Green Logo of Bielefeld University
Fakultät für Mathematik
big picturebig picturebig picturebig picturebig picturebig picturebig picture
small picturesmall picturesmall picturesmall picturesmall picturesmall picturesmall picturesmall picturesmall picturesmall picture
ende

Spezialisierungssequenzen im Master

Der Masterstudiengang Mathematik führt in einer Regelstudienzeit von vier Semestern zum Abschluss Master of Science. Zentrales Element des Masters ist eine dreisemestrige Spezialisierungssequenz, die eine Masterarbeit vorbereitet. Diese Spezialisierung kann in einem der vier Themenbereiche

  • Algebra
  • Analysis
  • Numerische und Diskrete Mathematik
  • Stochastik

erfolgen. Weitere Veranstaltungen in anderen Themenbereichen vervollständigen das Studium.

Veranstaltungsangebot im Master Mathematik / Spezialsierungssequnzen

Vertikale Balken markieren das Ende einer Mastersequenz.

Die mit markierten Vorlesungen werden in englischer Sprache gehalten.

Winter 2014/15 Sommer 2015 Winter 2015/16 Sommer 2016 Winter 2016/17 Sommer 2017 Winter 2017/18 Sommer 2018 Winter 2018/19 Sommer 2019 Winter 2019/20 Sommer 2020 Winter 2020/21 Sommer 2021 Winter 2021/22 Sommer 2022 Winter 2022/23 Sommer 2023 Winter 2023/24 Sommer 2024 Winter 2024/25 Sommer 2025
Algebra Algebraische Zahlentheorie 1
Spieß
Algebraische Zahlentheorie 2
Spieß
Ausgewählte Kapitel der Zahlentheorie
Spieß
Noncommutative Algebra
Crawley-Boevey
Noncommutative Algebra 2
Crawley-Boevey
Noncommutative Algebra 3
Crawley-Boevey
Arithmetische Geometrie 1
Spieß
Algebraische Geometrie 1
Spieß
Algebraische Geometrie 2
Spieß

Algebraic Number Theory

Voll

Commutative Algebra and Algebraic Geometry

Voll

Lie Algebras and Lie Groups

Voll

Algebra I

N.N.

Algebra II

N.N.

Algebra III

N.N.

Algebraische Geometrie 1
Zink
Algebraische Geometrie 2
Zink
Algebraische Geometrie 3
Zink
Algebra mit geometrischen Aspekten
Rost
Algebra mit geometrischen Aspekten 2
Rost
Algebra mit geometrischen Aspekten 3
Rost
Noncommutative Algebra 1
Crawley-Boevey
Noncommutative Algebra 2
Crawley-Boevey
Noncommutative Algebra 3
Crawley-Boevey

Algebraische Geometrie I

Lau

Algebraische Geometrie II

Lau

Algebraische Geometrie III

Lau

Algebra I

Vial

Algebra II

Vial

Algebra III

Vial

Algebraische Zahlentheorie
Voll
Kommutative Algebra und Algebraische Geometrie
Voll
Lie Algebras and Lie Groups
Voll
Noncommutative Algebra 1
Crawley-Boevey

Masterkurs Darstellungstheorie von Algebren 1

Krause

Masterkurs Darstellungstheorie von Algebren 2
Krause

Algebra I

Spieß

Algebra II

Spieß

Algebra III

Spieß

Algebraic geometry, I: Complex algebraic geometry

Vial, Xie

Algebraic geometry, II: Sheaves and schemes

Vial

Algebraic Geoemtry III: Further topics

Vial

Analysis Partial Differential Equations
Grigor'yan
Analysis of Elliptic Differential Operators
Grigor'yan
Analysis on Manifolds
Grigor'yan
Partial Differential Equations
Kaßmann
Partial Differential Equations 2
Kaßmann
Partial Differential Equations 3
Kaßmann
Partielle Differentialgleichungen
Kondratiev
Partielle Differentialgleichungen 2
Kondratiev
Partielle Differentialgleichungen 3
Kondratiev

Partielle Differentialgleichungen 1

Kaßmann

Partielle Differentialgleichungen 2

Kaßmann

Partielle Differentialgleichungen 3

Kaßmann

Analysis 1

Grigorian

Analysis 2

Grigorian

Analysis 3

Grigorian

Partielle Differentialgleichungen
Herr
Harmonische Analysis
Herr
Evolutionsgleichungen
Herr

