Stabilization of Periodic Stokesian Hele–Shaw Flows of Ferrofluids

Michael Wenzel

Leibniz Universität Hannover

SpringSchool “Evolution Equations”, Universität Bielefeld
March 21, 2012
Table of Contents

The Moving Boundary Problem and its Motivation

The Wellposedness Result

Stability Analysis
The Hele–Shaw Cell

Figure: A vertical Hele-Shaw cell with a fluid’s interface.
The Hele–Shaw Cell

Figure: A vertical Hele-Shaw cell with a fluid’s interface.

3-D model
Navier–Stokes equations
The Hele–Shaw Cell

Figure: A vertical Hele-Shaw cell with a fluid's interface.

Figure: 2-dimensional profile of the Hele-Shaw cell.

3-D model
Navier–Stokes equations
The Hele–Shaw Cell

Figure: A vertical Hele-Shaw cell with a fluid’s interface.

3-D model
Navier–Stokes equations

Figure: 2-dimensional profile of the Hele-Shaw cell.

2-D, gap-averaged model
Darcy’s law
Moving boundary problem
The Moving Boundary Problem

\[Qu := - \text{div} \left(\frac{Du}{\mu(|Du|^2)} \right) = 0 \quad \text{in} \ \Omega(f) \]

\[u = b(f) \quad \text{on} \ \Gamma_- \]

\[u = -\gamma \kappa_f - \frac{t^2}{(1-f)^2} + g \rho f \quad \text{on} \ \Gamma(f) \]

\[\partial_t f = - \frac{\sqrt{1 + f'^2}}{\mu(|Du|^2)} \partial_\nu u \quad \text{on} \ \Gamma(f) \]

\[f(0) = f_0 \quad \text{on} \ \mathcal{S} \quad (P) \]
Little Hölder Spaces

For $k \in \mathbb{N}$, $\alpha \in (0,1)$ and $U \subset \mathbb{R}^2$ open
Little Hölder Spaces

For \(k \in \mathbb{N}, \alpha \in (0, 1) \) and \(U \subset \mathbb{R}^2 \) open let

\[
\text{buc}^{k+\alpha}(U) := \text{BUC}^{\infty}(U) \quad \text{in} \quad \text{BUC}^{k+\alpha}(U),
\]
Little Hölder Spaces

For \(k \in \mathbb{N}, \alpha \in (0,1) \) and \(U \subset \mathbb{R}^2 \) open let

\[
\text{buc}^{k+\alpha}(U) := \overline{\text{BUC}}^\infty(U) \quad \text{in} \quad \text{BUC}^{k+\alpha}(U),
\]

\[
h^{k+\alpha}(\mathcal{S}) := \overline{\text{C}}^\infty(\mathcal{S}) \quad \text{in} \quad \text{C}^{k+\alpha}(\mathcal{S}).
\]
Little Hölder Spaces

For $k \in \mathbb{N}$, $\alpha \in (0,1)$ and $U \subset \mathbb{R}^2$ open let

$$ \text{buc}^{k+\alpha}(U) := \overline{\text{BUC}^\infty(U)} \quad \text{in} \quad \text{BUC}^{k+\alpha}(U), $$

$$ h^{k+\alpha}(S) := \overline{\text{C}^\infty(S)} \quad \text{in} \quad \text{C}^{k+\alpha}(S). $$

Goal of this choice: Use of strongly continuous analytic semigroups and abstract parabolic theory.
Classical Hölder Solutions

Let

\[V := \{ f \in h^{4+\alpha}(\mathbb{S}) : \|f\|_\infty < 1 \}. \]

We seek \((u, f)\) satisfying

\[f \in C([0, T], V) \cap C^1([0, T], h^{1+\alpha}(\mathbb{S})), \]
\[u(\cdot, t) \in \text{buc}^{2+\alpha}(\Omega(f(t))), \quad 0 \leq t \leq T \]

that fulfill (P) pointwise.
The Wellposedness Result

Theorem
Assume

\[0 < c \leq \mu(r) \leq C \quad \text{for all} \quad r \geq 0, \]
\[0 < c \leq \mu(r) + 2r\mu'(r) \leq C \quad \text{for all} \quad r \geq 0 \]

hold and let \(|c| < 1\). There is an open neighborhood \(\mathcal{O}\) of \(c\) in \(H^{4+\alpha}(\mathcal{S})\) such that for all \(f_0 \in \mathcal{O}\) problem (P) has a unique, maximal defined classical Hölder solution in \(\mathcal{O}\).
Sketch of the Proof

Transformation on a fixed reference domain Ω.
Sketch of the Proof

Transformation on a fixed reference domain Ω.

