) with g > 0. Let
feBt. Then

/fd;m = sup/ng/\fduA

n>1

= sup lim a(Ug(ng A f), 1)

n>1 &=

t

= supsup%Em[/ (ng/\f)(Ys)dAs]

n>1 t>0

0
= igg%Em[/o f(Ys)dAs]

The third equality follows from a theorem of Tauber (cf. [29,V 4.3, p.192]) and since t —
Em[ fot f(Ys)dAs} is subadditive in t.

Let us from now on up to the end of this section assume that the coform Eisa quasi-regular
generalized Dirichlet form and that there exists an m-tight special standard process M
which is properly coassociated in the resolvent sense with g (cf. paragraph just before
Lemma 1.20). As before we use the abbreviations Qﬁ, M®* for these assumptions. Note

that the assumption C/zf\{ includes the assumption SUB.

Lemma 2.3 (QR, M*®*, C/)ﬁ, M\ex) Let iy be the measure defined in Theorem 2.1. Then
we have for every f € BY, g € L*(E;m) N By(E)*, 8> 0

[ FRagdua = Jim a(U5* 1. Rog) (23)

Proof (cf. proof of [16, Lemma4.1.7.,p.91]) Let f € BY, g € L*(E;m)N B, 3 > 0.
Similar to the proof of 2.1 the measure piﬁg(f) = limg_o a(USTPf, Rgg) exists and is

o-finite. Furthermore since ¢ — Ep_ [ fot e Psd(f - A)S] is subadditive in ¢, it follows

am
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similar to Remark 2.2 that ,uRBg(f) = limy ) 1 B gm[ Jo e PR f(Ys) dA, ]

Now let g € L*(E;m) N By(E)* such that 0 < g <1 and h := ﬂR/jg, 3 > 0. Let further
f € BTN LY FE; ). By Remark 2.2 we have

t

[ hrdun = twiEa| [ s da]

t10
t

— tim B[ [ hOD (AL

0

Since h is E-q.c. (= éA’—q.c.) it follows that the integrand above is an integral in the sense
of Lebesgue-Stieltjes. Therefore we have

n—1
[ isdus =t ] i Y RO Aena = 0 A
k=0

t]0
1 n—1
g s [100 o)
k=0

where d := % Then by the strong Markov property

/hfd,UA = 13%11111_{20 Z/ h(Yka) Eka[(f'A)d} ] m(dz).

Set u(z) = h(z)EZ[(f : A)d] The sub-Markovianity of (@a)a>0 implies that m is ps-
supermedian and then

n—1
o1
/hfduA = ltlf?r}gﬂlo%];/E prau(z) m(dz)

< lim lim 2~ h(z)Ez[(f-A)d]m(dz)

tl0 n—oo t [

= 1(%{101 éEhm [ (f- A)d}

1 d
= B[ [ emara.] = b
h is B-coexcessive, so is 1 — h. Therefore we will get as above [ (1 —h)fdua < pa(f) —
p™ (f), which further implies (23) for h = aR,g. g € LA E;m)N B, feBYNLYE; pa).
Since 4 is o-finite the statement of the Lemma follows by a standard argument.

O
Before we state and prove Lemma 2.4 let us remark the following. Although a lot of
statements in [23, Chapter I11.,IV.3] are only formulated for 1-excessive functions (resp.
1-coexcessive functions) they readily extend to y-excessive functions (resp. y-coexcessive
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functions) for any 4 > 0. One only has to observe that the solutions h, € F and h, € F
in [23, Proposition I11.1.6.] are given for £; hence for v = 1. Actually these solutions
exist for any v > 0. We will make use of this fact in the proof of Lemma 2.4 and shall
here present briefly the modified statements of [23] if we allow v to vary over (0, 00).

For any v > 0, f € B;*, E, [e*VUUva(YUU)] is an &-q.l.s.c. m-version of the ~-reduced
function (R, f)u~ of Ry f on U (cf. [23, IV.3.4.] where this is proved for v = 1).
If f e F is y-excessive, f € F is y-coexcessive and U C E is open then

SV(fU,'yv f) = g'y(f: fU,’Y)

where fy . (resp. fUﬁ) is the y-reduced function of f on U (resp. the vy-coreduced function
of f on U).

Let 7 be an exact (F;)-terminal time. Let us define (RB%") 450 exactly as (R%7 Jao (cf. para-
graph before Lemma 1.6) but in terms of the coassociated process. Note that (R%7) g is
a resolvent as was already shown for (R%™ )a>0 in Lemma 1.7(i). A function f € H N B**

is called 1-cosupermedian for ( Naso if aRaHf < f,a>0.f € HNB is called

A% )aso if f is I-supermedian for (Rgﬁ) o and if lim,_ o O‘Rojqf f.

a

1-coexcessive for (R

Lemma 2.4 (QR, M, QR, M%) Let F C E, F closed. Let A be a PCAF and let pus

be the corresponding Revuz measure of Theorem 2.1. Then

Ofpc “
lim aF; [ / et £(Y)) dAt] = / ~ hfdpa
0 E\Frey

a— 00

for any ~-coexcessive function h w.r.t. (ﬁg’&”)aw and any f € BY. Furthermore the limit
18 INCreasing.

Proof It is enough to show the statement when f € B; and h is 1-coexcessive w.r.t.

(Eg’&FC)a>0. By Theorem 2.1 there exists an £-nest (Fj)ren consisting of compact sets
such that Uj1g, € PGm,j for any k. It is easy to see that the strong Markov property

of M implies E, [e‘ﬂ”Ugg(Ya)} = EZ[ f;o e‘ﬁsg(Ys)dAs], for any F;-stopping time o,

B >0, g€ B. Then by (19) and the remark in the paragraph just before the statement
of this lemma

o /O e (V) d(1, - A),
= a(h, Ua+1 o E[ (a+1aFcUa+1A)f( UFC)})H

= [}LH&O Od(h, 5R5+a+1U(1Fk-A)f - F. |:€_(a+1 UFCﬂRﬁ—l-a—l-lU(lF f(Yo'Fc) )H
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- Bh—>nolo a5a+1(Ra+16Ug_;a;:§f - (Ra+lﬂUﬁ+a._,:§f)FC,a+la §a+lﬁ)

= lim afui(R Ros1BUGE T f. Raah = (Rasih)pes)

= [ faRM hdpa.

Fy,
Now the assertion follows if we let first k& and then o tend to infinity.
OJ

Theorem 2.5 (QR, M, Qﬁ, ﬁex) Let A, B be two PCAF ’s. If us = up then A= B
(i.e. A~ B).

Proof Fix ¢ € L}(E;m)NB, 0 < ¢ < 1. We may choose (cf. the proof of Theorem 2.1)
an E-nest (Fy)ren consisting of compact sets such that Uﬁl s U 51 r, < kRyp for every
k € IN. Tt follows from (19) and (23) that for any g € L*(E;m) N B, k> 1

(Uﬁlpk,g)H = lim (OzRa+,3U£1Fka9)H

= lim (aU™ 15, Rsg)n

= /ﬁﬂgle dpia

= / Rysglr, dup
= hm (aU§+ﬂ]—Fka ﬁﬁg)H

a— 00

= lim (aRarsUpln. 9)x = (Upls. 9.

Hence U1y, = Unlp, m-a.e. and therefore Roy U515 = RaysUnlp, E-qee.. It follows
By s By _ s B _ B i
Uilp, = lim aRy3Uylp, = lim aR.ygUglp, = Uglp, &-qee..

Now fix k. Let N C E be such that @(z) := Ujlg, (2) = Uplp, (2) for all z € B\ N.
Let AW = [(15, (Y)dA,, A®) = [(1p, (Y.)dB,. Let

us(2) = E.| / e 'dAY / etaal | 1<i <2
0 0

A simple calculation (cf. [8, proof of Theorem 5.1.2.]) leads to

v;i(2) = Ek:i,jEZ[ /0 e Ay (Y)dA ], z€ FE\N.
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But since u(z) < kgR1p(2) < ky for E-q.e. z € E we have

oS B / e2da® |
0

Qkoﬂ(Z)
QkSRﬁO(z) .

vij(2)

ININ A

and hence [ v;; du < oo for any p € §00. It follows

E,u [ {/ eitdAgl) — / €7tdA§2)}2i| = /Ull — 2’012 + Voo du = 0.
0 0

From this it is easy to see that (15, - A) is equivalent to (1g, - B). Since ky was arbitrary
we get A = B.
U

2.2 Fukushima’s decomposition of AF’s and its extension

From the beginning of this section we assume that we are given a generalized Dirichlet
form &£ which is quasi-regular and an m-tight special standard process M which is prop-
erly associated in the resolvent sense with £. We do further assume that the coresolvent
(éa)a>0 associated with &£ is sub-Markovian. As before we use the abbreviations QR,
Me*, SUB for these assumptions.

For the proof of the main theorem of this section namely 2.11 below we follow the same
strategy as in [8, Chapter 5.

Let w be an £-q.c. function. Then by quasi-regularity (u(Y;) — u(Y0))i>0 is an AF of M,
and independent (up to equivalence) of the special choice u. We then set

A = (@) — a(Y0))izo. (24)

It follows from the sub-Markovianity of (é\a)a>0 that for 1 € ‘H

oo

2A) = T oL, | / e (V) — (Y0) d |

1—
= —lim « / aR,u? — 2auR,u + 2u® — u?dm
1 .
= lim a(u—aGuu, u)y — 5&/112(1 —aGyl)dm
< lim a(u —aGau, u)y. (25)

Note that a(u — aGau,u)y = E(aGau,u) = E(u,aGuu) for u € V. Hence in the case
where (Gg)aso is strongly continuous on F or ((A}’a)a>0 is strongly continuous on V we
know that g(AM) is dominated by &(u,u) for all u € F. But in general we have the
following.
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Lemma 2.6 (QR, M®*) Let u € F. Then

lim a(u — aGau,u)y < (K + 1)?|Jul/% (26)

a—00

In particular it holds that e(AM™) < (K +1)2||u||% if in addition (Ga)aso is sub-Markovian.

Proof Since

m a(u—aGuu,u)y = lim&(u,aGau)
< Tim & (u, aGu)

IA

T (K + 1)l laCul v

and
&1 (aaau, aaau)

E1(u, aGau)
(K + Dlfull #llaGaully

laGaully

VAN VAR VAN

the first assertion follows. The final assertion now follows from (25).

OJ
We will now introduce the spaces which will be relevant for our further investigations.
Define

M = {M|M is a finite AF, E[ME} < oo,EZ[Mt] —0
for £-q.e z € F and all t > 0}.

M € M is called a martingale additive functional (MAF). Furthermore define
M = {MeM|e(M)< oo} (27)

The elements of /\il are called MAF’s of finite energy.

Let M € M. There exists an E-exceptional set N, such that (M, F, P, )0 is a square
integrable martingale for all z € E'\ N. Now the following will be used quite often in the
sequel: there exists a unique (up to equivalence) PCAF < M >, called the sharp bracket
of M, such that (M?— < M >, F;, P,)¢>o is a martingale for all z € E'\ N.

We comment this. Formulations in probability theory concern a single probability space in
general. On the other hand the MAF’s M of M are defined w.r.t. a possibly uncountable
family (P.).cp\w of probability measures. Hence the classical Doob-Meyer decompostion
of the submartingale M? would only provide us a process < M >7 such that M?— < M >*
would be a P,-martingale for any z € E \ N. The sharp bracket independent of the
paramenter z € E'\ N was first constructed in [13, IIl.Théoreme 3]. Following the lines
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of argument in [8, A.3.] we will briefly illustrate how this can be done. We remark that
the construction has nothing to do with topological specialities of the state space F since
only processes from abstract probabilty spaces into IR are involved. We also remark that
the continuity of < M > (as in the classical case) results from the quasi-left continuity of
the (universally completed) natural filtration (F;):o.

Since M is a P,-martingale for any z € '\ N we can consider its usual P,-square bracket
[M]?. 1t is well known that

> (M, — M) t;=it2™"
0<i<2n
converges in L'(P,) and in probability P, to [M]?. Hence by [22, T'heorem (51.17)] or
8, Lemma A.3.3] there exists a cadlag Fi-adapted process [M] which is P,-inditinguishable
from [M]? for any z € E'\ N. Then < M >:= [M?, i.e. the dual predictable projection
of [M] is the desired process. It is positive and an AF by [8, Theorem A.3.17| and a
method which has been called a perfection. It remains to show the continuity. Since M
is special it follows from [22, Theorem (47.6)] Fr = Fr— for any predictable stopping
time 7" hence any F;-martingale is quasi-left continuous which further implies that [M]?
is continuous. Since < M > is P,-indistinguishable from the unique increasing predictable
process < M >7 in the Doob-Meyer decomposition of M? w.r.t. P, we know further that
M?— < M > is a P,-martingale.
It now follows that one half of the total mass of the Revuz measure p.,/~ associated to
the sharp bracket of M € M is equal to the energy of M, i.e.

