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General situation and notation

nor

Basic technical assumption: 0 < a(p) < = for all p € Ir.
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Energy functional

We consider the energy functional

E(T) ::/ldHZfa/ldeer/ 1d7—ll+/\</ 1dx7V0>
r D or v

for a, b, Vo € R with b > 0.
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Energy functional

We consider the energy functional

E(T) ::/ldHZfa/ldeer/ 1d7—ll+/\</ 1dx7V0>
r D or v

for a, b, Vo € R with b > 0. Varying the hypersuface by
¥R xR — R?: (¢, p) — o(t, p) == p + t(p)

where ¢ : R® — R® is a tangential vectorfield to D and obtaining a family of
evolving hypersurfaces by I'(t) := 9(t, ), gives the first variation

%E(I’(t))‘tzo = /r()\ — Hr)(nr - C)dHZ + /ar(nar — angp — bi) - Cd?‘[l
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Energy functional

We consider the energy functional

E(T) ::/ldHZfa/ldHZer/ 1d7—ll+/\</ 1dx7V0>
r D or v

for a, b, Vo € R with b > 0. Varying the hypersuface by
¥R xR — R?: (¢, p) — o(t, p) == p + t(p)

where ¢ : R® — R® is a tangential vectorfield to D and obtaining a family of
evolving hypersurfaces by I'(t) := 9(t, ), gives the first variation

%E(I’(t))‘tzo = /r()\ — Hr)(nr - C)dHZ + /ar(nar — angp — bi) - Cd?‘[l

This shows that a minimizer of that energy necessarily satisfies

Hr = \ = const. onl
0= a+ bxyp + <nr, I‘ID> on Ol
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Corresponding flow equations

One possible flow that tends towards a minimizer of the energy E is given by
Vr = Hr — ﬁr inl

where Hr is the mean of the mean curvature given by

_ 1 )
Hr .= ——— [ Hrd
r fld?—{?ﬁrrﬂ
r
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Corresponding flow equations

One possible flow that tends towards a minimizer of the energy E is given by
Vr = Hr — ﬁr inl

where Hr is the mean of the mean curvature given by

_ 1 )
Hr .= ——— [ Hrd
r fld?—{?ﬁrrﬂ
r

Additionally there are several reasonable choices of boundary conditions. We
will impose the boundary condition

vap = a+ bxap + {nr, np) on al
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The “Curvilinear Coordinates System” W(q, w)

We introduce the coordinate system W over a fixed reference hypersurface I'* as
VT x (—e0,20) — Q: (g, w) — W(q, w) := g+ wnr- (q) + (g, w) T(q)

where T : T* — R® is an arbitrary tangential vectorfield, that coincides with
nor= on OI* and vanishes outside a small neighborhood of OI'* and

t: " x (—eo,e0) — R: (q,w) —> t(q,w)

is some smooth function such that W(q,0) = g for all g € I'* and
V(g,w) € 99 for all g € 7" and all w € (—eo, €0).
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Distance function ¢ and the L,-Gradient flow

With the help of the curvilinear coordinate system W one can write the evolving
hypersurface as a familiy of graphs over the fixed hypersurface I'*. To this
purpose define a distance function

0: Ry x T — (—¢0,0) : (t,9) — o(t, q)

and set [,(t) := Im(W(e, o(t,®))) and observe that by construction one has
Mo=0(t) =T~ for all t € Ry.
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The considered PDE in terms of o

With this notation the flow from above transforms into

Ve, (W(a, o, ) = Hr 0 (W(a. o(t, 9))) — H(e(t)) in "
vap,(t)(W(a, o(t, q))) = a+ bsap,r(V(a, o(t, 9)))
+ (1, (¥(q, o(t, 9))), 1o, (6 (W(q o(t, q))))  on ar”

which is a non-linear second order PDE in o with second order boundary
conditions.
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The considered PDE in terms of o

With this notation the flow from above transforms into

Ve, (W(a, o, ) = Hr 0 (W(a. o(t, 9))) — H(e(t)) in "
vap,(t)(W(a, o(t, q))) = a+ bsap,r(V(a, o(t, 9)))
+ (1, (¥(q, o(t, 9))), 1o, (6 (W(q o(t, q))))  on ar”

which is a non-linear second order PDE in o with second order boundary
conditions.

Problem

This PDE is also non-local due to H(o(t))!
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Linearization

The linearization of the PDE reads as
eo(t) = Ar-o(t) + o™ Po(t) + (Vr+ Hr= - P (9,9(0))) o(2)
—]{ (Ar+ + |o* > — HE- + H(O)Hr+)o(t)dH?
+.#/ (Hr- — F(0)) cot(@)e(t)dH!  on T
[1dH? [or.
e

deo(t) = —sin(a)’(nar+ - Vi o(t)) — sin(a)llp+ (nop~, nop-) o(t)
+ sin(«&) cos(a) I+ (nar=, nar=)o(t) + bsin(a)oss(t)
+ bsin(a)sp= lp= (nap~, nap+)o(t) — bsin(a)»ap+ (7", (nap*)s) o(t)
— bsin(a) (nap=, (np+)s)? o(t) on ar-
0(0) = 0o onTl”

Highest order terms Non-local terms
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