

Nonlinear stability of stationary solutions for Surface Diffusion with triple junction

Nasrin Arab (joint with Helmut Abels and Harald Garcke)

Universität Regensburg

Surface Diffusion

The surface diffusion flow is a geometric evolution law in which

 $V = -\Delta_{\Gamma} \kappa \quad \xrightarrow{\text{for curves}} \quad V = -\kappa_{ss}$

- $\Gamma = {\Gamma_t}_{t>0}$ is an evolving hypersurface,
- V is the velocity in normal direction of Γ ,
- κ is the sum of the principal curvatures of the surface,
- Δ_{Γ} is the Laplace-Beltrami operator of the surface Γ and s is arc length parameter.

Interesting geometrical features 1.1

Let Γ be a compact, closed and embedded hypersurface in \mathbb{R}^n

- The motion driven by surface diffusion is area decreasing and volume preserving
- This motion is the fastest way to decrease the area with the constraint that the volume is preserved with respect to (H^{-1}) inner product

Anyhow you get the following nonlocal PDE after parametrization around Γ_*

$$\begin{cases} \partial_t u(t) = A(u(t))u(t) + F(u(t)) & \text{in } \Omega, \\ B_j(u(t)) = 0 & \text{on } \partial\Omega, \quad j \in \{0, 1, 2, 3\}. \end{cases}$$

where

$$\begin{aligned} &[A(u)v](\sigma) = a(\sigma, u, u_{\sigma}, ..., u_{\sigma}^{3}, u(x_{0}))v_{\sigma}^{4}, \\ &[F(u)](\sigma) = f\left(\sigma, u, u_{\sigma}, u(x_{0}), ..., u_{\sigma}^{3}(x_{0})\right)u_{\sigma}^{4}(x_{0}) + L\left(\sigma, u, u_{\sigma}, ..., u_{\sigma}^{3}, u(x_{0})\right), \\ &B_{j}(u) = g_{j}\left(\sigma, u, u_{\sigma}, ..., u_{\sigma}^{j}, u(x_{0})\right). \end{aligned}$$

Here $x_0 = 0$ (triple junction), $\Omega = (0, 1)$ and $u(\sigma, t) = (u_1(\sigma, t), u_2(\sigma, t), u_3(\sigma, t)).$

Linearization around stationary solution Γ_* [3] $\mathbf{2.4}$

The linearization of (3) at $u \equiv 0$ reads as follows, where i = 1, 2, 3.

Equilibria (Stationary solutions) 1.2

Clearly surfaces with constant mean curvature are equilibria. In the compact, closed and embedded case the spheres are the only equilibria.

Question (Stability) 1.3

A natural question to ask is whether these stationary solutions are stable under the flow. This question has been **answered** positive by

- Elliott and Garcke for circles in the plane. [1]
- Escher, Mayer and Simonett for spheres in higher dimensions [2]

Now in general, the surfaces will meet an outer boundary or they might intersect at triple junction!

Surface Diffusion with triple junction $\mathbf{2}$

We study the following problem: Take Ω to be a ball, consider three evolving curves lying in Ω , fulfilling the surface diffusion equation along each Γ_i , being perpendicular to the outer boundary and have a common intersection at a triple junction with 120 angle condition. More precisely,

$$V^i = -\kappa_{ss}^i$$
, along each Γ_i .

At the triple junction

$$\begin{cases} \sphericalangle(\Gamma^{1}(t),\Gamma^{2}(t)) = 120, \quad \sphericalangle(\Gamma^{2}(t),\Gamma^{3}(t)) = 120, \quad \sphericalangle(\Gamma^{3}(t),\Gamma^{1}(t)) = 120, \\ \kappa^{1} + \kappa^{2} + \kappa^{3} = 0, \\ \nabla_{s}\kappa^{1} \cdot n_{\partial\Gamma^{1}} = \nabla_{s}\kappa^{2} \cdot n_{\partial\Gamma^{2}} = \nabla_{s}\kappa^{3} \cdot n_{\partial\Gamma^{3}}. \end{cases}$$

At the outer boundary

$u^i_t = -u^i_{\sigma\sigma\sigma\sigma}$ $\sigma \in (0,1),$

at $\sigma = 0$ (triple junction)

at $\sigma = 1$ (outer boundary)

 $\begin{cases} -u^i_{\sigma} + u^i = 0, \\ u^i_{\sigma\sigma\sigma} = 0. \end{cases}$

Stability of the Mercedes star 3

Now for proving the stability of stationary solutions we use the following theorem [4].

Generalized principle of linearized stability 3.1

Theorem 3.1. (*Prüss, Simonett, and Zacher*) suppose that the linearized operator A has the property of maximal regularity and suppose the stationary solution u_* is normally stable, i.e. assume that

(i) near u_* the set of equilibria M is a manifold of dimension m, (*ii*) $T_{u_*}M = N(A)$, (*iii*) 0 is a semi-simple eigenvalue of A, *i.e.* $N(A_0) \oplus R(A_0) = X$ $(iv) \sigma(A) \setminus \{0\} \subset \mathbb{C}_+.$

Then u_* is stable and solution starting nearby exist globally and converge to some point on the manifold of equilibria.

