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Abstract

We establish several results towards the two-variable main conjecture
of Iwasawa theory for elliptic curves without complex multiplication over
imaginary quadratic fields, namely (i) the existence of an appropriate p-
adic L-function, building on works of Hida and Perrin-Riou, (ii) the basic
structure theory of the dual Selmer group, following works of Coates,
Hachimori-Venjakob, et al., and (iii) the implications of dihedral or anti-
cyclotomic main conjectures with basechange. The result of (i) is deduced
from the construction of Hida and Perrin-Riou, which in particular is seen
to give a bounded distribution. The result of (ii) allows us to deduce a
corank formula for the p-primary part of the Tate-Shafarevich group of an
elliptic curve in the Z2

p-extension of an imaginary quadratic field. Finally,
(iii) allows us to deduce a criterion for one divisibility of the two-variable
main conjecture in terms of specializations to cyclotomic characters, fol-
lowing a suggestion of Greenberg, as well as a refinement via basechange.

1 Introduction

Fix a prime p ∈ Z. Given a profinite group G, let Λ(G) denote the Zp-Iwasawa
algebra of G, which is the completed group ring

Λ(G) = Zp[[G]] = lim←−
U

Zp[G/U ].

Here, the projective limit runs over all open normal subgroups U of G. Note
that the elements of Λ(G) can be viewed in a natural way as Zp-valued measures
on G. Let E be an elliptic curve defined over Q of conductor N . Hence E
is modular by fundamental work of Wiles [47], Taylor-Wiles [41], and Breuil-
Conrad- Diamond-Taylor [3], with Hasse-Weil L-function L(E, s) given by that
of a cuspidal newform f ∈ S2(Γ0(N)).

Let k be an imaginary quadratic field. The Hasse-Weil L-function L(E/k, s)
of E over k is given by the Rankin-Selberg L-function L(f × Θk, s), where Θk

is the theta series associated to k by a classical construction (as described for
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instance in [11]). Let k∞ denote the compositum of all Zp-extensions of k, which
by class field theory is a Z2

p-extension. LetG denote the Galois group Gal(k∞/k).
The complex conjugation automorphism of Gal(k/Q) acts on G with eigenvalues
±1. Let kcyc denote the Zp-extension associated to the +1-eigenspace, which is
the cyclotomic Zp-extension of k. Let D∞ denote the Zp-extension associated
to the −1-eigenspace, which is the dihedral or anticyclotomic Zp-extension of
k. Let Γ denote the cyclotomic Galois group Gal(kcyc/k), and let Ω denote the
dihedral or anticyclotomic Galois group Gal(D∞/k). Let H denote the Galois
group Gal(k∞/kcyc), which is naturally isomorphic to Ω ∼= Zp. Let X(E/k∞)
denote the Pontryagin dual of the p∞-Selmer group of E over k∞, which has
the natural structure of a compact Λ(G)-module. The subject of this note is
the following conjecture, made in the spirit of Iwasawa (but often attributed to
Greenberg and Mazur), known as the two-variable main conjecture of Iwasawa
theory for elliptic curves:

Conjecture 1.1 Let E be an elliptic curve defined over Q, and p a prime where
E has either good ordinary or multiplicative reduction.

(i) There is a unique element Lp(E/k∞) ∈ Λ(G) that interpolates p-adically
the central values L(E/k,W, 1)/Ωf . Here, L(E/k,W, s) is the Hasse-Weil
L-function of E over k twisted by a finite order character W of G, and
Ωf is a suitable complex period for which the quotient L(E/k,W, 1)/Ωf
lies in Q (and hence in Qp via any fixed embedding Q→ Qp).

(ii) The dual Selmer group X(E/k∞) is Λ(G)-torsion, hence has a Λ(G)-
characteristic power series charΛ(G)X(E/k∞).

(iii) The equality of ideals (Lp(E/k∞)) =
(
charΛ(G)X(E/k∞)

)
holds in Λ(G).

In the setting where E has complex multiplication by k, much is known about
this conjecture thanks to work of Rubin [35] (see also [36]), building on previ-
ous work of Coates-Wiles [6] and Yager [48]. Here, we consider the somewhat
more mysterious setting where E does not have complex multiplication, and in
particular what can be deduced from known Iwasawa theoretic results for the
one-variable cases corresponding to the Galois groups Γ and Ω.

We start with the construction of p-adic L-functions, (i). Given a finite order
character W of G, let W (λ) denote the specialization to W of an element
λ ∈ Λ(G). That is, writing dλ to denote the measure associated to λ, let

W (λ) =
∫
G

W(g) · dλ(g).

Fix a cuspidal Hecke eigenform f ∈ S2(Γ0(N)) of weight 2, level N , and trivial
Nebentypus. Such an eigenform f ∈ S2(Γ0(N)) is said to be p-ordinary if its
Tp-eigenvalue is a p-adic unit with respect to any embedding Q→ Qp. Let

〈f, f〉N =
∫

Γ0(N)\H
|f |2dxdy
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denote the Petersson inner product of f with itself. Let L(f ×Θ(W), s) denote
the Rankin-Selberg L-function of f times the theta series Θ(W) associated to
W, normalized to have central value at s = 1. The ratio

L(f ×Θ(W), 1)
8π2〈f, f〉N

lies in Q by an important theorem of Shimura [39]. Using this fact, along with
the constructions of Hida [14] and Perrin-Riou [32], we obtain the following
result.

Theorem 1.2 (Theorem 2.9) Fix an embedding Q→ Qp. Let f ∈ S2(Γ0(N))
be a p-ordinary eigenform of weight 2, level N , and trivial Nebentypus. Assume
that N is prime to the discriminant of k, and that p ≥ 5. There exists an el-
ement µf ∈ Λ(G) whose specialization to any finite order character W of G
satisfies the interpolation formula

W (µf ) = η · L(f ×Θ(W), 1)
8π2〈f, f〉N

∈ Qp,

where η = η(f,W) is a certain explicit (nonvanishing) algebraic number.

Hence, we obtain a p-adic L-function Lp(E/k∞) = Lp(f/k∞) ∈ Λ(G) associated
to this measure µf .

Remark The two-variable p-adic L-function Lp(f/k∞) corresponding to dµf
also satisfies a functional equation, as described in Corollary 2.10 below.

We now consider the Iwasawa module structure theory of (ii), using standard
techniques. Recall that we let H denote the Galois group Gal(k∞/kcyc), which
is naturally isomorphic to the dihedral or anticyclotomic Galois group Ω ∼= Zp.
If E has good ordinary reduction at p, then an important theorem of Kato [23]
with a nonvanishing theorem of Rohrlich [34] implies that the dual Selmer group
X(E/kcyc) is Λ(Γ)-torsion. To be more precise, the construction of Kato [23]
with the nonvanishing theorem of Rohlich [34] show that the dual Selmer group
X(E/Qcyc) is Λ(Gal(Qcyc/Q))-torsion, where Qcyc denotes the cyclotomic Zp-
extension of Q. It then follows from a simple restriction argument, using Artin
formalism for abelian L-functions, that the analogous structure theorem holds
for E in the cyclotomic Zp-extension of any abelian number field. In particular,
X(E/kcyc) is Λ(Γ)-torsion, and hence has a Λ(Γ)-characteristic power series
with associated cyclotomic Iwasawa invariants µE(k) = µΛ(Γ) (X(E/kcyc)) and
λE(k) = λΛ(Γ) (X(E/kcyc)). Using this result, we then deduce the following
structure theorem for the dual Selmer group X(E/k∞).

Theorem 1.3 Let E/Q be an elliptic curve with good ordinary reduction at
each prime above p in k.

(i) (Theorem 3.8) The dual Selmer group X(E/k∞) is Λ(G)-torsion, hence
has a Λ(G)-characteristic power series charΛ(G)X(E/k∞).
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(ii) (Theorem 3.13) If the cyclotomic invariant µE(k) vanishes, then the two-
variable invariant µΛ(G) (X(E/k∞)) also vanishes.

(iii) (Theorem 3.11) Let charΛ(G)X(E/k∞)(0) denote the image of the char-
acteristic power series charΛ(G)X(E/k∞) under the augmentation map
Λ(G) −→ Zp. If p ≥ 5 and the p∞-Selmer group Sel(E/k) is finite, then

| charΛ(G)X(E/k∞)(0)|p =
|E(k)p∞ |2

| X(E/k)(p)|
·

∏
v |cv|p∏

v|p |Ẽv(κv)(p)|2
.

Here, X(E/k)(p) denotes the p-primary part of the Tate-Shafarevich
group X(E/k) of E over k, E(k)p∞ the p-primary part of the Mordell-
Weil group E(k), κv the residue field at v, Ẽv the reduction of E over κv,
and cv = [E(kv) : E0(kv)] the local Tamagawa factor at a prime v ⊂ Ok.

(iv) (Theorem 3.12) If µE(k) = 0, then there is an isomorphism of Λ(H)-
modules X(E/k∞) ∼= Λ(H)λE(k).

We also obtain from this the following application to Tate-Shafarevich ranks.
Consider the short exact descent sequence of discrete Λ(H)-modules

0 −→ E(k∞)⊗Qp/Zp −→ Sel(E/k∞) −→ X(E/k∞)(p) −→ 0.

Here, E(k∞) denotes the Mordell-Weil group of E over k∞, and X(E/k∞)(p)
denotes the p-primary part of the Tate-Shafarevich group of E over k∞.

Proposition 1.4 (Proposition 3.14) Assume that p is odd, and moreover
that p does not divide the class number of k if the root number ε(E/k, 1) equals
−1. If E has good ordinary reduction at p with µE(k) = 0, then

corankΛ(H) X(E/k∞)(p) =

{
λE(k) if ε(E/k, 1) = +1
λE(k)− 1 if ε(E/k, 1) = −1.

