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General situation and notation
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Basic technical assumption: 0 < α(p) < π for all p ∈ ∂Γ.
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Energy functional

We consider the energy functional

E(Γ) :=

Z
Γ

1dH2 − a
Z

D
1dH2 + b

Z
∂Γ

1dH1 + λ

�Z
V
1dx − V0

�

for a, b,V0 ∈ R with b ≥ 0.

Varying the hypersuface by

ψ : R× R3 −→ R3 : (t, p) 7−→ ψ(t, p) := p + tζ(p)

where ζ : R3 −→ R3 is a tangential vectorfield to D and obtaining a family of
evolving hypersurfaces by Γ(t) := ψ(t, Γ), gives the first variation

d
dt E(Γ(t))

���
t=0

=

Z
Γ

(λ− HΓ)(nΓ · ζ)dH2 +

Z
∂Γ

(n∂Γ − an∂D − b~κ) · ζdH1

This shows that a minimizer of that energy necessarily satisfies

HΓ = λ = const. on Γ

0 = a + bκ∂D + 〈nΓ, nD〉 on ∂Γ
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Corresponding flow equations

One possible flow that tends towards a minimizer of the energy E is given by

VΓ = HΓ − HΓ in Γ

where HΓ is the mean of the mean curvature given by

HΓ :=
1R

Γ

1dH2

Z
Γ

HΓdH2

Additionally there are several reasonable choices of boundary conditions. We
will impose the boundary condition

v∂D = a + bκ∂D + 〈nΓ, nD〉 on ∂Γ
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The “Curvilinear Coordinates System” Ψ(q, w)

We introduce the coordinate system Ψ over a fixed reference hypersurface Γ∗ as

Ψ : Γ∗ × (−ε0, ε0) −→ Ω : (q,w) 7−→ Ψ(q,w) := q + wnΓ∗ (q) + t(q,w)T (q)

where T : Γ∗ −→ R3 is an arbitrary tangential vectorfield, that coincides with
n∂Γ∗ on ∂Γ∗ and vanishes outside a small neighborhood of ∂Γ∗ and

t : Γ∗ × (−ε0, ε0) −→ R : (q,w) 7−→ t(q,w)

is some smooth function such that Ψ(q, 0) = q for all q ∈ Γ∗ and
Ψ(q,w) ∈ ∂Ω for all q ∈ ∂Γ∗ and all w ∈ (−ε0, ε0).
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Distance function % and the L2-Gradient flow

With the help of the curvilinear coordinate system Ψ one can write the evolving
hypersurface as a familiy of graphs over the fixed hypersurface Γ∗. To this
purpose define a distance function

% : R+ × Γ∗ −→ (−ε0, ε0) : (t, q) 7−→ %(t, q)

and set Γ%(t) := Im(Ψ(•, %(t, •))) and observe that by construction one has
Γ%≡0(t) = Γ∗ for all t ∈ R+.
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The considered PDE in terms of %

With this notation the flow from above transforms into

VΓ%(t)(Ψ(q, %(t, q))) = HΓ%(t)(Ψ(q, %(t, q)))− H(%(t)) in Γ∗

v∂D%(t)(Ψ(q, %(t, q))) = a + bκ∂D%(t)(Ψ(q, %(t, q)))

+


nΓ%(t)(Ψ(q, %(t, q))), nD%(t)(Ψ(q, %(t, q)))

�
on ∂Γ∗

which is a non-linear second order PDE in % with second order boundary
conditions.

Problem

This PDE is also non-local due to H(%(t))!
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Linearization

The linearization of the PDE reads as

∂t%(t) = ∆Γ∗%(t) + |σ∗|2%(t) + (∇Γ∗ HΓ∗ · P (∂w Ψ(0))) %(t)

−−
Z

Γ∗
(∆Γ∗ + |σ∗|2 − H2

Γ∗ + H(O)HΓ∗ )%(t)dH2

+
1R

Γ∗
1dH2

Z
∂Γ∗

�
HΓ∗ − H(O)

�
cot(α)%(t)dH1 on Γ∗

∂t%(t) = − sin(α)2(n∂Γ∗ · ∇Γ∗%(t))− sin(α)IID∗ (n∂D∗ , n∂D∗ )%(t)

+ sin(α) cos(α)IIΓ∗ (n∂Γ∗ , n∂Γ∗ )%(t) + b sin(α)%σσ(t)

+ b sin(α)κD∗ IID∗ (n∂D∗ , n∂D∗ )%(t)− b sin(α)κ∂D∗ 〈~τ∗, (n∂D∗ )σ〉 %(t)

− b sin(α) 〈n∂D∗ , (nD∗ )σ〉2 %(t) on ∂Γ∗

%(0) = %0 on Γ∗

Highest order terms Non-local terms
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