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1. INTRODUCTION

The present paper studies special holomorphic solutions of inhomogeneous linear differential
equation

(1) w' (z+h) = Aw (2) + f (2).

in a Banach space. Here A is a closed linear operator on a Banach space E with the domain of
definition D(A) (D(A) is not necessarily dense in F), having a bounded inverse operator. These
operators appear under studying some boundary-value problems for parabolic type equations (see
[1] - [4]). For example this case is appeared in the problem on the heat conduction on the finite
segment [0,[] with zero boundary condition. In this situation we can consider E = C|0,!], and

operator A = % with the domain of definition D(A) = {u € C?[0,1] : u(0) = u(l) = 0}. Studying
Equation (1) we suppose that f(z) is an E-valued function, which is holomorphic in a neighborhood
of zero and under a solution of the equation we understand a holomorphic in the neighborhood
of zero E-valued function w(z), such that w(z) € D(A) and Equation (1) is fulfilled in the same
neighborhood. The properties of holomorphic and entire solutions of the equation

w'(z) = Aw(z) + f(2) for the case when the operator A is unbounded were studied in numerous
works ( see, for example, [1], [7] - [9]).

The main result of the paper is the existence proof and the uniqueness one of an entire solution
of exponential type in a case when f(z) is an entire function of exponential type (see Theorem 1
and Theorem 3). Let us recall that f(z) is of exponential type if for f(z) the following condition
is fulfilled: 3y > 0 3C > 0Vz € C : ||f(2)|| < Ce"*l. The proof of the main theorem is based
on studying the implicit differential equation Tw’(z+ h) + g(z) = w(z), where T = A~! and
g(z) = —A71f(2). The holomorphic solutions behavior of the implicit equation mentioned above
were studied with another technique in [10].

2. MAIN RESULTS

Let F be a Banach space, T : E — E be an bounded linear operator, h € C and g : C — FE be
an entire function.
At first consider the inhomogeneous implicit differential-difference equation of the form

(2) Tw'(z+h)+g(2) =w(2),

Theorem 1. Let p(T') be a spectral radious of operator T, and g(z) is an entire function of expo-
nential type o. If p (T)oe®" < 1, then Equation (2) has a unique entire solution of exponential type
oo

o, w(z) =Y Tg™ (2 +nh).
n=0
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Proof. Let a1 > o, p(T)o1e”" < 1 and ||g(2)|| < C1e®#l As ||g™(2)| < 2y/anCio}e ?l| then
9" (z + nh)|| < 2y/7TC o} ?l 1k
. If |z| < R, then

1779 (= + nh)|| < I T"[[lg"™ (= + nh)|| < 2| T"||v/Fnor"Cre™ Rerh,
As according to the Cauchy sign and Gelfand formula {/||T"|| o771 — p(T) o1e7t" < 1
[e.e]
Hence ||w(z)|| < 2Cy ( 0’1"HT"H\/7rne"1”h> eT1h = Cye1l3l,
0

Py
Therefore the exponential type of w is not more than ¢. Taking into consideration left hand side

of Equation 1 the exponential type of w is equal to o. It is left to show a uniqueness of a solution.
Consider the homogeneous equation Tw’ (z + h) = w (z). Then T"w™ (z + h) = w (z). We have

lw(0)] < " [Ilw™ (nh)|| < 2(|T"||v/7no1"Cre*™.

