Linearization and local existence of solutions for the volume preserving mean curvature flow with line tension

Lars Müller

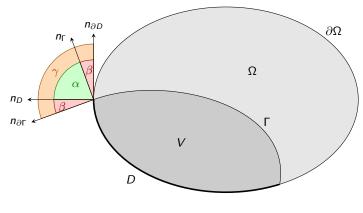
Universität Regensburg Fakultät für Mathematik

January 31, 2012

Lars Müller

Universität Regensburg Fakultät für Mathematik

General situation and notation



Basic technical assumption: $0 < \alpha(p) < \pi$ for all $p \in \partial \Gamma$.

Universität Regensburg Fakultät für Mathematik

<ロト <回ト < 回ト < ヨト

Linearization and local existence of solutions for the volume preserving mean curvature flow with line tension

Energy functional

We consider the energy functional

$$E(\Gamma) := \int_{\Gamma} 1 d\mathcal{H}^2 - a \int_{D} 1 d\mathcal{H}^2 + b \int_{\partial \Gamma} 1 d\mathcal{H}^1 + \lambda \left(\int_{V} 1 dx - V_0 \right)$$

for $a, b, V_0 \in \mathbb{R}$ with $b \ge 0$.

Lars Müller

Universität Regensburg Fakultät für Mathematik

Energy functional

Lars Müller

We consider the energy functional

$$E(\Gamma) := \int_{\Gamma} 1 d\mathcal{H}^2 - a \int_{D} 1 d\mathcal{H}^2 + b \int_{\partial \Gamma} 1 d\mathcal{H}^1 + \lambda \left(\int_{V} 1 dx - V_0 \right)$$

for $a, b, V_0 \in \mathbb{R}$ with $b \ge 0$. Varying the hypersuface by

$$\psi:\mathbb{R} imes\mathbb{R}^3\longrightarrow\mathbb{R}^3:(t,p)\longmapsto\psi(t,p):=p+t\zeta(p)$$

where $\zeta : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ is a tangential vectorfield to D and obtaining a family of evolving hypersurfaces by $\Gamma(t) := \psi(t, \Gamma)$, gives the first variation

$$\frac{d}{dt}E(\Gamma(t))\Big|_{t=0} = \int_{\Gamma} (\lambda - H_{\Gamma})(n_{\Gamma} \cdot \zeta) d\mathcal{H}^{2} + \int_{\partial \Gamma} (n_{\partial \Gamma} - an_{\partial D} - b\vec{\varkappa}) \cdot \zeta d\mathcal{H}^{1}$$

Universität Regensburg Fakultät für Mathematik

A (B) < (B) < (B) < (B) </p>

Energy functional

We consider the energy functional

$$E(\Gamma) := \int_{\Gamma} 1 d\mathcal{H}^2 - a \int_{D} 1 d\mathcal{H}^2 + b \int_{\partial \Gamma} 1 d\mathcal{H}^1 + \lambda \left(\int_{V} 1 dx - V_0 \right)$$

for $a, b, V_0 \in \mathbb{R}$ with $b \geq 0$. Varying the hypersurface by

$$\psi:\mathbb{R} imes\mathbb{R}^3\longrightarrow\mathbb{R}^3:(t,oldsymbol{p})\longmapsto\psi(t,oldsymbol{p}):=oldsymbol{p}+t\zeta(oldsymbol{p})$$

where $\zeta : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ is a tangential vectorfield to D and obtaining a family of evolving hypersurfaces by $\Gamma(t) := \psi(t, \Gamma)$, gives the first variation

$$\frac{d}{dt}E(\Gamma(t))\Big|_{t=0} = \int_{\Gamma} (\lambda - H_{\Gamma})(n_{\Gamma} \cdot \zeta) d\mathcal{H}^{2} + \int_{\partial \Gamma} (n_{\partial \Gamma} - an_{\partial D} - b\vec{\varkappa}) \cdot \zeta d\mathcal{H}^{1}$$