1

e(M) = /E dptcnss. (28)

For M, I, M let
1
<M,L>t:§(<M+L>t—<M>t—<L>t).

Then (< M,L >);>¢ is a CAF of bounded variation on each finite interval of ¢ and
satisfies
E.M;L))=E.,(<M,L>) Vt>0, £-qe.z € E.

Furthermore the finite signed measure pias > defined by pearrs = %(p< M+L> — P> —
p<r>) is related to < M, L > in the sense of relation (20). If f € B, then f - pu.. .~ is

symmetric, bilinear and positive on /\jl X j\;l, where f - pcnrrs(A) = fAfdu<M7L> for
every A € B(F) and every pair (M, L) €M x M. Hence by (28) and Cauchy-Schwarz’s

inequality we have for any f € B,

| [ Fdicsss) < 17wV el )12
Define
N, = {N|N is a finite CAF, e(N) = O,EZ[U\Q@ < 00
for £-q.e.z € E and all t > 0}.
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The “isometry” (28) and the continuity statement (26) are fundamental for the stochastic
calculus related to &.
We set C =M @ N.. Namely C consists of AF’s such that

A, =M, +N, MemM,NEeN.

C is a linear space of AF’s of finite energy. Furthermore by Remark 2.2(i) this decompo-
sition is unique. We define the mutual energy of A, B € C by

[ee]

e(A,B) = L lim o?E,, e A, B, dt |.
9 a—oo 0

By the Cauchy-Schwarz inequality we know that e(A, B) = 0 when either A or B is in
N.. Therefore

e(A)=e(M) if A=M+N, MeM, NeN.. (29)

Using Theorem 1.9 and the Lemma of Borel-Cantelli the proof of the following lemma is
similar to the proof of [8, Lemma5.1.2.(i),p.182]

Lemma 2.7 (QR, M**) Let (Fy)g>1 be an E-nest. Let u, u,, € C({Fy}), n € N. Let
(Sp)nen C R, such that lim, . S, = 0. Suppose that there exists for each p € Spo and
T > 0 a constant CT*, such that

T\p

P,(sup [a(Y;) —un(Yy)| >¢) <

0<t<T

Sh.

Then there exists a subsequence (Up, )ren, such that for E-q.e. z € E
P, (ty,, (Y:) converges to u(Y;) uniformly in t on each compact interval of [0, 00)) = 1.

In contrast to [8], [18] in the following lemma we determine convergence w.r.t. a weaker
semi-norm (cf. Remark 2.9 below).

Lemma 2.8 (QR, M®*) Let u € ﬁfj where Hy+ = {u € H | u,—u € Hr} and let

e > 0. Then we have for any u € §00 and T > 0

T

- €
Bu(sup [u(Yy)] >¢e) < —llhllxllen + e—ulls,
0<t<T €

where h is in H; such that ﬁlu < (A;l h.

Proof Set U = {|u| > ¢}. Since {supoc,cq |u(Y;)| > e} = {3 €[0,T] | Y, € U;t <(} C
{ov < T;0p < (} we have P,-a.s. for E-q.e. z € E

el—ov >1 on {oy <T;op<(}

€ [u(You )| {20 elsewhere
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because it holds P.-a.s. for £-q.e. z € E that t — u(Y;) is right continuous on |0, ()
and that u(Y;) = 0 for t > (. Let &,, €, be £-q.l.s.c. regularizations of e,, e_,. Since
|| = sup,,~1 [t|An = sup,~; lim, o @Ru1(|U|An) < limy oo aRat1(ey+e_y) <&,+ey
&-q.e. it follows that
o7
P sup [A(Y)| > ) < B, Yy,)]

0<t<T

ol
< — g, te_,d
<=/ p
o
< = | Al €w+eu fla -
UJ
Remark 2.9 Let us define a semi-norm on ’F(ff by ||v]le :== |l€v + e—pl|n. Let (U)nen C
ﬁfj be || - ||e-convergent to u € ﬁfi' Then, using Lemma 2.8 we see that Lemma 2.7
applies. Since for f € F, || flle < 6K]||f|lz we have in particular, that if u,u, € F, n € N
such that u, — w in F then u, — u w.r.t. | - .

n—oo n—oo

Using Theorem 1.9 and Remark 2.2(i) the proof of the following theorem is similar to [8,
p.203].

Theorem 2.10 (QR, M®*, SU/\B) Let (M™)pen M be e-Cauchy. Then there exists a

subsequence (ng)ren and a unique M E/\jl, such that lim, . e(M™ — M) = 0 and for
E-qe. z€ekE

Pz(klim M = M, uniformly in t on each compact interval of [0,00)) = 1.

Theorem 2.11 (i) (QR, M**, S/UT3) Let uw € F. There exists a unique M E,/\il and
a unique N € N, such that

A =yl Nl (30)

(ii) (QR, M, S/UT3) Let (Fy)g>1 be an E-nest. Let u, u, € C({Fr}), n € N, such that
we have (30) for A"l n € N and such that (A=) — 0. Assume furthermore that

n—oo

the conditions of Lemma 2.7 are satisfied for u, U,, n € N. Then (30) extends to A,

Proof (of Theorem 2.11) After all preparations (among others Theorem 1.4, Theorem
1.9, Theorem 2.1, Remark 2.2(i) for the uniqueness of the decomposition, Lemma 2.6,
Lemma 2.8) we can finally show (i) similar to the proof of the corresponding statement
in [8, Theorem 5.2.2., p.203ft]. Therefore we omit the proof of (i) and only show (7).

Let (30) be valid for w,, n € IN. By the uniqueness of the decomposition we know that
MUunl — pfluml = pplun=um] Hence by (29) we have

e(MIm—uml) — g(Alm—uml) < gg(Aluml) 4 2g(Alum]).
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It follows that (A1n]), cn C ,/\jl is e-Cauchy. Hence by Theorem 2.10 it makes sense to set

MM = lim M i (M, e)

n—00

N — Al pylul
It only remains to show N € A,. Note that there exists a subsequence ny, such that
Pz(Nt[un’“] converges uniformly in ¢ on each compact interval of [0,00)) = 1

for £-q.e. z € E because by Lemma 2.7 and Theorem 2.10 the same is true for A" and
M Therefore N is a CAF. Finally

E(N[“]) (A[u—un] _ (M[u] _ M[un}) + N[un])

e
< 3g(Alenly 4 3e(M — prlend)

implies that N is of zero energy.

2.3 An Ito-type formula

From the beginning of this section we assume that we are given a generalized Dirichlet
form & which is quasi-regular and an m-tight special standard process M which is properly
associated in the resolvent sense with £. We also assume that the coresolvent (G,)a>0

associated with £ is sub-Markovian. As before we use the abbreviations QR,, M®*, SUB
for these assumptions.

Lemma 2.12 (QR, M*®*, S/UT3) Let f € By(E) and M G/\jl. Then there exists a unique
element denoted by f M 6/\31, such that

1 °
5/ fdpems = e(feM,L) forall LeM, (31)
E

Proof Let f € B, and f = f™ — f~ be its decomposition in positive and negative part.
Since for any M, L e M

|/fdM<AJ,L>| < (/ f+dM<M>)1/2</ f+d,u<L>)1/2
E E E

+ / J= dpears) V2 / F™ dpess) 7 < A flooe(M)V2e( L) 2
E E

the map L — % f 5 fdp<rrs, L €M is a continuous linear functional on M. The assertion
then follows from the Riesz lemma.

O
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f e M in Lemma 2.12 is called the stochastic integral of f(Y) w.r.t. M. Later on in
Lemma 2.15(i) we will give the justification for this definition.

Lemma 2.13 (QR, M) Let pu be a finite smooth measure. Then
5_1\77(7 C LP(F;p) dense for any p> 1.

Proof Since E;H: separates the points of F'\ N where N is an E-exceptional set £ :=
Peirt — Paypey also does. Note that o(L) D B(E\ N) and that £ is closed under

the operation f A g. The closure £ of £ in LP(E;p) is a monotone vector space in the
sense of [22, Appendices AO] and also closed under the operation f A g. Hence noting
that smooth measures do not charge £-exceptional sets an argument as in the proof of
22, Appendices A0.8] then implies that £ D B, and thus £ is dense in any LP(E; u), p > 1.

It remains to show that any u € £ is an LP(F; p)-limit of elements in G1H,,. But this is
clear since for any u € Pg, 5+

/|17 — aRy1u|’dp — 0 as o — oo.

O
Let us from now on up to the end of this section assume that the coform Eisa quasi-regular
generalized Dirichlet form and that there exists an m-tight special standard process M
which is properly coassociated in the resolvent sense with &€ (cf. paragraph just before
Lemma 1.20). As before we use the abbreviations @, Me* for these assumptions. Note

that the assumption C)ﬁ includes the assumption SUB.

Remark 2.14 (QR, M®*, (51?{, /1\/\19") By quasi-regularity ofg we know that ﬁ@

17'12'
=

P@ﬂ-{j separates the points of E\ N, where N is an g—exceptz’onal set (cf. proof of Lemma

2.13). Let pu, v be finite measures on (E,B(F)) charging no g—efvceptional set. Then by
an argument similar to the one in the proof of Lemma 2.15 it follows that p = v if

i éafvdp =/ ﬁafdy for all fe 73@17{:'

Let us assume from now on up to the end of this section that the martingale part
M of the decomposition of Theorem 2.11 is continuous for all v in Gi;H,. We will
use the abbreviation M[c(illz{ Pl for this assumption. Note that by MLE;?‘)] similar to
8, Theorem A.3.20., Lemma5.5.1.(i1)] any M € M is continuous. In fact we only have to
replace g € Co(X) in [8, Theorem A.3.20.] by g € ﬁalH; - 75017{: and to use monotone

class arguments as in the proof of Lemma 2.13.
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Lemma 2.15 (i) (QR. M®) Let M €M. If f € By(E) and t — f(Y;), t € [0,00) is
a continuous process then the abstract stochastic integral f @ M of Lemma 2.12 is a P,-
version of the usual stochastic integral of f(Y;) w.r.t. M for E-q.e. z € F, i.e. for any
t>0 and E-q.e. z € F we have

Jim, B[ ((f o M) = (f 0 M))?] =0

where
n—1

(f M(A nyt MtH—l_Mi)

and A denotes the partition 0 =ty < t; < ... <t, =t, |A| = maxj<i<p |[t; — ti_1].
(i) (QR, M, QR, M°*, MLS;?") The notion of stochastic mtegml extends uniquely

to f € L*(E;penrs), M EM in the following sense: zf (Gp)nen C Gle such that g n — f

in L*(E; peprs) then f o M = lim, ... g, ® M in M. Furthermore for M, L Ej\/l and
1,9 € L*(penrs) N L2 (pers) we have

P<porr> = f-p<rrr>

hence in particular the following representation

e(feM,geL)= /fgdu<ML>

Proof (i) Let N be a common exceptional set for M and < M > such that M?*— < M >
is a martingale w.r.t. P, for any z € £\ N. By Theorem [8, A.3.19.] with S = F'\ N and

the discussion right before the quoted theorem there exists uniquely M € M such that
for any z € E'\ N we have that M — [, f?(Yy)d < M >, is a P,-martingale and

|ii|m0Ez[((f o M) M}ﬂ =0 for any t > 0.

