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The understanding and development of magnetic materials and devices is of utter relevance for example
in magnetic sensors, recording heads, and magneto-resistive storage devices. In the literature it is well-
accepted that dynamic micromagnetic phenomena are described best by the Landau-Lifshitz-Gilbert
equation (LLG). This non-linear parabolic equation reads

mt = −αm×
(
m×H(m)

)
+ m×H(m)

m(0) = m0 in H1(Ω;S2)

∂nm = 0 on (0, τ)× ∂Ω

|m| = 1 a.e. in (0, τ)× Ω,

where H(m) denotes the total magnetic field which is given by

H(m) := ∆m +DΦ(m) + P(m)− f + hσσσ(m)

and consists of the exchange field, the anisotropy field, the stray-field, the applied field, as well as
the contribution of the non-linear magnetostrictive field. In this equation, the magnetic behavior of
the ferromagnetic body is characterized by the vector valued magnetization m : (0, τ) × Ω → R3. In
addition, the magnetostrictive field hσσσ(m) depends on the so-called stress tensor σσσ and is thus coupled
to the equation of elastodynamics

%utt −∇ · σσσ = 0 on (0, τ)× Ω.

Numerical challenges for the time integration arise from the strong non-linearity, the non-convex side
constraint |m| = 1, the non-local dependence of the demagnetization field P(m) from the magnetization
m as well as from the coupling of the two equations.

The great number of applications as well as the amount of numerical issues makes LLG of equal inte-
rest for both, physicists and mathematicians, and thus the scientific community benefits in many ways.

Recently there has been a huge progress in the mathematical literature for the so-called small-particle
limit. In this model all energy terms but the exchange energy are neglected, i.e. the magnetic field
is simplified to H(m) = ∆m, cf. [Alouges/Jaisson, Math. Models Methods Appl. Sci., 16 (2006)],
[Bartels/Prohl, SIAM J. Numer. Anal., 44 (2006)], and [Alouges, Discrete Contin. Dyn. Syst. Ser.
S, 1 (2008)]. In our contribution, we generalize the approach of Alouges to the total magnetic field stated
above, i.e. including all five energy terms and combine it with the approach from Banas/Slodicka, cf.
[Banas/Slodicka, Appl. Numer. Math., 56 (2006)] for the discretization of the second equation. Since
the computation of the demagnetization field is very time and memory consuming, the proposed time
integrator is split into an implicit part and an explicit part. The first one deals with the higher-order term
∆m stemming from the exchange energy, whereas all other terms are treated explicitly. In addition, the
two equations can be decoupled. As the original algorithm, our extension guarantees the side constraint
|m(t,x)| = 1 for all nodes x and all time-steps t to be fulfilled as well as unconditional convergence if
spatial mesh-size h and time-step size k tend to zero. In contrast to previous works, another benefit of
our scheme is the fact that it requires only to solve two linear systems per time-step. Finally, our analysis
allows to replace the operator P which maps m onto the corresponding demagnetization field, by a dis-
crete operator Ph. Possible choices for Ph are given by an extended convolution operator, the FEM-BEM
coupling, or the hybrid FEM-BEM approach proposed in [Fredkin/Koehler, IEEE Transactions on
Magnetics 26 (1990)] which is mostly used in the Physics literature.


