ARITHMETIC HIRZEBRUCH-ZAGIER DIVISORS AND CENTRAL DERIVATIVE
VALUES OF RANKIN-SELBERG L-FUNCTIONS

JEANINE VAN ORDER

ABSTRACT. We derive two distinct proofs of the Gross-Zagier formula in terms of sums of automorphic
Green’s functions realized as regularized theta lifts, including one involving arithmetic Hirzebruch-Zagier
divisors on the Hilbert modular surface Xo(N) x Xo(IN). We then describe applications to the refined
conjecture of Birch and Swinnerton-Dyer. Through these calculations, we also describe known and conjectural
relations of the central derivative values of Rankin-Selberg L-functions that appear to Fourier coefficients of
certain half-integral weight forms.
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1. INTRODUCTION

The theorem of Gross-Zagier [25, Theorem §I (6.3)] represents one of the most significant advances on the
conjecture of Birch and Swinnerton-Dyer to date, and forms the foundation for all progress made on the case
of Mordell-Weil rank one through the techniques of Kolyvagin Euler systems and Iwasawa main conjectures.

To recall it, let E' be an elliptic curve of conductor N defined over the rationals Q. Hence, E is modular by
fundamental work of Wiles [58], Taylor-Wiles [52], and Breuil-Conrad-Diamond-Taylor [5], and consequently
parametrized by some cuspidal newform

(1) = Z cp(m)e(mr) = Z a¢(m)m%e(m7) € S3V(To(N)), T=wu+ive N, e(z) =exp(2miz).
m>1 m>1
In particular, the Hasse-Weil L-function L(E,s) = L(E/Q,s) of E over Q has an analytic continuation
A(E,s) = Loo(F,s)L(E, s) to all s € C given by a shift of the standard L-function, A(s, ¢) = Loo(s, ®)L(s, @)

A(E,;s) = Loo(E,s)L(E,s) = A(s — 1/2,¢) = Loo(s — 1/2,¢)L(s — 1/2, ¢).

Here, Loo(s,¢) = (2m)~°T'(s) denotes the archimedean local Euler factor, with L(s, ¢) = [, .. L(s, m(¢)p)
the finite Euler product whose Dirichlet series expansion for R(s) > 1 is given by

L(s,¢) = Z ap(m)m=" = Z e (m)ym=(+1/2),

m>1 m>1

Hence, A(s, ¢) satisfies a symmetric functional equation A(s, ¢) = £N172A(1 — s, ¢) with odd sign or root
number A(s,¢) = —N1725A(1 — s, ¢) if and only if ¢ is invariant under the Fricke involution wy¢ = ¢.

Let k be an imaginary quadratic field of discriminant d; prime to N and odd quadratic Dirichlet character
ne(-) = (%), Write C'(Oy) = I(k)/P(k) to denote the ideal class group of k, with class number hy, = #C(O4).
Let x € C(Og)V be any class group character, with

000(T) = > x(A)a(r) € My(To(|dxl), mr)
AeC(0y)

the corresponding Hecke theta series of weight 1, level T'g(|dg|), and character n,. By the theory of Rankin-
Selberg convolution, the twisted basechange Hasse-Weil L-function L(E/k,x,s) of E over K twisted by x
has an analytic continuation A(E/k,x,s) = Lo (E/k,x,s)L(E/k,x,s) given by a shift of the completed
Rankin-Selberg L-function A(s, ¢ x 8(x)) = Loo(s,¢ X 6(x))L(s, ¢ x 0(x)),

AE/k,x,1) = A(s —1/2,¢ X 0(x)) = Loo(s — 1/2,¢ x 0(x)) L(s — 1/2,¢ x 6(x))-

Here, the archimedean local factor is given by

A(5,6 % 0(x)) = (27)~°T (s _ ;) T (1 + ;) ,

and does not depend on the choice of class group character x € C(Ok). As we explain in Proposition 6.1,
this L-function has a well-known analytic continuation to s € C via the symmetric functional equation

A(s, ¢ x 0(x)) = m(=N)[deN[' 2 A(L = 5,0 x 0(x)).

In particular, if nx(—N) = —1 so that the sign of this symmetric functional equation is odd, then the
central value A(1/2,¢ x 0(x)) = 0 is forced to vanish, and it makes sense to study central derivative values
AN (1/2,¢ x 0(x)) = N(E/k, x,1). This happens for instance if the level N is squarefree, and the number of
prime divisors ¢ | N which remain inert in & (so (%) = —1) is even, or more stringently if N is squarefree
and totally split, so that the “Heegner hypothesis” of Gross-Zagier [25] holds. In this latter setting, the
compactified modular curve Xo(N) comes equipped with a family of Heegner divisors y of conductor dj. In
brief, there are hy many Heegner points z : E — E’ of conductor dj on Xo(N)(k[1]), where k[1] denotes
the Hilbert class field of k. More precisely, the class group C(Oy) = Gal(k[1]/k) acts simply transitively
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on the set of these points, and we denote this natural action by 2. We obtain from each Heegner point
z € Xo(N)(k[1]) the divisor y = (z) — (c0) in the corresponding jacobian Jo(N)(k[1]).

Theorem 1.1 (Gross-Zagier). Let E be an elliptic curve of conductor N, parametrized by a cuspidal newform
¢ € SHV(To(N)). Let k be an imaginary quadratic field of discriminant dy, prime to 2N and odd Dirichlet
character ny(-) = (). Assume the Heegner hypothesis, so that n.(—N) = —1. Then for any character x of
the ideal class group C(Oy) of k, we have the central derivative value formula

/ , 8 2 2
e w %

Here, ||9||? = (¢,¢) denoted the Petersson inner product of ¢, hy, = #C(Oy) the class number, uy = wy,/2
half the number of roots of unity in k, and [yfé,y;’z] np the Néron-Tate height of the projection yi’ to the
p-isotypical component of Jo(N)(k[1]) ® C of the twisted Heegner divisor

w= >, xAy!

AeC(0Oy)

We remark that this theorem has been generalized by the various works of Zhang [64], [65], [62], [63] and
Yuang-Zhang-Zhang [59] to quaternionic Shimura curves over totally real fields, developing similar ideas with
the theta correspondence and the Jacquet-Langlands correspondence [30] [31] in the style of Waldspurger’s
theorem [57]. Here, we give a distinct proof using regularized theta lifts and arithmetic Hirzebruch-Zagier
divisors on the Hilbert modular surface Xo(IN) x Xo(IV), developing the main theorems of Bruinier-Yang
[13] and Andreatta-Goren-Howard-Madapusi Pera [1] on the Kudla programme for Shimura varieties or
orthogonal type for this setting, and describing the integral presentations of the Rankin-Selberg L-functions
in more detail. We explain implications for the refined conjecture of Birch and Swinnerton-Dyer through
Euler characteristic calculations, after Iwasawa main conjectures. In Appendix A, we explain how the theorem
of Bruinier-Yang [13, Theorem 7.3] can be developed to recover the full Gross-Zagier formula. In Appendix
B, we describe known and conjectural links between the central derivative values and Fourier coefficients
of half-integral weight forms, using the theorem of Bruinier-Funke-Imamoglu [11] on traces and periods of
modular functions. Finally, we derive many of the analytic results more generally for real quadratic fields.

1.1. Main results. Let us first suppose more generally that (V, Q) is a rational quadratic space of signature
(n,2) for any integer n > 1. Write (v1,v2) = Q(v1 +v2) — Q(v1) — Q(v2) for the corresponding inner product.
Let GSpin(V) denote the corresponding general spin group, which fits into the short exact sequence

1— G,, — GSpin(V) — SO(V) — 1.
Let
D(V)=D*V)={zc V(R):dim(z) = 2,Q|, > 0}

denote a fixed connected component of the Grassmannian of oriented negative definite hyperplanes in V(R).
Given any maximal lattice L C V, the adelization L = L ® Z is fixed under the action of GSpin(V)(Ay) via
conjugation by a uniquely-determined compact open subgroup K = K, of GSpin(V)(Ay). We consider the
corresponding Shimura variety X g with complex points

Xk (C) = GSpin(V)(Q\D(V) x GSpin(V)(Af)/K,

which determines a quasiprojective variety of dimension n over Q. This Shimura variety Xy is projective
if and only if the space (V, Q) is anisotropic, and smooth only if the corresponding level structure K = K7,
is neat. We refer to the discussion below for more details. Fixing a set of reprentatives h for the finite set
GSpin(V)(Q)\ GSpin(V)(Ay)/K and writing I';, = GSpin(V)(Q) N hKh~! for the arithmetic subgroup for
each representative, we have the decomposition into geometrically connected components
Xk(C) = 11 Li\D(V).
heGSpin(V)(Q)\ GSpin(V)(Af)/K

One important feature is that any subspace (V', Q') = (V’,Q|y+) of signature (n’,2) determines an alge-

braic cycle of dimension n’, given by the corresponding Shimura variety for GSpin(V’) and D(V’) (see [39]).