Solve the first three equations of the transformed system.
Sketch of the Proof

Transformation on a fixed reference domain Ω.

Solve the first three equations of the transformed system.

Plug this solution in the fourth equation.
Sketch of the Proof

Transformation on a fixed reference domain Ω.

Solve the first three equations of the transformed system.

Plug this solution in the fourth equation.

Study the linearization of the evolution operator.
The Transformation

The Diffeomorphism

\[\phi_f(x, y) = (x, y + (1 + y)f(x)) \quad \text{for} \quad (x, y) \in \Omega = S \times (-1, 0) \]

straightens the boundary:

Figure: Original, time-dependent geometry.
The Transformation

The Diffeomorphism

\[\phi_f(x, y) = (x, y + (1 + y)f(x)) \quad \text{for} \quad (x, y) \in \Omega = S \times (-1, 0) \]

straightens the boundary:

\[\Gamma_0 \]

\[\Omega \]

\[\Gamma_- \]

\[2\pi \]

\[x \]

\[0 \]

\[1 \]

\[y \]

Figure: Transformed, fixed geometry.
The Transformation

Push forward and pull back operators

\[\phi_f^* : \text{buc}^{2+\alpha}(\Omega) \rightarrow \text{buc}^{2+\alpha}(\Omega(f)), \quad v \mapsto v \circ \phi_f^{-1} \]

\[\phi_f^* : \text{buc}^{2+\alpha}(\Omega(f)) \rightarrow \text{buc}^{2+\alpha}(\Omega), \quad u \mapsto u \circ \phi_f \]
The Transformation

Push forward and pull back operators

\[
\begin{align*}
\phi^f_\ast & : \text{buc}^{2+\alpha}(\Omega) \to \text{buc}^{2+\alpha}(\Omega(f)), \quad \nu \mapsto \nu \circ \phi^{-1}_f \\
\phi^*_f & : \text{buc}^{2+\alpha}(\Omega(f)) \to \text{buc}^{2+\alpha}(\Omega), \quad u \mapsto u \circ \phi_f
\end{align*}
\]

Transformed operators

\[
\begin{align*}
A(f) = \phi^*_f \circ Q \circ \phi^f_\ast & : \text{buc}^{2+\alpha}(\Omega) \to \text{buc}^\alpha(\Omega) \\
B(f, \cdot) = -\text{tr}_0 \phi^*_f \left\langle \frac{D(\phi^f_\ast \cdot)}{\mu(|D(\phi^f_\ast \cdot)|^2)}, n \right\rangle & : \mathcal{V} \times \text{buc}^{2+\alpha}(\Omega) \to h^{1+\alpha}(\mathcal{S})
\end{align*}
\]
The Transformed System

System (P) is equivalent to the transformed system

\[
\mathcal{A}(f)v = 0 \quad \text{in} \quad \Omega
\]
\[
v = b(f) \quad \text{on} \quad \Gamma_-
\]
\[
v = -\gamma \kappa f - \frac{\iota^2}{(1 - f)^2} + g \rho f \quad \text{on} \quad \Gamma_0
\]
\[
\partial_t f = \mathcal{B}(f, v) \quad \text{on} \quad \Gamma_0
\]
\[
f(0) = f_0 \quad \text{on} \quad \mathcal{S}
\]
A first Existence and Uniqueness Result

Theorem
Let $f \in \mathcal{V}$. There is a unique solution $T(f) \in \text{buc}^{2+\alpha}(\Omega)$ of the quasilinear Dirichlet problem

$$
A(f)v = 0 \quad \text{in} \quad \Omega, \\
v = b(f) \quad \text{on} \quad \Gamma, \\
v = -\gamma\kappa\Gamma(f) - \frac{\nu^2}{(1 - f)^2} + g\rho f \quad \text{on} \quad \Gamma_0.
$$

The mapping $\mathcal{V} \ni f \mapsto T(f) \in \text{buc}^{2+\alpha}(\Omega)$ is smooth.
The Evolution Equation

Advection equation on variable domain:

\[\partial_t f = -\frac{\sqrt{1 + f'^2}}{\mu(|Du|^2)} \partial_{\nu} u, \quad f(0) = f_0. \]

Evolution equation on fixed domain:

\[\partial_t f = \Phi(f), \quad f(0) = f_0 \]

for the non-linear operator \(\Phi(\cdot) = B(\cdot, T(\cdot)) \).
The Generation Result