Note that the process M results from a procedure which made the family of usual P.-
stochastic integrals ((feM)?).cp\n of the square integrable predictable process f(Y) w.r.t.

the continuous martingale M independent of the parameter z in the sense that P,(M,; =
(feM);Vt>0)=1for any z € £\ N (cf. [22, (51.17) Lemmal, [8, Lemma A.3.2.]).
Since f € L*(E; p<n>) we have by Remark 2.2(ii) that e(M) = [ f2dp<p> < oc. hence

M e _/\jt By polarization we have for any L E/\il
t
E[ < M, L >, ] - E[/ F(Y)d < M, L >, ]
0
hence for all g € L2(E;m) N By, 8 > 0,

/Eﬁﬂgd/‘<ﬂ,L> = /E(Eﬁg)fdu<l\l,L>
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and consequently du_g; s = = fdpcarr> by Remark 2.14. It follows in particular that
(M L)=3 ffdu<M L~ hence M= f e M in view of Lemma 2.12.
(ii) Smce e(gn oM -7, eM)=e((G,—Gn) e M) =3 [(G, — In)? du<M> we see that

there exists a unique f o M G_/\/l such that f e M =1lim,, . g, ® M in _/\/l
By our assumption the martingale part M of the decomposition of Theorem 2.11 is
continuous for all v in G1H; hence t — u(Y;), t € [0,00) is a continuous process for any

U € G1Hy. Obviously @ € L*(E; pi<pr~) for any M G/\jl. Hence by (i) we know that

for any M, L EM Since the pointwise limit of R, 1u, u € PG H+ is £-g.e. monotone and
all the measures in question are bounded and do not charge &- excepmonal sets it is easy to
see that (32) extends to u € PG w; - Hence (32) holds for any u € L := P, w — Pog
The closure £ of £ in L? (B persvr> + fieprs + fi<r>) is a monotone vector space in the
sense of [22, Appendices A0| and closed under the operation f A g since this was already
true for £. Hence an argument as in the proof of Lemma 2.13 implies that (32) extends
to all w € By. Finally let f € L*(pcprs) N L*(p<rs). Set f, := (=n) V f An, n > 1. Then
fo— fin L*(penrs) N L*(p<rs) hence in L?(p<pryrs) because

/ Fu— fudpcrssrs = Ae((fu— fu) @ M. (fu — f) o L)
+ /(fn - fm)zd,u<M> + /(fn - fm)ZdM<L>

and then it is easy to see that (32) also holds for u € L2(p<pr~) N L*(p<rs ). In particular
we then have djic rerrger> = f9 - dit<nr,r>.
O

Let us now consider the following linear space

~dec

H ={ue H | I EA;l,N[“] € N, such that A = Mt iy

~q
and let H%¢ denote the totality of m-versions of elements in H “

The proof of the next Theorem is based on the proof of Theorem 5.3.2. in [16, p.160].
For convenience we write fi<, > instead of p_ s pws and pe,s instead of p_psws. For
V c R% Vopen, d > 1,let C*(V), k € NU{oo}, denote the space of k times continuously
differentiable functions on V.

Theorem 2.16 [Product rule/ (QR., M®*, QR. Mex, M[Gle]) Let f = (fy..... [,) be an

cont

n-tuple of E-q.c. m-versions of elements in HJ* such that <I>(f) e H™ for all® € CY(IR")
with ®(0) = 0 and assume that there exists (hy)ren C H with e(AFi=CGihal) — 0, as
k—o00,1<i<n.Let®, ¥eC (R, ®0)=V(0)=0 and w € H*, then:

H<d(f)w(f)w> = q)(flv' 7f) H<w(f w>+lp(f17"'7f) H<®(f),w>- (33)
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Proof It is enough to show
/ h/d,u<<1>2(f),w> = 2/ h (I)(flv e fn) dlu<‘1’(f)’w>
E E

for h = figg, g € Bf N L'(E;m), 8 > 0, because then we will consider H(@(F)+T(F))2 >+
We may furthermore assume that [ hdm = 1. Then by (23)

/ hdﬂ<<1>2(f),w>

E
fe's)

= C}iggoa(owﬂ)Ehm[ / et P Dl prlel gy
0

— lwa(at Bm| [ @) - B0 @) - 3(%) dt
— 2limala+B)Bag,| [ P OFN) - HFV @) - @) dt
+Jim a(at HBm| [ e IUBFY) - BTV - T(%) dt]

0

= 2lim I, + lim [1,.

a— 00 a—00

By (23) and Lebesgue’s Theorem we have

lim I, = lim a(U250, -1, h®(f))

a—00 a— 00

= lim o Jim (3 Ryros UZgly 01 h2(T))

= ah—>Holoa'yh—>Holo(7 Uzg?gi»l, ﬁoﬁﬁ(hq)(f)))
~ lma / Ros (hO(F)) dptca(ry oo
E

a— 00

= / h<I>(f) dPJ<<I>(f),w>
E

and for some constant L > 0 lim,_,. /1, is dominated by

oo

WLy T afa+ 8)Bw| [ e @PUFm) - FODP | 800 - 3(%) | de |

a— 00

For 1 <i < mn, k€N, we set fr; = Rihy. Since we assumed that g(AFi7Fsl) — 0, as
k — 0o, 1 <1 <mn, it is enough to show that for 1 <i<n

[ee)

T 0 0 8) B [ 00 — Vo)) | @) - a(30) | de

a— 00
0
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is 0 for any fixed k,i. We may even assume that hy, 1 <i < n, k € N, is bounded (cf.

proof of Proposition 2.19). By our assumption (Mt[f ’“], Fi. Pam)t>0 is a continuous square
integrable martingale and consequently by the Burkholder-Davis-Gundy inequality

Enn| (M) < OB [ < M1 52 |

where C' > 0 is a constant independent of fi;. Then

c@oo‘(o‘W)Ehm[/m SN fa(V) = fu(Y0)? | B(Y:) — B(Yp) | dt]
< 2 lim (a (a+ﬂ)Ehm[ /m e—(“+ﬂ>f(M}fM])4dt])%(/hdu<w>)%

< 2 lim (a(a+ﬁ)Ehm[/ o=@t o il 52 dt])é(/hdkw)%,
0

a—00

Then

i a (@ + 8) By | / e (< MU > )2 di |
a—00 0

t
= lim a(a—l—ﬂ)Ehm[/ —(a+ﬁ)t2/ < Mxil > — < M Fwal >, d< Ny [Fdl >, dt]

a—00

= 2 lim a(a+ B)Eyn, / / ~lett « MURTL >, 0w, dtd < MUk > ]

a—00

a—00

= 2 lim a(oquﬁ)Ehm[/ e—(a+ﬁ)sEYs[/ e (atp)t < N [Fwil >, dt} d < N Fril >, ]
0 0

a—00 <MUkil>™ < MlFril >

= 2 lim a/hUa+”8 U8 1dm

IN

/h UZM (Freil> Ldppgises

for every v > 0. Now since U!
since

s 118 bounded £-q.e. for any fixed k, 1 < ¢ < n, and

U’H_l 1(Z) - Ui]\l ( ) 7R7+1U MUkil> (Z) l 0

<Mkl
for £-q.e. z in F as 7 — oo we conclude by Lebesgue’s Theorem.
O

Theorem 2.17 [Chain rule] (QR, M*e*, (/QI\{, ﬁex Gle]) Let f (fl, ,fn) be an

cont

n-tuple of E-q.c. m-versions of elements in H such that <I>(f) € H “ for all® € C* (R™)
with ®(0) = 0 and assume that there exists (fir)ren C H with e(AVi=Gifil) — 0 | as
k—o0,1<i<n. Let ® € CLR"), ®(0) = 0 and w € H, then

0P ~
s = et s 4
K< (f),w> - o (f)  B<fiw> (34)
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Proof Any powers of the coordinate functions satisfy (34) by the product rule and
then by the product rule again all polynomials of n variables vanishing at the origin. Let
K C R” be a compact set such that f(z) € K for £-q.e. z € E. Let x € CF(R"), x =1
on K CC K' = supp(x). There exists (cf. [4,11.4.2,4.3,p.57]) a sequence of polynomials

(pj)jen, vanishing at the origin, such that p; — @, 8p 5

K’ as j — oo. Note that [(P —pj)x](f)( )= (P —pj)(f)(z) for £-q.e. z € E. Then we
have for all g € L*(E;m) N By, a > 0

/R 95— dﬂ<f1w> = Z}ggo

— lim Ragdu<pj<f>,w>

j—00

= /Ragdﬂ<<1>(f),w>

— 22 | <4 < n, uniformly on
T4

d,u<fl w>

where the second identity followed from the product rule. Because of (28) the third identity
follows since we assumed to have decomposition (30) for all ®(f) like above, hence

e(Mkb(f)] _M[Pj(f)]) _ e(A[(@—pj)x)(f)])
< ”Z 3(@—%‘))()

i=1 Oz;

2
g(A[fi])_

[o.e]

The last expression tends to zero as j — oo.

O
Summarizing we get the following

Theorem 2.18 [It6’s formula/ (QR, M, QR. Mex, M[CE;Z{"]) Let f = (... [,) be
an n-tuple of £-q.c. m-versions of elements in H{* such that CID(f) € ﬁdec for all ® €
CYIR™) with ®(0) = 0 and assume that there exists (fir)ren C H with e(ASi=G1ful) — 0,

as k — oo, 1 <1 <n. Then we have

~ ~ ~ ~ o ~ ~ |
<I><f1,...,fnxn)—cb(fl,...,fn)(%): a (fl,...,fn>-M£f1]+N£‘”f“'"’f"”

for all ® like above and this decomposition is orthogonal w.r.t. e(-,-). In particular Lemma
2.15(i) applies.

Proof The assertion follows by Lemma 2.12, Lemma 2.15(é7) and Theorem 2.17 because
— 0P ~ , 1
e(M[‘I)(f)] — Z a—(f) [ ] M[fl]) — 5 /d/,l/<]w-[q>(f)]zz_zl g_f;(f)'M[fi]> - O

. 7
1=

OJ
If we strengthen the assumptions on ® we can show directly the chain rule in the next
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proposition. This will be used in the proof of Lemma 3.5(iii) below. Let CF(R"), k €
INU{oo}, denote the space of all k-times continuously differentiable functions on R" with
all partial derivatives up to order k bounded.

Proposition 2.19 (QR, M*®*, éﬁ, K/I\ex M[Gle]) Let f: (fl, s fn) be an n-tuple of

cont

E-q.c. m-versions of elements in H'. Let & € CE(IR") such that ®(f) € H™ . Assume
~dec

that there exists (fix)rex C H with @(AVi=Giful) — 0, ask — o0, 1 <i<n. Letw € H
such that there exists (hy)jen C H with 8(A=G1hl) — 0, as | — co. Then

0P ~
/'L<<I>(f),w> = Ox: (f) C < frw> - (35)
i=1 ¢

Proof We first show the statement for w replaced by v := R;(h; Am) where [, m arbitrary
but fixed. Let h be as in the proof of Theorem 2.16. Using Taylor’s formula similar to the
just mentioned proof we have

/ h d,U<<I>(f),v>

E

= lmafat B)B,] [ eI - (Fr) AL d]

a—00

a— 00

— 1m a(at8)E, / el Z ST TN - Fva) Al e

bt atot @B [ e FOOT00 - Ta)alla)

a— 00
0

= lim I, + lim I],.

a—00 a—00

where Cf/(w) = L0, 22 2 0(F(Yo(w)) + 0. (F(Vi(w)) — F(Yo())) and 0 < 6, < L.
We remark that 6 needs not to be measurable but that the composite function with the
0 in it is.

Similar to the proof of Theorem 2.16 (now since
follows from Lebesgue’s theorem that

0P

5 is uniformly bounded 1 < i < n) it

L )
lim [, = ) lim of Ui,fﬂwl,hg (/)

a—00

" L
= > twa [ Rusalh () di<sos
i=1 E

)

- 9P ~
= Z/Eha—%(f)dﬂ<fi,u>-

Since 3 7 o1 8w Bs; -2_¢ is uniformly bounded it follows that | lim,_.. I1,| is dominated by
L Z T afa+ B)Bm| [ e @00 - Fa)? | Al | d (36)
0
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for some constant L > 0. To show that the expression (36) is 0 it is enough to show
that the same expression but with f; replaced by R;fir is 0 for any k. This is be-
cause of our assumption that g(AVi=Fifl) — 0, as k — oo, 1 < i < n. Since by (25)
e(Alft fu—Fa(furm)ly < €(Ry fir — Ri(fix A m), Rifir — Ri(fir Am)) which tends to 0 as
m — oo it is even enough to show that expression (36) with f; replaced by Ry(fi A m)
is 0 for any m, k. But this has already been done in the proof of Theorem 2.16.

Finally since h, and g—a‘i(f), 1 <4 < n are uniformly bounded and (A=) — 0, as
[ — oo we have (by continuity of the measures in question with respect to the energy)

/hdﬂ<¢(f),w> = lim lim hdﬂ<<b(f),R1(hl/\m)>

[—00 m—0o0

. ) L od
= lim lim Z/h(?x(f) dM<fi,R1(thm)>

l—00 m—00 4
i=1

- 0% ~
= > [ gy (D

o1



3 Local property, extension of Fukushima’s decom-
position and localization for an important class of
generalized Dirichlet forms

The following section will serve as a preparation for our examples below. For an important
class of generalized Dirchlet forms (i.e. generalized Dirchlet forms satisfying in particu-
lar Alg and Diag or Alg and Diag’ below) we will develop a localization procedure, a
martingale transformation as well as a simple condition to check whether the associated
process is a diffusion up to his life time. As usual from the beginning on we assume that
we are given a generalized Dirichlet form £ which is quasi-regular and an m-tight special
standard process M which is properly associated in the resolvent sense with £. As before
we use the abbreviations QR, M®* for these assumptions.

a) Local property

We first start with a lemma reflecting the relation between analytic and probabilistic
aspects of a generalized Dirichlet form. For u € L*(E;m) let supplu] := supp(Ju| - m) be
the support of u.