In particular, we obtain from this construction special divisors of the following type. Let LY denote the dual
3



lattice of L, and LY /L the corresponding discriminant group. Given any vector x € V with Q(z) = m > 0, we
consider the corresponding divisor given by the orthogonal complement D(V), = {z € D(V) : (z,x) = 0}.
Given any coset p € LV /L and positive rational m > 0, we consider the divisor Z(u, m) C Xk defined by

Z(p,m) = 11 o\ | IT P |,

heGSpin V(Q)\ GSpin V(Ay)/K TSZ‘Th)Zzl

where Ly, C V denotes the lattice determined by Eh =h- E, and pp = h-p € LY /Ly. Note that when (V, Q)
has signature (1,2), these special divisors Z(u, m) recover summands of classical Heegner divisors or CM
divisors on quaternionic Shimura curves. Similarly for (V, Q) of signature (2, 2), the special divisors Z(u, m)
recover summands of classical Hirzebruch-Zagier divisors on quaternionic Hilbert modular surfaces.

Important theorems of Borcherds [3] and more generally Bruinier [6] give explicit constructions of the
Arakelov theoretic automorphic Green’s functions for these divisors Z(u, m). As we describe in detail below,
these are given by the regularized theta lifts ®(F), ,,,-) of certain Maass Poincaré series F), ,,. To be more
precise, let wy, : SLQ( ) — &1 denote the Weil representation associated to the chosen lattice L C V,
and let 0L,(7,2) : § x D(V) — &Y denote the corresponding Siegel theta series defined in (15) below. Let
f = ft+f € H(wy) more generally be any harmonic weak Maass form of weight | = 1 — n/2 and
representation wr,. Here, we write the Fourier series expansion of the holomorphic part f* as

Z Z c}'(,u,m)e(mT)lM

Y €Q
RELY/L 1EQ

and the Fourier series expansion of the nonholomorphic part f~ as

Z Z s (p,m)Wi(2rmo)e(mr)1,,

RELY /L mEQ

where Wi(a) := [, e *t~!dt = T(1 —[,2|a|) denotes the Whittaker function given by the partial Gamma
function, and 1u = char(u + L) the characteristic function of y + L. Write Mj(wr) € Hy(wy) for the space
of weakly holomorphic forms whose poles are supported at the cusps, the subspace of holomorphic forms
M;(wr) C Mj(wr), and the suspace of holomorphic cusp forms S;(wr,) C M;(wr) C M;(wr) C Hi(wy). Here,
we also have the antilinear differential operator & : Hj(w;) — S2—;(wr) of Bruinier-Funke [10] defined in
(17) below, which allows us to identify the weakly holomorphic forms as the kernel ker(&;) = M;}(wy). Given
harmonic weak Maass forms

Z Ju(T)1, € Hi(wr) and  g(7) = Z 9u(T)1, € Hi(wp),
peLV /L peLY /L
we consider the pairing
(F@)g@N = > fulm)gu(r)
neLY /L

Hence, ((f,g)) determines a scalar-valued Maass form of weight I. We write

T = Y Y epl—mhey(m)

neELY /L meqQ

to denote the constant term in its Fourier series expansion. Let F = {7 € : —1/2 < R(7) < 1/2,77 > 1}
denote the standard fundamental domain for the action of SLa(Z) on $. Given any positive real number T >
0, we also consider the truncated fundamental domain Fr = {r € : =1/2 < R(7) < 1/2,77 > 1,3(7) < T}.
Let p(r) = d’;g“ denote the Poincaré measure on $). We define the regularized theta lift ®(f,z,h) for
f € Hi_p2(wr), 2€ D(V) and h € GSpin(V)(Ay) by the regularized integral

0(f,2) = [ U 00 mautr) = CTa { i [ (440,00 2om)o~autr) |

4



given by the constant term in the Laurent series around s = 0 of the function

lim ({f(1),0L(T,2z,h))) v~ du(T).

T—o0 Fr
As we explain for Theorem 4.2, the main theorems of [3] and [6] show that regularized theta lift ®(f,-)
determines an automorphic Green’s function in the sense of Arakelov theory for the divisor defined by

Z Z C?(/J,, —m)Z(pu,m) C Xg.

v €Q
peLY /L 7::1,>0

1.1.1. Quadratic summation formulae. As a preliminary step for our main result, we calculate these Green’s
functions ®(f,-) along zero cycles corresponding to subspaces of signature (0,2) of (V,Q) following the
theorems of Bruinier-Yang [13, Theorem 4.7] and Schofer [47], as well as along “geodesic sets” corresponding
to Lorenzian subspaces of signature (1,1) in the style of [54]. To be more precise, each rational quadratic
subspace (Vp, Qo) of (V, Q) of signature (0,2) gives rise to a zero cycle Z(Vy) C X with complex points

Z(Vo)(C) = GSpin(Vp)(Q)\{z5"} x GSpin(Vo)(Ay)/(K NGSpin(Vo)(Af)), 25 = Vo(R) € D(V)

as defined in (6) below. Such as cycle is sometimes called a CM cycle, as it can be associated to an imaginary
quadratic field k = k(Vp). We associate to the lattice Ly = VN L, an Eisenstein series Er, (7, s;1) € Hy(wg,)
of weight 1 =2+ (0 — 2)/2 and representation wr,, as defined in (31), as well as its derivative

d -
—Bry(7,8:1) = B (1,8:1) + By (7,531) € Hi(wi,),

E’LO (1,8,1) = o

and we write
Ery (1) = EH' (1,0;1) Z Z KL, (., m)e(mr)1,
HELY /Lo meQ
to denote the holomorphic part of this latter Eisenstein series at s = 0. Similarly, any rational quadratic
space (W, Qw) = (W,Q|w) of signature (1,1) of (V,Q) gives rise to a geodesic set G(W) with complex
points
G(W)(C) = GSpin(W)(Q)\D(W) x GSpin(W)(Ay)/(K N GSpin(W)(Ay))
as defined in (7) below, where D(W) = {z € W(R) : dim(z) = 1,Qw]|, < 0} denotes the corresponding
domain of oriented negative definite lines in W (R) This space can be associated to a real quadratic field
k = k(W). We associate to the lattice Ly = W N L, an Eisenstein series Er,,, (7, s;2) € Ha(wr,, ) of weight
2 =2+ (1 —1)/2 and representation wr,,, as defined in (38), as well as its derivative

d _
= —FEp,(1,82) = E’L';/ (1,8;2) + EEW (1,8;2) € Hy(wry, ),

and we write
Epw(r)=Ef (1,0:2) = > Y kg (n,m)e(mr)1,
,uGL /Lw meQ

to denote the holomorphic part of this latter Eisenstein series at s = 0. Using the functional equations and
behaviour under Maass lowering operators of these Eisenstein series, we compute the sum

e(f,ZVo))= Y Of.z.h)
(25 ,h)EZ(Vo)
of the Green’s function ®(f,-) along the CM cycle Z(Vj)) C Xk corresponding to an imaginary quadratic

field k(Vp), by a minor variation of the arguments of [13, Theorem 4.7] and [47] (cf. [1, Theorem 5.7.1]). We
also use such properties to compute the sum

O(f,GW) = Y ¥(fizw,h)

(2w ,h)EG(W)

of the Green’s function ®(f,-) along the geodesic set G(W) corresponding to a real quadratic field k(W).

Writing U = Vy, W C V to denote either of these subspaces of dimension 2 with k(U) the corresponding

quadratic field, we fix Tamagawa measures on the special orthogonal group SO(U) as follows: We fix the
5



Tamagawa measure on SO(U)(A) for which vol(SO(U)(R)) = 1 and vol(SO(U)(Q)\SO(U)(Ay)) = 2. We
)

also fix the Haar measure on A; with vol(Z,’) = 1 for each prime p so that vol(Z) = 1 and vol(A]f /Q%) = 3.
This determines Haar a measures on A:(U) via the exact sequence 1 — A ¥ — A:(U),f — SO(U)(Af) — 1.
Theorem 1.2 (Theorem 5.12 and 5.14). Let (V, Q) be any rational quadratic space of signature (n,2). Fiz a
mazimal lattice L with corresponding Weil representation wy,. Let f € Hij(wr) be any harmonic weak Maass
form of weight l =1 —n/2 and representation wr,, with g = §(f) € Sa— (W) its image under the antilinear
differential operator & : Hy(w;) — So—1(@r,).