Spezialisierungskurs (Differential-) Geometrie

Bauer

Globale Analysis

Bauer

Eichtheorie in 4d

Bauer

Partielle Differentialgleichungen 1

Herr

Partielle Differentialgleichungen 2

Herr

Partielle Differentialgleichungen 3

Herr

Eichtheorie
Bauer
Index-Theorie
Bauer
4-dimensional Manifolds
Bauer
Komplexe Mannigfaltigkeiten
Hoffmann
Automorphe Formen
Hoffmann
Nichtkommutative harmonische Analysis
Hoffmann

Partielle Differentialgleichungen

Erbar

Partielle Differentialgleichungen 2

Erbar

Partielle Differentialgleichungen 3

Erbar

Numerik/
Diskrete
Mathematik

Numerik stochastischer Prozesse

Beyn

Numerik partieller 

Differentialgleichungen

Banas

Numerik dynamischer Systeme

Beyn

Alternativ: Numerik von Evolutionsgleichungen

Banas
Numerik stochastischer Prozesse
Banas
Numerik partieller Differentialgleichungen I
Banas
Numerik partieller Differentialgleichungen II
Banas
Numerik stochastischer Prozesse
Banas
Numerik partieller Differentialgleichungen
Banas
Numerik von partiellen Differentialgleichungen
Diening

Numerik von partiellen Differentialgleichungen I

Diening

Masterkurs Numerik I

Banas

Masterkurs Numerik II

Banas

Introduction to numerical methods for PDE

Banas

Numerical methods for PDE II

Banas
Numerik elliptischer Differentialgleichungen
Diening
Numerik parabolischer Differentialgleichungen
Diening
Numerik stochastischer Prozesse
Banas

Numerik von partiellen Differentialgleichungen I
Diening

Numerik von partiellen Differentialgleichungen II

Diening

entfällt

Ergodentheorie und dynamische Systeme 1

Baake

Ergodentheorie und dynamische Systeme 2

Baake

Ergodentheorie und dynamische Systeme 3

Baake

Diskrete Mathematik 1: Codierungstheorie

Baumeister

Diskrete Mathematik II: Kryptographie

Baumeister

Diskrete Mathematik III: Kryptographie mit nicht-abelschen Gruppen

Baumeister

Codierungstheorie

Baumeister

Kryptographie

Baumeister

Komb. Gruppentheorie und Kryptographie

Baumeister
Stochastik Wahrscheinlichkeitstheorie 1
Götze
Wahrscheinlichkeitstheorie 2
Kösters
Wahrscheinlichkeitstheorie 3
Kösters
Wahrscheinlichkeitstheorie 1
Gentz
Wahrscheinlichkeitstheorie 2
Gentz
Wahrscheinlichkeitstheorie 3
Gentz
Wahrscheinlichkeitstheorie 1
Hofmanova, Sambale
Wahrscheinlichkeitstheorie 2
Hofmanova
Wahrscheinlichkeitstheorie 3
Hofmanova

Wahrscheinlichkeitstheorie I

Hinz

Wahrscheinlichkeitstheorie II

Wachtel

Wahrscheinlichkeitstheorie III

Wachtel

Wahrscheinlichkeitstheorie I

Gentz

Wahrscheinlichkeitstheorie II

Gentz

Wahrscheinlichkeitstheorie III

Gentz

Wahrscheinlichkeitstheorie 2
Röckner
Introduction to Stochastic Analysis
Röckner

Introduction to Stochastic PDE

Röckner

Wahrscheinlichkeitstheorie 1
Elsner

Wahrscheinlichkeitstheorie 2
Elsner
Wahrscheinlichkeitstheorie 3
Hinz

Wahrscheinlichkeitstheorie I

Gentz

Wahrscheinlichkeitstheorie II

Gentz

Wahrscheinlichkeitstheorie III

Gentz

Wahrscheinlichkeitstheorie II

Röckner

Wahrscheinlichkeitstheorie III

Röckner

Wahrscheinlichkeitstheorie Masterkurs 2

Röckner

Wahrscheinlichkeitstheorie 1
Götze
Wahrscheinlichkeitstheorie 2
Götze
Wahrscheinlichkeitstheorie 3: Konzentration von Maßen
Götze
Winter 2014/15 Sommer 2015 Winter 2015/16 Sommer 2016 Winter 2016/17 Sommer 2017 Winter 2017/18 Sommer 2018 Winter 2018/19 Sommer 2019 Winter 2019/20 Sommer 2020 Winter 2020/21 Sommer 2021 Winter 2021/22 Sommer 2022 Winter 2022/23 Sommer 2023 Winter 2023/24 Sommer 2024 Winter 2024/25 Sommer 2025