Lemma 3.1 (QR, M®*) Let U C E, U open. Let u € F*, supplu] C U. Then the fol-
lowing assertions are equivalent: R

(1) E(u,v) =0 for allv € {Uip — (Urp)y | i € Soo}-

(ii) Ez[e*”Uﬂ(YgU)} =0 for £-q.e. z € U°.

Proof Let pu € Sgo. By [23, Lemma I11.2.2.(ii)] we have that €f—aGarf — 0in H as
a — oo for any f € F. Since P,(on < 00) = 0 if N is E-exceptional and |u| <€, +e_,
&-q.e. for any u € F we then have

IN

E,] e (@ — aRosi @) (Yy, )| ] E, [e—w (Bucausrn + Bacurucs) Yoy) ]

IN

/ éufaGaJrlu + éaGaJrlufu d,u
E

< Allxllv = aGaprulle

where h € H;" is such that Upp < Gih and (cf. Remark 2.9)||f||e = e 4 e—s|lx. It follows
that e~V aR,10(Y,, ) converges to e~vu(Y,, ) in L*(P,). Hence

/ E.[e*"Uﬂ(YaU)]du — lim E_[e*UUaRaHa(YGU)}du
E

a—00 E
= lim E[/ e_sa(ﬂ—aRaHﬂ)(Ys)ds} du
a—oo Jp ou

= lim & ((Gi(aw)y - (G1(a?Gorrw))v, Urpr)
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= Tim &(Gi(a(u - aGarrw)), (Tip)y)
= &i(u, (ﬁIM)U»-

and therefore
i-E [e‘””ﬂ(YOU)} dp = &1 (u, Uip — (T p)n).

E

By right-continuity every point is regular in U. Hence if we assume (i) we can easily see
that (ii) holds. Clearly the converse is also true.

O

Let V.C R% d > 1, V open and k € IN U {oo}. Let C¥(V) denote the space of k
times continuously differentiable functions on V' with compact support.

Theorem 3.2 (QR, M**) Assume that for any U C E, U open, there exists (un)nen C
F* such that u, < Upiq1, supp(u,) C U, 0 < sup,en Un < 1y and sup,en tn > 0 E-g.e.
on U. Suppose that Lemma 3.1(i) holds for u,, n € N, and any U C E, U open. Then

P.(t — Y} is continuous on [0,()) =1 for £-q.e. z € E. (37)

Proof Let N := {z € U | sup,enUn < 0}. Then N is E-exceptional (we may as-
sume that N € B(F)) by our assumption on (u,),en. Then by Lemma 3.1(ii) 0 =

E, e‘”Uﬂn(YUU)] = E,[e“’U(ﬂn + lN)(YUU)} for £-q.e. z € U°. Therefore, using the

monotone convergence theorem we see that also £, [e‘UU 1y(Ys,,) | =0 for E-q.e. z € U
Then, exactly as in [15, p.153,1.9(ii) = (1.8.)] we show the assertion.
O

Any generalized Dirichlet form satisfying the conditions of Theorem 3.2 is here said to
have the local property. M is then said to be a diffuson up to (.

Example 3.3 Let E =V and let C5(V) C F. Since obviously C¥(V) has the first prop-
erty of Theorem 3.2 we know that M is a diffusion up to { whenever Lemma 3.1(i) is
satisfied for any u € C§(V') with supp(u) C U, and allU CV, U open.

o~

Up to the end of this section we assume that the coresolvent (G, )0 associated to & is
sub-Markovian. As before we use the abbreviation SUB for this assumption.

b) Extension of Fukushima’s decomposition
Let us now explain some contraction principles related to £ which we shall use below as a

technical tool in order to show the extension of Fukushima’s decomposition. We remark
that we could have assumed much less than QR and M but that the sub-Markovianity
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of (Ga)aso and ((A?a)a>0 is really indispensible to show the following contraction proper-
ties. R _
Set G, = %(Ga + Gy), a > 0. Then G, is a symmetric operator which is sub-Markovian

~

since (Go)as0 and (G4)aso are sub-Markovian. Now let 7' : R" — IR™ such that
T(2)| <) Jaal and |T(x) = T(y)| < Y lan — wil
k=1 k=1

for all x = (z1,...,2,), ¥ = (Y1, .-, yn) € R". We call such a T" a normal contraction on
R". From [15, proof of Theorem4.12.] we know that

(T(tg, o) = QG T (U, ooy ), T, ooy ) )3 <Y (g — aGotig, u)y,”  (38)
k=1

for any n-tuple u = (uy,...,u,) of elements in H, o > 0. Note that a(h — aG.h, h)y =
a(h — aGyh, h)y for any h € H, a > 0 hence (38) holds also if we replace G, by Gl.
Let ® € CHIR") such that ®(0) = 0. Set || g—i |o:= C;. We may assume that C; # 0,
1 <i<n. Then T(zy,...,7,) := ®(C, a1, ..., C;'2,) is a normal contraction. Hence by
(38)

(D(u) — aGo®(u), D(w))y” <Y Culux — aGaur, up)y,. (39)

k=1

Let us now consider the following intermediate linear space

V= {h € H|supa(h— aGyh,h)y < 0o}.

a>0

We have F C V¥ C V. Indeed, since sup, .o A(aGuu, aGau) < sup,soa(u — aGou, u)y
for any u € ‘H and (G,) >0 is strongly continuous on H it follows from [15, Lemma [.2.12.]
that V7 C V. As in the proof of Lemma 2.6 we can see that sup,.a(u — aGau, u)y <
(K + 1)?||u||# for any u € F hence F C V7.

Let u = (uy, ..., u,) be an n-tuple of elements in V7, ® as above. Since by (39)

a(®(u) — aGa®(u),®(u))y < n sup CF Z a(uy — aGaug, ug)y
1<k<n 1

it, follows that ®(uy, ..., u,) € V*. But ®(uy, ..., u,) € F even if uy, ..., u,, € F is in general
not true.

Recall the following definition:
H™ = (e H | 3M™ e, N € N, such that A = Ml 4 Nl
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~d
and let H?* denote the totality of m-versions of elements in H “

For the rest of this section we will consider the following conditions:

Alg There exists a linear space Y C L*(FE;m) N VF N H* of bounded
functions such that u-v € Y for u,v € Y.

Diag There exists constants C,~v > 0 such that
e(Al) < CA, (u,u) for any u € Y.

Diag’ There exists constants C,y > 0, and a Dirichlet form (A, D(A)) on H such that
Y C D(A)NF,e(AM) < CA, (u,u), A(u,u) < E(u,u), for any u € .

Note that there is a qualitative difference between Diag (resp. Diag’)and (26).

Proposition 3.4 (i) (QR, M, SUB, Alg) Let ® € CY(R"), ®(0) = 0. Let f =
(fis ey fn) be an n-tuple of elements in Y. Then ®(f) € H®. In particular if Diag (resp.
Diag’) holds then

e(MI2DN) < CA(B(f), B(f))

(resp. e(MI*V)) < CA,(@(f), (f))).

(ii) (QR, S/UTS, Alg, Diag or Diag’) Let E =V and assume that Y = CE(V) C F for
some k € INU {oco} or assume that Y = FC;° C F (for the definition of FC° cf. section
4.2). Then (i) holds with fi, ..., f, € YNF, where Y denotes the closure of Y w.r.t. || - || =.

Proof (i) We may assume that n = 1 since all estimations we will use hold in a similar
form for n > 1. We then will show that the conditions of Theorem 2.11(ii) are satisfied.

Let K C R be a compact set such that f(z) € K for E-q.e. z. Let x € Cg°(R), x =1 on

K cC K" = supp(x). Let (pn)nen be polynomials (cf. proof of Theorem 2.17) vanishing
6]771 o

at the origin and such that p, — @, % — &2 uniformly on K" as n — oo. By Alg

we have p,(f) € H™ for any n € IN. Then

= - a«q) - pn) : X) 2 _
[2(f)—pn (] < 1]
et o) < | A2 g
Similarly to Lemma 2.8 we have for any p € §00
~ - o (D —p,) -
P sup |9(F) — pu(FI(V) > €) < SC'u(B) H (%~ pn) - X) H
0<t<T c o N

where €' is a constant such that f < (" E-q.e. on E. Since HW — 0 as

o0

~ ~dec
n — oo Theorem 2.11(ii) now implies that ®(f) € H . Since also p,(f) — @(f) w.r.t.

.»11/2 (resp. fﬁ/Q for any Dirichlet form (A, D(A)) with f € D(A) where A (u,v) =
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5(A(u,v) + A(v,u)) + (u,v)n, u,v € D(A)) as n — oo it follows finally from (29) and
Diag (resp. Diag’) that

e(MPU)) = Tim e(A)) < CA, ((£), 0(F)
(vesp. e(M®W]) < CA,(2(f), 2(f))).
(ii) Note first that Y = C¥(V) C F dense for some k € IN U {oo} implies M®* by
123, Proposition [V.2.1.]. As in (i) it is enough to show the statement when n =1 and as
in (i) we will show that the conditions of Theorem 2.11(ii) are satisfied. We will also only
show the statement when k£ = 1 and when Diag holds. The assertion for the case Diag’
follows similarly. We will proceed in two steps.
a) Let f € F,. We first show that there exists (v, )nen C Cg (V) such that sup,,cy ||vnlloo <
oo and v, — f w.r.t. .;ﬁ/Q as n — oo.
Let (un)nen C CH(V') such that u,, — fin F asn — oo. Let D C IR be a compact set such
that f(z) € D for E-q.e. z € V. Let € € C5°(R), £(z) = = on DU{0}. Since £(f) = f and
|f—&(u,)| < ||g§ loo| f —un| m-a.e. it follows that &(u,) — f in L*(V; m) asn — 00. Using

(39) and Lemma 2.6 we have sup, .y A(&(u,), &(u,)) < (K +1)%||% H SUpP,en |[unll% <
co. Hence there exists a subsequence such that £ 377 &(u,,) — f wor.t. .Ai/2 as n — oo.
It then suffices to set v, == = 377 &(uy, ).

b) Let &, (un)nens (Vn)nen, f be as in a). Let K C IR be a compact set such that
Un(2), f(2) € K for E-q.e. z. Let x € CP(R), x =1 on K CC K’ = supp(x). Let (pn)nen

be polynomials as in (i). Note that by (i) we have that p,(v,) € H™ for any n. Then

15

g(AlPG=palonlly - < 95 A[PXE)=Pax(A]) 4 9g( AP X(F)=Pax(va)])

- (P —ai)n)-x) i QE(AM)JFHW‘T 2e( AV —))

(e}

O((® —pa) - X 2e(MU1) + HWHQ 2 lim g(Ale=vnl)

8$ o k—o00
O((® = pu) - X)|[* iy 19@n ) ||
< e OOQe(M )+ ~om OOQC'.AW(f—Un,f—vn).

But since || =5 a(p . X ||2 is uniformily bounded in n the r.h.s. above tends to zero as n — oo.

Noting that I‘P( f) = pu(@a)] < |2 || f] + (|2 || f = B and [f = T,| <
||a£||oo D |f = T, | E-q.e. and that IS = unk||,; tends to zero as n — oo we
can easily see that the conditions of Lemma 2.7 are also satisfied. Surely we have also
e(MPDN) = lim,, o e(MPr0™]) < CA(D(f), ©(f))-

OJ

c) Localization

A is called a local additive functional (abbreviated local AF) if A satisfies all proper-
ties of an AF except that the additivity A s(w) = As(w) + A4(0s(w)) for w € A is only
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required for those ¢t,s > 0 with t + s < {(w). Thus, local AF’s and AF’s are the same if
M is conservative (i.e. P,(( = o0) =1 for E-q.e. z € E).
For any two local AF’s AW, A® and an Fy-stopping time ¢ we write

AV = AP vi<o or AV =AP Vi<o

if the probability of these events w.r.t. P. is equal to one for E-q.e. z € E. AD is called
equivalent to A® if
AW = AP v < .

Up to the end of this section let us consider the following additional conditions

Dif P,(t — Y; is continuous on [0,()) =1 for £-qe. z€ FE
ML%;? bl V11G1h) ig a continuous MAF for any h € H,
Plt There exists an E-nest (Fy)ren such that P (I Aope < () =1
forany t > 0, k € N and £-q.e. z € E.

