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Rafa l Celiński Aggregation equation



First problem

First, we consider the following one-dimensional initial value
problem

ut = εuxx +
(
u K ′ ∗ u

)
x

for x ∈ R, t > 0, (1)

u(x , 0) = u0(x) for x ∈ R, (2)

where the initial datum u0 ∈ L1(R) is nonnegative and ε ≥ 0.

Equation (1) arises in study of an animal aggregation as well as in
some problems in mechanics of continous media.
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chemotaxis

Notice, that in particular case, this problem is equivalent to the
famous parabolic-elliptic Keller-Segel model describing chemotaxis

ut = εuxx − (uvx)x , x ∈ R, t > 0

−vxx = u − v ,

Indeed, if we take K (x) = −1
2 e−|x |, which is the fundamental

solution of the operator ∂2
x − Id , then we get v = −K ∗ u.
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Recent works (existence)

For every u0 ∈ L1(R) such that u0 ≥ 0, there exists the unique
global-in-time solution u of first problem satisfying

u ∈C
(
[0,+∞), L1(R)

)
∩ C

(
(0,+∞), W 1,1(R)

)
∩

C 1
(
(0,+∞), L1(R)

)
.

In addition, the condition u0(x) ≥ 0 implies u(x , t) ≥ 0 and we
have conservation of the L1-norm of nonnegative solutions:

‖u(t)‖L1 =

∫
R

u(x , t) dx =

∫
R

u0(x) dx = ‖u0‖L1 .
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Recent works (asymptotics)

It was shown that if K ′ ∈ L1(R) and if
∫
R K ′ dx = 0 then

fundamental solution of heat equation appear in asymptotic
expansion as t →∞ i.e.

u(x , t) ∼ M(4πt)−1/2e−
‖x‖2

4t

whereas, if
∫
R K ′ dx 6= 0 then we get a nonlinear diffusion wave

(the fundamental solution of the viscous Burgers equation) i.e.

u(x , t) ∼ UM,B(x , t) =
Bt−1/2 exp (−|x |2/(4t))

CM,B + 1
2

∫ x/
√
t

0 exp (−ξ2/4) dξ
.
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Assumptions to first system

Under our assumptions on interaction kernel K ′ = Kx , our model
describe particles under some repulsive force.

K ′(x) = −A

2
sign(x) + V (x), (3)

Moreover, we assume that A ∈ (0,∞) is a constant and the
function V satisfy

V ∈W 1,1(R) (4)

‖Vx‖L1 < A. (5)
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Primitive of solution

From now on, we assume that
∫
R u(x , t) dx =

∫
R u0(x) dx = 1.

Now, let us put

U(x , t) =

∫ x

−∞
u(y , t) dy − 1

2
, (6)

Then, we show that the large time behaviour of U is described by
a self-similar profile, given by a rarefaction wave, namely, the
unique entropy solution of the following Riemann problem

W R
t + AW RW R

x = 0 (7)

W R(x , 0) =
1

2
sgn(x). (8)
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Rarefaction wave

Rarefaction wave is given by explicit formula

W R(x , t) :=


−1

2
for x < −At

2
,

x

At
for − At

2
< x <

At

2
,

1

2
for x >

At

2
.

(9)

Rafa l Celiński Aggregation equation



Convergence towards rarefaction waves

Theorem

Assume that u0(x) > 0, ‖u0‖ = 1 and ε > 0. Suppose also, that∫ x

−∞
u0(y) dy ∈ L1(−∞, 0), and

∫ x

−∞
u0(y) dy − 1 ∈ L1(0,∞).

Then, for every t > 0 and each p ∈ (1,∞] the following estimate
hold true

‖U(·, t)−W R(·, t)‖p ≤ Ct
− 1

2

(
1− 1

p

)
(log(2 + t))

1
2

(1+ 1
p

)
.
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Final result

Corollary

For every test function ϕ ∈ C∞c (R) and each t0 > 0, rescaled
solution uλ(x , t) = λu(λx , λt) for λ > 0, x ∈ R and t > 0 satisfy∫

R
uλ(x , t0)ϕ(x) dx

λ→∞−−−→ −
∫
R

W R(x , t0)ϕx(x) dx .