(i) Let (Vo, Qo) be a rational quadratic subspace of signature (0,2) with sublattices Lo = VoNL, Ly C V,

and Lo ® Ly C L. Write k = k(Vp) for the imaginary quadratic field determined by the space. Let

eLj (1) = HLUL (r,1,1)

denote the holomorphic Siegel theta series associated to the positive definite lattice Ly of signature
(n,0), defined via restriction of (7, z,h) as in Lemma 5.7 and (48). Let

L(Sa g X eLé) = <g(7_)7 HLOL (T) & ELO (7_3 S5 1)>
denote the Rankin-Selberg L-series defined in (51), with L*(g x 01) = A(s + 1,m,)L(s, g x 01) its
completion. Let vol(Kg) denote the volume of the compact open subgroup Ko = K N GSpin(Vy)(Af).
Then, we have the summation formula
4

2f 2(0)) = = oy (CTUS (7). 0 (7) @ Ena (M) + (0, % 6,)

= —deg(Z(Vo)) (CTU(S (7). 014 () @ Eny (1)) + L'(0,9 x 01) ).

(ii) Let (W,Qw) be a rational quadratic subspace of signature (1,1) with sublattices Lyy = W N L,
Ly, €V, and Lw @ Ly, C L. Write k = k(W) for the real quadratic field determined by W. Let

Ops (1) =0ps (1,1,1)

denote the nonholorphic Siegel theta series associated to the Lorenztian lattice Ly, of signature
(n —1,1), defined via restriction of 01,(7,z,h) as in Lemma 5.7 and (48). Let
L(57g X GLJ‘X,) = <g(7—)7 eLJW (T) ® ELW (T7 S5 2)>

denote the Rankin-Selberg L-series defined in (52), with L*(g x 01 ) = A(s+1,mk)L(s, 9 x 01,1 ) its

completion. Let vol(K) denote the volume of the compact open subgroup Kw = KNGSpin(Viy)(Ay).

Then, we have the summation formula

4
_ + +
B1.GOV)) =~ (O (0.0, (7) @ 0 (1) + 0.9 %01,
We note again that Theorem 1.2 (i) (Theorem 5.12) a reproof of Bruinier-Yang [13, Theorem 4.7] and

Schofer [47] (cf. [1, Theorem 5.7.1]). On the other hand, Theorem 1.2 (ii) (Theorem 5.14) appears to be new,
and generalizes the main calculation of [54].

1.1.2. Spaces of signature (2,2) associated to quadratic fields and relations to standard Rankin-Selberg L-
functions. We apply these calculations to the following quadratic spaces. Let k be any quadratic field,
real or imaginary, of discriminant dj prime to N. We again write 7x(-) = (%) to denote the quadratic
Dirichlet character, and C(Oy) = I(k)/P(k) to denote the ideal class group. We consider he following
rational quadratic spaces (V4,Q4) attached to each class A € C(Ok). Given a class A € C(Oy), fix an
integer ideal representative a C Oy, and let aq := a ®z Q be the corresponding fractional ideal. We write
Qa(z) = N(z)/Na = Nj,q(z)/a to denote the corresponding norm form, where N(z) = Ny ,q(z) = 22" for
7 € Gal(k/Q) the nontrivial automorphism denotes the norm homomorphism. Hence, @, has signature (2, 0)
if k is imaginary quadratic, and signature (1,1) if k is real quadratic. In either case, we consider the space
(Va,Qa) defined by V4 = aq @ aq with quadratic form Qa(z) = Qa((21,22)) = Qa(21) — Qu(22). As we
explain in Proposition 2.3 below, we have an exceptional isomorphism of algebraic groups GSpin(Vy4) = GL%
over Q. As we explain in Corollary 2.4, we can choose a lattice Ly = L4(N) = N~"'a® N~'a C V4 whose
adelization La(N) ® Z is fixed under the action of GSpin(V4)(Af) = GLy(Af)? via conjugation by the
6



compact open subgroup K4 = Ky ,(ny = Ko(N)® Ko(N). In this way, we find that X, = Yy(N) x Yo(INV) is
isomorphic to two copies of the noncompactified modular curve Y5(IV), and that the corresponding special
divisors Za(u,m) C Xa = Yy(N)? corresponding to summands of classical Hirzebruch-Zagier divisors.
In this setting, we deduce from known theorems in the literature such as Strémberg [51, Theorem 5.2
or more directly via the Doi-Naganuma lifting (Theorem 6.4) that each cuspidal holomorphic newform
¢ € Sp¥(L'o(N)) has a unique/canonical lifting to a vector-valued form gy 4 € S;(wr,) (Corollary 6.5). We
use this to derive the following integral presentation of standard Rankin-Selberg L-functions. Fix a character
x of C(Oy), and let 0(x) denote the corresponding Hecke theta series. Hence,
0(y) = Z (A0 € My (T(dl)om), U(k) = {1 if k£ is imaginary quadratic

A€eC(0y)
Let A(s,¢ x 0(x)) = Loo(s,0 x 8(x))L(s,¢ x 6(x)) denote the corresponding standard Rankin-Selberg L-
function, whose analytic continuation and functional equation we recall in Proposition 6.1. We first show
the following link between these completed Rankin-Selberg L-functions, and the Rankin-Selberg L-functions
appearing in Theorem 1.2 for the spaces (V,Q) = (Va,Qa4).

0 if k is real quadratic

Theorem 1.3 (Proposition 6.3, Theorem 6.8 and Corollary 6.9). Fiz a holomorphic cuspidal newform
¢ € S3V(Lo(N)) of weight 2, level T'o(N), and trivial character. Let gy a € S2(@Wr,,) denote the lifting of ¢
to a vector-valued cusp form of weight 2 and conjugate Weil representation @y, ,. Let fo.a € Ho(wr,) be any
harmonic weak Maass form of weight zero and representation wr,, whose image §(fo,4) under the antilinear
differential operator &y : Ho(wr, ) — S2(Wr,) equals gy, 4. We have the following identifications of completed
Rankin-Selberg L-functions.

(i) If k is the imaginary quadratic field associated to the negative definite subspace Vao C Va with
Lao=LaNVa, then we have the identifications of completed Rankin-Selberg L-functions

L7(25 = 2,994 x 01 ) = A(s = 1/2,¢ x 0a)
for each class A € C(Of), and for each class group character x € C(O)V the identification

S AL (25— 2,004 x 05y ) = Als — 1/2,6 % 0(x).
AeC(0y)

Hence, if k is imaginary quadratic with (dg, N) =1 and ny(—N) = —ni(N) = —1, then we have
A(1/2,6 x 0(x))

2 s [(m) (fo.a: Z(Van)) + CTUSGA (). O (1) © €6, (7))

W
AEC(O})

Here, hy, = #C(O) denotes the class number, and wy, = #0O;° the number of roots of unity in k.

(i) If k is the real quadratic field associated to the Lorentzian subspace Wa C V4 with Law NWaN Ly,
then we have the identifications of completed Rankin-Selberg L-functions

L*(QS - 2;g¢,A X OLj W) = A(S - 1/2,¢ X GA)
for each class A € C(Of), and for each class group character x € C(O)Y that
S AL (25— 2,90 X 0y ) = Als = 1/2,6 x 0(x).
AeC(0y)

Hence, if k is real quadratic with (dg, N) =1 and np,(—N) = nx(N) = —1, then we have
N(1/2,¢ x 0(x))
B wy, In(eg) n
= —2In(ex) i Z x(4) T ah, O(fo,4,G(Wa)) + CT{{fo a(7), Oy (T) © €Ly (7))

AecC(0y,)

Here, hy, = #C(O) denotes the class number, and ey, the fundamental unit of O = (k) x (gg).
7



1.1.3. Relations to arithmetic Hirzebruch-Zagier divisors, Birch-Swinnerton-Dyer constants, and periods. To
derive applications to arithmetic heights in the first setting (i) with k¥ = k(Va,0) an imaginary quadratic
field, we first recall the arithmetic height formula implied by the combined works of Bruinier-Yang [13]
and Andreatta-Goren-Howard-Madapusi Pera [1] for the general setup we consider above for Theorem 1.2.
Hence, let us again take (V, Q) to be any rational quadratic space of signature (n,2). Since we know that
the regularized theta lift ®(f,-) gives the automorphic Green’s function for the divisor Z(f) C Xk, we
have a supply of arithmetic divisors Z (f) = (Z(f),®(f,-)) in the corresponding arithmetic Chow group of
codimension one cycles on X . It then makes sense to consider the arithmetic/Faltings height [2 (f), Z(Vo)]
of such a divisor Z(f) along the a CM cycle Z(Vp). As we explain for Theorem 7.5 below, if d, is odd, then
the combined works of Bruinier-Yang [13, Theorem 4.7] and Andreatta-Goren-Howard-Madapusi-Pera [1,
Theorem A] imply that we have the arithmetic height formula

200 200)] = [0, 200)] =~ TEEZED - (00,0) 2, (0,0) + L0, €1a(1),01)) -

Here, we suppress the discussion of the extensions Z(f) of the divisors Z(f) and Z(Vp) of the CM cycles
Z(Vy) to the integral model X = Xk of Xk, and refer to the discussion below for more details. Writing
Za(p,m) € X4 = Yo(N)? for the arithmetic special divisors for the spaces (Va,Q4) we consider above,
with Z§ (1, m) C Xo(N)? their extensions to the compactification X% = Xo(N) x Xo(N), we obtain the
following consequence. Here, we write Z4(u, m) to denote the extension of Z4(u, m) to the integral model
X = Xk, = Vo(N) x Yo(N), and Z5(u, m) to denote the extension of ZG(u, m) to the integral model
X* = X = A(N) x Xo(N).

