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1 Surface Diffusion

The surtace diffusion flow is a geometric evolution law in which

for curves

V = —Arli 7 V = —Kgs

o ' = {I't}4>( is an evolving hypersurface,
e I/ is the velocity in normal direction of I,
e x 1s the sum of the principal curvatures of the surface,

e Ar is the Laplace-Beltrami operator of the surface I' and s is arc length parameter.

1.1 Interesting geometrical features

Let I' be a compact, closed and embedded hypersurface in R"

e The motion driven by surface diffusion is area decreasing and volume preserving

e This motion is the fastest way to decrease the area with the constraint that the volume is preserved with
respect to (H 1) inner product

1.2 Equilibria ( Stationary solutions )

Clearly surfaces with constant mean curvature are equilibria.
In the compact, closed and embedded case the spheres are the only equilibria.

1.3 Question ( Stability )

A natural question to ask is whether these stationary solutions are stable under the flow.
This question has been answered positive by

e Elliott and Garcke for circles in the plane. [1]

e Eischer, Mayer and Simonett for spheres in higher dimensions |2]

Now in general, the surfaces will meet an outer boundary or they might intersect at triple junction!

2 Surface Diffusion with triple junction

We study the following problem: Take () to be a ball, consider three evolving curves lying in €2, tulfilling
the surtace diffusion equation along each I';, being perpendicular to the outer boundary and have a common
intersection at a triple junction with 120 angle condition. More precisely;,

V'=—kl,, along each I} (1)
At the triple junction .
(1), T2(t)) = 120, <(T%(1), I2(t) = 120, <(T%(¢), TH(t)) = 120,
kY4 K2+ KD =0,
Vsk! - ngpt = Vsk? - ngpe = Vgk> - ngps.

At the outer boundary <

{ a(Ti(t),00) = T,

VSKJZ "Nori = 0. {)Q

2.1 Geometric properties of the flow

The flow decreases the total length and preserve the enclosed areas. And it is again a H 1 gradient flow for
the total area functional.

2.2 Manifold of equilibria

Curves with constant curvature which satisty the b.cs are equilibria. Let M denote the set of all equilibria.

up to e

Kt =¢

K2 =0
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. KT = —¢€

up to rotation

kl=r?=rd=0
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The Mercedes star I', is stationary. We now prove the existence of a second solution which is curved. By
symmetry we can reduce the problem to prove the following.

Theorem 2.1. let I' be a curve described by u for the parameterization in section 2.3 then there exists
a neighborhood of I'yx such that for every small constant € there exist the unique solution of the following
problem

k=e¢ <(I,00_)— g —0, <(T,804) — 120 = 0. (2)

Linearization of the left hand side of (2) around I'yx and prove that it is invertible

Proof. . .
roof operator and then apply inverse function theorem.

L]
2.3 Parametrization, PDE formulation |3]
Parametrization
Geometric evolution laws (free boundary problem) » PDE (fixed domain)
[
| (@)
[' = Graph of function u : [—-1,1] - R ;
'y ~»u=0, V(F(t)) > &gu, K(F(t)) ~ Uge 4 G
Of course dealing with triple junction may involve more work, see [3]. y
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Anyhow you get the following nonlocal PDE after parametrization around I
Oru(t) = A(u(t))u(t) + F(u(t)) in €, (3)
Bi(u(t)) =0 on 0f2, j€{0,1,2 3}.
where
4
O

[A(u))(o) = alo, u, ug, ..., ud, u(zy) v

F(w)|(0) = f (0, W, g, U () 5 oony US (g;o)) b (z0) + L ((7, U, gy, ey U, U (xo)) |

Bj(u) = g; (a,u,ug, ...,ujg,u(a:())) .

)

Here x¢p = 0 (triple junction) , 2 = (0, 1) and u(o,t) = (uy (o, t),us (0, t),us(0,1)).

2.4 Linearization around stationary solution I', [3]

The linearization of (3) at u = 0 reads as follows, where ¢ = 1, 2, 3.
u% — _ugaaa 0 < (Ov 1)7

at 0 = 0 (triple junction)

(! + u? + S =0

1 2 3

< Uy = Uy = Uy,

1 2 3
uO’O’ _I_uO'O' _I_UO'O' T 07
ul a2 3

\ O00 o000 o000

at ¢ = 1 (outer boundary)

{—unguiO,

1 _
Usre = 0.

3 Stability of the Mercedes star

Now for proving the stability of stationary solutions we use the following theorem [4].

3.1 (Generalized principle of linearized stability

Theorem 3.1. (Priiss, Simonett, and Zacher) suppose that the linearized operator A has the
property of maximal reqularity and suppose the stationary solution usx 1S normally stable, i.e. assume

that

(2) mear us the set of equilibria M is a manifold of dimension m,
(i) Tu, M = N(A),

(242) 0 1s a semi-simple eigenvalue of A, i.e. N(Ag) ® R(Ag) = X
(2v)o(A)\ {0} C C4.

Then uy 1s stable and solution starting nearby exist globally and converge to some point on the manaifold
of equilibria.

3.2 Main Theorem

Theorem 3.2. (work in progress) A stationary solution having the form of a Mercedes star is sta-
ble under the flow (1) and solution starting nearby exist globally and converge to some point on the
manifold of equilibria.

Proof. We first show that u, is normally stable.
Let us call the corresponding linearized operator as Ag so by calculating N(Ap) we get

N(Ay) = {(o,0,0) , (0, 1 —0%, 06°—1),(1—02%0, 0° — 1)}

Statement (i) follows from Theorem 2.1. In general, T, M C N(Ap) and now by proving dim N(A) =
dim Ty, M = 3 we get (i1).

Let us prove (44%) since we have

compact resolvent

(3P : X — N(Ap) st PAy= AgP =0) — N(Ag) = N(45) — N(4p) ® R(Ag) = X
We only need to prove the existence of such a projection P which is done by using the (H _1) inner product

and symmetry of the operator Ay.
The proof of (iv) was already done in [3].

4

[n order to deal with nonlocality term u(xq) we use parabolic holder settings C +pata,

Now let us prove Maximal Regularity Based on the results of Solonnikov |5], it is enough to show
normally ellipticity and Lopatinskii- Shapiro condition for Ay and this was done by using energy methods.

Local well-posedness Now by applying fixed point argument in the space

V= {ue CEHO0T ) Q) ul0,) =w, fu =il g o gy < B

and do linearization around stationary solution rather than initial data and finally by choosing ||ug — x|
and 1" small enough and R suitably large we proved local existence and uniqueness.

Missing part In [4] they employ the L-setting so we are trying to extend their approach to cover a parabolic
holder settings too. ]
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