This shows that a minimizer of that energy necessarily satisfies

$$H_{\Gamma} = \lambda = const.$$
 on Γ

$$0 = a + b \varkappa_{\partial D} + \langle n_{\Gamma}, n_{D} \rangle \qquad \text{on } \partial \Gamma$$

Lars Müller

Universität Regensburg Fakultät für Mathematik

・ 回 ト ・ ヨ ト ・ ヨ ト

One possible flow that tends towards a minimizer of the energy E is given by

$$V_{\Gamma} = H_{\Gamma} - \overline{H_{\Gamma}}$$
 in Γ

where $\overline{H_{\Gamma}}$ is the mean of the mean curvature given by

$$\overline{H_{\Gamma}}:=rac{1}{\int\limits_{\Gamma}1d\mathcal{H}^{2}}\int_{\Gamma}H_{\Gamma}d\mathcal{H}^{2}$$

< 回 > < 三 > < 三

Linearization and local existence of solutions for the volume preserving mean curvature flow with line tension

One possible flow that tends towards a minimizer of the energy E is given by

$$V_{\Gamma} = H_{\Gamma} - \overline{H_{\Gamma}}$$
 in Γ

where $\overline{H_{\Gamma}}$ is the mean of the mean curvature given by

$$\overline{H_{\Gamma}} := rac{1}{\int\limits_{\Gamma} 1 d\mathcal{H}^2} \int_{\Gamma} H_{\Gamma} d\mathcal{H}^2$$

Additionally there are several reasonable choices of boundary conditions. We will impose the boundary condition

$$v_{\partial D} = a + b \varkappa_{\partial D} + \langle n_{\Gamma}, n_{D}
angle$$
 on $\partial \Gamma$

Universität Regensburg Fakultät für Mathematik

We introduce the coordinate system Ψ over a fixed reference hypersurface Γ^* as $\Psi : \Gamma^* \times (-\varepsilon_0, \varepsilon_0) \longrightarrow \Omega : (q, w) \longmapsto \Psi(q, w) := q + wn_{\Gamma^*}(q) + t(q, w)T(q)$

where $T : \Gamma^* \longrightarrow \mathbb{R}^3$ is an arbitrary tangential vectorfield, that coincides with $n_{\partial\Gamma^*}$ on $\partial\Gamma^*$ and vanishes outside a small neighborhood of $\partial\Gamma^*$ and

$$t: \Gamma^* imes (-arepsilon_0, arepsilon_0) \longrightarrow \mathbb{R}: (q, w) \longmapsto t(q, w)$$

is some smooth function such that $\Psi(q, 0) = q$ for all $q \in \Gamma^*$ and $\Psi(q, w) \in \partial \Omega$ for all $q \in \partial \Gamma^*$ and all $w \in (-\varepsilon_0, \varepsilon_0)$.

Universität Regensburg Fakultät für Mathematik

・ 同 ト ・ ヨ ト ・ ヨ ト

With the help of the curvilinear coordinate system Ψ one can write the evolving hypersurface as a familiy of graphs over the fixed hypersurface Γ^* . To this purpose define a distance function

$$arrho:\mathbb{R}_+ imes \mathsf{\Gamma}^* \longrightarrow (-arepsilon_0,arepsilon_0):(t,q)\longmapsto arrho(t,q)$$

and set $\Gamma_{\varrho}(t) := \operatorname{Im}(\Psi(\bullet, \varrho(t, \bullet)))$ and observe that by construction one has $\Gamma_{\varrho\equiv 0}(t) = \Gamma^*$ for all $t \in \mathbb{R}_+$.

Universität Regensburg Fakultät für Mathematik

Linearization and local existence of solutions for the volume preserving mean curvature flow with line tension

With this notation the flow from above transforms into

$$\begin{split} V_{\Gamma_{\varrho}(t)}(\Psi(q,\varrho(t,q))) &= H_{\Gamma_{\varrho}(t)}(\Psi(q,\varrho(t,q))) - \overline{H}(\varrho(t)) & \text{in } \Gamma^* \\ v_{\partial D_{\varrho}(t)}(\Psi(q,\varrho(t,q))) &= a + b\varkappa_{\partial D_{\varrho}(t)}(\Psi(q,\varrho(t,q))) \\ &+ \left\langle n_{\Gamma_{\varrho}(t)}(\Psi(q,\varrho(t,q))), n_{D_{\varrho}(t)}(\Psi(q,\varrho(t,q))) \right\rangle & \text{on } \partial \Gamma^* \end{split}$$

which is a non-linear second order PDE in ϱ with second order boundary conditions.