Theorem 1.4 (Theorem 7.8, Corollary 7.9, Corollary A.10). Retain the setup of Theorem 1.3 (i). Then, for
any class group character x € C(Ok)Y, we have the central derivative value formula

N(1/2,6x000) = =21 > x(4) [Zalfon) : Z(Vao)

AeC(0Oy)

for the completed Rankin-Selberg L-function A(s,¢ x 6(x)) of ¢ times the Hecke theta series (), where
each term on the right-hand side denotes the arithmetic height of the arithmetic special divisor

Balfon)= S 3 ch (i —m)Zalum)

BELY/La fgg‘g
on the integral model X = Yo(N) x Yo(N) of the Hilbert modular surface X = Yo(N) x Yo(N) evaluated
along the corresponding CM cycle Z(Va,o) C X = Vo(N) x Yo(N). Here, each Z4(p, m) is the arithmetic
Hirzebruch-Zagier divisor 2,4(,117m) = (Za(p,m),®[4,) on X = Yo(N) x Vo(N) for the theta lift ®L4,
of the corresponding Poincaré series FLa described below. We can also extend arithmetic divisors to the
compactification X* = Xp(N) x Xo(N) as described in (75) to derive the corresponding formula

N(1/2,6x000) = =21 > x(4) [Z5(for) : Z(Vao)]

AeC(0Oy)

In particular, if the newform ¢ € SV (To(N)) parametrizes an elliptic curve E/Q, then we have the
central derivative value formula

N(E/K 1) ==27 3 x(4) [Zalfor) - Z2(Vao)]
AeC(0Oy)

for the Hasse-Weil L-function A(E/K, x,s) = A(s—1/2,¢x0(x)) of E over K twisted by x in terms of arith-
metic divisors on the Hilbert modular surface Yo(N) x Vo(IN) — Spec(Z). Ezxtending to the compactification
Xo(N) x Xy(N) — Spec(Z), we derive the central derivative value formula

N(E/K 1) = =21 > x(4)[Z5(foa) : 2(Vao)] .
AeC(0y)
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By comparison with the Gross-Zagier formula (Theorem 1.1) for L'(E/K, x, 1), we also derive the relation

N D% / c
2 Rulo) = gt - A'(1/2,6 % 600) = 2 3 X [E a2 Wao)].

between heights of Heegner divisors on the modular curve Xo(N) and arithmetic heights of arithmetic
Hirzeburch-Zagier divisors on the Hilbert modular surface Xo(N) x Xo(N).

Here, in both cases on the quadratic field k, we also use Theorem 1.2 to derive some results towards the
refined conjecture of Birch and Swinnerton-Dyer for the principal class group character xo = 1 € C(O)Y
and Euler characteristic calculations, using known results on the Iwasawa main conjectures in the setting of
Mordell-Weil rank one. To fix ideas, let £ be an elliptic curve of conductor N defined over Q, parametrized
via modularity by a cuspidal newform ¢ € S5V (I'o(N)) as above. Let k be a quadratic field with discriminant
dy and character 7;,(-) = (%). We consider the Mordell-Weil group E(k) = Z"**) & E(k)tors, along with
that of the quadratic twist E()(Q) = Z"s@0 (Y g B (Q)yors and E(Q) = Z™(Q) & E(Q)iors over Q.
Recall that the conjecture of Birch and Swinnerton-Dyer predicts that the completed L-function

A(E/K,s) = A(s = 1/2,¢ x 0(1)) = A(s — 1/2,11(¢))
= A(s = 1/2,0)A(s — 1/2,6 @ m) = A(E, s)A(E), s)
has order of vanishing ords—1 A(E/K, s) = rg(k). Moreover, the leading term in the Taylor series expansion

around s = 1 of this function is expected to be given by the corresponding Birch-Swinnerton-Dyer constant
kg (k), which is defined more generally as follows. For any number field K, we put

_ #IU(B/K) - T(E/K) - R(E/K) - Q. (E/K)
‘dK|% |E(K)tor5|2
Here, #111(E/K) denotes the cardinality of the conjecturally finite Tate-Shafarevich group

(1) rp(K):

II(E/K) = ker (Hl(K, E) — [[H'(Ku, E)) .

We write R(E/K) to denote the regulator, defined for any basis {e; }; of E(K)/E(K )iors by the determinant
of the corresponding height matrix ([es, €;]1)i.j

R(E/K) = det ([eivej]NT)i,j )

We write T(E/K) to denote the product over the local Tamagawa factors,

w

T(E/K) =[] [E):E(K)]-| =

v<oo v
vC Oy, prime

)
v

where w denotes a fixed invariant differential for F/k, and each w? denotes the local Néron differential at v.
We then define the corresponding archimedean local periods

O(B/K) = ] / w - ] 2 / WAD.

,,;Z‘i,‘;R E(ko)~E(R) vlZic E(ky)~E(C)

complex

Theorem 1.5 (Theorem 7.10 and Corollary 7.11). Let E/Q be an elliptic curve parametrized by a newform

¢ € S5 (To(N)). Let k be a quadratic field of discriminant dy, prime to N and character ni(-) = ().

Assume E has semistable reduction, hence that N squarefree. Assume that the completed L-function
AE/K, s) = AME, s)ME™), 5) = As = 1/2,0)A(s — 1/2,6 @ )

has order of vanishing ords—1 A(E/K,s) = 1, so that ezxactly one of the central values A(E,1) = A(1/2,¢)
or A(B() 1) = A(1/2, ¢ @ny) vanishes. Write [e, €] to denote either the requlator R(E/Q) or the regulator
R(E(dk)/Q) according to which factor vanishes. Let us also assume for each prime p > 5 that

9



e The residual Galois representations E[p] and E(%)[p] are irreducible.

o There exists a prime | | N distinct from p where E[p] is ramified, and a prime q | N distinct from p
where E(@)[p] is ramified.

Then, up to powers of 2 and 3, we have the following unconditional identifications for the constant(s)
kE(Q) - Kpan (Q)
_ #U(B/Q) - #LL(E/Q) - [e,e] - T(E/Q) - T(E'™Q) - Qo (B/Q) - oo (E™)/Q)
#E(Q)%ors ' #E(dk)(Q)%ors .
(i) If k is imaginary quadratic with ng(—N) = —ni(N) = —1, then
Re(Q) - Kpun (Q ~ N (E/k 1) = =3 3 @(foa 2(Vag) = =20 Y |Zi(fos) s Z(Vao)] .
A€C(0y) AeC(Ok)
(ii) If k is real quadratic with ny(—N) = np(N) = =1, then
£e(Q) - kpun (Q) = A (E/k,1)
—2mehe 3 | () 000, GOVA) + CTUALAT O, (1) s ()]

4hy
AeC(0Oy)

Here, in either case, we write =~ to denote equality up to powers of 2 and 3. Moreover, in each case, the
central derivative value N'(E/K, 1) lies in the ring of periods P described by Kontsevich-Zagier [38].

1.1.4. Relation to quadratic spaces of signature (1,2) and Fourier coefficients of half-integral weight forms.
Finally, we explain in Appendix A how to develop similar ideas via the rational quadratic space

2) (V. Q) = (Mat333'(Q), N det("))

of signature (1,1) from Bruinier-Yang [13, Theorem 1.5, Theorem 7.7, § 7] to reprove the full Gross-Zagier
formula (Theorem 1.1). We refer to Theorem A.9 for details.