In other words, for each t0 > 0, the family of functions uλ(·, t0)
converges weakly as λ→∞ to

(
W R

)
x

(·, t0).
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Second system

Now, let us consider the following initial value problem

ut = ∇ · (∇u − u∇K(u)) for x ∈ Ω ⊂ Rd , t > 0, (10)

∂u

∂n
= 0 for x ∈ ∂Ω, t > 0 (11)

u(x , 0) = u0(x) for x ∈ Ω, (12)

where the initial datum u0 ∈ L1(Ω) is nonnegative

and the
operator K depends linearly on u via the following integral formula

K(u)(x , t) =

∫
Ω

K (x , y)u(y , t) dy (13)

for a certain function K = K (x , y) which we call as an aggregation
kernel.
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Main assumptions to the second system

We assume that the aggregation kernel satisfy

B = ess sup
x∈Ω
‖∇xK (x , ·)‖2 <∞. (14)

∂K

∂n
(·, y) = 0 on ∂Ω for all y ∈ Ω, (15)∫

Ω
∇xK (x , y) dy = 0 (16)
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Existence

Theorem (Global existence for mildly singular kernels)

Assume that the aggregation kernel is mildly singular. Then for
every positive initial condition u0 ∈ L1(Ω) and for every T > 0
problem (10)-(12) has a unique mild solution in the space

YT = C ([0,T ], L1(Ω)) ∩ {u : C
(
[0,T ], Lq(Ω)

)
,

sup
0≤t≤T

t
d
2

(1− 1
q

)‖u‖q <∞}

Theorem (Local existence for strongly singular kernels)

Assume that aggregation kernel is strongly singular. Then for every
u0 ∈ L1(Ω) ∩ Lq(Ω) there exists T = T (u0,∇xK ) > 0 and a
unique mild solution of problem (10)–(12) in the space

XT = C ([0,T ], L1(Ω)) ∩ C ([0,T ], Lq(Ω)).
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Perturbed problem

We look for solution of the second system in the form

u(x , t) = M + ϕ(x , t),

where M is an arbitrary constant and ϕ is a perturbation.
Moreover, we assume that∫

Ω
ϕ(x) dx = 0,

and obtain the following problem for the perturbation ϕ

ϕt = ∆ϕ−∇ ·
(

M∇K(ϕ) + ϕ∇K(ϕ)
)

(17)

∂ϕ

∂n
= 0 for x ∈ ∂Ω, t > 0 (18)

ϕ(x , 0) = ϕ0(x). (19)
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Linear stability of constant solutions

ϕt = ∆ϕ−∇ ·
(

M∇K(ϕ)
)

(20)

∂ϕ

∂n
= 0 for x ∈ ∂Ω, t > 0 (21)

ϕ(x , 0) = ϕ0(x). (22)

Proposition

If, ∇xK ∈ L2(Ω× Ω) and

M‖∇xK‖L2(Ω×Ω) < λ1,

where λ1 is the first non-zero eigenvalue of −∆ on Ω under the
Neumann boundary condition then M is linearily asymptotically
stable stationary solution to the second problem.
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Nonlinear stability of constant solutions

Theorem

Let the assumptions of above Proposition holds true. If moreover

‖∇xK‖∞,2 = ess sup
x∈Ω
‖∇xK (x , ·)‖2 <∞

then there exist η > 0 such that for every ϕ0 ∈ L2(Ω) satisfying
‖ϕ0‖2 < η and

∫
Ω ϕ0(x) dx = 0, the perturbed (nonlinear) problem

(17)-(19) has a solution ϕ ∈ C 1((0,∞), L2(Ω)) such that∫
Ω ϕ(x , t) dx = 0 for all t > 0. Moreover, we have

‖φ(t)‖2 → 0 as t →∞.
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Instability of constant solutions

Theorem

Let w1 = w1(x) be the eigenfunction of −∆ on Ω under the
Neumann boundary condition corresponding to the first nonzero
eigenvalue λ1 and such that ‖w1‖2 = 1. Assume that
‖∇xK‖L2(Ω×Ω) <∞. If moreover,∫

Ω

∫
Ω

K (x , y)w1(y)w1(x) dx dy = A > 0, (23)

then for M > 1/A the constant solution M of problem (10)-(12) is
linearily unstable stationary solution.
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