Universität Regensburg Fakultät für Mathematik

- 4 周 ト - 4 日 ト - 4 日 ト

Linearization and local existence of solutions for the volume preserving mean curvature flow with line tension

With this notation the flow from above transforms into

$$\begin{split} V_{\Gamma_{\varrho}(t)}(\Psi(q,\varrho(t,q))) &= H_{\Gamma_{\varrho}(t)}(\Psi(q,\varrho(t,q))) - \overline{H}(\varrho(t)) & \text{in } \Gamma^* \\ v_{\partial D_{\varrho}(t)}(\Psi(q,\varrho(t,q))) &= a + b\varkappa_{\partial D_{\varrho}(t)}(\Psi(q,\varrho(t,q))) \\ &+ \left\langle n_{\Gamma_{\varrho}(t)}(\Psi(q,\varrho(t,q))), n_{D_{\varrho}(t)}(\Psi(q,\varrho(t,q))) \right\rangle & \text{on } \partial \Gamma^* \end{split}$$

which is a non-linear second order PDE in ϱ with second order boundary conditions.

Problem

This PDE is also non-local due to $\overline{H}(\varrho(t))!$

Lars Müller

Universität Regensburg Fakultät für Mathematik

.

Linearization

The linearization of the PDE reads as

$$\begin{split} \partial_{t}\varrho(t) &= \Delta_{\Gamma^{*}}\varrho(t) + |\sigma^{*}|^{2}\varrho(t) + (\nabla_{\Gamma^{*}}H_{\Gamma^{*}} \cdot P\left(\partial_{w}\Psi(0)\right))\varrho(t) \\ &- \int_{\Gamma^{*}} \left(\Delta_{\Gamma^{*}} + |\sigma^{*}|^{2} - H_{\Gamma^{*}}^{2} + \overline{H}(\mathbb{O})H_{\Gamma^{*}})\varrho(t)d\mathcal{H}^{2} \\ &+ \frac{1}{\int_{\Gamma^{*}} 1d\mathcal{H}^{2}} \int_{\partial\Gamma^{*}} \left(H_{\Gamma^{*}} - \overline{H}(\mathbb{O})\right)\cot(\alpha)\varrho(t)d\mathcal{H}^{1} \quad \text{ on } \Gamma^{*} \\ \partial_{t}\varrho(t) &= -\sin(\alpha)^{2}(n_{\partial\Gamma^{*}} \cdot \nabla_{\Gamma^{*}}\varrho(t)) - \sin(\alpha)H_{D^{*}}(n_{\partial D^{*}}, n_{\partial D^{*}})\varrho(t) \\ &+ \sin(\alpha)\cos(\alpha)H_{\Gamma^{*}}(n_{\partial\Gamma^{*}}, n_{\partial\Gamma^{*}})\varrho(t) + b\sin(\alpha)\varrho_{\sigma\sigma}(t) \\ &+ b\sin(\alpha)\varkappa_{D^{*}}H_{D^{*}}(n_{\partial D^{*}}, n_{\partial D^{*}})\varrho(t) - b\sin(\alpha)\varkappa_{\partial D^{*}}\langle \vec{\tau}^{*}, (n_{\partial D^{*}})_{\sigma}\rangle \varrho(t) \\ &- b\sin(\alpha)\langle n_{\partial D^{*}}, (n_{D^{*}})_{\sigma}\rangle^{2}\varrho(t) \quad \text{ on } \partial\Gamma^{*} \\ \varrho(0) &= \varrho_{0} \quad \text{ on } \Gamma^{*} \end{split}$$

Highest order terms Non-local terms

э

イロト イポト イヨト イヨト

Linearization and local existence of solutions for the volume preserving mean curvature flow with line tension