In both this case and the case of the signature (2,2) spaces (Va,Q4) described above, we explain in
the second Appendix B the known and conjectural links between the central derivative values and Fourier
coefficients of half-integral weight Maass forms. We refer to Theorem B.5 for the main result derived in
Appendix B, using the main theorem of Bruinier-Funke-Imamoglu [11] for quadratic spaces of the form
(2) to interpret the sums ®(f, Z(Vp)) and ®(f, G(W)) of Theorem 1.2 as the Fourier coefficients of some
harmonic weak Maass form of weight 1/2. To describe this in some more detail, let k£ be any quadratic
field of discriminant d = D prime to N, and let Qg4, denote the class group of binary quadratic forms
Qab.c(T,y) = ax® + bry + cy? of discriminant dj, = b* — 4ac. We write [qqp.c] = [a,b,c] € Qq, to denote the
corresponding class. We have a well-known identification of class groups

©:Qq 2 C(O), la,b,d— [a,(=b+/dy)/2].

For each class A € C(Oy,), we fix an integral ideal representative a C Oy, so that the norm form [Qq4] € Qq,
represents the corresponding class, i.e. ¢([Qq]) = A € C(Ok). We then define L4 = L4(N) C V to be the
lattice of the space (2) given by

LA = (b _“/N>;a,b,cez, Ndet(i _“/N>

c —b b = —qab,e for p([a,b,c]) = A 5,

Lau
with dual lattice

LY = (b/QN —a/N >:a,b,c€Z, Ndet<2 _a/N>

¢ —b/2N ) = —qa,c for p(la,b,c]) = A

Lavu
As explained in Lemma A.2 (cf. [13, Lemma 7.4] or [12, Lemma 7.3]), if we assume ¢ € S5V (T'o(N)) is
invariant under the Fricke involution wy, then there exists both a vector-valued lift g4 = g¢.4 € 5’3"}% (@eL)
of the Shimura lift of ¢, as well as a harmonic weak Maass form f, /5 4 € Hy/2(@,,) such that
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e We have the relation & /5(f1/2,4) = ga/llgall?
e The Fourier coefficients C;‘;/Q.A (1, m) lie in the Hecke field Q(¢) = Q of the newform ¢.

e The constant Fourier coefficient c? (0,0) vanishes.
1/2,A

When k is an imaginary quadratic field, the map S, m, of Gross-Kohnen-Zagier [26, § I1.4] can be used to
relate the L-series L(s,ga x 0,1 ) to L(s+1/2,8,,m(g)) (see Lemma A.1). We derive the following relations.

Theorem 1.6 (Theorem B.5). We have via Theorem 5.12 and Theorem 5.14 for the quadratic space (V, Q)
of signature (1,2) described above the following identification of central derivative values of L-functions as
Fourier coefficients of half-integral weight forms.
(i) Let k be an imaginary quadratic field of discriminant D = dj, < 0. Assume as in Lemma A.1 that
m = —D/4AN for D = —ANm with D = r?> mod 4N, and take p = p,.. Then, for x and character of
the ideal class group C(Oy), we have the relation

|D|?

T 1674 L'(1/2,¢ x 0(x)).

Z X(A) - g, (pym) - tr),m ((I)(fA,1/2)) =

A€eC(0y)

(i) Let k be a real quadratic field of discriminant di, > 0, and © € Q4 ,.m(Q) C Ka a positive norm
vector with orthogonal complement W = Wa(x) := 2+ C V as in Proposition B.J (ii). We have for
each class A € C(Oy) the relation

tr,m (P(f1/2,4)) =

As we describe in Appendix B, it should be possible to extend these calculations in the real quadratic
case (Theorem 1.2 (ii)) to derive an affirmative answer to the conjecture posed implicitly in Bruinier-Ono
[12, Theorem 1.1 (2)], relating Fourier coeflicients of the holomorphic part of the vector-valued Shimura lift
to the nonvanishing central derivative values of the real quadratic twisted L-function. We speculate that
such relations via Green’s functions along CM cycles or geodesics to singular moduli should be possible to
establish for Hilbert Maass cusp forms in the setup of signature (2, 2) described in Theorem 1.2 and Theorem
1.3 above; see Conjecture B.2. We plan to return to this in a subsequent work, however describe it here as it
fits organically into the topic of proving the formula of Gross-Zagier (Theorem 1.1) via sums of automorphic
Green’s functions along CM cycles of spin Shimura varieties.

4hy,

———-L'(0 6 .
wy, In(eg) (0,94 x UA‘,W)

2. QUADRATIC SPACES AND SPIN GROUPS
Let k = Q(v/d) be a quadratic field of discriminant
_Jd if d=1mod4
7 4d ifd=2,3mod 4.

We write Oy, for its ring of integers, C'(Oy,) for its ideal class group, and hy, = #C(Oy) its class number. We
also write wy = #u(k) to denote the number of roots of unity in k.

2.1. Quadratic spaces associated to class groups of quadratic fields. Fix an ideal class A € C(Oy).
Let a C Oy be an integral ideal representative. Consider the corresponding fractional ideal aq = a ®z Q,
which when equipped with the norm form Qq()) := X = Ny ,q(\)/Na can be viewed as a rational quadratic
space over Q. That is, (ag,Qq) determines a rational quadratic space of signature

(2,0) if d < 0 so that k = Q(V/d) is imaginary quadratic

(1,1) if d > 0 so that k = Q(V/d) is real quadratic.

On the other hand, we can also consider the corresponding isomorphic quadratic space (ag, —Qq) of signature

(0,2) if d < 0 so that k = Q(+/d) is imaginary quadratic
(1,1) if d > 0 so that k = Q(V/d) is real quadratic.

Thus, we obtain for each class A = [a] € C(Oy) a rational quadratic space of signature (2,2) defined by
(3) (Va,Qa), Va=aq+aq, Qa(z)=~Qal((21,22)) = Qu(z1) — Qal22).
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2.1.1. Anisotopic subspaces. Henceforth, we consider the isotropic quadratic space (V4,Q4) of signature
(2,2) for each class A € C(Oy). We then consider the corresponding isotropic subspaces (Va1,Q4,1) =
(Va, Qa) and (Va 9, Qa2) = (aq, —Qa) of respective signatures (2,0) and (0,2) when k = Q(v/d) is imaginary
quadratic (d < 0), and signature (1,1) when k = Q(+/d) is real quadratic (d > 0).

2.2. Spin groups. Let V = (V, Q) be a rational quadratic space of signature (n,2) for any n € Z>;. We
consider the reductive group GSpin(V') over Q, which fits into the short exact sequence

1— G,, — GSpin(V) — SO(V) — 1.

2.2.1. General characterization. Given R a commutative ring with identity, we consider a quadratic space
(V,Q) over R. Hence, V is a projective R-module of finite rank equipped with a homogeneous function
Q@ : V — R of degree two for which the corresponding symmetric pairing (z,y) = Q(z + y) — Q(z) — Q(y)
is R-bilinear. We call the space (V, Q) self-dual if this pairing induces an isomorphism V' = Hom(V, R). We
call the space (V, Q) non-degenerate if its orthogonal complement V+ = {z € V : (z,y) =0 Vy € V} is {0}.
Let C(V) =T(V)/I(V) denote the Clifford algebra of V', given by the quotient of the tensor algebra

T(V)=EPVvP=ReVae(VerV)od:-
m=0
of V by the two-sided ideal I(V') generated by elements of the form v ® v — Q(v) for v € V. Note that we
have canonical embeddings of R and V into C'(V). In this way, we see that R-algebra C(V) is generated by
the image of the natural injection V' — C(V'), and that the grading on T(V) induces a Z/2Z grading

cV)y=c'(v)yect(v).

Concretely, C°(V) is the R-subalgebra of C(V') generated by products of an even number of basis vectors,
and C1(V) is the R-subalgebra of C(V) generated by products of an odd number of basis vectors. We call
C°(V) the even (or second) Clifford algebra of V. For simplicity, we shall write v; ---v,, to denote the
element of C'(V') represented by v ® - -+ ® vy, (for vq,..., v, € V). Observe that for vy,v, € V.C C(V), we
have v? = Q(v;) (for i = 1,2) and v1vy + vav; = (v1,v2). In particular, we have that vyvy = —wvyv; if and
only if v; and vy are orthogonal.

As explained in [7, §2.2], multiplication by —1 defines an isometry on V', which by the universal property of
C(V) (e.g. [7, Proposition 2.3]) induces an algebra automorphism J : C(V) — C (V) known as the canonical

automorphism. If 2 is invertible in R, then the even Clifford algebra can be characterized equivalently as
COWV)={veC(V):J(v) =v}.
We also consider the anti-automorphism defined by 'Cy — Cy, (21 ® -+ @ )t = Zpy @ - -+ ® 1, better
known as canonical involution on C(V'). This is the identity on R @ V, and gives rise to the Clifford norm
Newy: C(V) — C(V), Newy(z) = tox.