Geometric properties of the flow 2.1

The flow decreases the total length and preserve the enclosed areas. And it is again a H^{-1} gradient flow for the total area functional.

Manifold of equilibria 2.2

Curves with constant curvature which satisfy the b.cs are equilibria. Let M denote the set of all equilibria.

The Mercedes star Γ_* is stationary. We now prove the existence of a second solution which is curved. By symmetry we can reduce the problem to prove the following.

Theorem 2.1. *let* Γ *be a curve described by u for the parameterization in section 2.3 then there exists* a neighborhood of Γ_* such that for every small constant ϵ there exist the unique solution of the following problem

$$\kappa = \epsilon, \quad \sphericalangle(\Gamma, \partial \Omega_{-}) - \frac{\pi}{2} = 0, \quad \sphericalangle(\Gamma, \partial \Omega_{+}) - 120 = 0.$$
(2)

3.2 Main Theorem

Theorem 3.2. (work in progress) A stationary solution having the form of a Mercedes star is stable under the flow (1) and solution starting nearby exist globally and converge to some point on the manifold of equilibria.

Proof. We first show that u_* is normally stable. Let us call the corresponding linearized operator as A_0 so by calculating $N(A_0)$ we get

 $N(A_0) = \{ (\sigma, \sigma, \sigma), (0, 1 - \sigma^2, \sigma^2 - 1), (1 - \sigma^2, 0, \sigma^2 - 1) \}$

Statement (i) follows from Theorem 2.1. In general, $T_{u_*}M \subset N(A_0)$ and now by proving dim N(A) = $\dim T_{u_*}M = 3$ we get (*ii*).

Let us prove (iii) since we have

$$(\exists P: X \to N(A_0) \text{ s.t } PA_0 = A_0 P = 0) \to N(A_0) = N(A_0^2) \xrightarrow{\text{compact resolvent}} N(A_0) \oplus R(A_0) = X$$

We only need to prove the existence of such a projection P which is done by using the (H^{-1}) inner product and symmetry of the operator A_0 . The proof of (iv) was already done in [3].

In order to deal with nonlocality term $u_{\sigma}^4(x_0)$ we use parabolic hölder settings $C^{1+\frac{\alpha}{4},4+\alpha}$.

Now let us prove Maximal Regularity Based on the results of Solonnikov [5], it is enough to show normally ellipticity and Lopatinskii-Shapiro condition for A_0 and this was done by using energy methods.

Local well-posedness Now by applying fixed point argument in the space

Linearization of the left hand side of (2) around Γ_* and prove that it is invertible operator and then apply inverse function theorem. Proof.

Parametrization, PDE formulation [3] $\mathbf{2.3}$

Parametrization Geometric evolution laws (free boundary problem)- \longrightarrow PDE (fixed domain)

> $\Gamma \equiv$ Graph of function $u : [-1, 1] \rightarrow \mathbb{R}$ $\Gamma_* \rightsquigarrow u \equiv 0, \qquad V(\Gamma(t)) \rightsquigarrow \partial_t u, \qquad \kappa(\Gamma(t)) \rightsquigarrow u_{\sigma\sigma}.$ Of course dealing with triple junction may involve more work, see [3].

 $Y = \left\{ u \in C^{1 + \frac{\alpha}{4}, 4 + \alpha}([0, T] \times \bar{\Omega}) : \quad u(0, .) = u_0, \quad \|u - u_*\|_{C^{1 + \frac{\alpha}{4}, 4 + \alpha}([0, T] \times \bar{\Omega})} \le R \right\}$

and do linearization around stationary solution rather than initial data and finally by choosing $||u_0 - u_*||$ and T small enough and R suitably large we proved local existence and uniqueness.

Missing part In [4] they employ the L_p -setting so we are trying to extend their approach to cover a parabolic hölder settings too.

References

[1] C.M. Elliott and H. Garcke, Existence results for diffusive surface motion laws, Adv. Math. Sci. Appl. 7 (1997), 465–488.

[2] Escher, J., Mayer, U., and Simonett, G., The surface diffusion flow for immersed hypersurfaces, SIAM J. Math. Anal. 29, no. 6 (1998), 1419–1433.

- [3] Garcke H., Ito K., Kohsaka Y., Surface diffusion with triple junctions: A stability criterion for stationary solutions, Adv. Diff. Equ. 15, no.(5-6) (2010), p.437-472.
- [4] J. Prüss, G. Simonett, and R. Zacher, On convergence of solutions to equilibria for quasilinear parabolic problems, J. Differential Equations, 246 (2009), 3902-3931.
- [5] V.A. Solonnikov, Boundary value problems in physics, Proceedings of the Steklov Institute of Mathematics, Vol. LXXXIII (1965).