Example Consider the elliptic curve E = 53a : y2 + xy + y = x3 − x2 at p = 5
over k = Q(

√
−31). The discriminant of k is −31, which is prime to both 5

and the conductor 53 of E. A simple calculation shows that the root number
ε(E/k, 1) is +1. Moreover, the mod 5 Galois representation associated to E
is surjective, as shown by the calculations in Serre [37, § 5.4]. Computations
of Pollack [30] show that µE(k) = 0 with λE(k) = 9 (and moreover that the
Mordell-Weil rank of E(k) is 1), from which we deduce that X(E/k∞)(5) has
Λ(H)-corank 9. In particular, X(E/k∞)(5) contains infinitely many copies of
Q5/Z5.

Finally, we establish the following criterion for one divisibility of (iii) in
terms of specializations to cyclotomic characters, following a suggestion of Ralph
Greenberg. To be more precise, let Ψ denote the set of finite order characters of
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the Galois group Γ = Gal(kcyc/k). Given a character ψ ∈ Ψ, let us write Oψ to
denote the ring obtained from adjoining to Zp the values of ψ. Let Lp(E/k∞)|Ω
denote the image of the two-variable p-adic L-function Lp(E/k∞) in the Iwasawa
algebra Λ(Ω).

Theorem 1.5 (Corollary 4.2) Assume that p does not divide Lp(E/k∞)|Ω,
and that for each character ψ ∈ Ψ, we have the inclusion of ideals

(ψ (Lp(E/k∞))) ⊆
(
ψ
(
charΛ(G)X(E/k∞)

))
in Oψ[[G]]. (1)

Then, we have the inclusion of ideals

(Lp(E/k∞)) ⊆
(
charΛ(G)X(E/k∞)

)
in Λ(G). (2)

We deduce from this the following result. Let K be any finite extension of
k contained in the cyclotomic Zp-extension kcyc. Let ΩK denote the Galois
group Gal(KD∞/k), which is topologically isomorphic to Zp. Let Lp(E/k∞)|ΩK
denote the image of the two-variable p adic L-function Lp(E/k∞) in the Iwasawa
algebra Λ(ΩK). Let ΨK denote the set of characters of order [K : k] of the Galois
group Gal(K/k). Let us consider as well the following condition(s), so that we
can invoke the recent work of Pollack-Weston [31].

Hypothesis 1.6 Let ε(E/k, 1) ∈ {±1} denote the root number of the complex
L-function L(E/k, s) = L(f × θk, s). We assume that:

(i) The mod p Galois representation ρE associated to E is surjective.

(ii) If ε(E/k, 1) = +1, then p ≥ 5 and the conductor N is prime to the dis-
criminant of k. This latter condition determines an integer factorization
N = N+N− of N , where N+ is divisible only by primes that split in k,
and N− is divisible only by primes that remain inert in k; we then assume
that N− is the squarefree product of an odd number of primes.

We obtain the following main result.

Proposition 1.7 (Proposition 4.3) Assume that the root number ε(E/k, 1)
of L(E/k, 1) is +1. Assume additionally that for a finite extension K of k
contained in the cyclotomic Zp-extension kcyc, we have the inclusion of ideals

(Lp(E/k∞)|ΩK ) ⊆
(
charΛ(ΩK)X(E/KD∞)

)
in Λ(ΩK), (3)

with equality for K = k. Then, there exists a nontrivial character ψ ∈ ΨK such
that the specialization divisibility (1) holds. In particular, if Hypothesis 1.6 (i)
and (ii) hold, then we obtain the inclusion of ideals

(Lp(E/k∞)) ⊆
(
charΛ(G)X(E/k∞)

)
in Λ(G).

Though we do not discuss the issue here, the equality condition for k = K
would follow from the nonvanishing criterion of Howard [17, Theorem 3.2.3 (c)]
for dihedral/anticyclotomic p-adic L-functions, as explained in [43, §5]. Hence,
by Proposition 4.3, this criterion would also imply one divisibility of the two-
variable main conjecture in the setting where the root number ε(E/k, 1) is 1.
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2 Two-variable p-adic L-functions

We start with the proof of Theorem 2.9, following closely the constructions of
Hida [14] and Perrin-Riou [32]. Both of the these constructions depend in an
essential way on the bounded linear form defined in [14], which we review below.

Remark The results described below hold more generally for f any p-ordinary
eigenform of weight l ≥ 2 and nontrivial Nebentypus, following the same meth-
ods described below with [32, Théorème B]. We have restricted to the setting
of eigenforms associated to modular elliptic curves for simplicity of exposition.

Hida’s bounded linear form. We follow Hida [14, §4], using the same nota-
tions for spaces of modular forms and Hecke algebras used there. Suppose we
have a modular form

f(z) =
∑
n≥0

an(f)e2πinz ∈Ml(Γ∗(M), ξ;L0),

with l and M positive integers, ∗ = 0 or 1, ξ a Dirichlet character mod M , and
L0 = Q(an(f))n≥0 the extension of Q generated by the Fourier coefficients of
f . We define a norm | · |p on f ∈Ml(Γ∗(M), ξ;L0) by letting

|f |p = sup
n
|an(f)|p .

Let L denote the closure of L0 in Qp with respect to a fixed embedding Q→ Qp.
Let Ml(Γ∗(M), ξ;L) denote the completion of the space Ml(Γ∗(M), ξ;L0) with
respect to | · |p. Let O = OL. Define a subspace of integral forms

Ml(Γ∗(M), ξ;O) = {f ∈Ml(Γ∗(M), ξ;L) : |f |p ≤ 1}.
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Let us write T(M, ξ;L) to denote the algebra of Hecke operators acting on
Ml(Γ∗(M), ξ;L), as defined in [14, p. 171]. Hence, T(M, ξ;L) denotes the L-
subalgebra of the ring of all L-linear endomorphisms of Ml(Γ∗(M), ξ;L) gen-
erated by Hecke operators. If given integers n ≥ m ≥ 0, then the restriction
T(Mpn, ξ;O) of T(Mpn, ξ;L) to Ml(Γ∗(Mpm), ξ;O) defines an O-algebra ho-
momorphism

Ml(Γ∗(Mpn), ξ;O) −→Ml(Γ∗(Mpm), ξ;O).

We define the extended Hecke algebra by passage to the inverse limit with respect
to these homomorphisms,

T(M, ξ;O) = lim
←−
n

T(Mpn, ξ,O).

Let us now fix a p-ordinary eigenform

f(z) =
∑
n≥1

an(f)e2πinz ∈ S2(Γ0(N))

of weight 2, level N , and trivial Nebentypus. Let Ψ denote the principal or
trivial character modulo N (hence ψ(p) = 1 if p does not divide p, and ψ(p) = 0
otherwise). Let αp(f) denote the p-adic unit root of the polynomial

x2 − ap(f)x+ pψ(p),

and βp(f) the non-unit root. Let f0 denote p-stabilization of f , which is the
unique ordinary form associated to f by Hida [14, Lemma 3.3]. That is, let

f0(z) =

{
f(z) if p | N
f(z)− βp(f)f(pz) if p - N.

This eigenform f0 has level N0, where

N0 =

{
Np if p - N
N if p | N.

Its Fourier coefficients an(f0) satisfy the relations

an(f0) =

{
an(f) if (n, p) = 1
αp(f) if n = p.

We now recall briefly the definition of idempotent operators in extended Hecke
algebras, following [14, pp. 171 - 172]. That is, let T(Npm) = T(Γ0(Npm);O)
denote the O-algebra generated by Hecke operators acting on the space of cusp
forms S2(Γ0(Npm);O), with Tp = Tp(Npm) denoting the Hecke operator at p.
Let T p denote the image of Tp in the quotient T(Npm)/p. This reduction T p can
be decomposed uniquely into semisimple and nilpotent parts. Since T(Npm)/p is
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a finitely-generated, commutative Fp-algebra, it follows that T
pr

p is semisimple

for r sufficiently large. Hence, T
upr

p is idempotent for some integer u. Let em
denote the unique lift to T(Npm) of T

upr

p . Note that this lift does not depend
on the choice of integer u.

Definition The idempotent e in the extended Hecke algebra T(N) = lim
←−
m

T(Npm)

is defined to be the projective limit e = lim
←−
m

em.

Proposition 2.1 (Hida) Let f ∈ S2(Γ0(N)) be a p-ordinary eigenform, with f0

its associated ordinary form. There is a decomposition T(N ;L) ∼= A⊕L induced
by the split exact sequence

0 −−−−→ A⊕ L −−−−→ T(N ;L)
φ(f0)−−−−→ T(0)(N ;L) −−−−→ 0. (4)

Here, φ(f0) is the map that sends Tn 7−→ an(f0), with T(0)(N ;L) ∼= L the direct
summand of T(N ;L) through which this map factors, and A the complementary
direct summand.

Proof See [14, Proposition 4.4 and (4.5)]. �

We now use this result to define the following operator.

Definition Let f ∈ S2(Γ0(N)) be a p-ordinary eigenform with associated or-
dinary form f0. We let 1f0 denote the component of the idempotent e corre-
sponding to the summand T(0)(N) in the spit exact sequence (4) above.

Definition Let f ∈ S2(Γ0(N)) be a p-ordinary eigenform with associated ordi-
nary form f0. Let m ≥ 0 be an integer. Hida’s bounded linear form lf0 of level
Npm is then given by the map

lf0 : M2(Γ∗(Npm), ξ;L) −→ L, g 7−→ a1

(
g|e◦1f0

)
,

in other words by the map that sends a modular form g ∈ M2(Γ∗(Npm), ξ;L)
to the the first Fourier coefficient of its image under the operation e ◦ 1f0 .

Proposition 2.2 (Hida) The linear form lf0 : M2(Γ∗(Npn), ξ;L) −→ L is
given explicitly on any g ∈M2(Γ∗(Npm), ξ;L) by the map

g 7−→ αp(f0)−m · p · 〈hm, g〉Np
m

〈h, f0〉N0

.