Theorem

(The complexification of) \(\partial \Phi(c) \) generates a strongly continuous analytic semigroup in \(\mathcal{L}(h^{1+\alpha}(\mathbb{S})) \), i.e.,

\[
-\partial \Phi(c) \in \mathcal{H}(h^{4+\alpha}(\mathbb{S}), h^{1+\alpha}(\mathbb{S})).
\]
Sketch of the Proof

Equivalent characterization:

$$\lambda - \partial \Phi(c) \in \mathcal{L}is(h^{4+\alpha}(\mathbb{S}), h^{1+\alpha}(\mathbb{S})), \quad |\lambda||R(\lambda, \partial \Phi(c))|_{\mathcal{L}(h^{1+\alpha}(\mathbb{S}))} \leq \chi$$

for $h^{4+\alpha}(\mathbb{S}) \xrightarrow{d} h^{1+\alpha}(\mathbb{S})$, some $\chi, \omega > 0$, and all $\text{Re}\, \lambda \geq \omega$
Sketch of the Proof

Equivalent characterization:

$$\lambda - \partial \Phi(c) \in \mathcal{L}is(h^{4+\alpha}(S), h^{1+\alpha}(S)),$$

$$|\lambda||R(\lambda, \partial \Phi(c))|_{\mathcal{L}(h^{1+\alpha}(S))} \leq \chi$$

for $h^{4+\alpha}(S) \xrightarrow{d} h^{1+\alpha}(S)$, some $\chi, \omega > 0$, and all $\text{Re} \lambda \geq \omega$

Consider $\lambda - \partial \Phi(c)$ as an operator between Sobolev spaces and apply a Marcinkiewicz multiplier theorem.
Sketch of the Proof

Equivalent characterization:

\[\lambda - \partial \Phi(c) \in \mathcal{L}(h^{4+\alpha}(\mathbb{S}), h^{1+\alpha}(\mathbb{S})), \]

\[|\lambda| \| R(\lambda, \partial \Phi(c)) \|_{\mathcal{L}(h^{1+\alpha}(\mathbb{S}))} \leq \chi \]

for \(h^{4+\alpha}(\mathbb{S}) \xrightarrow{d} h^{1+\alpha}(\mathbb{S}) \), some \(\chi, \omega > 0 \), and all \(\text{Re} \lambda \geq \omega \)

Consider \(\lambda - \partial \Phi(c) \) as an operator between Sobolev spaces and apply a Marcinkiewicz multiplier theorem.

Transfer the result to little Hölder spaces with a density argument.
Proof of the Well-Posedness Result

Apply a perturbation theorem for the class $\mathcal{H}(h^{4+\beta}(S), h^{1+\beta}(S))$ with $0 < \beta < \alpha$.
Proof of the Well-Posedness Result

Apply a perturbation theorem for the class $\mathcal{H}(h^{4+\beta}(\mathbb{S}), h^{1+\beta}(\mathbb{S}))$ with $0 < \beta < \alpha$.

The generation result holds of all f in a neighborhood $O_\beta \subset h^{4+\beta}(\mathbb{S})$ of c.
Proof of the Well-Posedness Result

Apply a perturbation theorem for the class $\mathcal{H}(h^{4+\beta}(S), h^{1+\beta}(S))$ with $0 < \beta < \alpha$.

The generation result holds of all f in a neighborhood $O_\beta \subset h^{4+\beta}(S)$ of c.

Use interpolation property of the little Hölder spaces

$$(h^{\theta_1}(S), h^{\theta_2}(S))_\sigma = h^{\theta_1 + \sigma(\theta_2 - \theta_1)}(S)$$

for $0 < \sigma < 1$ and $\theta_1 + \sigma(\theta_2 - \theta_1) \notin \mathbb{N}$.
Proof of the Well-Posedness Result

Apply a perturbation theorem for the class \(\mathcal{H}(h^{4+\beta}(\mathbb{S}), h^{1+\beta}(\mathbb{S})) \) with \(0 < \beta < \alpha \).

The generation result holds of all \(f \) in a neighborhood \(\mathcal{O}_\beta \subset h^{4+\beta}(\mathbb{S}) \) of \(c \).

Use interpolation property of the little Hölder spaces

\[
(h^{\theta_1}(\mathbb{S}), h^{\theta_2}(\mathbb{S}))_\sigma = h^{\theta_1 + \sigma(\theta_2 - \theta_1)}(\mathbb{S})
\]

for \(0 < \sigma < 1 \) and \(\theta_1 + \sigma(\theta_2 - \theta_1) \notin \mathbb{N} \).