Note that MG/l implies that any M €M is continuous. Note also that under suit-

cont
able conditions MES;III:{ bl implies Dif and P1t but we do not investigate this question. By
quasi-regularity we may assume that an £-nest which satisfies Plt consists of compact

subsets of F. Up to the end of this section we will fix such an E-nest (F)en-

Let D ¢ H™. An E-q.e. defined function w on E is called locally in D w.r.t. (Fi)ren
(abbreviated © € Dige,(ry),n) if there exists (up)zen C D such that for any k

u=u, &-q.e. on Fj.
Any (ug)ren as above is called a localizing sequence for w.
Now let us define the space of functions which we will use for our localization procedure:
~dec ~dec . L. -~ ~de
H o Jioe,moren = {8 € Hige,ry e | @ admits a localizing sequence (ug)ren C H
such that for any [ > k we have that M [un—u] — (vt < UFIS}.

C

A local AF M is called locally in M w.r.t. (Fy)pen (abbreviated M € Moo,
there exists (M*)ren C M such that for any k

Fk)kelN) if

Alocal AF N is called locally in N, w.r.t. (Fy)ren (abbreviated N € N joc,(r)pen ) if there
exists (N¥)ren C A, such that for any k

Ny = Nf' Vit < ope.

~dec
Lemma 3.5 (i) (QR, M®) Any u € [H  ioe,mpen 15 E-quasi-continuous. If u, v €
~dec
(M ioexmonen are such that u —v = const. E-q.e. then Al = AV (i.e. equivalent as
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AF’s). For any localizing sequence (Uy)ren for u the AF Al is equivalent (in the sense
of local AF’s) to the local AF A where Ay == limy,_. AL“’“] ift <, Ay =0 elsewhere.
(ii) (QR, M®, (51?{, ﬁex, Dif, Plt) Let M 6/\31. Let F' C Fy, for some k, F closed. If
lp - pieps> = 0 then My = 0Vt < ope.

(iii) (QR, M, QR, M, MISv"®) L1 e £ .= {w eV | 30,7 > 0 such that V¢ €
Co(R) with £(0) = 0 we have 4, £(W) € H, e(MEW)) < CA, (€(w) (). A(hu)uex ©
H with e(Alv=C1hnl) 0 asn — oo} orletti e £ = {u € v | 3C, v > 0 and a Dirichlet

~dec

form (A, D(A)) on 'H such that V¢ € C°(R) with £(0) = 0 we have u,&(u) € H N

D(A), e(MEWD)) < CA(€(w), &(u)), Hhlnen C H with EACInl) — 0 asn — oo},
Let uw = const piey~-a.s. on B € B(E). Then

1B > 0.

Here Cp°(IR) denotes the space of all infinitely many continuously differentiable functions

on R with bounded _derivative of any order.
(iv) (QR, M®, QR Mex M[Gle] Alg, Diag or Diag’) Assume that for any u € Y

cont
there exists (hp)nen C H with E(A[“_Glhn]) — 0 as n — oo. If Diag holds then Y C L
(resp. Fy C L if in addition Y = CE(V') C F dense for some k € NU{oo} ). If Diag’ holds
then Y C L' (resp. Fy C L' if in addition Y = CE(V) C F dense for some k € NU{oo}).
If Diag or Diag’ hold then 1p ® fi g (u,,....un) > =0 for any ® € CY(R") with ®(0) = 0 and
ULy evny Uy € Y such that U; = const Peus-a.5. 0on B, 1 <i<n.IfY=CV)CF dense
for some k € NU {oo} and Diag or Diag’ hold then 15 ® jico(u,,.. un)> = 0 remains true

for any uy, ..., u, € Fy as above.

Proof (i) is obvious.
(ii) By Dif and Plt we have for £-q.e z € E and any ¢ > 0

tAopc
E. <M>WFC} - E[/ 1F(Ys)d<M>s}
0

< EZ[/OtlF(YS)d<M>S }

From Theorem 2.5 we know that E. [ fo 1p(Ys)d < M >, ] = 0 &-q.e. hence the same is

true for E[ <M >ipnope ] Now ((M;)?— < M >;)1>0 is a martingale w.r.t. P, for £-q.e.
z € E. The optional sampling theorem then implies

B (Mingye? | = Bo| < M >0y | =0

and the assertion follows. B
(iii) It is enough to assume that © = 0 or & = 27 py~-a.s. on B. Let u € L. By Proposition
2.19 we have for any k € IN

/13 d:u<u> = /cos(kﬂ)lB d:u<u> - /13 du<%sin(ku),u>‘ (40)
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Obviously 1 sin(ku) — 0 in L?(E;m) as k — oo and 1 sin(ku) € V7 (C V) since u € V7.
By (39) we have

A(%Sin(ku),%sin(lﬂu)) < ()}Llrolog(&G( sin(ku)), aG( sin(ku)))
< ali_)n;oa(%sin(ku) aG( sin(ku)), llfsin(k‘u))H

< lima(u — aGau,u)y < co.

a— 00

Hence by [15, Lemma I.2.12.] there exists a subsequence such that + S kil sin(ku) — 0
w.r.t. ./2(1/2 as N — oo. Therefore by (40) we have

/ 1p dﬂ<u> = lim Ip dﬂ<% Zfil kil sin(kju),u>

N—oo

< lim Qe(M[%Zfil’%zSm(kluﬂ)1/26(]\4[1”)1/2
~ N—oo

< 2e(MMYY2 Jim OV A ( Z—sm k),

sin(kyu)) 12 = .
N—oo

||Mz

In the same manner we show [1gduc,s =0 for u € L

(iv) Let uy,...,u, € Y (resp. Uy, ...,u, € Fp). By Proposition 3.4(i) (resp. Proposition
3.4(ii) if in addition ) = C¥ (V') C F dense for some k € NU{oo}) we have ®(uy, ..., u,) €
ﬁdec. It then follows by Theorem 2.17 that

/1Bdﬂ<¢(u1 ..... un)> = Z

Let u; = const picy,~-a.s. on B, 1 <1 < n. If Diag holds the expression on the r.h.s. is zero
by (iii) (and Cauchy-Schwarz inequality) because by Proposition 3.4(i) (resp. Proposition
3.4(ii)) Y C L (resp. F, C £). If Diag’ holds instead of Diag then also by Proposition
3.4(i) (vesp. Proposition 3.4(i1)) ¥ C L' (resp. F C L) and [ 15 dpi<a(u,
above.

ooy U ) 1B A ey 0

.....

For an appropriate defining set and exceptional set the quadratic variation < M > of
M € Mioc,rppen 15 Well defined as a PCAF by

<M >=<M">, Vt<op, k>1 (41)
We may then consider its Revuz measure p.j~. Now we have the following:

~dec
Theorem 3.6 (i) (QR, M, MIS1®]) o1y € [H Jioe,(myren - Then there exists

cont

M EMioc,(Fpen aNd Nl ¢ Nc,loc,(mk.em such that

Al — pylal . Tl
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Such a decomposition is unique up to equivalence of local AFs.
(ii) (QR, M, QR, Mex, MS17! Djf Plt) Let £.L, be as in Lemma 3.5(iii). Then

cont
~dec

Lo (Fmemaf'loc Fren © [H Jtoe, B v -

(i1i) (QR, M®x, QR, Mex Mfrllzib] Dif, Plt, Alg, Diag or Diag’) Assume that for
any u € Y there exists (hn)neN C H with e(Alv=Chaly — 0 as n — oco. If Diag holds
then Vioe (Foren C Lioe (Foren (TESD. ﬁbloc Foren C Eloc (Fnen if in addition Y = C§(V) C
F dense for some k € N U {oo}). If Diag’ holds then Yioc,ryen C ﬁzoc (e (TESD.

Fotoe (Eoren C E locy(mren U 1T addition Y = Ck(V) C .7-" dense for some k € NU{oo}).

< MU > = Z/ o (f(Y)) P, (f(Y2))d < MU AUl >

Here f = (f1,..., fu) and ®,, = 8 .1 < i < n. The assertion remains true for any
fiy s fr € j':bloc,(Fk)kem provided that in addition Y = C§(V) C F dense for some k €
N U {oo}.

~dec ~ ~dec .
Proof (i) Existence: Let u € [H  |ioc (), @0d let (Ug)reny C H be an associated

localizing sequence. For any [ > k we have M" = M wi < ope. Hence MM =

limy—oe M if t < ¢, MM := 0 clsewhere, is well defined as an element of /\jlloc,(Fk)k@N-

It then suffices to set N .= Ald — prldl,

[G1Hb)]

cont . We have that any M € M is continuous. Hence for any stopping

Uniqueness: By M

time o
[kt]

M i B S (s, My i LHPy).

On the other hand (cf. [8, (5.2.14), p-201]) limg oo 32 (s, — N1,,)2 in L'(P,) for
any N € N..

Now let M eMlocv(Fk)k:e]N mNcylocy(Fk)ke]N with (Mk)kEN CM? (Nk)kEN - MleC:(Fk)kEN as
associated sequences . The preceding observation implies P, (< M >tAo*F,g:< M* >tA0F,g:
0Vt < ope) = 1 which means P, (< M >=< M* >,= 0Vt < opc) = 1.

Now consider the Revuz measure pys of M. Since P,(< M >;=< M* >,= 0Vt <
ope) = 1 for any k we know from Theorem 2.4 that

O'FC
E\F 0

a—00

for any k. But since (1,5, (£ \ F, kﬁ ) is E-exceptional by Lemma 1.18 applied to the coasso-

ciated process and since any g—exceptional set is £-exceptional we have pop~ = 0 hence
<M >=0. B B
(ii) Let (fy)ren be a localizing sequence for f € Lipe mpen (165D [ € Llioe,mypen ) L€t
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[ > k. Since fk fl = 0 &-q.e. on Fy, we have 1p, - du_yi5,-71- = 0 by Lemma 3.5(iii).
Then Lemma 3.5(ii) implies M[f’“ M —ow < ore for any [ > k hence f € [H dec]loc,(Fk)ke]N.
(iii) We only consider the case where Diag holds. Since by Lemma 3.5(iv) Y C L
(resp. Fy C E: ity = C’(’)“(V)~C F dense for some k € IN U {oo}) it follows that
Vivexroren C Lioesmoren €D Foioeronen © Lioe e i ¥ = CE(V) C F dense for
some k € IN U {oo}). For the second assertion let fi,..., f,, € jloc,(p‘k)kem and ® € CH(IR").
Set U(x) = ®(z) — ¢(0) then U(f1,...,fn) € Zloc,(Fk)kem by Proposition 3.4(i). Since
ARG = AL there exists M2 E/\i{loc Forens VEDL € N o (mopen s SUCh that
ARDL = Ml 4 NI Indeed, if (fi)ren, 1 < @ < n, are locahzmg sequences for
fi, 1 < i< m,it sufﬁces to set M[q)(f)] limy,_, M[‘y(hk """ fll ¢ ¢ < ¢, M[q)(f)} =0

elsewhere, N 2] — AR _ e (7 )l Since for any k € N by Lemma 2.4 and (41)
FO d/,L<M[¢~(f) FO Z (sz :r d/'L<M[fi],M[fj]>
4,j=1

the assertion follows from Theorem 2.5. The assertion for fi,..., f,, € F bloc,(Fren PTOVIded
that Y = CE(V) C F dense for some k € N U {oo} follows analoguous by Proposition
3.4(ii).

O

Remark 3.7 Given a Dirichlet form (A,V) on H (cf. [15, Definitionl.4.5.]). We can
construct an associated generalized Dirichlet form € = A setting A =0, F =V = F (cf.
Ezample 1.2(i)). If A is quasi-reqular in the sense of [14] it follows that the correpond-
ing generalized Dirichlet form satisfies QR (cf. [23, Remark [11.2.6.(ii)] ). Moreover by
(23, IV.A(a)] we have M®*. By [15, Theorem1.4.4.] SUB holds. Then clearly @, Me* are
satisfied. Also Alg and Diag hold automatically where Y =V N L¥(FE;m). Now assume
that € has the local property in the sense of Lemma 3.1(i). Then, using the equivalence
Lemma 3.1(i) < (it) and |15, Proposition V.1.7.] we show as in Theorem 3.2 that M is a
diffusion up to ¢ hence Dif holds. Finally, if we have that p,1(z) =1 for E-q.e. x, t >0
then both Mcmllz-‘b] and Pt are satisfied and we can apply Theorem 2.11(i), Theorem 2.17,
Theorem 2.18, Proposition 3.4 (i), Theorem 3.6(ii) and (iii) to obtain the full results well
known from classical Dirichlet form theory. In particular we can apply Lemma 3.5(iii) in

its whole expanse, i.e. L=V.
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4 Examples

4.1 Time dependent Dirichlet forms and finite dimensional ex-
amples

a) Time dependent Dirichlet forms

Let (£®,V)er be a family of Dirichlet forms with sector constant K independent of ¢
and common domain V' in some separable L?-space H = L*(X, u) with norm || - || g-where
V is a Hilbert space with corresponding norm || - ||y-satisfying the following conditions:

(a) t — E®(u,v) is B(R)-measurable for all u,v € V.
(b) There exists a constant ¢ such that

clullz < €Y (u,u) < ¢ Yul2 for allu €V, t € R.

