Stabilization of Periodic Stokesian Hele–Shaw Flows of Ferrofluids

Michael Wenzel

Leibniz Universität Hannover

SpringSchool "Evolution Equations", Universität Bielefeld March 21, 2012

Table of Contents

The Moving Boundary Problem and its Motivation

The Wellposedness Result

Stability Analysis

The Hele–Shaw Cell

Figure: A vertical Hele-Shaw cell with a fluid's interface.

The Hele–Shaw Cell

Figure: A vertical Hele-Shaw cell with a fluid's interface.

3-D model Navier–Stokes equations

The Hele–Shaw Cell

Figure: A vertical Hele-Shaw cell with a fluid's interface.

3-D model Navier–Stokes equations

Figure: 2-dimensional profile of the Hele-Shaw cell.

Periodic Stokesian Hele-Shaw Flows

The Hele–Shaw Cell

Figure: A vertical Hele-Shaw cell with a fluid's interface.

3-D model Navier–Stokes equations

Figure: 2-dimensional profile of the Hele-Shaw cell.

2-D, gap-averaged model Darcy's law Moving boundary problem

ē) = E

Michael Wenzel

Periodic Stokesian Hele–Shaw Flows

< (T) >

The Moving Boundary Problem

$$\begin{aligned} \mathcal{Q}u &:= -\operatorname{div} \frac{Du}{\overline{\mu}(|Du|^2)} = 0 & \text{in } \Omega(f) \\ u &= b(f) & \text{on } \Gamma_- \\ u &= -\gamma \kappa_f - \frac{\iota^2}{(1-f)^2} + g\rho f & \text{on } \Gamma(f) \\ \partial_t f &= -\frac{\sqrt{1+f'^2}}{\overline{\mu}(|Du|^2)} \partial_\nu u & \text{on } \Gamma(f) \\ f(0) &= f_0 & \text{on } \mathbb{S} \end{aligned}$$

Michael Wenzel Periodic Stokesian Hele–Shaw Flows

・ロ・ ・ 日・ ・ 日・ ・ 日・

Little Hölder Spaces

For $k \in \mathbb{N}$, $\alpha \in (0, 1)$ and $U \subset \mathbb{R}^2$ open

Little Hölder Spaces

For $k \in \mathbb{N}$, $\alpha \in (0, 1)$ and $U \subset \mathbb{R}^2$ open let buc^{$k+\alpha$}(U) := $\overline{\mathsf{BUC}^{\infty}(U)}$ in $\mathsf{BUC}^{k+\alpha}(U)$,

Little Hölder Spaces

For $k \in \mathbb{N}$, $lpha \in (0,1)$ and $U \subset \mathbb{R}^2$ open let

$$\operatorname{\mathsf{buc}}^{k+lpha}(U) := \overline{\operatorname{\mathsf{BUC}}^{\infty}(U)} \quad \operatorname{in} \quad \operatorname{\mathsf{BUC}}^{k+lpha}(U),$$

 $h^{k+lpha}(\mathbb{S}) := \overline{C^{\infty}(\mathbb{S})} \quad \operatorname{in} \quad C^{k+lpha}(\mathbb{S}).$

Little Hölder Spaces

For
$$k \in \mathbb{N}$$
, $\alpha \in (0, 1)$ and $U \subset \mathbb{R}^2$ open let
buc ^{$k+lpha$} $(U) := \overline{\mathsf{BUC}^{\infty}(U)}$ in $\mathsf{BUC}^{k+lpha}(U)$
 $h^{k+lpha}(\mathbb{S}) := \overline{C^{\infty}(\mathbb{S})}$ in $C^{k+lpha}(\mathbb{S})$.

Goal of this choice: Use of strongly continuous analytic semigroups and abstract parabolic theory

),

<ロ> <同> <同> <同> < 同>

<20 € € 20 €

Classical Hölder Solutions

Let

$$\mathcal{V} := \{f \in h^{4+\alpha}(\mathbb{S}) : \|f\|_{\infty} < 1\}.$$

We seek (u, f) satisfying

$$f \in C([0, T], \mathcal{V}) \cap C^1([0, T], h^{1+lpha}(\mathbb{S})),$$

 $u(\cdot, t) \in \mathsf{buc}^{2+lpha}(\Omega(f(t))), \quad 0 \leq t \leq T$

that fulfill (P) pointwise.

(1日) (日) (日)

The Wellposedness Result

Theorem Assume

$$\begin{array}{ll} 0 < c \leq \mu(r) \leq C & \mbox{for all} \quad r \geq 0, \\ 0 < c \leq \mu(r) + 2r\mu'(r) \leq C & \mbox{for all} \quad r \geq 0 \end{array}$$

hold and let |c| < 1. There is an open neighborhood \mathcal{O} of c in $h^{4+\alpha}(\mathbb{S})$ such that for all $f_0 \in \mathcal{O}$ problem (P) has a unique, maximal defined classical Hölder solution in \mathcal{O} .