Putting \(\sigma := (\alpha - \beta)/3 \) turns the generation result in a well-posedness result for \(f \in \mathcal{O} := \mathcal{O}_\beta \cap h^{4+\alpha}(\mathbb{S}) \) (cf. Lunardi, 1995).
The Linearization

$$\partial \Phi(c) \left[\sum_{k \in \mathbb{Z}} c_k e^{ikx} \right] = \sum_{k \in \mathbb{Z}} \lambda_k c_k e^{ikx},$$
The Linearization

\[\partial \Phi(c) \left[\sum_{k \in \mathbb{Z}} c_k e^{ikx} \right] = \sum_{k \in \mathbb{Z}} \lambda_k c_k e^{ikx}, \]

\[\lambda_k = \Gamma_{\mu,c} \left[-\gamma \coth((1 + c)k)k^3 + \left(b'(c) \frac{1}{\text{sech}((1 + c)k)} \right) \right. \]
\[\left. - G_c \coth((1 + c)k) \right] k, \quad k \neq 0, \]

\[\lambda_0 = \Gamma_{\mu,c} \frac{b'(c) - G_c}{1 + c}, \quad G_c = g \rho - 2 \frac{\mu^2}{(1 - c)^2} - \frac{\theta_c}{1 + c}, \]

\[\theta_c = \partial_y \mathcal{T}(c), \quad \Gamma_{\mu,c} = \frac{1}{\mu \left(\frac{\theta_c}{1 + c} \right)^2} + 2 \frac{\theta_c^2}{(1 + c)^2} \left(\frac{1}{\mu} \right)' \left(\frac{\theta_c}{1 + c} \right)^2 \]

Michael Wenzel

Periodic Stokesian Hele–Shaw Flows
Stability Conditions

Stability of the flat interface $f = c$ under the condition

$$0 \leq b'(c) < -\frac{2\iota^2}{(1 - c)^2} + g\rho \quad \text{or}$$

$$0 > b'(c), \quad \max\{b'(c), -I\} < -\frac{2\iota^2}{(1 - c)^2} + g\rho,$$

where $I = \inf_{k \geq 1} (\gamma k^2 - b'(c) \sech((1 + c)k))$
Stability Conditions

Instability of the flat interface $f = c$ if the former condition is violated such that

$$0 \leq b'(c), \quad b'(c) > -\frac{2\iota^2}{(1 - c)^2} + g\rho \quad \text{or}$$

$$0 > b'(c), \quad \max\{b'(c), -\iota\} > -\frac{2\iota^2}{(1 - c)^2} + g\rho$$

(2)
The Main Result

Theorem
Let $|c| < 1$ and $\omega_0 := -\sup \sigma(\partial \Phi(c))$.

(i) If (1) holds then the solution to (P) is exponentially stable. More precisely, given $\omega \in (0, \omega_0)$, there exist positive constants M and δ such that for all $f_0 \in h^{4+\alpha}(S)$ with $\|f_0 - c\|_{C^{4+\alpha}(S)} \leq \delta$ the solution to (P) corresponding to f_0 exists in the large and for all $t \geq 0$ it holds that

$$\|f(t) - c\|_{C^{4+\alpha}(S)} + \|f'(t)\|_{C^{1+\alpha}(S)} \leq M e^{-\omega t} \|f_0 - c\|_{C^{4+\alpha}(S)}.$$

(ii) If (2) holds then the flat solution $f = c$ is unstable.
The Case $b'(c) > 0$

Stability condition

$$b'(c) < -\frac{2\nu^2}{(1 - c)^2} + g\rho,$$

which means:
The Case $b'(c) > 0$

Stability condition

$$b'(c) < -\frac{2\nu^2}{(1 - c)^2} + g\rho,$$

which means:

$\triangleright \quad b'(c) < g\rho,$
The Case $b'(c) > 0$

Stability condition

$$b'(c) < -\frac{2\nu^2}{(1-c)^2} + g\rho,$$

which means:

- $b'(c) < g\rho$,
- the larger c the lower ν,
The Case $b'(c) > 0$

Stability condition

$$b'(c) < -\frac{2\ell^2}{(1 - c)^2} + g\rho,$$

which means:

- $b'(c) < g\rho$,
- the larger c the lower ℓ,
- critical maximum value $\ell_* := \frac{|1 - c|}{2} \sqrt{2(g\rho - b'(c))}$