For W = H,V or V', (i.e. the dual of V with operatornorm || - ||3/) let L*(R, W) :=
{u: R — W measurable | [, [u(t)||} dt < oo}. For u,v € V := L*(R; V) let A(u,v) :=
Je €9 (u(t),v(t)) dt. Then (A, V) is a coercive closed form on H := L*(IR; H) with sector
constant K.For heH and t > 0 let

U.h(s) :=h(s+1).

The family of operators (U;)>o defines a C’O—semigroup of contractions on H such that

both (U;);so and the adjoint semigroup (U t)i>0 can be extended to C’o semigroups of
contractions on V' = L2(IR; V'). Denote by (4, D(jt,v )) and (dt, D(gt, V) the generators
corresponding to the extended semigroups. It can be shown that

d - d
D(=,V)=D(=,V )—{u|u€V EV}—H”(]RV)
dt dt’
and dit = —4 (cf. [12, Subsection 3.4.3]), where 2 is to be understood in the sense of
distributions taklng their values in %8
Let F = (dt’V) AV and F : (dt,}J) N V. The time dependent Dirichlet form

corresponding to (£, V),cr is now given as follows:

) = A(u,v) — (%, v) iquT-“,vG?
Z—i,u) if ueV,veF,

(cf. [17, (2.8)]).

& can be identified with a generalized Dirichlet form as follows. Let H := L} (R x X, dt ®
dp) and denote by T': H — H, h(t,x) — (t — h(t,-)), the unique isomorphism between
the two spaces (cf. [19, Theorem I1.10]). (A, V) can then be identified with a Dirichlet form
(A, V) given by V := T 1(V) and A(u,v) := A(T(u), T(v)). Similarly, (U;);>0 induces a
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Co-semigroup (Uy)i>o of contractions on H if we define Uy := T-YU,T, t > 0. We denote
the corresponding generator by (%, D(%,H)). It is easy to see that both (U;);>o can be
restricted to a Cy-semigroup on V and at the same time be extended to a Cy-semigroup on
V'. In particular, (&, D(Z,H)) satisfies assumption D1. Since (U)o is sub-Markovian
the bilinear form & associated with (A,V) and (&, D(2.H)) is a generalized Dirichlet
form. By the time dependent Dirichlet form corresponding to (€®,V),cg we mean the
generalized Dirichlet form & just defined.

According to [23, IV.4(a)(iii)] £ is quasi-regular and there exists an associated process

~

M. Similarly the coform & is also quasi-regular and there exists a coassociated process
M. Let us assume that £ = W C RY W open, and that CF(W) C F dense for some
k € IN U {oo}. Then using Theorem 3.2 we obtain immediately that M and M are diffu-
sions up to their life times if all the £®, EW® are local in the classical sense. Obviously Alg
and Diag are satisfied with ) = C¥(W) hence Proposition 3.4(ii) applies and Fukushima’s
decomposition extends to AUl & ¢ CLR™), ®(0) = 0, fi,..., fn € Fp. Now, if M
is conservative then by Theorem 2.18 we have a change of variables rule for M1 fn)l,
The generalized Dirichlet form in the next example b) has all the above properties if the
time-dependent, potential V' is zero.

b) Time dependent potentials

Letd >1,andV : RxR! - R,V € L. (R x R, dt ® dz), V > 0, be a time

loc

dependent potential. Let (£, C3°(IR™)) be the linear form

E(u,v) = /R/Rd<Vu,Vv>dxdt+/R/Rdqudxdt (42)

— // @vda:dt;u,veCé’c(]RdH),
R Jri Ot

where Vu means gradient w.r.t. z, i.e. Vu(t,z) = (%(t,x), Cee %(t,x)). There is a

generalized Dirichlet form in H := L*(R x R?, dt ® dr) extending the bilinear form &.
By [23, Lemma II.1.1] the bilinear form

A(u,v) :—// (Vu,Vv>dxdt—|—// wV drdt; u,v € Cy° (R
R JR? R JR?

is closable in ‘H and the closure (A, V) is a symmetric Dirichlet form. Consider now the
following assumption on V:

/ / %uv dedt < cAi(u,u) for all u € C°(RMY), (43)
R JR?

for some constant ¢ > 0. Let V' satisfy (43). The bilinear form associated with (A, V) and

(2,D(Z,H)) extends the bilinear form € (cf. (42)), and is a generalized Dirichlet form

by [23, Proposition 1.4.7)] since (U)o is sub-Markovian, hence (2, D(2,H)) a Dirichlet
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operator, and (\A,V) a Dirichlet form.

By [23, IV.4(b)] we know that £ is quasi-regular and there exists an associated process.
Furthermore, since A is a symmetric Dirichlet form and since the coresolvent associated
to the time derivative is sub-Markovian we know (cf. [23, Proposition1.4.7.]) that the core-
solvent associated to £ is also sub-Markovian. Hence Fukushima’s decomposition holds
for AV, f € F, where F = {u € V | &% € V'}. Moreover, by 23, IV.4(b)] we know that
C’OO(]RdH) C F dense. Hence Alg and Dlag hold with Y = C°(R*™), C' = 2¢,v = 1, and
by Proposition 3.4(ii) Fukushima’s decomposition extends to A®U1-/l & ¢ CH(IR™),
®(0) =0, f1,..., fn € Fp. By Example 3.3 the associated process is obviously a diffusion
up to his life time.

c) First order perturbations of time dependent Dirichlet forms on R

Let d > 1 and b; € LL (R x RYdt @ dz), 1 < i < d, and b;(t,-) € L{ (R% dx) for
allt € R, 1 <1 < d. Consider the bilinear form

d ou Ov
Z//Rd 5. 90 dxdt—Z//Rd ivdxdt

/ —v dzdt ;u,v € C(RH).
Rd

Let B := (by,...,bs) and assume that

/ (B,Vu)dzdt < 0 for all u € C°(R™),u > 0.
Rd+1
We suppose furthermore that there exist functions L = Ly + Lo, with Ly € BT(R) N
L*(R,dt) and Lo, € B (R) N L>*(IR, dt) and a constant M such that
|B(t,z) — B(t,y)| < L(t)|x — y|ga for all 2,y € R4t R
and |B(t,7)| < M(|(t,2)|garr + 1), 2 € RY, t € R.

Here | - |gx is the Euclidean norm on R¥, & > 1. Let (A, V) be the symmetric Dirichlet
form given by the closure of

A(u,v) ::/R Rd(VU, Vo)drdt ; u,v € CF(RYM)

in H. Vu means gradient w.r.t. z, i.e., Vu = (g—;‘l,...,aw ). Let Au = (B, Vu) + %,
u € CP(RMY). By [23, Proposition 11.2.8.] (A, Cg°(IR™)) is closable on H and the clo-
sure (A, D(A,H)) generates a Cy-semigroup (Uy);>o of contractions which can be restricted

to Cy-semigroup on V. Since (Uy)i> is sub-Markovian the bilinear form & associated with
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(A, V) and (A, D(A,H)) is a generalized Dirichlet form. By [23, IV.4(d)] we have that &’
is quasi-regular and that Y = C§° (]R‘Hl) C F dense which in particular implies the exis-
tence of an associated process (cf. [23, PropositionIV.2.1.]). From [23, I1.(2.3.1)] we can
see that (Uy)sso is also an L*-contraction. This implies that the adjoint semigroup (Ut)tzo
of (U)i>o is sub-Markovian and then applying [23, Proposition 1.4.7.] we have that the
coresolvent assoicated to £’ is also sub-Markovian. Therefore Fukushima’s decomposition
holds for AV, f € F, and extends to AlPU-f)l & ¢ CYIR™), ®(0) =0, f1,...,fn €Y
by Proposition 3.4(i) because Alg holds. However, unless we do not make some supple-
mentary assumption on the divergence of the vector field B we can even not show the
existence of a coprocess.

d) Symmetric Dirichlet forms on R perturbed by divergence zero vector fields

Let 1 be a positive measure on B(IR?) with supp(p) = R%. Suppose that dy < dzx and that
the density admits a representation ?, where ¢ € Hlla’f(]Rd), ie. p-x € Hy*(RY) for all

u € C¢(RY) and where Hy*(IR?) is given as the closure of C§°(RY) w.r.t. [(Vu, Vv) dz.
Consider the closure of

E%u,v) = %/(VU, Vo) du ; u,v € C3°(IR)

on L*(IRY, cf. [15, I1.2b] for the closability) which we denote by (£, H*(IR?, 1)). Here
H 0 H

(-,+) denotes the inner product in R?,

In particular, the measure x4 can be infinite. Let (L%, D(L°)) by the generator associated to

(€% Hy*(R?, 11)). By the construction we have that Cg°(R?) C D(L°) and Lou = 1Au +

(2, V) for u € CF(RY). Let B € L3 (RERY, ), e, B = (By...., By) : RY — R is

measurable and fV(B, B) du < oo for all V' relatively compact in R?. Suppose that
/Au + (B, Vu) du = 0 for all u € C°(R?) .

Note that there is no symmetric bilinear form associated with A 4+ B -V but that %Au +
LB, Vu) = L + (B, Vu) where § = 1 (B _ 2%), Be L2 (RLRY ) and

loc
/ (B, V) du = 0 for all u € C°(IR?)

which induces some kind of symmetry for the first order part of L° + 3 - V because —f
satisfies the same conditions as 3 (i.e. we can also consider the operator L°—3-V cf. below).
For a subspace W C L?(IR, 1) let Wy denote the space of all u € W such that supp(|u|p)
is compact and let W, as usual denote the bounded elements in W. Set Wy, = Wy N W,
Then Lu := Lou+ (B, Vu), u € D(L°)gy is an extension of tAu+ (B, Vu), u € Cg°(R?).
By [24, Theorem 1.5] the exists a closed extension (T, D(L)) of (L, D(L%)o;) on LY(R%, 1)

generating a strongly continuous resolvent (G, )a~o which is sub-Markovian. Furthermore
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we have D(L), C Hy*(R?, p) and

£°(u,v) — / (B, Vuyvdu = — / Tuvdy; ue DD, ve HYAR p)oy

and
E%u,u) < —/fu udp ; uw€ D(L), .

Remark 4.1 (i) Since —f3 satisfies the same assumptions as B similarly to (L, D(L))
we can construct a closed extension (f/, D(f)) of L'u — (B,Vu) generating a strongly

continious resolvent (G/a)a>0 which is sub-Markovian. It follows that

/@auvdp = /u@;v dp for all u,v € LY(RY, ), .

Note also that similarly to the case of symmetric Dirichlet operators which admit a carré
du champ cf. [3, 1.4] D(L), is an algebra.

Let (Tt)¢>o (resp. (T;)QO) be the semigroup corresponding to (L, D(L)) (resp. (f/, D(fl))).
Since (T})>0 (resp. (T;)tzo)) is a sub-Markovian semigroup of contractions it deter-
mines uniquely a semigroup (7})io (resp. (17)e0) of contractions on L?(IR%, 1) by the
Riesz-Thorin Interpolation Theorem (cf. [19, Theorem IX.17]). (T})i>0 (resp. (T})i=0) is
strongly continuous again. Let (L, D(L)) (resp. (L', D(L'))) be the associated generator
and (Gy)aso (resp. (G.)a>0) be the associated resolvent. Note that T} (resp. G, 1}, GY)
coincides with T, (vesp. Ga, T, G) on LY (R, 1) N L2(IR?, 11). Let (-, ) be the inner prod-
uct in L*(IR?, p). According to Example 1.2(ii) (L, D(L)) is associated to a generalized
Dirichlet form on D(L) x L*(IR?, ) U L*(R?, ) x D(L') by

() = (—Lu,v) for u € D(L), v € L*(R?, )
W= (u, —L'v) for u € L*(R?, i), v € D(L))

Furthermore (L, D(L)) is quasi-regular in terms of Definition 1.3 and by [24, Theorem
3.5] there exists a p-tight special standard process M = (Q, Foor (X)i0, (P:)ze pe ) with
life time ¢ which is associated with (L, D(L)) in the sense that E.([;° e~ f(X})dt) is
an £%-q.c. m-version of G, f for all f € L*(R? u) N By. Note that by [24, Lemma 3.4]
E-exceptional and £%exceptional sets coincide because E-nests an £%-nests coincide.

Let us give here a quite shorter hence more transparent proof of [24, Proposition 3.6]
which states the following:

Proposition 4.2 It holds that

P.(t — X is continuous on [0,()) =1 for E-q.e. z € E.
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Proof Let u € C°(RY). Since for any v € L*(RY, 1)

E(u,v) = (—%Au,v) — /(%B, Vu) vdp

the assertion follows by Example 3.3.