Here, h = f0(z)|2
(

0 −1
N0 0

)
with f0(z) = f0(−z), and hm(z) = h(pmz).

Proof See [14, Proposition 4.5]. �

Lemma 2.3 The linear form lf0 sends M2(Γ∗(Npm), ξ;O) to O.
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Proof Fix g ∈ M2(Γ∗(Npm), ξ;O). We know that |αp(f)|p = |ap(f0)|p = 1.
On the other hand, the operator φ(f0) in the split exact sequence (4) sends
Tp(Npm) 7−→ ap(f0) for each m ≥ 0. It follows that φ(f0) sends the idempotent
e = lim

←−
m

em to the unit defined by limr ap(f0)p
r

= limr αp(f0)p
r

. Now, the action

of T(N) maps the space M2(Γ∗(Npm);O) to itself for any m ≥ 0, as explained
for instance in [14, §4]. Thus if |g|p ≤ 1, then g|e◦1f0 = (g|e) |1f0 has the property
that

∣∣a1

(
g|e◦1f0

)∣∣
p
≤ 1. The result follows. �

Some p-adic convolution measures. We now give a sketch of Perrin-Riou’s
construction of the measure dµf , [32], starting with the setup described above.
This construction is made up of several constituent measures that a priori take
values in the spaces Ml(Γ∗(M), ξ;L), but can be seen to take values in the
integral subspaces Ml(Γ∗(M), ξ;O), as we show in Proposition 2.8.

Let us fix throughout a finite order character W of G. We commit an abuse
of notation in viewing W as a character on the ideals of k via class field the-
ory. Observe that we can always write such a character W as the product of
characters ρχ ◦ N, where ρ is a character of G that factors though the dihe-
dral Zp-extension D∞ of k, and χ ◦ N a character of G that factors though
the cyclotomic Zp-extension kcyc of k. Here, the cyclotomic character χ ◦N is
given by the composition with the norm homomorphism N on ideals of k with
some Dirichlet character χ that factors through the cyclotomic Zp-extension
of Q. Hence, we fix a finite order character W of G with dihedral/cyclotomic
factorization

W = ρχ ◦N. (5)

Let c(W) denote the conductor of W, with c(ρ) the conductor of the dihedral
or anticyclotomic part ρ. Let D = Dk/Q denote the discriminant of k. Let ω =
ωk/Q denote the quadratic character associated to k. A classical construction
associates to the W a theta series of weight 1, level ∆ = ∆(W) = |D|Nc(W)2,
and Nebentypus ωχ2. To be more precise, let Oc(ρ) = Z + c(ρ)Ok denote the
Z-order of conductor c(ρ) in Ok. Fix an element of the class group A ∈ PicOc(ρ).
Fix a representative a ∈ A. We then define a χ-twisted theta series associated
to A,

ΘA(χ)(z) =
1
u

∑
x∈a

χ

(
Nk/Q(x)

Na

)
e

2πiNk/Q(x)z

Na =
1
u

+
∑
n≥1

χ(n)rA(n)e2πinz.

Here, x runs over points in the lattice defined by a, u = 2|O×k | is twice the
number of units of k , and rA(n) is the number of ideals of norm n in A. This
series does not depend on choice of representative a ∈ A. It is seen to lie in
M1(Γ0(∆), ωχ2) by a standard application of Poisson summation. Taking the
ρ-twisted sum over classes A ∈ PicOc(ρ), it gives rise to a modular form

Θ(W)(z) =
∑
A

ρ(A)ΘA(χ)(z) ∈M1(Γ0(∆), ωχ2)
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associated toW. We refer the reader to [11], [14] or [15] for proofs of these facts.
In what follows, we fix a finite order characterW of G having the decomposition
(5) above. We fix a ring class A ∈ PicOc(ρ). We then construct a measure
associated to the underlying Dirichlet character χ in the decomposition (5). In
fact, to follow [32], we shall suppose more generally that χ is any finite order
character of Z×p . Taking the ρ-twisted sum over classes A ∈ PicOc(ρ) then gives
the appropriate measure in O[[G]] whose specialization to W interpolates the
value

L(f ×Θ(W), 1)
8π2〈f, f〉N

∈ Qp

up to some algebraic factor (which can be made explicit). We give only a sketch
of this construction, referring the reader to [32] for proofs and calculations. We
start with the following constituent constructions.

Theta series measures. Fix an integer m ≥ 1. Consider the series defined by

ΘA(χ)(a, pm)(z) =
∑
x∈a

Nk/Q(x)

N(a) ≡amod pm

χ

(
Nk/Q(x)

Na

)
e

2πiNk/Q(x)z

Na .

Let dΘA(χ) denote the measure on Z×p given by the rule∫
a+pmZ×p

dΘA(χ) = ΘA(χ)(z).

Lemma 2.4 The measure dΘA(χ) takes values in the space M1(Γ0(∆), ωχ2;O)
if p ≥ 5.

Proof The result follows plainly from the q-expansion of ΘA(χ)(z).�

Remark We impose the condition p ≥ 5 to deal with the 1
u term in the q-

expansion of ΘA(χ)(z), since we could in exceptional cases have u = 4 or u = 6.

Eisenstein series measures. Let ξ be an odd Dirichlet character modulo an
integer M > 2. Let EM (ξ) denote the Eisenstein series of weight 1 given by

EM (ξ)(z) =
L(ξ, 0)

2
+
∑
n≥1

∑
d>0
d|n

ξ(d)

 e2πinz.

Here,

L(ξ, s) =
∑
n≥1

ξ(n)n−s
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is the standard Dirichlet L-series associated to ξ. The series EM (ξ)(z) lies in
M1(Γ0(M), ξ), as shown for instance in [16]. Fix an integer m ≥ 1. Let M =
Npm. Consider the series defined by

E(ξ)(a,M)(z) =
L(ξ, 0)

2
+
∑
n≥1

 ∑
d>0,d|n

d≡amodM

ξ(d)

 e2πinz.

Fix an integer C > 1 prime to M . Let C−1 denote the inverse class of C modulo
M . Consider the difference defined by

EC(ξ)(a,M)(z) = E(ξ)(a,M)(z)− CE(ξ)(C−1a,M)(z).

It is well known that EC(ξ)(a,M)(z) is a bounded distribution on the product
Z×p × (Z/N)× (see [14], [24] or [25]). Let dEC(ξ)(a,M) denote the measure on
Z×p × (Z/N)× given by the rule∫

a+NpmZ×p

dEC(ξ)(a,M) = EC(ξ)(a,Npm)(z).

Note that this measure takes values in certain spaces of Eisenstein series. To be
more precise, we have the following result.

Lemma 2.5 The measure dEC(ξ)(a,M) takes values in the space M1(Γ0(M), ξ;O).

Proof The result follows from the Key Lemma of Katz [24, 1.2.1, Key Lemma
for Γ(N)], which shows that the Eisenstein measure takes p-integral values at
an elliptic curve with level structure defined over a p-integral ring. Note also
that dEC(ξ)(a,M) arises from a one-dimensional part of the Eisenstein pseudo-
distribution 2H(a,b) given in [24, §3.4] (i.e. with a = C). This pseudo-distribution
can be shown to take integral values by [24, Key Lemma 1.2.1], e.g. by the proof
given in [24, Theorem 3.3.3] (cf. also [24, §3.5, (3.5.5)]). �

Convolution measures. Fix a class A ∈ PicOc(ρ). Fix integers a,m ≥ 1. Fix
an integer C > 1 prime to pND. Consider the series defined by

ΦCA(χ)(a, pm)(z) =
∑

α∈(Z/N∆)×

ΘA(χ)(α2a, pm)(Nz)EC(ωχ2)(α,N∆)(z).

The function ΦCA(a, pm)(z) can be seen to define a bounded distribution on
Z×p (see [32, Lemme 4]). Let dΦCA(χ) denote the measure on Z×p given by this
function.

Lemma 2.6 The measure dΦCA(χ) = ΦCA(a, pm)(z) takes values in the space
M2(Γ0(N∆), ωχ2;O), at least if p ≥ 5.

Proof The function ΦA(a, pm)(z) lies in M2(Γ0(N∆), ωχ2) (see [32, Lemme 5]).
We then deduce from Lemmas 2.4 and 2.5 that it lies in M2(Γ0(N∆), ωχ2;O).
�
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Trace operators. Keep the setup used to define the convolution measure dΦCA(χ)
above. Fix a set representatives R for the space Γ0(N∆)\Γ0(N). We define the
trace operator TrN∆

N : M2(Γ0(N∆), ξ) −→M2(Γ0(N), ξ) by the rule

h(z) 7−→
∑
γ∈R

ξ(aγ) · h|2γ, γ =
(
aγ bγ
cγ dγ

)
.

Lemma 2.7 The composition function TrN∆
N ◦ΦCA(χ)(a, pm)(z) takes values in

the space M2(Γ0(N), ωχ2;O), at least if p ≥ 5.

Proof Given the result of Lemma 2.7, the assertion can be deduced from ex-
plicit computations of the Fourier series expansion of the trace form. If N and D
are both prime, then the result follows from the computation given in Gross [10,
Proposition 9.3, 2)]. In the more general case with (N,D) = 1, it follows from
the computation of the coefficients given in Gross-Zagier [11, IV§2 Proposition
(2.4) and §3, Proposition (3.2)]. �

Mesures fondamentales. Keep the setup from above. Recall that we let f0

denote the p-stabilization of f , which is the unique ordinary form associated to
f by Hida [14, Lemma 3.3]. Let lf0 : M2(Γ0(N), ωχ2;L) −→ L denote Hida’s
bounded linear form, as defined above. Let L denote the closure of the field of
values L0 = Q(ωχ2(n))n≥0 in Qp. Let dφCA(χ) denote the measure on Z×p given
by the rule ∫

a+pmZ×p

dφCA(χ) = lf0 ◦ TrN∆
N ◦ ΦCA(χ)(a, pm)(z).