So lim (" Hw(O)H) < p(T)ore”" < 1,i. e. w(0) = 0. As the function w*)(z) satisfies to the

homogeneous equation as well, we have w*)(0) = 0 and the uniqueness is proved.
O

Corollary 2. Let g be of zero exponential type (that is Ye > 03C. > 0Vz € C: ||f (2)| < C.el?l),
T be arbitrary bounded operator and h be arbitrary complex number. Then Equation (2) has a unique
o

entire solution of zero exponential type w (z) = 3. T"g™ (z 4+ nh).
n=0
Theorem 3. Let A be a closed linear operator on a Banach space (domain of definition D(A) of

A is not necessarily dense). Consider differential-difference Equation (1)
If the operator A has a bounded inverse one and f(z) is an entire function of zero exponential type,

o0
then Equation (1) has a unique entire solution of zero exponential type w(z) = — >, A=V () (2 4 nh).
n=0

Moreover the Cauchy problem
w'(z+h) = Aw + f(2)
w (0) = wo

has an entire solution of zero exponential type if and only if wo+ 3. A=+ () (nh) = 0.
n=0

Proof. Let T = A~! and g(z) = —A~'f(2). Then D(T) = E, T is bounded, g(z) is an entire
function of zero exponential type and Equation (1) is equivalent to Equation (2). According to
Theorem 2 Equation (2) has the unique entire solution of zero exponential type
o0 o0 o0
w(z) = Tg™ (z+nh)=— > A~V f0) (2 £ nh) and w(0) = — 3 A-FD () (np),
n=0

Theorem is proved. O

Example 4. Let F = C and A = I. Consider the differential-difference equation
w'(z+h) =w+ f(z). If f(2) is an entire function of zero exponential type, then this equation

oo
has a unique entire solution of zero exponential type w(z) = — 3 f(® (2 4+ nh) and this solution
n=0
continuously depends on f in the topology of the space Ey (Ey is the space of entire E-valued
function of zero exponential type).

Corollary 5. Let E be finite-dimensional space and f(z) be polynomial degree m. Consider the
system of differential-difference equations w'(z + h) = Aw + f(2), where A is invertible. Therefore
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this system has a unique polynomial solution of degree m,

w(z) = — 32 A=+ F0) (2 4 ).
n=0

Corollary 6. Consider the system of differential-difference equations w'(z+h) = Aw + f(2),
where A is a matriz with entire coefficients, f(z) is a polynomial with entire coefficients and h € Z.
If detA = £1, then this system has a unique polynomial solution and this solution is a polynomial
with integer coefficients.

Proof. It is clear from existence inverse matrix A~! with entire coefficients and form using Cramer’s

rule. g
Example 7. Let E=C[0,1], A= £ and D (A {uecl [0,1] : u (0) = 0}.
Then (A™'h) (z) = fh (y) dy, (A_(”‘H h) (z) = 4 f x — )dy and p (A~1) = 0.
By transition to realoaxes Equation (1) has the form
(3) { Qu(z,t+h)=32%+ f(t,x), teR, z€(0,1)
(£,0) = 0

If in the second variable f can be extended to an entire function of exponential type, then in this
class of functions Problem (3) has the unique solution

_Zﬁ/(x_ S e+ nh,y) dy.
n= 0

It is important to note, that Problem (3) has only zero solution for the homogeneous equation even
in class of continuously differentiablle functions. In particularly, if A = 0 using Tejlor’s formula we

have
Zn,/ &m ,y)dyz—/f(tﬂ—y,y)dy-
0

Example 8. Let E = C[0, 1], A= %, D(A) = {uecC?0,1]:u(0)=u(1)=0}. Then
operator A is invertible, (A™1h) (z) = flG (z, y) h(y)dy, where G is the Green function of corre-
sponding boundary problem and p(A_lo) = 2. In this case

(A~ DR) (2) = flGn+1 (z, y) h(y)dy, where G (z, y) = G (z,y),

G’VH—l fG (37 y) ds.

In this example by transition to real axes Equation (1) has the form of the heat equation on
(0, 1) with zero boundary conditions

n {%—f(t+h,x):%%§+f(t,:r), teR, z€(0, 1)
w(t, 0)=w(t, 1)=0

o0

If f(t,x) = > cn(a) t", where ¢, € C[0,1] and lim {/n!c,| < -5, then the problem (4)
n=0 n—oo

oo 1 .
has the solution w (t,z) = — > [ Gny1 (z,9) g—ti (t +nh,y)dy.
n=00
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