OJ
Let us now summarize what we have achieved so far. Since we have QR and M*®* by

Remark 4.1 we have also QI\{ and Mex. Clearly, SUB and SUB hold. By Lemma 4.2 we
have Dif. It is clear that the coassociated process is also a diffusion up to (.

Let us from now on assume that the semigroup (7}):>¢ is conservative, i.e. 731 = 1 for
any t > 0. Adapting arguments from [24] we can see that this is the case if there exists a
positive constant C such that (B(z),z) < C(|z|24ln(|z|24 + 1) + 1) for all 2 in R?. Here
| - |ga denotes the Euclidean norm on R%. When (7});50 is conservative it is easy to see
that [1 — aR,1dp =0 for any p € §00. Hence P,(( = c0) = 1 for £-q.e. z € R? which

further implies that ME2Mel and Plt hold. Note that also Alg and Diag’ are satisfied

cont
with Y = C°(RY),y = 0,C' = 1, and (A, D(A)) = (€% Hy* (R, ).
Let Dy, = {x € R?| |z|ga < k}. Then (Dy)r>1 is an E-nest since it is an E%nest.
Let (uf)p>1 C C°(RY), 1 < i < d, be such that uf(z) = 25,2 = (21,...,24) € Dy,
uf(z) = 0,2 ¢ Dyyq. Then (uf)>; is a localizing sequence for the coordinate projections
w;(z) = 2;,2 € R4 1 < i < d. Hence by Theorem 3.6(iii) with Y D C5°(R%) we have

Let us show that M (™l is a 1-dimensional Brownian motion. To do so let us first calculate
the energy measure related to (M) u € CP(RY). Let g € LY(R?, p), and (R!)as0 be
the resolvent of the coassociated process. Then

/R’vg dp iy = alggo a(u— aGau,uGlg) — a(u®, Glg — aGLGlg)

2= Lu,uGhg) - (~Lu,Glg)
= 2(—Lu,uGg) — (-L°u* G g)

+2/<B, Vu)ul g dp — /(B VUZ)G;gdu
= 2/(VU,V(UG'7g)> dp — /(Vu{G’Vg) dp
= /(Vu, Vu)Ggdp .
On the other hand
/ RLg A (vu(x) va(xa)as = M (G g, aGasy(Vu, V)

a—00

= /(Vu, Vu)Ggdpy .
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Hence by Theorem 2.5 we have
partay = Vi, Vu) - dp

Now, because of Lemma 2.4 and Lemma 1.18

/Rﬁ,g du<ﬂ4[ui]> = lim R/g 1D0 du( k+1>

k—o0

= lim [ Rlg (V" Vui™) 10 dp

k—o0

= lim R;g (Vu;, Vu;) 1Dg dp

k—o0

= /R’g (Vui, V) dp

But also [ R, 9 QL[ (Tuy(X), Tus(Xa) ds = = [ R g(Vu;, Vu;) dp and then we have (M), =
fo (Vui(X,), Vui(X,)) ds = t. We obtain that M is a Brownian motion by Levy’s char-
acterization. Similarly, we get (Ml M4y, = §;;-¢ and therefore M; = (Mt[ul], - Mt[“”])
is the standard Brownian motion on R%. Now, let us take a look at Nl Since

1 1
Luf = §Auf + §<B’ Vul)

we know that

tAok 1

‘ . tACL 1 .
NE :/0 <§B(Xs),w§+1(xs)>ds+/0 EAufH(XS) ds

I
N
s
~
| =
=
—~
=
QL
V)

where o}, := opg- Thus

t
| 1
NP = / 5 Bi(X.) ds
0

because B; € L _(R?, 1) implies that | B;| p2dz is a positive Radon measure and then by
Remark 2.2(i) we can see the finiteness of the PCAF [ |B;|(X,) ds. Hence summarizing,
we have achieved the following

t
1
X;—2=W, +/ §B(XS) ds, P.-a.s for £%qeze R4t >0 (44)
0

where (W, Fi. P,)i>o is the standard Brownian motion on R? starting at zero.

Instead of looking at the coassociated process (this will be done in the infinite dimensional
case below) we want to see what the generalized 1t6 formula looks like for our process M.
Let ® € CY(RY), (u¥)ren, 1 < i < k, as above. By Theorem 3.6(iii) we have

D(X,) — D(Xy) = M + NP,

68



un 'u,I.H_1
Then by Lemma 2.15(i), the chain rule, and since Mt[Aﬁ,]k Mt[/\f] = Mt[/\;k I we have

Tk

[ D(ULyeney u
M, = Mg

(@™ uh ]
- ]\Ii‘/\o']c
d -
_ O, (WM. Ul e Ml ])
> (B ()
e k1 k+1 et [uf 1]
=3t Y () () (M, — 01
i=1 =
d n—1
=3l 30 (X)) (M, — ML)
i=1 =0
d t/\ak
i=1 70
. . .. . [uft1) [F]
where the last term is a sum of usual stochastic integrals. Similarly, since N;,i = Nyb.
we haVe [(I)] [@(ulf+1 u§+1)] [Pk( k+1 u§+1)]
Nt/\Uk - Nt/\Uk - 1lm Nt/\O'k
tAok
= lim Lpt(X,) ds

tAok 1 tAo}
:/ (=B(X,),V®(X,))ds + lim —Apﬁ(Xs) ds
0

2 n—oo J

where (p¥),en are polynomials, such that p* — @, ap" — &, . uniformly on Dy, as
n — 00. Then the generalized 1t6 formula for our process is

b1 "1
(X)) — B(X,) = Z/ o, (X,) dM! 4 /(§B,V<I>>(Xs)ds+ lim 5Ap';(Xs)ds,
0

n—oo 0

for all t < o4, k € IN.

4.2 Weak solutions of SDE’s in infinite dimensions

We will treat here the infinite dimensional analogon of the previous example.

Let E be a separable real Banach space and (H, (-,-)y) a separable real Hilbert space
such that H C E densely and continuously. Identifying H with its topological dual H’
we obtain that £/ C H C E densely and continuously. Define the linear space of finitely
based smooth functions on E by

FC = {f(ls, L) | m €N, f € CE(R™), 1y, ... Ly € E'Y.
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Here C°(IR™) denotes the set of all infinitely differentiable (real-valued) functions on R™
with all partial derivatives bounded. For u € FC;°, k € E let

ou d
%(2) = Eu(z + sk) |s=0, 2 € E.

It follows that if u = f(l4,...,1,,) and k € H we have that

ou "
o) = 2 L (a2 Dl i, = € B

x
Consequently, k — 2%(z) is continuous on H and we can define Vu(z) € H by
ou
(Vu(z), k) = 5 (2)-

Let p be finite positive measure on (£, B(£)). Assume for simplicity supp(p) = E. An
element k in F is called well-p-admissible if there exist B € L*(E; u) such that for all u,
v in FC°

Let us assume

(A.1) There exists a dense linear subspace K of E’ consisting of well-p-admissible
elements.

Then it is well known that the densely defined positive definite symmetric bilinear form
1
E%u,v) = §/<VU,VU>HCZ,LL u,v € FC.°

is closable on L?(E;u) and that the closure (£°, D(£°)) is a symmetric quasi-regular
Dirichlet form. Let (L% D(L")) be the associated generator. Let 8 € L*(E, H;pu) (i.e.
B: E— Eis B(E)/B(E)-measurable, 3(F) C H and ||8||z € L*(E; 1)) be such that

/(3, Vu)gdp =0 for all u € FC°. (45)

Since FC® is dense in D(E°) (45) implies that [(B8, Vu)y du = 0 for all u € D(E°) and
thus [(B, Vu)gvdu = — [(B,Vv)gudy for all u, v € D(EY);. Let
Lu:= L+ (B, Vu)y , u& D(L",.

It then follows from [24, Proposition 4.1.] that (L, D(L°),) is closable on L'(F; u) and that
the closure (L, D(L)) generates a Markovian Cy-semigroup of contractions. Furthermore
D(L), € D(E°) and for u € D(L)y, v € D(E°),

E%u,v) — /(B, Vu)gvdp = — /fuvd,u. (46)
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Let (L, D(L)) with associated resolvent (Gg)aso be the part of (L, D(L)) on L?(FE;p),
(L', D(L)) with associated resolvent (G’,),~o be the adjoint of (L, D(L)) in L*(E;p).
According to Example 1.2(ii) (L, D(L)) is associated with the generalized Dirichlet form

[ (—Lu,v) for u € D(L), v e L*(E;u)
E(u,v) = { (u, —L'v) foru € L*(E;u), v € D(g/)

where (-, ) is the inner product in L*(E;u). There exists (cf. [24, Th.4.6., Prop.4.7.]) a
p-tight special standard process M = (€, Foo, (Xt)i>0, (P:):cr,) with life time ¢ that is
associated with (L, D(L)) in the sense that R, f(-) := E.[[;° e f(X})dt] is an £°-q.c.
m-version of G, f for all f € B, N L*(E;u), a > 0. Furthermore P,[( = +oo| = 1,
P,[t — X, is continuous on [0, 00)] = 1 for £%-q.e z € E.

Note that by [24, Lemma 4.5] L-nests and £%-nests coincide. Therefore E-exceptional and
E% exceptional sets coincide.

Remark 4.3 Let L, (H) denote the linear space of all symmetric and bounded operators
on H. Let A: E — Lg,,,(H) be measurable such that for some positive constant C

Cldy < A(z) < C7'dy forall z € E.

The inequalities here are to be understood in the quadratic form sense. The case where
1
E%u,v) = 3 /(AVU, Vo)gdp u,v e FCF°

and A # Idg will not be treated here. We only remark that in this case the martingale part
of the decomposition below is not necessarily a Brownian motion and that a representation
for the martingale part can be carried out as in [21].

Since —f3 satisfies the same assumptions as 3 the closure (L D(L )) of L'u := L% —
(B, Vu)g, u € D(L°), on L'(E;u) generates a Markovian Cop-semigroup of contractions
too, D(L), € D(E°) and for w € D(L'),, v € D), E%u,v) + [(B.Vuygvdu =
— [T'uvdp. Tt is easy to see that the part of (T', D(T')) on LA(E;pu) is (I/, D(I/)). Let
(R.)a>0 denote the resolvent of the associated coprocess. Since (GY,)q>0 is sub-Markovian
and strongly continuous on V = L*(F;p), Theorem 2.11 applies for v € D(L) with

N = ¥ Lu(X,)ds. Let v € D(L),, g € L*(E; ) N By, v > 0, then by (23)

[ Rgdics = 28°0Rg) - €07, Byg)
= /R (Vo, Vo) g du.

Now let u, € D(L), such that u, — u in D(L). Since by (46) u,, — u in D(E") we

have [ R.gdpc.> = [ R,g(Vu, Vu)gdu. In particular [ R, gdpc, = [ R, gdus where
A = [((Vu(X,), Vu(X,))g ds. Therefore by Remark 2.14 and Theorem 2.5 it follows

71



that (M), = fg(Vu(Xs),Vu(Xs»H ds. Note that (M) is finite since (Vu, Vu)y €
LY(F; ). Assume

(A.2)  w(:) =g (k,-)p € L*(E;p) for all k € K.
Here g/ (-, ) g denotes the dualization between £ and £'. Then clearly u; € D(L),

1 _
Luy = 3B+ Bk, k€K, (47)
and
(MU MEwly, =tk Ky, kK €K (48)

Choosing an ONB K, C K of H which separates the points of £/ by Theorem 2.11 applied
to ug, k € Ky we get a countable system of 1-dimensional SDE’s with independent 1-
dimensional Brownian motions according to (48) and drifts given according to (47). If we
assume

(A.3)  For one (and hence all) ¢ > 0 there exists a probability measure p; on (E, B(E)),
such that

/elE/Uf 22, (dz) = e —3tlklE for all k eF

similar to [1, Theorem 6.6] it is then possible to lift the countable system of 1-dimensional
equations to a single equation on £, namely we have

Theorem 4.4 There exist maps W, N° : Q — C([0,00), E) with the following proper-
ties:

(i) w— Wi(w) := W(w)(t) and w — NP (w) := N°w)(t) are both Fi/B(E) measurable
fort > 0.

(ii) There exists an E°-exceptional set S C F such that under each P,, » € E\S,
W = (Wy)eso is an E-valued (Fi)io-Brownian motion starting at 0 € E with covari-
ance (-,-yg (i.e. under each P,, z € E\S, for all0 < s <t W; — W is independent of
F, and (k, W, — W,) g is mean zero Gaussian with variance (t — s)||k||3;)-

(iii) For each k € K, t > 0 and £°-q.e. z € E we have P,-a.s.

ek, W) g = MM and g (k, N?) / B (X
(iv) For £°-q.e. z € E we have P,-a.s.
¢
Xy =2+ W+ N} + / B(X,)ds (49)
0

where the last mtegml is in the sense of Bochner (cf. the following Remark 4.5) and where
forke K k;fo dstfO s), k) ds.
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Remark 4.5 (i) The assumption that the Gaussian measures satisfying (A.3) exist is of
course, necessary. It just means that there exists (cf. [10,p.74]) a Brownian semigroup on
E with covariance (-, ) g, i.e., there is a Brownian motion on E over H. Hence (A.3) is
the best condition one can hope for.