On vectors x € V, this reduces to N¢(vy(z) = Q(z), and so N¢(yy can be viewed as an extension of the
quadratic form @. Note that N¢(y) is not generally multiplicative. We have the following classical results.

Proposition 2.1. Let (V, Q) be a non-degenerate quadratic space over a field F' of characteristic char(F') # 2.
Fiz an orthogonal basis vy, ..., vm of V, and let §(V) := vy -+ - vy, € C(V). Let d(V') denote the discriminant
of the space (V,Q), given by the determinant of the Gram matriz ((vi,v;)):; (for any basis vi,-- vy, of V).

(i) We have that
(V)2 = {(—1)?2_7”65(‘/) € FX/(F*)? if m = 0 mod 2

(-1)" 7 27md(V) € F*/(F*)?> ifm=1mod2’
(ii) The centre Z(C(V)) of C(V) is given by

F if m = 0 mod 2
F+F§(V) difm=1mod2’

12
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and the centre Z(CY(V)) of C°(V) is given by

2(C0V)) = {F+5(V) z:meOmon7
F ifm=1mod 2

Proof. For (i), see [7, Remark 2.5]. For (ii), see [7, Theorem 2.6]. O

Let us now consider the Clifford group of C(V),
Geowy ={xz € C(V): wis invertible and 2V J(z) ' =V} .

We can then define the general spin group GSpin(V) as the intersection GSpin(V) = G vy N C°(V), and
the spin group as the subgroup Spin(V {x € GSpin(V) : Negvy(x) = 1} of elements of Clifford norm one.

Lemma 2.2. If m =dimp(V) <4, then we have identifications
GSpin(V) 2 {z € C°(V) : No(vy(z) € F*} and Spin(V) = {z € C°(V) : Nevy(z) = 1}.

Proof. See [7, Lemma 2.14]. O

2.2.2. Exceptional isomorphisms. Let (Va,Q4) = (aq+aq, Qa — Q) be any of the rational quadratic spaces
of signature (2,2) considered above. Hence, dimq(Va) = 4, dimq C(V4) = 2% = 16, and dimgq C°(V4) = 8.

Proposition 2.3. Let k be a quadratic field with class group C(Ok). Fix any class A € C(Ok), together
with an integer ideal representative a C Ok, and write Qa(2) = Ny,q(2)/Na to denote the corresponding
norm form. Consider the corresponding rational quadratic space (Va,Qa) = (aq+aq, Qo — Qu) of signature
(2,2), with Clifford algebra C(V4) and even Clifford subalgebra C°(V4) C C(V4). We have the identification
CO(Va) = My(Q)?, from which we derive exceptional isomorphisms Spin(V4) = SL3 and GSpin(V,) = GL3
of algebraic groups over Q.

Proof. Fix a Z-basis [aq, z4] of the chosen integral ideal representative a C Oy for each class A. We also

let Qq(2) = Ni/q(2)/Na denote the norm form. Here, writing 7 € Gal(k/Q) to denote the nontrivial
automorphism, we define the norm Ny q(z) = 227 and the trace Trj/q(2) = 2 + 27. Consider the basis

v1 = (@q,0), v2=(24,0), v3=(0,q), vg4=1(0,2,).

We compute the inner products

g+ 2a) + Qalag) + Qu(2zy) = —Na™* Tri/q(za0g) = (va,v3)4 = —(v1,02) 4

2z4) +2Qu(24) = fNa*12Nk/Q(za) = —(vg,v2) 4.
13

a

(v1,v1)4 = Qu(20q) — 2Qq(aq) = Na_12Nk/Q(aa)

(v1,v2) 4 = Qa(a + 2a) — Qu(a) — Qu(2a) = Na™! Trk/Q(Zaa;) = (v2,v1)a
(v1,v3)4 = Qa(aa) — Qa(aa) — Qu(a) + Qalaa) =0 = (v3,v1)a

(v1,v4)4 = Qalaa) — Qa(2a) — Qal@a) + Qa(2a) = 0= (v4,v1)4

(v2,v2) 4 = Qa(22a) — 2Qa(za) = Na™' (2N, /q(2a))

(v2,3)4 = Qa(2a) — Qa(a) = Qu(2a) — Qu(a) = 0= (v3,v2)4

(v2,v4)4 = (Qu(za) — Qal(2a)) — Qa(2a) + Qa(2a) = 0 = (v4,v2)4

(vs,v3)a = a(2aq) + 2Qq(ag) = fNa*12Nk/Q(aa) = —(v1,v1)4a

(vs,v4)

(v4, va)

;>
\ \
@@@

a



We then compute the determinant of the corresponding Gram matrix

2Ny q(ea)  Tri/q(zacyg) 0 0
Na Na
Try q(zaxy) 2Nk/Q(za) 0 0
d(Va) = det((vi, vj)a)i; = det l\é“ 1\6“ ONg(ae)  Trosq(zeal)
- Na - Na
Try q(zacg) 2N (za)
: o mgleen g
2N g z0) 0 0
_ 2Nk/Q(Oéu) l\éa _2Nk/Q(o¢u) _Trk/Q(ZaOLZ)
N N
Na 0 _Trk/Q(czlﬂo‘:) _2Nk/C§l(zn)
Na Na
~ Tri/q(zaag) 0 _ONyglaw)  Triyglzaal)
Na 0 _Trk,/cl;l(guoc;) _2Nk'1/\1(§(zu)
Na Na
_ 4Nk/Q(zaaa) 4Nk/Q(Zuau) _ TI‘;C/Q(ZG()(;)Q _ TI‘k/Q(ZaOé;)Q 4Nk/Q(Zu()éa) _ TI‘]C/Q(Z‘;QZ;)Q
Na2 Na? Na? Na2 Na2 Na2
2 2
. 4Nk/Q(Zuau) Trlc/Q(zaO‘a)2 =1 X X \2
- Na2  Na? =1eQr/@Q)

That is, we find that d(V4) € (Q*)? is a nonzero rational square, and hence trivial. Using the relation
§(Va)? = 27%d(V4) of Proposition 2.1 (i), we deduce that the volume form 6§(V4) € Q* must be rational. We
then deduce from Proposition 2.1 (ii) that Z(C°%(V4)) = Q+4(V4)Q = Q, and hence that the even Clifford
algebra CY(Vy4) of dimg(C?(V4)) = 8 must be a direct sum of two isomorphic copies of a quaternion algebra
B over Q. Using the classifications of Clifford algebras over R, we see that C(V4 @ R) = Cs2(R) = M4(R)
and C°(V4®R) = C9 5(R) = My(R)$&M(R). Hence, B must be indefinite. Since the discriminant d(V4) = 1
is trivial, we deduce that B must be the matrix algebra M5(Q), with the Clifford norm corresponding to the
reduced norm homomorphism nrd : B — Q, which for B = M3(Q) is simply the determinant det = nrd. The
claimed isomorphisms for the spin groups then follow from the characterization given in Lemma 2.2. O

Corollary 2.4. Fixt N € Z>y. Let Ly = Lao(N) C V4 denote the lattice whose adelization Lg ® 7 is
stabilized under the action via conjugation by GSpin(Va)(Af) = GLy(Af)? by the compact open subgroup
Ko(N) @ Ko(N), where Ko(N) C GLa(Z) C GL2(Ay) denotes the congruence subgroup defined by

KO(N):{<CCL Z)eGLQ(i):CEOmOdN}.

(i) The lattice is Ly = La(N) = N~la® N~'a, with dual lattice LY, = La(n)" =0, 'N"la® 0, 'a
(ii) The level of the lattice is N = {mina € Z>1: aQa(\) € ZVy € LY }.
(iil) The discriminant d(La) = d(La(N)) of the lattice is 1.

Proof. Consider GSpin(V4)(A ) = GL2(Af)? acting on V4 = aqPaq = [, 24) QB [, 24 Q by conjugation.
Here, we use the canonical embedding V4 — C(V4) and the identification C°(V4) = M (Q)® M2 (Q). Writing

R(N):{(CCL Z>;c50modN}cM2(Q)

to denote the Eichler order of level N, we can characterize Ly = La(N) as the lattice stabilized under
conjugation by invertible elements of R(N) @ R(N). We claim that the conjugation action g -v = gvg™!
for g = (g1,92) € GSpin(Va)(Ay) = GLa(Ay)? and v = (v1,v2) € aa; @ aa, takes the simpler form
(91,92) - (v1,09) = (911}191_1,92’0292_1), for g; € GL2(Ay) and v; € aa, = [aa,24Af for i = 1,2. We
can then see by inspection that Ly = La(N) = N~'a @ N~ 'a is the stabilized lattice, with dual lattice
LY = La(N)V = D;lN*Ia@DglN*Ia, and that this lattice has level N. A minor variation of the calculation
given in Proposition 2.3, replacing aq with aq/N and z, with z,/N to get the basis

U1 = (aa/N,O), U2 = (Zﬂ/Nv O)a U3 = (O,CVQ/N), Vg = (O,ZQ/N),

shows that the discriminant d(L4) = det((v;,v;)4) = 1.
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3. GSpin SHIMURA VARIETIES

We now describe the GSpin Shimura varieties and special cycles that appear, starting with the general
setting, then describing the Hilbert modular surfaces corresponding to the rational quadratic spaces (Va, Q)
of signature (2,2) introduced above.