Michael Wenzel Periodic Stokesian Hele–Shaw Flows

・ロン ・回と ・ヨン ・ヨン

Sketch of the Proof

Transformation on a fixed reference domain Ω .

Transformation on a fixed reference domain Ω .

Solve the first three equations of the transformed system.

Transformation on a fixed reference domain Ω .

Solve the first three equations of the transformed system.

Plug this solution in the fourth equation.

Transformation on a fixed reference domain Ω .

Solve the first three equations of the transformed system.

Plug this solution in the fourth equation.

Study the linearization of the evolution operator.

The Diffeomorphism

 $\phi_f(x,y) = (x,y + (1+y)f(x))$ for $(x,y) \in \Omega = \mathbb{S} \times (-1,0)$

straightens the boundary:

Figure: Original, time-dependent geometry.

イロン イヨン イヨン イヨン

The Diffeomorphism

 $\phi_f(x,y) = (x,y + (1+y)f(x))$ for $(x,y) \in \Omega = \mathbb{S} \times (-1,0)$

straightens the boundary:

Push forward and pull back operators

$$\begin{split} \phi^f_* &: \mathsf{buc}^{2+\alpha}(\Omega) \to \mathsf{buc}^{2+\alpha}(\Omega(f)), \quad v \mapsto v \circ \phi_f^{-1} \\ \phi^*_f &: \mathsf{buc}^{2+\alpha}(\Omega(f)) \to \mathsf{buc}^{2+\alpha}(\Omega), \quad u \mapsto u \circ \phi_f \end{split}$$

Push forward and pull back operators

$$\begin{split} \phi^f_* : \mathsf{buc}^{2+\alpha}(\Omega) \to \mathsf{buc}^{2+\alpha}(\Omega(f)), \quad v \mapsto v \circ \phi^{-1}_f \\ \phi^*_f : \mathsf{buc}^{2+\alpha}(\Omega(f)) \to \mathsf{buc}^{2+\alpha}(\Omega), \quad u \mapsto u \circ \phi_f \end{split}$$

Transformed operators

$$\begin{split} \mathcal{A}(f) &= \phi_f^* \circ \mathcal{Q} \circ \phi_*^f : \mathsf{buc}^{2+\alpha}(\Omega) \to \mathsf{buc}^{\alpha}(\Omega) \\ \mathcal{B}(f, \cdot) &= -\operatorname{tr}_0 \phi_f^* \Big\langle \frac{D(\phi_*^f \cdot)}{\overline{\mu}(|D(\phi_*^f \cdot)|^2)}, n \Big\rangle : \mathcal{V} \times \mathsf{buc}^{2+\alpha}(\Omega) \to h^{1+\alpha}(\mathbb{S}) \end{split}$$

Michael Wenzel Periodic Stokesian Hele–Shaw Flows

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

The Transformed System

System (P) is equivalent to the transformed system

$$\mathcal{A}(f)v = 0$$
 in Ω
 $v = b(f)$ on Γ_{-}

$$v = -\gamma \kappa_f - rac{\iota^2}{(1-f)^2} + g\rho f$$
 on Γ_0

$$\partial_t f = \mathcal{B}(f, v)$$
 on Γ_0

$$f(0) = f_0 \qquad \qquad \text{on} \quad \mathbb{S}$$

Michael Wenzel Periodic Stokesian Hele–Shaw Flows

・ロン ・回と ・ヨン ・ヨン

A first Existence and Uniqueness Result

Theorem

Let $f \in \mathcal{V}$. There is a unique solution $\mathcal{T}(f) \in buc^{2+\alpha}(\Omega)$ of the quasilinear Dirichlet problem

$$\begin{split} \mathcal{A}(f) \mathbf{v} &= 0 & \text{in } \Omega, \\ \mathbf{v} &= b(f) & \text{on } \Gamma_{-}, \\ \mathbf{v} &= -\gamma \kappa_{\Gamma(f)} - \frac{\iota^2}{(1-f)^2} + g\rho f & \text{on } \Gamma_{0}. \end{split}$$

The mapping $\mathcal{V} \ni f \mapsto \mathcal{T}(f) \in \mathsf{buc}^{2+\alpha}(\Omega)$ is smooth.

