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The Moving Boundary Problem

Qu := − div
Du

µ(|Du|2)
= 0 in Ω(f )

u = b(f ) on Γ−

u = −γκf −
ι2

(1− f )2
+ gρf on Γ(f )

∂t f = −
√

1 + f ′2

µ(|Du|2)
∂νu on Γ(f )

f (0) = f0 on S
(P)
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Little Hölder Spaces

For k ∈ N, α ∈ (0, 1) and U ⊂ R2 open

let

buck+α(U) := BUC∞(U) in BUCk+α(U),

hk+α(S) := C∞(S) in C k+α(S).

Goal of this choice: Use of strongly continuous analytic semigroups
and abstract parabolic theory
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Classical Hölder Solutions

Let
V := {f ∈ h4+α(S) : ‖f ‖∞ < 1}.

We seek (u, f ) satisfying

f ∈ C ([0,T ],V) ∩ C 1([0,T ], h1+α(S)),

u( · , t) ∈ buc2+α(Ω(f (t))), 0 ≤ t ≤ T

that fulfill (P) pointwise.
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The Wellposedness Result

Theorem
Assume

0 < c ≤ µ(r) ≤ C for all r ≥ 0,

0 < c ≤ µ(r) + 2rµ′(r) ≤ C for all r ≥ 0

hold and let |c | < 1. There is an open neighborhood O of c in
h4+α(S) such that for all f0 ∈ O problem (P) has a unique,
maximal defined classical Hölder solution in O.
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Sketch of the Proof

Transformation on a fixed reference domain Ω.

Solve the first three equations of the transformed system.

Plug this solution in the fourth equation.

Study the linearization of the evolution operator.
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The Transformation

The Diffeomorphism

φf (x , y) = (x , y + (1 + y)f (x)) for (x , y) ∈ Ω = S× (−1, 0)

straightens the boundary:

Figure: Original, time-dependent geometry.
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The Transformation

Push forward and pull back operators

φf∗ : buc2+α(Ω)→ buc2+α(Ω(f )), v 7→ v ◦ φ−1
f

φ∗f : buc2+α(Ω(f ))→ buc2+α(Ω), u 7→ u ◦ φf

Transformed operators

A(f ) = φ∗f ◦ Q ◦ φf∗ : buc2+α(Ω)→ bucα(Ω)

B(f , · ) = − tr0 φ
∗
f

〈 D(φf∗·)
µ(|D(φf∗·)|2)

, n
〉

: V × buc2+α(Ω)→ h1+α(S)
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The Transformed System

System (P) is equivalent to the transformed system

A(f )v = 0 in Ω

v = b(f ) on Γ−

v = −γκf −
ι2

(1− f )2
+ gρf on Γ0

∂t f = B(f , v) on Γ0

f (0) = f0 on S
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A first Existence and Uniqueness Result

Theorem
Let f ∈ V. There is a unique solution T (f ) ∈ buc2+α(Ω) of the
quasilinear Dirichlet problem

A(f )v = 0 in Ω,

v = b(f ) on Γ−,

v = −γκΓ(f ) −
ι2

(1− f )2
+ gρf on Γ0.

The mapping V 3 f 7→ T (f ) ∈ buc2+α(Ω) is smooth.
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The Evolution Equation

Advection equation on variable domain:

∂t f = −
√

1 + f ′2

µ(|Du|2)
∂νu, f (0) = f0.

Evolution equation on fixed domain:

∂t f = Φ(f ), f (0) = f0

for the non-linear operator Φ( · ) = B( · , T ( · )).
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The Generation Result

Theorem
(The complexification of) ∂Φ(c) generates a strongly continuous
analytic semigroup in L(h1+α(S)), i.e.,

−∂Φ(c) ∈ H(h4+α(S), h1+α(S)).
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Sketch of the Proof

Equivalent characterization:

λ− ∂Φ(c) ∈ Lis(h4+α(S), h1+α(S)),

|λ|‖R(λ, ∂Φ(c))‖L(h1+α(S)) ≤ χ

for h4+α(S)
d
↪→ h1+α(S), some χ, ω > 0, and all Reλ ≥ ω

Consider λ− ∂Φ(c) as an operator between Sobolev spaces and
apply a Marcinkiewicz multiplier theorem.

Transfer the result to little Hölder spaces with a density argument.
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Proof of the Well-Posedness Result

Apply a perturbation theorem for the class H(h4+β(S), h1+β(S))
with 0 < β < α.

The generation result holds of all f in a neighborhood
Oβ ⊂ h4+β(S) of c.

Use interpolation property of the little Hölder spaces

(hθ1(S), hθ2(S))σ = hθ1+σ(θ2−θ1)(S)

for 0 < σ < 1 and θ1 + σ(θ2 − θ1) /∈ N.

Putting σ := (α− β)/3 turns the generation result in a
well-posedness result for f ∈ O := Oβ ∩ h4+α(S) (cf. Lunardi,
1995).
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The Linearization

∂Φ(c)
[∑
k∈Z

ckeikx
]

=
∑
k∈Z

λkckeikx ,

λk = Γµ,c

[
−γ coth((1 + c)k)k3 +

(
b′(c)

1

sech((1 + c)k)

− Gc coth((1 + c)k)
)

k

]
, k 6= 0,

λ0 = Γµ,c
b′(c)− Gc

1 + c
, Gc = gρ− 2

ι2

(1− c)2
− θc

1 + c
,

θc = ∂yT (c), Γµ,c =
1

µ
(
( θc

1+c )2
) + 2

θ2
c

(1 + c)2

(
1

µ

)′(
( θc

1+c )2
)
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Stability Conditions

Stability of the flat interface f = c under the condition

0 ≤ b′(c) < − 2ι2

(1− c)2
+ gρ or

0 > b′(c), max{b′(c),−I} < − 2ι2

(1− c)2
+ gρ,

(1)

where I = infk≥1

(
γk2 − b′(c) sech((1 + c)k)

)
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Stability Conditions

Instability of the flat interface f = c if the former condition is
violated such that

0 ≤ b′(c), b′(c) > − 2ι2

(1− c)2
+ gρ or

0 > b′(c), max{b′(c),−I} > − 2ι2

(1− c)2
+ gρ

(2)
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The Main Result

Theorem
Let |c | < 1 and ω0 := − supσ

(
∂Φ(c)

)
.

(i) If (1) holds then the solution to (P) is exponentially stable.
More precisely, given ω ∈ (0, ω0), there exist positive
constants M and δ such that for all f0 ∈ h4+α(S) with
‖f0 − c‖C4+α(S) ≤ δ the solution to (P) corresponding to f0

exists in the large and for all t ≥ 0 it holds that

‖f (t)− c‖C4+α(S) + ‖f ′(t)‖C1+α(S) ≤ Me−ωt‖f0 − c‖C4+α(S).

(ii) If (2) holds then the flat solution f = c is unstable.
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The Case b′(c) > 0

Stability condition

b′(c) < − 2ι2

(1− c)2
+ gρ,

which means:

I b′(c) < gρ,

I the larger c the lower ι,

I critical maximum value ι∗ := |1−c|
2

√
2(gρ− b′(c))
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