(i1) In the above general situation there is no guarantee that k — [i(z), k € K, is
represented by an element in E for p-a.e. z € E. But if we assume

(A.4)  There exists a B(E)/B(E)-measurable map [t : E — E such that
(a) g k,Bl)e =0 p-a.s. for each k € K,
(b) |I1Bylle € L'(E; 1)

then we may define the process N° in Theorem 4.4 as a Bochner integral. In fact, it is
easy to see that || Byl g € L'(E;p) N B implies the finiteness of the AF [, |64 ||p(X;) ds.
Hence, by 28, Theorem 1,p.133, Corollary2,p.134], N? := %fot B (Xs)ds, t > 0 (where
the integral is in the sense of Bochner P,-a.s for £°-q.e. z € E) has the desired properties.

(#i) It is easy to see that (A.}) is equivalent to the following assumption:

(A.4’)  There exists a B(E)/B(E)-measurable map B : E — E such that
(a) %El(k, B)g = Luy, p-a.s. for each k € K,
(b) |IBllg € L*(E; ).

Analogous to (1) we may then replace Ny + fot B(X,)ds in (49) by the Bochner integral
L[ B(X,)ds.

Applications

In this subsectlion we assume that F is a separable real Hilbert space with inner product

|-l :== (-,-)% and that H C E densely by a Hilbert-Schmidt map. Then there exists
a nonnegative definite injective self-adjoint Hilbert-Schmidt operator 7" on E such that
H=T(E)and |||z = [|T||z- Analogous to [10, Theorem 4.4 Step 3.] we see that |||z
is measurable over H, hence (A.3) holds. Let B : E — E be a Borel measurable vector
field satisfying the following conditions:

(B.]) hm|\z||E—>oo<B(z)a Z)E = —0Q0,

(B.2) g(l,B)g:E — R is weakly continuous for all [ € F'.

(B.3) There exist Cy, Cy, d € (0,00), such that |B(2)||z < Cy + Colz||%
for all z € E.

Then by [2,Theorem5.2.] there exists a probability measure p on (E, B(E)) such that
w{l, B)p € L*(E;p) for all | € E" and such that

1 1
/ﬁAHu—Fﬁ (Vu,B)gdp = 0 forall ue FCX (50)
El

where A is the Gross-Laplacian, i.e., Agu =", %ng(ll(z), s b (2)) (G, iy if =

f(ly, . lm) € FC°. Assume that B(z) = —z + v(z2), v : E — H. Because of (B.1),
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(B.3) it follows by [2, Lemma5.1.] that v € L*(E, H; ). In particular (using Young’s
and the logarithmic Sobolev inequality) we have ||z||g € LP(FE,u) for all p > 1. Let v
be a Gaussian measure on E with covariance (-,-)g. By [2, Theorem 3.5.] du = ©*dvy
where ¢ is in the Sobolev space H?(F;~). Furthermore the logarithmic derivative 3%
of u associated with H exists and admits the representation 8% (z) = —z + 2V“”( ). Note

that possibly supp(u) Z E. Nevertheless, since every k € E’ is well-u- adnns&ble (thus in
particular (A.1) holds)

1
E%u,v) = 3 /(VU,VU>H du, u,ve FC~,

is well-defined and closable on L?(E;u) and the closure is a symmetric quasi-regular
Dirichlet form. Let (L%, D(L")) be the associated generator. It is easy to see that FCp°® C
D(L°) and

1

1
L'y = §Agu+ §E/(Vu,ﬁl“{>E,u e FC.°.

et f:=1(B— By). Clearly B € L*(E, H; ) and by (50) since [ Loudp =0, u € FC;®
/(B Vu)gdp = 0 forall ue FCe. (51)

As in section 4.2 we then construct a conservative diffusion M = (Q, Foo, (Xt)i>0, (P2)zcE,)
associated to the part on L?*(F;p) ( which we denote by (L, D(L)) ) of the closure on
LYE, p) of L+ (3, Vu)g, uw € D(L"),. Note that Lu = $Agu+3 ., (Vu, B)g, u € FC°.
Surely (A.2) is satisfied and clearly Luy = 3., (k, B)p hence (A.4’) holds. By Theorem
4.4 and Remark 4.5(ii) we then have P,-a.s. for £°-q.e. z € F (thus in particular P,-a.s.)

L[ 1t
Xy = z+W— —/ Xsds + —/ v(X;)ds (52)
2 Jo 2 Jo

where (W;)i>0 is an E-valued (ft)t>0 Brownian motion starting at 0 € E with covariance

(-,-)gr and where % fo Xds, 5 fo ,)ds are in the sense of Bochner P,-a.s. for £%-q.e.

z € E. Note that f -2 f Vu) g du =0 for all u in FCg°.

Let (L’ D(L')) denote the adjoint operator of (L, D(L)) on L*(FE; p). Clearly, since L’u,C =
ok, jidp + 222 — Jo)p and |lidp|lg, [|Z22]le, [vlls € L*(E;p) the coprocess M =

(Q,}"oo, (Xt)tzo, (PZ)ZGEA) associated to (L', D(L')) weakly solves

~ — 1 [t ~ 1 [t -
X, = z+Wt——/ Xsds+/ VSO(X )ds——/ v(Xy)ds
2 Jo o ¥ 2 Jo

for £°-q.e. z € E where (Wt)tzo is an F-valued (ﬁt)tzo—Brownian motion starting at 0 €
with covariance (-, -)g.
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An Ito-type formula

Let (Ga)aso be the resolvent associated to (L, D(L)). Since Gorz = Gaq, o > 0, it fol-
lows that D(L), C D(L), is dense w.r.t. the L'-graph norm. Note that since 1 € D(L),
the 1-reduced function ey exists for all f € L®(E; u). Let u, := nGu, u € D(L),. By
24, Lemma 4.4.(ii7)] we have that e,_, + €y, v _ 0in D(E"), hence in L?(E; ). Fur-

thermore e(Al—]) = (~L(u — u,),u — u,) — 0. Now (cf. Remark 2.9) by Theorem

2.11(ii) the decomposition (30) extends to A[“, u € D(L),. Similarly to the finite di-
mensional case D(L), is an algebra. Hence Alg is satisfied with ) = D(L);, and we can
apply Proposition 3.4(i) to extend decomposition (30) to AW & ¢ C1(R™), ®(0) = 0,
f=( 1,0 fn), fry s fn € D(L)s

Now let ® € CHIR"), ®(0) # 0. Set ¥(x) := ®(x) — ®(0). Since 1 € D(L) we have
®(f) € H¥. Obviously AP = AN hence MI*N = M) Then using Theorem
2.18, Theorem 2.11(i) for AW and the uniqueness of the decomposition (30) we ob-
tain MWl =3 OL(F o F)e MU =y 22(f . f)e MU and hence the
following Ito-type formula

B(f1, s J) YD) = (Fr e fo) (Y0) = 8(1) (f17"' Ja) o M NPTt

In particular Nt@(ﬁ""’f")} = Nt[\p(fl""’f”)] = lim,,_, Nt[p”(fl""’f")] where (pp)nen are poly-
nomials as specified in the proof of Proposition 3.4(i) and the martingale part is a version
of the usual stochastic integral (cf. Lemma 2.15(i)).
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5 Appendix

We shall give here below the exact definition of an m-tight special standard process.

Let E be a Hausdorff topological space and assume that its Borel o-algebra is gener-
ated by the set C'(E) of all continuous functions on (F, B(F)) such that H := L?(F;m) is
a separable real Hilbert space. Adjoin A as an isolated point to F and let Fa := EU{A}.
Denote by P(FEa) the set of all probability measures on (Ea, B(EA)). As usual we extend
every function f defined on a subset A C F to AU {A} by setting f(A) := 0. Denote by
B(EA)* the o-algebra of universally measurable sets.

Definition 5.1 M = (Q, M, (Xt)1>0, (Pi)zer,) s called a (time-homogeneous) Markov
process with state space E, life time C, and corresponding filtration (M;)i>o if

(M.1) X; : Q — Ea is My/B(Ex)-measurable for all t > 0, and X;(w) = A <t > ((w)
for all w € Q.

(M.2) For allt > 0 there exists a map 0, : 2 — § such that Xs 00, = Xgiy for all s > 0.

(M.3) (Pp)ecr, is a family of probability measures on (£2, M), such that x +— P,[B] is
B(Ea)*~measurable for all B € M and B(Ea)-measurable for all B € o(X;|t > 0)
and Pa[Xo = A] = 1.

(M.4) For all A € B(EA),s,t >0, and x € Ea
PJ;[XH_S S A|Mt] = PXt[Xs € A] Pz — a.s.

P,)zer,) is a Markov process and p a positive measure on

1M — (M, (X0 (
= [ P,u(dx). For a sub-c-algebra A C M let AP be its P,-

(EA, B(EA)) let P
completion in M.

Definition 5.2 A Markov process M = (Q, M, (X4)i>0, (Pr)zer,) with state space E, life
time ¢, and corresponding filtration (My)i>o is called a right process if

(M.5) P.[Xo=2x] =1 for allx € Ex.
(M.6) t — Xy(w) is right continuous on [0, 00) for all w € €.
(M.7) (My)>o is right continuous and for any (My)i>o—stopping time T and p € P(Ea)
P, Xrys € AIM;] = Px. [X; € A] P, — a.s.
for all A € B(EA) and s > 0.

Given a right process M = (Q, M, (Xt)i>0, (Pr)er,) With state space E the family
(pt)t>0 (I‘@Sp (Ra)a>0) Of kernels on (E,B(E)) defined by ptf(x) = Ex[f(Xt)] (resp.

fo e~ %p,f(x)dt), z € E, f € By, is called the transition semigroup (resp. re-
solvent) of M. Note that R «f is well-defined and B(FE)-measurable for all f € B, because
of our assumption B(E) = o(C(E)).

For a subset A € B(E) let 04 := inf{t > 0| X; € A} be the first hitting time (w.r.t. M).
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Remark 5.3 (i) Given a right process M = (Q, M, (X;)i>0, (Pr)zer,) with state space
E and life time ¢, the fillration (Fy)iso defined by Fy := Nueppa)(Fy)#, where F) =
o(Xs|s € [0,t]), is called the natural filtration. A right process w.r.t. some filtration
(My)e=0 is always a right process w.r.t. the natural filtration.

(i) If E is a Radon topological space in the sense of [22] (i.e. homeomorphic to a univer-
sally measurable subset of a compact metric space, e.q. a locally compact separable metric
space) then any right process M with state space E w.r.t. some filtration (My)i>o (sat-
isfying Oprs = 0 0 0 for all s,t > 0) is a right process w.r.t. some filtration (My)i>o in
the sense of [22]. Conversely, any right process M w.r.t. (My)i>o in the sense of [22] is a
right process w.r.t. (M;);>o in the sense of Definition 1.2 if the corresponding transition
semigroup (pt)eso satisfies py(By(Ea)) C By(Ea), t > 0.

Definition 5.4 A right process M with state space E and resolvent (Ry)aso0 is called
associated with € if Ry f is an m-version of Gof for all a > 0 and f € By,N'H. M is
called properly associated in the resolvent sense with £ if in addition R.f is £-q.c. for
a>0and feB,NH.

If M is a right process with state space E, and (p;);>¢ denotes the transition semigroup
of M, it is easy to see that M is associated with &£ if and only if p,f is an m-version of
T,f forallt > 0 and f € B, N'H.

Definition 5.5 Let M = (Q, F, (X})i>0, (Pr)zers be a right process with state space E
and life time C. Let p be a o-finite positive measure on (Ea, B(EA)).

(i) M is called p-tight, if there exists an increasing sequence (K, )n>1 of compact metriz-
able sets in E such that
P, [lim omk, <G| =0.
(i1) M is called p-special standard, if
(M.8) Xi— :=limsie X ewists in E for all t € (0,()P,-a.s.
s<t
(M.9) lim,,_,oc X,, = X;P,~a.s. on {7 < (} and X, is \/ FP _measurable for every
n>1

increasing sequence (T,)n>1 of (F; *)e=0-stopping times with limit T.

(iii) M is called special standard, if M is p-special standard for all i € P(Ep).

(iv) M is called a Hunt process, if (M.8) and (M.9) hold with ¢ replaced by oo and E by
En for all p € P(Ea).
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