소리가 소문가 소문가 소문가

The Evolution Equation

Advection equation on variable domain:

$$\partial_t f = -\frac{\sqrt{1+f'^2}}{\overline{\mu}(|Du|^2)}\partial_{\nu}u, \quad f(0) = f_0.$$

Evolution equation on fixed domain:

$$\partial_t f = \Phi(f), \quad f(0) = f_0$$

for the non-linear operator $\Phi(\cdot) = \mathcal{B}(\cdot, \mathcal{T}(\cdot)).$

Michael Wenzel Periodic Stokesian Hele–Shaw Flows

・ロト ・回ト ・ヨト ・ヨト

The Generation Result

Theorem

(The complexification of) $\partial \Phi(c)$ generates a strongly continuous analytic semigroup in $\mathcal{L}(h^{1+\alpha}(\mathbb{S}))$, i.e.,

$$-\partial \Phi(c) \in \mathcal{H}(h^{4+lpha}(\mathbb{S}), h^{1+lpha}(\mathbb{S})).$$

Equivalent characterization:

$$egin{aligned} \lambda &- \partial \Phi(m{c}) \in \mathcal{L} ext{is}(h^{4+lpha}(\mathbb{S}), h^{1+lpha}(\mathbb{S})), \ && |\lambda| \| R(\lambda, \partial \Phi(m{c})) \|_{\mathcal{L}(h^{1+lpha}(\mathbb{S}))} \leq \chi \end{aligned}$$

for
$$h^{4+\alpha}(\mathbb{S}) \stackrel{d}{\hookrightarrow} h^{1+\alpha}(\mathbb{S})$$
, some $\chi, \omega > 0$, and all $\operatorname{Re} \lambda \ge \omega$

Equivalent characterization:

for
$$h^{4+lpha}(\mathbb{S}) \stackrel{d}{\hookrightarrow} h^{1+lpha}(\mathbb{S})$$
, some $\chi, \omega > 0$, and all $\operatorname{Re} \lambda \geq \omega$

Consider $\lambda - \partial \Phi(c)$ as an operator between Sobolev spaces and apply a Marcinkiewicz multiplier theorem.

・ロト ・回ト ・ヨト ・ヨト

Equivalent characterization:

for
$$h^{4+lpha}(\mathbb{S}) \stackrel{d}{\hookrightarrow} h^{1+lpha}(\mathbb{S})$$
, some $\chi, \omega > 0$, and all $\operatorname{Re} \lambda \geq \omega$

Consider $\lambda - \partial \Phi(c)$ as an operator between Sobolev spaces and apply a Marcinkiewicz multiplier theorem.

Transfer the result to little Hölder spaces with a density argument.

・ロン ・回と ・ヨン ・ヨン

Apply a perturbation theorem for the class $\mathcal{H}(h^{4+\beta}(\mathbb{S}), h^{1+\beta}(\mathbb{S}))$ with $0 < \beta < \alpha$.

Apply a perturbation theorem for the class $\mathcal{H}(h^{4+\beta}(\mathbb{S}), h^{1+\beta}(\mathbb{S}))$ with $0 < \beta < \alpha$.

The generation result holds of all f in a neighborhood $\mathcal{O}_{\beta} \subset h^{4+\beta}(\mathbb{S})$ of c.

Apply a perturbation theorem for the class $\mathcal{H}(h^{4+\beta}(\mathbb{S}), h^{1+\beta}(\mathbb{S}))$ with $0 < \beta < \alpha$.

The generation result holds of all f in a neighborhood $\mathcal{O}_{\beta} \subset h^{4+\beta}(\mathbb{S})$ of c.

Use interpolation property of the little Hölder spaces

$$(h^{ heta_1}(\mathbb{S}), h^{ heta_2}(\mathbb{S}))_{\sigma} = h^{ heta_1 + \sigma(heta_2 - heta_1)}(\mathbb{S})$$

for $0 < \sigma < 1$ and $\theta_1 + \sigma(\theta_2 - \theta_1) \notin \mathbb{N}$.

・ロット (四) (日) (日)

Apply a perturbation theorem for the class $\mathcal{H}(h^{4+\beta}(\mathbb{S}), h^{1+\beta}(\mathbb{S}))$ with $0 < \beta < \alpha$.

The generation result holds of all f in a neighborhood $\mathcal{O}_{\beta} \subset h^{4+\beta}(\mathbb{S})$ of c.

Use interpolation property of the little Hölder spaces

$$(h^{ heta_1}(\mathbb{S}), h^{ heta_2}(\mathbb{S}))_{\sigma} = h^{ heta_1 + \sigma(heta_2 - heta_1)}(\mathbb{S})$$

for $0 < \sigma < 1$ and $\theta_1 + \sigma(\theta_2 - \theta_1) \notin \mathbb{N}$.

Putting $\sigma := (\alpha - \beta)/3$ turns the generation result in a well-posedness result for $f \in \mathcal{O} := \mathcal{O}_{\beta} \cap h^{4+\alpha}(\mathbb{S})$ (cf. Lunardi, 1995).

