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Problem

We consider the following quasi-linear system of equations of composite type,
which describes the 3-dimensional non-stationary motion of viscous
compressible fluid in a deformable viscoelastic rock [1], [2], [3], [4]:
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Prot = Po — psgx3 = pr + (1 — §)ps; pe = (1 — ¢)(ps — pr);
where pr, ps, Vs, V¢ — are the true density and velocity of the phase
respectively; ¢ — is the porosity; g = (0,0, —g) — is the density of mass
forces; k — is the permeability, ;o — is the dynamic viscosity of the fluid; 1, 3
— are the parameters of the rock; pr — is the fluid pressure, p;,: — is the total
pressure, £ = 2 + (¥, - V).

Closing relations

In this system of equations of the unknown 10: 1¢, 3vs, 3v, 1pe, 1pf, 1pr. We
consider that p; is constant. The system is closed in the one-dimensional case,
if pr = pr(pr) or pr = const. In general, the system except for the equation
of state is added to the equation of conservation of momentum of the system
"solid matrix - pore fluid”, namely the equation of an incompressible solid
skeleton deformation, taking into account the influence of pore fluid pressure

Vo t+ps =0,
where p = (1 — ¢)ps + ¢pr — is the average density of the medium,
= (1 — ¢)os + ¢or — is the total stress tensor, o, o — are the solid and
fluid stress tensors, respectively.
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Solvability in the small (1D)
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Prot = Po— Ps8X = ¢pr + (1 — ¢)ps, e = (1 — &)(ps — pr)- (5)

Vs logr=10, vr |ag;= 0,

Vs |emo= v2(x),  Vf |emo= V¥(X), (6)

o] |t=O: <Z>°(X), Pf |t:0: PO(X)~

Definition 1. A classical solution of problem (1) — (4) : (¢, vi, pi, pf),

i=f,s ¢ C*YQr), (vi pi pr) € C2rol+a/2(Qr), satisfying equations

(1) = (4) and the initial and boundary conditions (5) as continuous functions
in Qr. Theorem 1. Let @ € CH(Q), (v2,0,p°) € C2H4(Q),
v loor= %" loa,= 0.

0<m<’(x) <My<1,0<m<px) <M <o0, xEQ,
mo, Mo, my, My are positive constants. Then (1) — (5) has a classical local
solution , i.e. are exist ty:

$x,t) € C(Qy), (vilx, ), pilx, 1), pf) €
More over 0 < ¢(x,t) < 1, pe(x,t) > 0 in Q.
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Local classical solvability of the Cauchy problem

In Lagrange variables equations (1)-(5) reduce to a system
Fi(Zpr) = (pfk(¢>)((1 — OV + prg),

(7)
= Apr,
1 9(1*0) = 9pe
=9 ot — 31(¢)Pe ar 32(¢) ot (8)
Pe = Ptot —
Here k(¢) = %qﬁ", ko, v, A — positive constants. Consider conditions for
system (6),(7):
pr o= p°(x), & le=o= ¢°(x). (9)
Theorem 2 Let p’(x), ¢°(x) € WJ(Q),0 < ¢°(x) < 1,/ > 1, £2 > 0, then

(6) -

(8) has a uniqueness classical local solution.

Incompressible liquid (self-similar solution, £ = x — ct)

7 (1= ¢)vs —c(1-¢)) =0, (10)
d
s (pvr — cp) =0, (11)
d ¢(;f w =<2 d (12)
Vs o Pe
® o (e= vs)¢bﬁo E (13)
Prot = Po— ps82 = Opr + (1 — @)psipe = (1 — @) (ps — pr).  (14)
vs(0) = v2, v(0) = v, $(0) = ¢°,
(15)

Iim &) = o7 Iim ve(€) = u*,{lim o(&) =
OBV IN! ¢+ are constants: ¢5° ;é o, v #£ VL.
Theorem 3. Let g =0, 4% # ¢, (¢°, qﬁ*) € (0,1). Then (10)-(15) has a
unique classical self-similar solution (¢;(€), vi(€), pe(€)),i = s, f :
0<¢"<p<¢’<l.

Generalized solution

In Lagrange variables equations (1)-(5) reduce to a system (ps = const)

5}

5(%) 5(ﬂ?+k( )(1—¢)G(x)), (16)
(9% 1 k(6)(1 ~ D60 lroost= 0, ¢ lio= (). (17)

1 99, 9p°(x)
E(63)) = .

0=~ G =) ox T ox
Definition 2. Bounded measurable function ¢(x, t) in Q7 is generalized
solution to problem (3.3.33), (3.3.34), if 0 < ¢(x, t) < 1 almost everywhere
in Qr, kY?(¢)(1 - d))*l% € Ly(Q7) and for any function 1(x, t) € W2(Q7),
P(x, T) =0, x € Q d for almost all ¢ € [0, T] have the identity

O/H 250yt 0) — G 0o -
/T / P ED 4 ko)a - 61600~ )
4
71¢(df(;)T)a“ajT))dxdr
Theorem 4. Let
:/17 £)de>0, selo1],
;
agi)zo, x€(0,H), G(0)>0, G(H)<o.

. Then exist at least one generalized solution to problem (16)-(18).
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