Proposition 2.8 The measure dφCA(χ) takes values in the ring O = OL, at
least if p ≥ 5.

Proof The result follows from Lemmas 2.4, 2.5, 2.6, 2.7 and 2.3. �

We can now at last define the two-variable measures that gives rise to dµf .

Definition Keep the notations above, with C > 1 an integer prime to pND.
Let L(ρ) denote the closure of the field of values L0(ρ(A))A∈PicOc(ρ) in Qp. Let
O = OL(ρ). Let dµCf denote the O-valued function on G defined by the rule∫

G

WµCf =
∑

A∈PicOc(ρ)

ρ(A)dφCA(χ).

This function is seen easily to be a well-defined distribution on G (see [32, § 5]),
and hence (by Proposition 2.8) a measure on G. That is, the distribution is seen
easily to be bounded for any choice of p, and integral for any choice p ≥ 5. It is
also seen to be integral for any choice of p if ρ 6= 1 (in which case the twisted
sum of theta series

∑
A ρ(A)ΘA(χ)(z) is cuspidal).
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Interpolation properties and functional equation. Let us keep all of the
notations above, with C > 1 an integer prime to pND. The two-variable measure
dµCf satisfies the following interpolation property. Let τ(W) denote the Artin
root number of L(W, s). Recall that ∆ = ∆(W) denotes the level of the theta
series Θ(W)(z). Let ψ denote the principal character modulo N as above (hence,
ψ(p) = 1 if p does not divide N and zero otherwise). Recall as well that we let
αp denote the unique p-adic unit root of the polynomial X2 − ap(f)X − pψ(p).
Given an integer r ≥ 1, let us write αpr to denote αrp. Let us also write N ′

to denote the prime-to-p part of N . Let β denote the p-primary component of
the level ∆ of Θ(W). Finally, let us commit an abuse of notation in using the
same notations used to denote the measures defined on Z×p above to denote the
induced measures defined on Zp.

Theorem 2.9 There exists for each integer C > 1 prime to pND an O-valued
measure dµCf on G such that for any finite order character W of G,∫
G

WdµCf =
(

1− ψ(p)
αp2

)−1(
1 +

pψ(p)
αp2

)−1∏
p|p

(
1− W(p)

αNp

)(
1− Wψ(Np)(p)

αNp

)

× ω(−N ′)W(N ′)
(
1− Cω(C)W(C)

) ∆
1
2

αpβ
τ(W)

× L(f ×Θ(W), 1)
8π2〈f, f〉N

.

Here, the product runs over all primes p of Ok that divide p.

Proof See Perrin-Riou [32, Théorème A], along with Proposition 2.8 above.
That is, fix a finite order character W of G having the decomposition (5). Fix
an integer C > 1 prime to pND. A simple argument shows that dµCf is a well-
defined distribution on G (see [32, § 5]). On the other hand, we know that dµCf
takes values in O = OL(ρ) (by Proposition 2.8). Hence, dµCf is an O-valued
measure on G, corresponding to an element of the completed group ring O[[G]].
The calculation of the interpolation value is given in [32, § 4]. �

We may now define the two-variable p-adic L-function associated to a p-ordinary
eigenform f ∈ S2(Γ0(N)) in the tower k∞/k, following Perrin-Riou [32]. Observe
that this definition does not depend on the choice of auxiliary integer C > 1
prime to pND thanks to Theorem 2.9.

Definition Let η : G → Z×p be a continuous character. Let D denote the
different of k. Let C > 1 be any integer prime to pND. The two-variable p-adic
L-function Lp(f, k)(η) of f in k∞/k is then defined to be

Lp(f, k)(η) =
(

1− ψ(p)
αp2

)(
1 +

pψ(p)
αp2

)
× η−1(D′N ′)

(
1− Cω(C)η−1(C)

)−1

×
∫
G

η(g)dµCf (g).
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Here, D′ and N ′ denote the prime to p parts of D and N respectively.

Corollary 2.10 The function Lp(f, k) is an Iwasawa function on G with coef-
ficients in Zp. Moreover, the Iwasawa function defined by

Λp(f, k)(η) = η
1
2 (N ′)η(D′)Lp(f, k)(η)

satisfies the functional equation

Λp(f, k)(η−1) = −ω(N ′)Λp(f, k)(η).

Proof See [32, Corollaire, Théorème A] or [32, Corollaire, Théorème B]. �

3 Iwasawa module structure theory

We now describe the Iwasawa module structure theory of the dual Selmer group
of E over k∞, along with that of the p-primary component of the associated Tate-
Shafarevich group. We follow closely many of the arguments of Coates-Sujatha-
Schneider [7], as well as the refinements of those given by Hachimori-Venjakob
[13] for the somewhat analogous setting of the false Tate curve extension.

Some definitions. Fix S a finite set of primes of k containing both the primes
above p and the primes where E has bad reduction. Let kS denote the maximal
Galois extension of k that is unramified outside of S and the archimedean primes
of k. Note that since k∞ is unramified outside of primes above p, we have the
inclusion k∞ ⊂ kS . Given L any finite extension of k contained in k∞, let GS(L)
denote the Galois group Gal(kS/L). The p∞-Selmer group Sel(E/L) of E over
L is defined classically as the kernel of the localization map,

Sel(E/L) = ker

(
λE(L) : H1(GS(L), Ep∞) −→

⊕
v∈S

Jv(L)

)
.

Here, Ep∞ = E(kS)p∞ denotes the p-power torsion: Ep∞ =
⋃
n≥0Epn where

Epn = ker([pn] : E → E). We also write

Jv(L) =
⊕
w|v

H1(Lw, E(Lw))(p),

where the sum runs over all primes w above v in L. Note that this group fits
into the classical short exact descent sequence

0 −→ E(L)⊗Qp/Zp −→ Sel(E/L) −→ X(E/L)(p) −→ 0,

where X(E/L)(p) denotes the p-primary component of the Tata-Shafarevich
group X(E/L) of E over L. Let L∞ be any infinite extension of k contained
in k∞. We then define the Selmer group of E over L∞ to be the inductive limit

Sel(E/L∞) = lim−→
L

Sel(E/L).
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Here, the limit is taken over all finite extensions L of k contained in L∞ with
respect to the natural restriction maps on cohomology. We write

X(E/L∞) = Hom(Sel(E/L∞),Qp/Zp)

to denote the Pontryagin dual of Sel(E/L∞).

Λ(Γ)-module structure. Let us first review the cyclotomic structure theory
implied by work of Kato and Rohrlich.

Theorem 3.1 (Kato-Rohrlich) If E/Q has good ordinary reduction at each
prime above p in k, then the dual Selmer group X(E/kcyc) is Λ(Γ)-torsion.

Proof The result follows from the Euler system method of Kato [23, Theorems
14.2 and 17.4], which requires for nontriviality the nonvanishing theorem of
Rohrlich [34]. �

We may then invoke the structure theory of finitely generated torsion Λ(Γ)-
modules ([2, Chapter VII, §4.5]) to obtain a Λ(Γ)-module pseudoisomorphism

X(E/kcyc) −→
r⊕
i=1

Λ(Γ)/pmi ⊕
s⊕
j=1

Λ(Γ)/γnjj . (6)

Here, the indices r, s, mi and nj are all positive integers, and each γj can be
viewed as an irreducible monic distinguished polynomial γj(T ) (with respect to
a fixed isomorphism Λ(Γ) ∼= Zp[[T ]]). The Λ(Γ)-characteristic power series

charΛ(Γ)X(E/kcyc) =
r∏
i=1

pmi ·
s∏
j=1

γ
nj
j

is defined uniquely up to unit in Λ(Γ). One defines from it the Λ(Γ)-module
invariants

µΛ(Γ) (X(E/kcyc)) =
r∑
i=1

mi and λΛ(Γ) (X(E/kcyc)) =
∑
j=1

nj · deg(γj).

We shall often for simplicity denote these by

µE(k) = µΛ(Γ) (X(E/kcyc)) and λE(k) = λΛ(Γ) (X(E/kcyc)) .

respectively. We refer the reader to the monograph of Coates-Sujatha [8] for fur-
ther discussion, for instance on how to compute the (finite) G-Euler character-
istic of Sel(E/kcyc), or equivalently how to compute | charΛ(Γ)X(E/kcyc)(0)|−1

p ,
where charΛ(Γ)X(E/kcyc)(0) denotes the image of the characteristic power se-
ries charΛ(Γ)X(E/kcyc) under the natural augmentation map Λ(Γ) −→ Zp.
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Λ(G)-module structure. We now use the Λ(Γ)-module structure ofX(E/kcyc)
to study the Λ(G)-module structure of X(E/k∞), following the main ideas of [7]
and [13]. Let us first consider the following standard result. Let S(E/L) denote
the compactified Selmer group of E over any finite extension L of k contained
in k∞, which is defined as the projective limit

S(E/L) = lim←−
n

ker
(
H1(GS(L), Epn) −→

⊕
Jv(L)

)
taken with respect to the natural maps Epn+1 → Epn induced by multiplication
by p. Given any infinite extension L∞ of k contained in k∞, we then define

S(E/L∞) = lim←−
L

S(E/L)

to be the projective limit over all finite extensions L of k contained in L∞, taken
with respect to the natural corestriction maps.

Proposition 3.2 Let Ω = Gal(L∞/k) be any infinite pro-p group. If E(L∞)p∞
is finite, then there is a Λ(Ω)-module injection

S(E/L∞) −→ HomΛ(Ω)(X(E/L∞),Λ(Ω)).

Proof See for instance [13, Theorem 7.1]. �

We use this to deduce the following result.