Э

・ロン ・四マ ・ヨマ ・ヨマ

The Linearization

$$\partial \Phi(c) \Big[\sum_{k \in \mathbb{Z}} c_k \mathrm{e}^{\mathrm{i}kx} \Big] = \sum_{k \in \mathbb{Z}} \lambda_k c_k \mathrm{e}^{\mathrm{i}kx},$$

The Linearization

$$\partial \Phi(c) \left[\sum_{k \in \mathbb{Z}} c_k e^{ikx} \right] = \sum_{k \in \mathbb{Z}} \lambda_k c_k e^{ikx},$$

$$\lambda_k = \Gamma_{\overline{\mu}, c} \left[-\gamma \coth((1+c)k)k^3 + \left(b'(c) \frac{1}{\operatorname{sech}((1+c)k)} \right) - G_c \coth((1+c)k) \right) k \right], \quad k \neq 0,$$

$$\lambda_0 = \Gamma_{\overline{\mu}, c} \frac{b'(c) - G_c}{1+c}, \quad G_c = g\rho - 2\frac{\iota^2}{(1-c)^2} - \frac{\theta_c}{1+c},$$

$$\theta_c = \partial_y \mathcal{T}(c), \quad \Gamma_{\overline{\mu}, c} = \frac{1}{\overline{\mu}((\frac{\theta_c}{1+c})^2)} + 2\frac{\theta_c^2}{(1+c)^2} \left(\frac{1}{\overline{\mu}}\right)'((\frac{\theta_c}{1+c})^2)$$

Michael Wenzel

Periodic Stokesian Hele–Shaw Flows

æ

Stability Conditions

Stability of the flat interface f = c under the condition

$$egin{aligned} 0 &\leq b'(c) < -rac{2\iota^2}{(1-c)^2} + g
ho & ext{or} \ 0 &> b'(c), & \max\{b'(c), -\mathrm{I}\} < -rac{2\iota^2}{(1-c)^2} + g
ho, \end{aligned}$$

where $I = \inf_{k \ge 1} (\gamma k^2 - b'(c) \operatorname{sech}((1 + c)k))$

・ロト ・回ト ・ヨト ・ヨト

Stability Conditions

Instability of the flat interface f = c if the former condition is violated such that

$$0 \le b'(c), \quad b'(c) > -\frac{2\iota^2}{(1-c)^2} + g\rho \quad \text{or} \\ 0 > b'(c), \quad \max\{b'(c), -I\} > -\frac{2\iota^2}{(1-c)^2} + g\rho$$
(2)

Э

・ロト ・回ト ・ヨト ・ヨト

The Main Result

Theorem

Let |c| < 1 and $\omega_0 := -\sup \sigma(\partial \Phi(c))$.

 (i) If (1) holds then the solution to (P) is exponentially stable. More precisely, given ω ∈ (0, ω₀), there exist positive constants M and δ such that for all f₀ ∈ h^{4+α}(S) with ||f₀ - c||_{C^{4+α}(S)} ≤ δ the solution to (P) corresponding to f₀ exists in the large and for all t ≥ 0 it holds that

$$\|f(t)-c\|_{C^{4+\alpha}(\mathbb{S})}+\|f'(t)\|_{C^{1+\alpha}(\mathbb{S})}\leq M\mathrm{e}^{-\omega t}\|f_0-c\|_{C^{4+\alpha}(\mathbb{S})}.$$

(ii) If (2) holds then the flat solution f = c is unstable.

소리가 소문가 소문가 소문가

э

The Case
$$b'(c) > 0$$

Stability condition

$$b'(c) < -rac{2\iota^2}{(1-c)^2} + g
ho,$$

which means:

The Case
$$b'(c) > 0$$

Stability condition

$$b'(c) < -rac{2\iota^2}{(1-c)^2} + g
ho,$$

which means:

•
$$b'(c) < g
ho$$
,

The Case
$$b'(c) > 0$$

Stability condition

$$b'(c) < -rac{2\iota^2}{(1-c)^2} + g
ho,$$

which means:

•
$$b'(c) < g
ho$$
,

• the larger c the lower ι ,

The Case
$$b'(c) > 0$$

Stability condition

$$b'(c) < -rac{2\iota^2}{(1-c)^2} + g
ho,$$

which means:

•
$$b'(c) < g
ho$$
,

- the larger c the lower ι ,
- critical maximum value $\iota_* := \frac{|1-c|}{2} \sqrt{2(g\rho b'(c))}$

Michael Wenzel Periodic Stokesian Hele–Shaw Flows

・ロト ・回ト ・ヨト ・ヨト