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Introduction

Domains of wedge type

x1

x2

y

3D wedge with angle ϕ0

ϕ0

ϕ0

0

For n ∈ N≥2 and m ∈ N0 let

G := Rm × CΩ

be a domain of wedge (or cone) type: Let

CΩ := {x ∈ Rn : x 6= 0, x/|x | ∈ Ω}

be an unbounded cone in Rn with vertex
in zero.

Thereby Ω ⊂ Sn−1 is a relatively open subset of the unit sphere in Rn. We assume
∂Ω 6= ∅ and that Ω has smooth boundary.

Notation: ϕ0 ∈ (0,π]: angle of the wedge, J = [0, T ]: finite time interval,
(t , x) ∈ J × G: time and space variables
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Introduction

We consider a diffusion equation on a three-dimensional wedge G ⊂ R3

(n = 2, m = 1):  ∂tu −∆u = f in G × (0, T )
ν × (curl u) = 0, uν = 0 on ∂G × (0, T )

u|t=0 = 0 on G
. (1)

Assumption:
I For 1 < p <∞ let f ∈ Lp(J × R; Lp(CΩ,R3, |x |γdx)) with weight γ ∈ R.

Notation:
I u = u(t , x) ∈ R3: unknown function
I ν = ν(x): outer normal vector (x ∈ ∂G)
I uν = u · ν: normal projection of u
I × denotes the vector product in R3 and curl u = ∇× u.
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Introduction
Operator sums for non-commuting operators

Approach:

Apply the main results of PRÜSS, J. and SIMONETT, G.: H∞-calculus
for the sum of non-commuting operators. Trans. Amer. Math. Soc, 359:3549-3565.:

To this end we need the Labbas Terrini commutator condition for two sectorial
operators A and B with spectral angles φA and φB :

0 ∈ ρ(A).There are constants c > 0 , 0 ≤ α < β < 1,
ψA > φA,ψB > φB ,ψA + ψB < π,

such that for all λ ∈ Σπ−ψA µ ∈ Σπ−ψB

|A(λ + A)−1[A−1(µ + B)−1 − (µ + B)−1A−1]| ≤ c/((1 + |λ|)1−α|µ|1+β)

(2)

Results of Prüss and Simonett:
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Introduction
Operator sums for non-commuting operators

Theorem 1
Suppose A ∈ H∞(X ), B ∈ RS(X ) and suppose that (2) holds for some angles
ψA > φ∞A , ψB > φR

B such that ψA + ψB < π.
Then there is a constant c0 > 0 such that A + B is invertible and sectorial with
φA+B ≤ max{ψA,ψB} whenever c < c0. Moreover, if in addition B ∈ RH∞(X ) and
ψB > φR∞

B , then A + B ∈ H∞(X ) and φ∞A+B ≤ max{ψA,ψB}.

Corollary 2
Let the assumption of Theorem 1 be satisfied. Then there is ν ≥ 0 such that
ν + A + B is sectorial with spectral angle not larger than max{ψA,ψB}. If
B ∈ RH∞(X ) and ψB > φR∞

B , we have ν + A + B ∈ H∞(X ) as well and
φ∞ν+A+B ≤ max{ψA,ψB}.
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Sketch of Proceeding

We proceed as follows:

1. introduce cylinder coordinates for (1)

2. Euler transformation

3. define a suitable rescaling in order to work in the unweighted Lp space

4. the transformed problem is solved by applying Theorem 1 and Corollary 2 for
the obtained operator sum

5. retransformation to obtain maximal regularity spaces for (1)
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Sketch of Proceeding

1. We introduce cylinder coordiantes:

For r > 0, ϕ ∈ (0,ϕ0] and y ∈ Rm (m = 1) we have

x1 = r cosϕ, x2 = r sinϕ, y = y .

The diffusion operator ∂t −∆ transforms into

∂t − ∂2
y −

[
∂2

r +
1
r
∂r

]
− 1

r2 ∂
2
ϕ

and

f ∈ Lp
(

J × R× (0,ϕ0); Lp
(
R+,R3, rγ+2 dr

r

))
.
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Sketch of Proceeding

2. Applying Euler transformation r = ex (x ∈ R)and 3. rescaling

u(t , r ,ϕ, y ) = rβv (t , ln r ,ϕ, y ), g(t , x ,ϕ, y ) = r2−β f (t , r ,ϕ, y )

yields:

g ∈ Lp(J × R× (0,ϕ0)× R,R3) and
e2x (∂t − ∂2

y )v + P(∂x )v − ∂2
ϕv = g in (0, T )× R× (0,ϕ0)× R

ṽϕ = 0, ∂ϕṽy = 0, ∂ϕṽr = 0 on (0, T )× R× {0,ϕ0} × R
v |t=0 = 0 in R× (0,ϕ0)× R

, (3)

where P(∂x ) := −[∂2
x + 2β∂x + β2], β = 2− (γ + 2)/p.

Now we discuss the obtained operator sum on the layer G̃ := R× (0,ϕ0)× R by
means of Theorem 1 and Corollary 2.
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Sketch of Proceeding

I Notice, that we deal with the non-standard differential operators

∂te2x and ∂2
y e2x .

I e2x and P(∂x ) with canonical domains in Lp do not commute.
This is where we need the full strength of Theorem 1.

I The boundary conditions of (1) transform into boundary conditions for −∂2
ϕ.

Since of the Neumann conditions ∂ϕṽy = 0 and ∂ϕṽr = 0, we need to handle
the eigenvalue 0.

I The last point can be overcome by projection to the space of Lp functions with
vanishing mean value.

After step 4. and 5. we obtain the main result.
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Main Result

Theorem 3
Suppose 1 < p <∞ and that γ ∈ R is subject to the condition

λ1 > −a0 = β(β + n − 2) =
(

2− n
p
− γ

p

)(
n − n

p
− γ

p

)
, (n = 2)

where λ1 = π2/ϕ2
0. Then for each g ∈ Lp(J ×R× (0,ϕ0)×R,R3) there is a unique

solution v of (3) in the regularity class

v ∈ Lp(J × R; H2,p((0,ϕ0)× R,R3)),

e2x v ∈ H1,p(J; Lp(R× (0,ϕ0)× R,R3)) ∩ Lp(J; H2,p(R; Lp((0,ϕ0)× R,R3))).

In particular, the map [v 7→ g] defines an isomorphism between the corresponding
spaces.
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Main Result

Corollary 4
Suppose 1 < p <∞ and suppose γ ∈ R is subject to the condition

λ1 > −a0 = β(β + n − 2) =
(

2− n
p
− γ

p

)(
n − n

p
− γ

p

)
, (n = 2)

where λ1 = π2/ϕ2
0. Then for each f ∈ Lp(J × R; Lp(CΩ,R3, |x |γdx)) there exists a

unique solution u of (1) in the regularity class

u, u/|x |2, ∂tu,∇2u ∈ Lp(J × R; Lp(CΩ,R3, |x |γdx))

In particular, the map [u 7→ f ] defines an isomorphism between the corresponding
spaces.

Corollary 5
The result remains valid for the Stokes equation, since P∆ = ∆P.
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Outlook

Possible future work relying on this method:

I solve parabolic equations subject to other boundary conditions

I apply this method to a stationary Stokes equation and also transform ∇p

I approach to problems resulting from phenomena of contact lines
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Thank you !
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