Theorem 3.3 If E has good ordinary reduction at each prime above p in k,
then the cohomology group H2(GS(kcyc), Ep∞) vanishes. In particular, the lo-
calization map

λS(kcyc) : H1(GS(kcyc), Ep∞) −→
⊕
v∈S

Jv(kcyc)

is surjective, and hence we have a short exact sequence of Λ(Γ)-modules

0 −→ Sel(E/kcyc) −→ H1(GS(kcyc), Ep∞) −→
⊕
v∈S

Jv(kcyc) −→ 0. (7)

Proof Consider the Cassels-Poitou-Tate exact sequence

0 −→ Sel(E/kcyc) −→ H1(GS(kcyc), Ep∞) −→
⊕
v∈S

Jv(kcyc)

−→ S(E/kcyc)∨ −→ H2(GS(kcyc), Ep∞) −→ 0.

Here, S(E/kcyc)∨ is the Pontryagin dual of S(E/kcyc). Now, the p-power tor-
sion subgroup E(kcyc)p∞ is finite by Imai’s theorem [21]. Hence, we can invoke
Proposition 3.2 to obtain an injection S(E/kcyc)→ HomΛ(Γ)(X(E/kcyc),Λ(Γ)).
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Now, by the main result of Kato [23], the dual Selmer group X(E/kcyc) is Λ(Γ)-
torsion. Hence, we have a Λ(Γ)-module injection

S(E/kcyc) ↪→ HomΛ(Γ)(X(E/kcyc),Λ(Γ)) = 0.

It follows that S(E/kcyc)∨ = 0, and hence that H2(GS(kcyc), Ep∞) = 0. See
also the argument of Kato [23, §§13, 14] for this latter vanishing. �

Let us now consider invariants under the Galois group H = Gal(k∞/kcyc). Note
that by Serre’s refinement [38] of Lazard’s theorem [26], a p-adic Lie group with
no element of order p has p-cohomological dimension cdp equal to its dimension
as a p-adic Lie group. Since G has no element of order p, we can and will
invoke this characterization throughout. Hence (for instance), cdp(G) = 2 with
cdp(H) = cdp(Γ) = 1. To show the main result of this paragraph, we first
establish the following standard lemmas.

Lemma 3.4 If E has good ordinary reduction at each prime above p in k, then
there is a short exact sequence

0 −−−−→ Sel(E/k∞)H −−−−→ H1(GS(k∞), Ep∞)H

ηS(k∞)−−−−−→
⊕

v∈S Jv(k∞)H −−−−→ 0.

Here, ηS(k∞) is the map induced by localization map

λS(k∞) : H1(GS(k∞), Ep∞) −→
⊕
S

Jv(k∞).

Proof See [7, Lemma 2.3]. That is, consider the fundamental diagram

0 −−−−→ Sel(E/k∞)H −−−−→ H1(GS(k∞), Ep∞)H
ηS(k∞)−−−−−→

⊕
v∈S Jv(k∞)Hx x xγS(kcyc)

0 −−−−→ Sel(E/kcyc) −−−−→ H1(GS(kcyc), Ep∞)
λS(kcyc)−−−−−→

⊕
v∈S Jv(k

cyc).

Here, the horizontal rows are exact, and the vertical arrows are induced by
restriction on cohomology. We have that

coker(γS(kcyc)) =
⊕
w|v∈S

coker(γw(kcyc)),

with w ranging over places in kcyc above v ∈ S. Note that only finitely many
such primes exist, as no finite prime splits completely in kcyc (see for instance
[46, Theorem 2.13]). Given a prime w above v in k∞, let Ωw denote the decom-
position subgroup of H at w. Note that cdp (Ωw) ≤ 1, and so H2(Ωw, Ep∞) = 0.
If w - p, then standard arguments (see for instance [4, Lemma 3.7]) show that

coker(γw(kcyc)) = H2(Ωw, Ep∞) = 0.
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If w|p, then the main result of Coates-Greenberg [5] shows that

coker(γw(kcyc)) = H2(Ωw, Ẽw,p∞) = 0.

Here, Ẽw,p∞ denotes the image under reduction modulo w of Ep∞ . Hence, we
find that coker(γw(kcyc)) = 0 for each prime w above v in k∞. It follows that
γS(kcyc) is surjective. Since the map λS(kcyc) is also surjective by (7), it follows
that ηS(k∞) is surjective as required. �

Lemma 3.5 If E has good ordinary reduction at each prime above p in k, then
for all i ≥ 1, Hi(H,H1(GS(k∞), Ep∞)) = 0.

Proof See [7, Lemma 2.4]. The same proof works here, using Theorem 3.3 with
the fact that cdp (H) = 1. �

Lemma 3.6 If E has good ordinary reduction at each prime above p in k, then
H1(H,Sel(E/k∞)) = 0.

Proof See [7, Lemma 2.5]. Let A∞ = Im(λS(k∞)). Lemma 3.5 with i = 1 gives
the exact sequence

0 −→ Sel(E/k∞)H −→ H1(GS(k∞), Ep∞)H −→ AH∞ −→ H1(H,Sel(E/k∞)) −→ 0.
(8)

Recall that the map ηS(k∞) : H1(GS(k∞), Ep∞)H −→ AH∞ is surjective by
Lemma 3.4. Now,

AH∞ =
⊕
v∈S

Jv(k∞)H ,

and so it follows that H1(H,S(E/k∞)) = 0. �

Lemma 3.7 If E has good ordinary reduction at each prime above p in k, then
H1(H,

⊕
v∈S Jv(k∞)) = 0.

Proof See [7, Lemma 2.8]. The same proof works here, using the fact that
cdp (H) = 1. �

We may now deduce the following result.

Theorem 3.8 If E has good ordinary reduction at each prime above p in k,
then X(E/k∞) is Λ(G)-torsion.

Proof See the arguments of [13, Theorem 2.8, and Corollary 2.9], following [7,
Proposition 2.9]. A standard deduction, as given for instance in [13, §2, Remark
2.5], reduces the claim to showing the surjectivity of the localization map

λS(k∞) : H1(GS(k∞), Ep∞) −→
⊕

Jv(k∞).
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So, let A∞ = im(λS(k∞)). Taking the H-cohomology of the exact sequence

0 −→ Sel(E/k∞) −→ H1(GS(k∞), Ep∞) −→ A∞ −→ 0,

we obtain from Lemma 3.5 the identification

H1(H,A∞) = H2(H,Sel(E/k∞)).

Note that since cdp(H) = 1, we have that H2(H,Sel(E/k∞)) = 0, and hence
that H1(H,A∞) = 0. Let B∞ = coker(λS(k∞)). By Lemma (3.7),

H1(H,
⊕
v∈S

Jv(k∞)) = 0.

Taking H-cohomology of the exact sequence

0 −→ A∞ −→
⊕
v∈S

Jv(k∞) −→ B∞ −→ 0,

we deduce from Lemma 3.4 that

BH∞ = H1(H,A∞) = 0.

Since H is pro-p, and B∞ a discrete p-primary H-module, it follows that B∞
itself must vanish. Hence λS(k∞) is surjective. �

When X(E/k∞) is Λ(G)-torsion, the structure theory of torsion Λ(G)-modules
([2, Chapter VII, §4.5]) gives a pseudoisomorphism

X(E/k∞) −→
t⊕
i=1

Λ(G)/pai ⊕
u⊕
j=1

Λ(G)/gbjj . (9)

Here, the indices s, t, ai and bj are all positive integers, and each gj can be viewed
as an irreducible monic distinguished polynomial gj(T1, T2) (with respect to a
fixed isomorphism Λ(G) ∼= Zp[[T1, T2]]). The characteristic power series

charΛ(G)X(E/k∞) =
t∏
i=1

pai ·
u∏
j=1

g
bj
j

is again well defined up to unit in Λ(G). As in the cyclotomic setting, one uses
it to define the Λ(G)-module invariants

µΛ(G)(X(E/k∞)) =
t∑
i=1

ai and λΛ(G) (X(E/k∞)) =
u∑
j=1

bj · deg(gj).

The invariant µΛ(G)(X(E/k∞)). Let us now review what is known about the
invariant µΛ(G)(X(E/k∞)). Suppose more generally that G is any pro-p group,
and Y any finitely-generated torsion Λ(G)-module. The structure theory of Λ(G)
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modules shown in [2, Chapter VII, §4.5]) again gives a pseudoisomorphism anal-
ogous to (9), and so we may define the associated invariant µΛ(G)(Y ). Let Y (p)
denote the submodule of elements of Y annihilated by some power of p. It is
well known (see for instance [20]) that the cohomology groups Hi(G, Y ) are
finitely-generated Zp-modules for all i ≥ 0, and hence that the cohomology
groups Hi(G, Y (p)) are finite for all i ≥ 0. The invariant µΛ(G)(Y ) is then seen
to be given by the formula

pµΛ(G)(Y ) =
∏
i≥0

|Hi(G, Y (p))|(−1)i = χ(G, Y (p)), (10)

where χ(G, Y (p)) is by definition the finite G-Euler characteristic of Y (p). Given
L any extension of k contained in k∞, let us write

X(E/L) = X(E/L)/X(E/L)(p).

Proposition 3.9 If E has good ordinary reduction at p, and X(E/k∞) is finitely-
generated over Λ(H), then µΛ(G)(X(E/k∞)) = µE(k).

Proof See [7, Propostion 2.9], we give a sketch of the proof. Note that we have
X(E/k∞)H = H0(H,X(E/k∞)). Note as well that H1(H,X(E/k∞)) = 0 by
Lemma 3.6. Taking H-homology of the short exact sequence

0 −→ X(E/k∞)(p) −→ X(E/k∞) −→ X(E/k∞) −→ 0,

we obtain a short exact sequence of Λ(Γ)-modules

0 −→ H1(H,X(E/k∞)) −→ H0(H,X(E/k∞)(p))
−→ H0(H,X(E/k∞)) −→ H0(H,X(E/k∞)) −→ 0.