3.1. Complex Shimura varieties. Let (V,Q) be any rational quadratic space of signature (n,2) with
bilinear form (z,y) = Q(x + y) — Q(x) — Q(y). Write GSpin(V) for the corresponding general spin group.
We consider the Grassmannian D(V) = D* (V) of oriented! negative two-planes in V(R),

D(V) = {2 C Vg : dim(z) = 2, Q. < 0}.

Extending the bilinear form (-,-) to Vo, we see that this real manifold D(V) is isomorphic to the complex
manifold of dimension n defined by the quadric

Q(V) ={w € Ve\{0} : (w,w) =0, (w,w) < 0} /C* C P(V(C)),

from which D(V') acquires the structure of a complex manifold. Here, the isomorphism sends an oriented
hyperplane z = [z, y] with basis [z, y] such that Q(z) = Q(y) and (z,y) =0 to w =z + iy € V.
We now explain how (GSpin(V'), D(V')) determines a Shimura datum. We have a natural embeddings of
R-algebras C — C(z) — C(VR) for any hyperplane z = [x,y] C Vg, with the first induced by the map
SR —
Q2)Q(y)
The induced map C* — C(Vgr)* takes values in GSpin(V)(R), and arises from a morphism of real algebraic
groups o : Resc/r G — GSpin(V)(R). In this way, we can identify D(V) with a conjugacy class in
Hom(Resc/r Gim, GSpin(V)(R)). Hence, we can associate a Shimura variety to (GSpin(V'), D(V)).
Any choice maximal lattice L. C V determines a compact open subgroup
K = K1, := GSpin(V)(A;) N C(L) C GSpin(V)(Af), L=Ls.

We write LY = {z € V : (v,L) C Z} for the dual lattice, and LY/L = LV /L for the discriminant group.
Note that K = K, acts trivially on L. Fixing such a choice, we consider the corresponding Shimura variety

4)  Xk(C)=GSpin(V)(Q\D(V) x GSpin(V)(Ay)/K = 11 I\D(V)
heGSpin V(Q)\ GSpin V(A¢)/K
for arithmetic subgroups I';, = GSpin(V)(Q) N hKh~!. This complex orbifold X (C) has the structure of

a quasiprojective variety X of dimension n over Q which is projective if and only if V' is anisotropic. It is
smooth if K = K, is neat. We refer to [1, §2], [39], and [40, §1] for more background.

3.2. Special divisors. Given a vector z € V with Q(z) > 0, we define a divisor
D(V),={z€D(V):zLax}.

For each pn € LY /L and m € Q~g, we consider the divisor Z(u, m) on X given by the complex orbifold

(5) Z(1,m)(C) = 11 o\ [ IT o

heGSpin V(Q)\ GSpin V(Ay)/K l&;h):fnh
Here, for any element h € GSpin V(Ay), we write L;, C V for the lattice determined by L, =h-L, and
pn = h-p € LY /L. As explained in [1, §2] (cf. [39], [40, §1]), these Z(x, m)(C) — Xk (C) determine effective
Cartier divisors, and admit a moduli description given in terms of the Kuga-Satake abelian scheme over X .

1Although we drop it from the notation henceforth, we write DT (V) to denote the hyperplanes with positive orientation,
and D~ (V) the hyperplanes with negative orientation, so that D* (V) denotes one of these choices — which we fix consistently.
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3.3. CM cycles and geodesic sets. Let Vj C V be any rational quadratic subspace of signature (0, 2)
with corresponding lattice Ly = Vo N L. The Clifford algebra C'(Lg) then determines an order in a quaternion
algebra over Q, and its even part C°(Lg) an order in some imaginary quadratic field k(Vy) determined by
Vo. The corresponding spin group GSpin(Vy) = Resy(v;)/qQ G forms a rank-two torus 7'(Vp) in GSpin(V).
Fixing an embedding k(Vp) C C, the left multiplication in V5(R) gives Vp(R) the structure of a complex
vector space, and determines an orientation. In this way, we see that each of the two oriented negative definite
subspaces z5 = Vp(R) determines a point in D(V) = D*(V), and (T(Vp), 25) a Shimura datum associated
to the zero-dimensional complex orbifold

(6) Z(Vo)(C) = T(Vo)(Q\ {25} x T(Vo)(Ay)/Ko, Ko =Kz, =T(Vo)(Ap) NKL.

We call the corresponding zero cycle Z(Vy) C Xg the CM cycle associated to Vy.

As explained in [1], if we assume that C°(Vy) = Oy, is the maximal order, then the Z/2Z-grading on
C(Lo) takes the form C(Lg) = Oyvy) @ Lo, where Lo is both a left and right Oy, y;,)-module. In this case,
there exists a proper fractional Oy (y;)-ideal b and left Oy y;)-module isomorphism Ly = b which identifies
the corresponding quadratic form Qg = Q|y, with the norm form Qo(-) = Ny (v;),q(-)/Nb. The dual lattice
Ly is then identified with 0;(1‘/0)L0 for 0;(1‘/0) the inverse different of k(Vp). In this setting, the zero cycle
Z(Vp) can be reinterpreted as the moduli stack of elliptic curves with complex multiplication by Ojy;). We
refer to [1, §4] for details, and note that there appears to be some subtlety in extending this discussion to the
setting where C°(V;) 2 O is a nonmaximal order (which at the time of writing remains an open problem).

Motivated by the study of real quadratic fields, we consider sets attached to rational quadratic subspaces
W C V of signature (1,1). Writing D(W) = D*(W) = {z € W(R) : dim(z) = 1, orientation +, Qyw|. < 0}
to denote the corresponding domain of oriented lines in W (R), we consider the sets defined

(7) G(W)(C) = GSpin(W)(Q\D(W) x GSpin(W)(A )/ (KL N GSpin(W)(Af)).
We call G(W) the geodesic set associated to W.

3.4. Classical description as Hilbert modular surfaces. Fix any class A in C(Oy), together with any
integral ideal representative a, and consider the corresponding rational quadratic space (Va,@4) of signature
(2,2) introduced in (3). By Proposition 2.3, we have an accidental isomorphism

(8) ¢ : GSpin(V,) = GL2

of algebraic groups over Q. Write L4 C V4 for the maximal lattice whose corresponding compact open
subgroup Ka = K1, C GSpin(Va)(Ay) given by K4 =[], Kap =[], Ka4,p has the property that
each K4, C GSpin(V4)(Q,) corresponds under (8) to the Cartesian product of congruence subgroups

O ) =KoV Koy ={ (4} ) € GLal@) e € N2, | € GLa(2,)

for some fixed integer N > 1. That is, we assume that K4 is identified under (8) with the Cartesian self-
product Ko(N)? of the congruence subgroup Ko(N) =[] Ko p(N) of GLa(Z) C GL2(Ay).

p<oo
3.4.1. Hermitian symmetric domains. Recall that we consider the Grassmannian
D(V4) = DE(V4) = {z C Va(R) : dim(z) = 2, orientation + ,Q 4|, < 0}

of oriented negative definite hyperplanes in V4(R) & ar + ar. Extending the bilinear pairing (-,-)4 to C,
we saw that the real manifold D(V}y) is isomorphic to the complex surface defined by the quadric

Q(VA) = {w S VA(C) : (w,w)A =0, (w,E)A < 0} /C>< C P(VA(C))

via the isomorphism sending a properly oriented hyperplane z with standard basis z = [x,y] € D(V4) such
that (z,2)a = (y,y)a = —1 and (z,y)4 = 0 to the complex point w = w(z) := x + iy € Q(Vy4). Here,
we remark that the quadric Q(V4) determines a complex surface with two connected components QF(Vy).
Our choice of orientation D (V) determines one of these, so that we have the corresponding identification
D* (V) = QF(Vy4). This identification is sometimes referred to as the projective model for D(Va) = D*(Vy).
It is useful for identifying the complex structure on D(Vy4), which makes it a hermitian symmetric domain.