Following [20, Proposition 1.9], we then show that the alternating sum of µΛ(Γ)-
invariants along this sequence vanishes. Moreover, the µΛ(Γ)-invariants of the
two central terms can be computed as follows. ForH0(H,X(E/k∞)) = X(E/k∞)H ,
it is well known (see the proof of Theorem 3.12 below for instance) that restric-
tion on cohomology induces a Λ(Γ)-homomorphism

α : X(E/k∞)H −→ X(E/kcyc)

with ker(α) finitely-generated over Zp and coker(α) finite. We deduce that

µΛ(Γ)((X(E/k∞)H) = µΛ(Γ)((X(E/kcyc)) = µE(k).

For H0(H,X(E/k∞)(p)), consider the Hochschild-Serre spectral sequence

0 −→ H0(Γ, Hi(H,X(E/k∞)(p)) −→ Hi(G,X(E/k∞)(p))
−→ H1(Γ, Hi−1(H,X(E/k∞)(p)) −→ 0.

We deduce that

χ(G,X(E/k∞)(p)) =
1∏
i=0

χ(Γ, Hi(H,X(E/k∞)(p)))(−1)i ,
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and so

µΛ(G)(X(E/k∞)) =
1∑
i=0

(−1)iµΛ(Γ)(Hi(H,X(E/k∞)(p))).

Putting terms together from the first (alternating sum) sequence above, we find
that µΛ(G)(X(E/k∞)) =

µE(k)+
1∑
i=0

(−1)i+1µΛ(Γ)(Hi(H,X(E/k∞)))+
1∑
i=0

(−1)iµΛ(Γ)(Hi(H,X(E/k∞)(p))).

Recall that Hi(H,X(E/k∞)) = 0 for all i ≥ 0 by Lemma 3.6. Taking H-
cohomology of the short exact sequence

0 −→ X(E/k∞)(p) −→ X(E/k∞) −→ X(E/k∞) −→ 0,

obtain that H1(H,X(E/k∞)(p))) = H2(H,X(E/k∞)) = 0. Deduce that

µΛ(G)(X(E/k∞)) = µE(k) +
1∑
i=0

(−1)i+1µΛ(Γ)(Hi(H,X(E/k∞))).

Since we assume that X(E/k∞) is finitely-generated over Λ(H), it follows that
X(E/k∞)H is finitely-generated over Zp. Thus,

µΛ(Γ)(Hi(H,X(E/k∞))) = 0.

In particular, µΛ(G)(X(E/k∞)) = µE(k) as claimed. �

The G-Euler characteristic of Sel(E/k∞). We now give a formula for the
G-Euler characteristic of Sel(E/k∞),

χ(G,Sel(E/k∞)) =
∏
i≥0

|Hi(G,Sel(E/k∞))|(−1)i ,

which in the setup described above is well defined (i.e. finite). Note that this
invariant is related to the characteristic power series charΛ(G)X(E/k∞) by the
formula

χ(G,Sel(E/k∞)) = | charΛ(G)X(E/k∞)(0)|−1
p ,

where charΛ(G)X(E/k∞)(0) denotes the image of charΛ(G)X(E/k∞) under the
natural augmentation map Λ(G) −→ Zp. We must first establish the following
result.

Lemma 3.10 If E has good ordinary reduction at each prime above p in k,
then the p-primary torsion subgroup E(k∞)p∞ is finite.
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Proof See the argument of [13][Lemma 3.12]. We present the following alter-
native proof. Fix a rational prime v that remains inert in k and does not equal
p. Write kv to denote the localization of k at the prime above v. Write kcyc

v to
denote the cyclotomic Zp-extension of kv. By Imai’s theorem [21] (cf. [8][A.2.7]),
the p-primary subgroup of E(kcyc

v ) is finite. On the other hand, the prime above
v in k splits completely in D∞ by class field theory. Hence, writing D∞,w to
denote the union of all completions of D∞ at primes above v, we have an isomor-
phism of local fields D∞,w ∼= kv. This induces an isomorphism of Mordell-Weil
groups E(D∞,w) ∼= E(kv). Hence, writing k∞,w to denote the union of all com-
pletions of k∞ at primes above v, we have the identifications

E(k∞,w) ∼= E(D∞.w · kcyc
v ) ∼= E(kcyc

v ).

Hence, the p-primary part of E(k∞,w) is seen to be finite by Imai’s theorem.
Since E(k∞)p∞ injects into the p-primary part of E(k∞,w), the result follows.
�

Theorem 3.11 Assume that E has good ordinary reduction at all primes above
p in k, that p ≥ 5, and that Sel(E/k) is finite. Then, the G-Euler characteristic
of Sel(E/k∞) is well defined, and given by the formula

χ(G,Sel(E/k∞)) =
| X(E/k)(p)|
|E(k)p∞ |2

·
∏
v|p

|Ẽv(κv)(p)|2 ·
∏
v

|cv|−1
p .

Here, X(E/k)(p) denotes the p-primary part of X(E/K), E(k)p∞ the p-
primary part of E(k), κv the residue field at v, Ẽv the reduction of E over κv,
and cv = [E(kv) : E0(kv)] the local Tamagawa factor at a prime v ⊂ Ok.

Proof See for instance [13][Theorem 4.1] The proof is a standard computation,
using the facts that (i) X(E/k∞) is Λ(G)-torsion (by Theorem 3.8 above), (ii)
E(k∞)p∞ is finite (by Lemma 3.10 above), and (iii) p is totally ramified in k∞.
�

Λ(H)-module structure. Let us assume now that µE(k) = 0. We obtain the
following Λ(H)-module structure theory for X(E/k∞).

Theorem 3.12 Suppose that E has good ordinary reduction at p, with µE(k) =
0. Then, there is a Λ(H)-module isomorphism X(E/k∞) ∼= Λ(H)λE(k).

Proof By Nakayama’s lemma, X(E/k∞) is finitely generated over Λ(H) if and
only if X(E/k∞)H is finitely generated over Zp, hence by duality if and only
if S(E/k∞)H is co-finitely generated over Zp. Given n ≥ 0 an integer, let Dn

denote the degree-pn extension of k contained in D∞, with Dcyc
n its cyclotomic

Zp-extension. Let Hn = Gal(k∞/Dcyc
n ). Note that cdp(Hn) ≤ 1. Consider the

diagram

0 −−−−→ S(E/k∞)Hn −−−−→ H1(GS(k∞), Ep∞)Hn −−−−→
⊕

v∈S Jv(k∞)Hnxαn xβn xγn
0 −−−−→ S(E/Dcyc

n ) −−−−→ H1(GS(Dcyc
n ), Ep∞) −−−−→

⊕
v∈S Jv(D

cyc
n ).
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Here, the horizontal rows are exact sequences, and the vertical maps are induced
by restriction on cohomology. We have by inflation-restriction that coker(βn) ∼=
H2(Hn, Ep∞) = 0 and that ker(βn) ∼= H1(Hn, Ep∞). Note that H1(Hn, Ep∞)
has cardinality equal to that of E(Dcyc

n )p∞ , which is finite by Imai’s theorem
[21]. Given v ∈ S, fix a place w above v in k∞. We can then write the local
restriction map as

γn =
⊕
w

γn,w,

where the direct sum ranges over the primes above each v ∈ S in Dn. Let Ωn,w
denote the decomposition group of Hn at w. We argue as in the proof of Lemma
3.3 that coker(γn) = 0. Following [4, Lemma 3.7] also find that

coker(γn,w) ∼= H2(Ωn,w, Ep∞) = 0 and ker(γn,w) ∼= H1(Ωn,w, Ep∞).

In particular, since the latter group is known to be finite, it follows that ker(γn) =⊕
w ker(γn,w) is finite. It then follows from the snake lemma that ker(αn) and

coker(αn) must be finite. Now, recall that X(E/kcyc) is Λ(Γ)-torsion by Theo-
rem 3.1. Matsuno’s theorem [28] then implies that X(E/kcyc) has no nontrivial
finite Λ(Γ)-submodule. On the other hand, since µE(k) = 0, Hachimori and Mat-
suno’s analogue of Kida’s formula [12] implies that X(E/Dcyc

n ) is Λ(Γn)-torsion
with Γn = Gal(Dcyc

n /Dn) and cyclotomic Iwasawa invariants

λE(Dn) = [Dn : k] · λE(k) and µE(Dn) = µE(k) = 0.

Since Dn is not totally real, it follows from Proposition 7.5 of Matsuno [28]
that X(E/Dcyc

n ) has no nontrivial finite Λ(Γn)-submodule. In particular, since
µE(Dn) = 0 for each n ≥ 0, Matsuno’s theorem implies that X(E/Dcyc

n )
has no nontrivial finite Zp-submodule for any n ≥ 0. This makes the inverse
limit X(E/k∞) = lim

←−
n

X(E/Dcyc
n ) Zp-torsionfree, from which it follows that

ker(αn) = coker(αn) = 0 for any n ≥ 0. Thus, we find an isomorphism of
Zp-modules α0 : X(E/k∞)H0

∼= X(E/kcyc). Let us now put r = λE(k). Let
x1, . . . , xr denote a lift to X(E/k∞) of a fixed Zp-basis of X(E/k∞)H . Let
I(H) denote the augmentation ideal of H in Λ(H). Note that X(E/k∞)H =
X(E/k∞)/I(H). Let Y denote the Λ(H)-submodule of X(E/k∞) generated by
x1, . . . xr. Observe that

I(H)(X(E/k∞)/Y ) = (I(H)X(E/k∞) + Y )/Y = X(E/k∞)/Y,

and so X(E/k∞) = Y by Nakayama’s lemma. In particular, this gives an iso-
morphism of Λ(H)-modules

X(E/k∞) ∼= Λ(H)r,
∑
i

aixi 7−→
∑
i

aiei,

where e1, . . . , er is a standard Λ(H)-basis of Λ(H)r. Observe now that X(E/k∞)
has no nontrivial finite Λ(H)-submodule, thus making it Λ(H)-torsionfree. �
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Corollary 3.13 Suppose that E has good ordinary reduction at each prime
above p in k, with µE(k) = 0. Then, µΛ(G) (X(E/k∞)) = µE(k) = 0.

Proof The result follows from argument of Theorem 3.12 above, namely by
using Matsuno’s theorem [28] and the main result of Hachimori-Matsuno [12]
to deduce that X(E/k∞) is Λ(H)-torsionfree. �

We also deduce from Theorem 3.12 the following consequence for the Λ(H)-
corank of the p-primary parts of the Tate-Shafarevich group X(E/k∞). That
is, recall that we consider the short exact descent sequence of Λ(H)-modules

0 −→ E(k∞)⊗Qp/Zp −→ Sel(E/k∞) −→ X(E/k∞)(p) −→ 0,

as well as the dual exact sequence

0 −→ �(E/k∞) −→ X(E/k∞) −→ E(E/k∞) −→ 0. (11)

Here, �(E/k∞) is the Pontryagin dual of X(E/k∞)(p), and E(E/k∞) is that
of E(k∞) ⊗ Qp/Zp. Recall that we let ε(E/k, 1) = ε(f/k, 1) denote the root
number of the complex L-function L(E/k, s) = L(f ×Θk, s).

Proposition 3.14 Assume that p is odd, and moreover that p does not divide
the class number of k if the root number ε(E/k, 1) equals −1. If E has good
ordinary reduction at each prime above p in k with µE(k) = 0, then

rkΛ(H) �(E/k∞) =

{
λE(k) if ε(E/k, 1) = +1
λE(k)− 1 if ε(E/k, 1) = −1.

Proof Observe that (11) is a short exact sequence of finitely generated Λ(H)-
modules. We know by Theorem 3.12 that the Λ(H)-rank of X(E/k∞) is λE(k).
On the other hand, we claim that

rkΛ(H)E(E/k∞) =

{
0 if ε(E/k, 1) = +1
1 if ε(E/k, 1) = −1.

(12)

To see why this is so, let K be any finite extension of k contained in kcyc.
A simple exercise shows that K is a totally imaginary quadratic extension of
its maximal totally real subfield F . Let DK

∞ denote the compositum extension
KD∞, with Galois group ΩK = Gal(DK

∞/K). We claim that for any such K,
we have the rank formula

rkΛ(ΩK)E(E/DK
∞) =

{
0 if ε(E/k, 1) = +1
1 if ε(E/k, 1) = −1.

Indeed, in the first case with ε(E/k, 1) = +1, the formula follows from the
relevant nonvanishing theorem of Cornut-Vatsal [9, Theorem 1.4] over F plus
the relevant rank theorem(s) of Nekovar [29, Theorem B, Theorem B’, and

24



Corollary]. In the second case with ε(E/k, 1) = −1, the formula follows form
the relevant nonvanishing theorem of Cornut-Vatsal [9, Theorem 1.5] over F
plus the relevent rank theorem of Howard [19, Theorem B (a)]. Note that to
invoke the result of Howard [19] in the latter setting, we have used the classical
result due to Iwasawa [22] that if p does not divide the class number of k, then p
does not divide the class number of any finite extension K. Taking the inductive
limit over all finite extensions K of k contained in kcyc, we obtain the stated
formula (12). The result then follows immediately from the exactness of (11). �

4 Divisibility criteria

We now discuss various divisibility criteria for the two-variable main conjecture
(Conjecture 1.1 (iii) above). In particular, granted suitable hypotheses, we prove
one divisibility of the two-variable main conjecture.

Greenberg’s criterion. The following criterion was suggested to the author
by Ralph Greenberg. It reduces one divisibility of the two-variable main con-
jecture (Conjecture 1.1 (iii)) to a certain specialization criterion for finite order
characters of the Galois group Γ = Gal(kcyc/k). Let us first fix an isomorphism

Λ(G) ∼= Zp[[T1, T2]], (γ1, γ2) 7−→ (T1 + 1, T2 + 1) . (13)

Here, we have fixed a topological generator γ1 of Γ, as well as a topological gener-
ator γ2 of Ω. Fix f ∈ S2(Γ0(N)) a p-ordinary eigenform, as required for the con-
struction of the p-adic L-function of Theorem 2.9. Recall that we write X(f/k∞)
to denote the Pontryagin dual of the p∞-Selmer group associated to f in k∞/k.
If f is the eigenform associated to an elliptic curve E defined over Q, then a
standard argument allows us to make the identification X(f/k∞) = X(E/k∞).
In what follows, we shall fix an elliptic curve E over Q of conductor N as de-
scribed in the introduction, with f the eigenform associated to E by modularity.
We shall then make the identification X(f/k∞) = X(E/k∞) implicitly in what
follows.

Let g(T1, T2) denote the Λ(G)-characteristic power series of X(f/k∞), or
rather its image under the fixed isomorphism (13). (We take this to be zero
if X(f/k∞) is not Λ(G)-torsion). Let L(T1, T2) = Lp(f, k)(T1, T2) denote the
image under (13) of the two-variable p-adic L-function Lp(f, k) ∈ Λ(G) asso-
ciated to f by Theorem 2.9. Recall that we write Ψ to denote the set of finite
order characters of Γ = Gal(kcyc/k). Given an element element λ ∈ Λ(G) with
associated power series λ(T1, T2) ∈ Zp[[T1, T2]], we can and will invoke the usual
Weierstrass preparation theorem for λ(T1, T2) as an element of the one-variable
power series ring R[[T1]] with R = Zp[[T2]]. We refer the reader to the discus-
sion in Venjakob [45, Example 2.4, Theorem 3.1, and Corollary 3.2] for a more
general account of the situation.

Theorem 4.1 Suppose that p does not divide the specialization g(T1, 0). As-
sume that for each character ψ ∈ Ψ, we have the inclusion of ideals

(L(T1, ψ(T2))) ⊆ (g(T1, ψ(T2))) in Oψ[[T1, T2]]. (14)
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Then, we have the inclusion of ideals

(L(T1, T2)) ⊆ (g(T1, T2)) in Zp[[T1, T2]].

Proof Observe that we may write

g(T1, T2) =
∞∑
i=0

ai(T2) · T i1,

with ai(T2) ∈ Zp[[T2]]. Since we assume that p - g(T1, 0), it follows that for some
minimal positive integer m,

g(T1, 0) =
m∑
i=0

ai(0) · T i1,

with ai(0) ∈ Z×p . We claim it then follows that

L(T1, T2) = h(T1, T2) · g(T1, T2) + r(T1, T2),

with h(T1, T2) a polynomial in Zp[[T1, T2]], and r(T1, T2) a remainder polynomial
in Zp[[T2]] of degree less than m. Now, the remainder term is given by

r(T1, T2) =
m−1∑
j=0

cj(T2) · T j1 ,

with cj(T2) ∈ Zp[[T2]]. Granted the inclusion (22) for each ψ ∈ Ψ, we have that

r(T1, ψ(T2)) = 0

for each ψ ∈ Ψ. It then follows from the Weierstrass preparation theorem that

cj(ψ(T2)) = 0

for each ψ ∈ Ψ and j ∈ {0, . . . ,m− 1}. Hence, we conclude that r(T1, T2) = 0.
�

We obtain the following immediate consequence.

Corollary 4.2 Assume Hypothesis 1.6 (i) and (ii). Suppose that for each char-
acter ψ ∈ Ψ, we have the inclusion of ideals

(L(T1, ψ(T2))) ⊆ (g(T1, ψ(T2))) in Oψ[[T1, T2]]. (15)

Then, we have the inclusion of ideals

(L(T1, T2)) ⊆ (g(T1, T2)) in Zp[[T1, T2]].
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Proof Theorem 4.1 requires that p does not divide the specialization of the
characteristic power series g(T1, 0), equivalently that the dihedral or anticy-
clotomic µ-invariant associated to f in the tower D∞/k vanishes. Assuming
Hypothesis 1.6 (i) and (ii), the main result of Pollack-Weston [31] shows that
this is always the case if the underlying eigenform f is p-ordinary. �

A basechange criterion Let K be any finite extension of k contained in the
cyclotomic extension kcyc. Let DK

∞ denote the compositum extension KD∞,
with ΩK = Gal(DK

∞/K) the corresponding Galois group. Note that ΩK is topo-
logically isomorphic to Zp. Let ΨK denote the set of (primitive) characters of
order [K : k] of the Galois group Gal(K/k). Hence, we have the decomposition

Ψ =
⋃

k⊂K⊂kcyc

ΨK .

Recall that given a character ψ ∈ Ψ, we write Oψ to denote the ring of integers
obtained from Zp by adding the values of ψ. Let us also write OΨK to denote
the ring of integers obtained by adding to Zp the values of each of the characters
in the set ΨK . Given a polynomial f(T1, T2) ∈ Zp[[T1, T2]], let us write

f(T1, T
K
2 ) =

∏
ψ∈ΨK

f(T1, ψ(T2)) (16)

to denote the product of specializations of f(T1, T2) to the characters of the set
ΨK . Note that this specialization product f(T1, T

K
2 ) lies in the polynomial ring

Zp[[T1, T
K
2 ]] = OΨK [[T1]]. Note as well that we have the identifications

f(T1, T
k
2 ) = f(T1,1(T2)) = f(T1, 0) ∈ Zp[[T1]].

Proposition 4.3 Assume that for any finite extension K of k contained in
kcyc, we have the inclusion of ideals(

L(T1, T
K
2 )
)
⊆
(
g(T1, T

K
2 )
)

in OΨK [[T1]]. (17)

Assume additionally that the root number of the central value L(f/k, 1) is +1,
and moreover that we have a nontrivial equality of ideals for K = k,

(L(T1, 0)) = (g(T1, 0)) in Zp[[T1]]. (18)

Then, for each character ψ ∈ Ψ, we have the inclusion of ideals

(L(T1, ψ(T2))) ⊆ (g(T1, ψ(T2))) in Oψ[[T1]].

Proof Since we assume that the root number ε(f/k, 1) is equal to +1, we know
for instance by the nonvanishing theorems of Vatsal [44] and more generally
Cornut-Vatsal [9] that the p-adic L-function L(T1, 0) does not vanish identically.
Let K be any finite extension of k contained in kcyc. Using the equality (18), we
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may then divide each side of (17) by the corresponding ideals in (18) to obtain
for each extension K the inclusion of ideals(

L(T1, T
K
2 )

L(T1, 0)

)
⊆
(
g(T1, T

K
2 )

g(T1, 0)

)
in OΨK [[T1]]. (19)

Now, the divisibility (17) implies that we have for each extension K the relation

g(T1, T
K
2 ) = f(T1, T

K
2 ) · L(T1, T

K
2 ) + r(T1, T

K
2 ).

Here, f(T1, T
K
2 ) denotes some polynomial in Zp[[T1, T

K
2 ]] = OΨK [[T1]], and

r(T1, T
K
2 ) the corresponding remainder term. It then follows from (19) that∏

ψ∈ΨK
ψ 6=1

r(T1, χ(T2)) = 0.

Hence, we deduce that for each finite extension K of k contained in kcyc, there
exists a nontrivial character ψ ∈ ΨK such that

(L(T1, ψ(T2))) ⊆ (g(T1, ψ(T2))) in Oψ[[T1]]. (20)

We now argue that if the divisibility (20) holds for one (nontrivial) character in
ΨK , then it holds for all (nontrivial) characters in ΨK . To see why this is, let
L(E/k,W, 1) = L(f ×Θ(W), 1) denote the value

L(f ×Θ(W), 1)
8π〈f, f〉

, (21)

whereW is any finite order character of the Galois groupG. Recall that the value
(21) is algebraic by Shimura’s theorem [39]. In particular, for any finite order
character ρ of Ω, the values L(f ×Θ(ρψ), 1) with ψ ∈ ΨK are Galois conjugate
by Shimura’s theorem. Hence, by uniqueness of interpolation series, we deduce
that the specializations L(T1, ψ(T2)) with ψ ∈ ΨK are Galois conjugate. We can
then deduce that if the divisibility (20) holds for one character ψ ∈ ΨK , then it
holds for all characters ψ ∈ ΨK . Taking the union of all finite extensions K of
k contained in kcyc, the result follows. �

Corollary 4.4 Keep the hypotheses of Proposition 4.3 above. If p does not di-
vide the specialization g(T1, 0), then there is an inclusion of ideals

(L(T1, ψ(T2))) ⊆ (g(T1, ψ(T2))) in Oψ[[T1, T2]]. (22)

Proof Apply Theorem 4.1 to Proposition 4.3 above. �

Some remarks on further reductions. A simple argument shows that each
finite extension K of k contained in kcyc is a totally imaginary quadratic ex-
tension of its maximal totally real subfield F . Each such totally real field F
is abelian. Hence, we can associate to f a Hilbert modular eigenform f over
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F via the theory of cyclic basechange. It is then simple to see (via Artin for-
malism for instance) that the root number of the complex Rankin-Selberg L-
function L(f × ΘK , s) is equal to that of L(E/k, s) = L(f × Θk, s). In par-
ticular, the divisibilities (17) of Proposition 4.3 would follow from the dihe-
dral/anticyclotomic main conjectures for f in the dihedral/anticyclotomic Zdp-
extension of K, where d = [F : Q]. For results in this direction, see for instance
the generalizations to totally real fields of work of Bertolini-Darmon [1] (as
well as Pollack-Weston [31]) by Longo [27] and the author [42]. For the equal-
ity condition (18) of Proposition 4.3, see the result of Howard [17, Theorem
3.2.3] with the main result of Pollack-Weston [31]. These works combined show
that the inclusion (L(T1, 0)) ⊆ (g(T1, 0)) often holds, in which case the re-
verse inclusion (g(T1, 0)) ⊆ (L(T1, 0)) can be reduced by Howard [17, Theorem
3.2.3(c)] to a certain nonvanishing criterion for the associated p-adic L-functions
L(T1, 0) ∈ Λ(Ω).

Some remarks on the setting of root number minus one. In the setting
where the root number ε(f/k, 1) of L(f/k, 1) is equal to −1, then we know that
L(T1, T2) = 0 by the functional equation for L(T1, T2) given in Corollary 2.10
(derived from the fact that the complex central value L(f/k, 1) vanishes). It fol-
lows that L(T1, T

K
2 ) = 0 for all finite extensions K of k contained in kcyc. Hence

in this setting, the hypotheses of Proposition 4.3 do not hold. Indeed, consider
the basechange setup described in the remark above, where f is the basechange
Hilbert modular eigenform defined over the maximal totally real subfield F of
K. The formulation of the analogous dihedral/anticyclotomic main conjecture
in this setting asserts that each dual Selmer group X(f/DK

∞) has Λ(ΩK)-rank
one, and moreover that there is an equality of ideals(

charΛ(ΩK)(X(f/DK
∞)tors)

)
=
(
charΛ(ΩK)(X(f/DK

∞))
)

in Λ(ΩK)

Here, X(f/DK
∞)tors denotes the Λ(ΩK)-torsion submodule of X(f/DK

∞), and
X(f/DK

∞) is the Λ(ΩK)-torsion submodule defined by S(f/DK
∞)/H(f/DK

∞),
where S(f/DK

∞) is the compactified Selmer group of f over DK
∞, and H(f/DK

∞)
is the so-called Heegner submodule generated by CM points (defined on an
associated quaternionic Shimura curve). We refer the reader to Howard [19,
Theorem B] or Perrin-Riou [33] for more details on this formulation. Anyhow,
the dual Selmer group X(f/DK

∞) does not have a Λ(ΩK) characteristic power
series in this setting. If we adopt the standard convention of taking the charac-
teristic power series to be 0 in this case, then we obtain for each extension K the
trivial equality of ideals

(
L(T1, T

K
2 )
)

=
(
g(T1, T

K
2 )
)

in OΨK [[T1]]. It therefore
seems unlikely that we can do any better than Theorem 4.2 for determining
a two-variable divisibility criterion by considering main conjecture divisibilities
via basechange. This is especially apparent after noting of the shape of the two-
variable main conjecture in this case, as described for instance in Howard [18].
To be somewhat more precise, recall that we fixed a topological generator γ2 of
Γ for our fixed isomorphism (13). The two-variable p-adic L-function Lp(f, k∞)

29



can then be written as a power series

Lf = Lf,0 + Lf,1 · (γ2 − 1) + . . . ∈ Λ(G),

with coefficients Lf,n ∈ Zp[[Ω]]. In the case where the root number ε(f/k, 1) is
−1, we know by the associated functional equation(s) that Lf,0 = 0. Another
result of Howard (proving one divisibility of a conjecture made by Perrin-Riou in
[33]) shows that the second term Lf,1 can be expressed as a certain twisted sum
of images under any appropriate p-adic height pairing of some associated regular-
ized Heegner points (see [18, Theorem A]). If p does not divide the level N of f ,
then we know by Theorem 3.8 that charΛ(G)X(f/k∞) exists, equivalently that
g(T1, T2) 6= 0. Now, two-variable characteristic power series charΛ(G)X(f/k∞)
can be written as a power series

Gf = Gf,0 + Gf,1 · (γ2 − 1) + . . . ∈ Λ(G),

with coefficients Gf,n ∈ Zp[[Ω]]. Hence, if we know that g(T1, 0) = 0, then we
find that Gf,0 = 0. This would reduce our task to showing Gf | Lf in Λ(G),
where both Gf and Lf correspond under the fixed isomorphism (13) to power
series that vanish at T2 = 0. It is then apparent from this fact that comparing
the products of specializations to characters ψ ∈ ΨK of these power series alone
will not give much more information, as ΨK contains the trivial character.
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Heegner, Bull. Soc. Math. France 115(4) (1987) 399-456.

[34] D. Rohrlich, On L-funtions of elliptic curves and cyclotomic towers, In-
ventiones math. 75 (1984), 409-423.

[35] K. Rubin, On the main conjectures of Iwasawa theory for imaginary
quadratic fields, Inventiones math. 93 (1988), 701 - 713.

[36] K. Rubin, The ”main conjectures” of Iwasawa theory for imaginary
quadratic fields, Inventiones math. 103 (1991), 25 - 68.

[37] J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes el-
liptiques, Inventiones math. 115 (1972), 259 - 331.

[38] J.-P. Serre, Sur la dimension cohomologique des groupes profinis, Topology
3 (1965) 413 - 420.

[39] G. Shimura, On the Periods of Modular Forms, Math. Ann. 229 (1977),
211-221.

[40] C. Skinner and E. Urban, The Main Conjecture for GL(2), preprint (2010),
available at http://www.math.columbia.edu/∼urban/EURP.html

32



[41] R. Taylor and A. Wiles, Ring theoretic properties of certain Hecke algebras,
Annals of Math., 141 (1995), 553-572.

[42] J. Van Order, On the dihedral main conjectures of Iwasawa the-
ory for Hilbert modular eigenforms, submitted (2011), available at
http://arxiv.org/abs/1112.3823

[43] J. Van Order, On the quaternionic p-adic L-functions associ-
ated to Hilbert modular eigenforms, submitted (2011), available at
http://arxiv.org/abs/1112.3821

[44] V. Vatsal, Uniform distribution of Heegner points, Inventiones math. 148
1-46 (2002).

[45] O. Venjakob, A noncommutative Weierstrass preparation theorem and ap-
plications to Iwasawa theory, J. reine angew. Math. 559 (2003), 153-191.

[46] L. Washington, Introduction to Cyclotomic Fields, Second Edition, Springer
GTM 83 (1991).

[47] A. Wiles, Modular elliptic curves and Fermat’s last theorem, Annals of
Math. 141 (1995), 443-551.

[48] R.I. Yager, On the two-variable p-adic L-functions, Annals of Math. 115
(1982), 411-449.

33