We also have the following equivalent description. Fix a Witt decomposition V4 = W4 & Qe; & Qeo,
with nonzero isotropic basis vectors e; and es chosen so that (e1,e1)a = (e2,e2)a = 0 and (e1,e2)a = 1.
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Hence, W4 C V4 denotes the Lorentzian rational quadratic subspace of signature (1,1) determined by the
intersection W4 = V4 Nei Ney. We can then identify D(V4) = Q(V4) with the corresponding tube domain

H(Va) = {3 € Wa(C) : Qa(3(3)) <0}

To be more precise, given an element w € V4(C) = W4(C) @ Ce; @ Ceg, let us write its corresponding Witt
decomposition w = 3 + aey + bes for 3 € W4(C) and a,b € C as w = (3,a,b). Given an element w € V4(C),
we also write [w] to denotes its image in Q(V4) C P(V4(C)). We have a biholomorphic map

H(Va) = Q(Va), 3+—1[(,1,-Qa(3) —Qale2))] = [3+e1 — Qal3)ea + Qalea)ea].

We refer to [7, Lemma 2.18] (for instance) for more details. The domain H(V4) C Wa(C) = C? has two
connected components H*(V4) corresponding to the two cones of negative norm vectors in the Lorenzian
subspace Wa(R), and we have natural identifications H*(V4) = $? with products of two copies of the
Poincaré upper-half plane $ = {7 € C,3(7) > 0}. The corresponding identification D¥(V4) = H*(V4) = 2
is sometimes referred to as the tube domain model for D(V4) = DF (V).

3.4.2. Hilbert modular surfaces. Taking for granted the various identifications of domains
D¥(Va) = QF(Va) = H*(Va) = §?
with the accidental isomorphism (8) and the choice of level structure (9), we obtain the identifications
(10) X1, (C) = GSpin(Va) (Q)\D (Vi) x GSpin(Vaa)(As)/Ka
= GLy(Q)*\9” x GLy(Ay)*/((Ka) = Yo(N) x Yo(N),

where
Yo(N) = To(N)\H = GLy(Q)\H x GLa(A)/Ko(N), Ko(N):= [] Kop(N)

denotes the noncompactified modular curve of level T'g(N) C SLs(Z). Hence, we can identify each spin
Shimura surface Xy, (C) = Xk, , (C) with the Hilbert modular surface Yo (V) x Yo(N).

3.4.3. Hirzebruch-Zagier divisors. We see from (8), (9), and (10) that each special divisor Z(u,m) =
Za(u,m) as defined in (5) above for u € LY/La and m € Qs is given more explicitly by the analytic
divisor

Za(pm)(C) = 11 r\ | I Dk

hEGSpin(VA)(Q)\GSpin(VA)(Af)/KA z€up+Lap

Q. (2)=m

=To(V2\ I DPVae =To(M?\ I {z€D*(Va): (z.2)4 =0}
S G

=\ [T {z=(1.2) €97 Qulz 4+ 2) — Qal) = m} € Vo(N)(C) x To(N)(C).
@5 =m

Note that these divisors can be viewed as embeddings of modular curves into Yy(N) x Yy (V). This is apparent
from the description above, as well as their more intrinsic characterization as analytic divisors in [39, §2].
That is, we choose a positive norm vector x € V4, or more precisely, an element of the quadratic

Qpm(Q) = { € i+ La : Qu(x) = m}.

We consider the corresponding one-dimensional subspace V4 ; 1= Qx C V4, with its orthogonal complement

Uy = VAL,Jr C Va. Hence, Uy C V4 determines a subspace of signature (1,2). Its spin group GSpin(Uy,)

is isomorphic to the stabilizer of V4 in GSpin(Va) = GL3 ([39, Lemma 2.1]). The natural subspace

embedding Us C V4 gives rise to an embedding of reductive algebraic groups GSpin(U4) — GSpin(Vy).

Writing D(Ua) = DF(Ua) = {z C U4(R) : dim(z) = 2,Qa|, < 0} for the corresponding Grassmannian, and
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Kauy = KaNGSpin(Ua)(Ay) the corresponding compact open subgroup, we can identity Za(u, m) with
the Shimura subcurve
Za(p,m)(C) = GSpin(U4)(Q)\D(Ua) x GSpin(Ua)(Ay)/Ka v — Xa(C) Z Yy(N) x Yy(N)
GSpin(U4)(Q) (2, h) K a0 — GSpin(Va) (Q) (2, h) K 4.

To be more precise, we know from the discussion above that Z4(u, m) can be identified with the modular
curve ['(Ua)\D(Ua), where D(Us) = D*(Ua) = § and T'(Ua) = GSpin(Ua)(Q) N Kay C T'y(N)? is a
congruence subgroup. As can be seen through this description, the sums over cosets u € L% /L4 of these
divisors Z (g, m) give the classical Hirzebruch-Zagier divisors of the forms described in [29] and [7, §2]. We
shall return to this relation to the classical Hirzebruch-Zagier divisors on Yy(N) X Yo(NN) given in terms of
the moduli discussion (see e.g. [29]) in our discussion of arithmetic heights below.

3.4.4. CM cycles. Let Vy 4 C V4 be any rational quadratic subspace of signature (0, 2), with corresponding
lattice Lo,a = Vo,ANV4 and quadratic form Qa,0 = Qalv, ,- The even Clifford algebra C%Lao) CC%Vap)
determines an order in the imaginary quadratic field k(Va,) determined by V4. Recall that any such
subspace V40 C V4 determines a rank-two torus GSpin(Vp.a) = Resy(v, )/ Gm and the even Clifford
algebra C%(La0) & O an order in Ok(va o). Again, if C%Lay) = Ok(va,0) Is maximal, then the Z/2Z-grading
on C(L ) takes the form C(Lao) = Oy, o) ® Lao, with L4 o being both a left and right Oy, ,)-module,
and there exists a fractional Oy, ,)-ideal b and an isomorphism L4 o = b of left Oy, ,)-modules which
identifies the quadratic form Q4,0 on L4, with the norm form —Ny vy, ,)/q(-)/Nb and L\A/\,O = lZ(lvA,o)LAﬁ'
Remark 3.1. If we start with k = Q(\/&) an imaginary quadratic field in our setup, each of the anisotropic
subspaces (Va,0,Q4,0) = (Va1,—Qa1) = (Va, —Qa) is a rational quadratic subspace of signature (0, 2)
associated to the imaginary quadratic field k(V4,1) = k. In the same way, each of the anisotropic subspaces
(Va0,Qa,0) = (Vas,Qa2) = (Va, Qq) determines a rational quadratic subspace of signature (0, 2) associated
to the same imaginary quadratic field k£(V42) = k.

If on the other hand we start with & = Q(+v/d) a real quadratic field, any subspace (Va0,Qa,0) C (Va,Qa)
of signature (0, 2) will also determine an imaginary quadratic field k(Vy4 o). For instance, writing 7 to denote
the nontrivial automorphism of Gal(k/Q), we see that Ua o := Vi, ® (Va2/V],) with Qalv, , is a rational
quadratic subspace (Va,@Q4) of signature (2,0), and that Vi = Ua, with Q4,0 = —Qalv,, is a rational
quadratic subspace V4 of signature (0,2) which determines an imaginary quadratic field k(Uy4 ).

Each sublattice L4 o C L4 of signature (0, 2) gives rise to a group scheme T4 over Z with functor of points
Ta(R) = (C°(Lao)®z R)* for any Z-algebra R. This gives a rank-two torus T4 ®z Q = GSpin(V4,0) which
appears as a maximal subgroup of GSpin(V,) & GL%. Writing Ao = Ljo C L 4 for the complement of the
lattice L 4 0, this maximal subgroup acts trivially on the corresponding subspace Vj:o =A40®zQ C Vy. Let
Kao=Ta(Ay)N Ky, denote the corresponding compact open subgroup of T4 (Af) = GSpin(Va o) (Ay).

Fixing an embedding O, ,) C C, we can view Vao(R) = Vao ®q R as an oriented hyperplane
of C, and hence as a point 249 = Vao(R) C Va(R) in D(Va) = Q(Va) & H(Va) = §H%. This makes
(T4®2zQ,z4,0) = (GSpin(Va ), z4,0) & Shimura datum with reflex field k(V4 o). The corresponding orbifold

Z(Va,o)(C) = Ta(Q)\ {za,0} x Ta(Ay)/Kap
= GSpin(VA’o)(Q)\ {%,A(R)} X GSpin(VA’O)(Af)/ (GSpin(VAp)(Af) N KLA)
can be viewed as the complex points of a zero-dimensional Shimura variety Z(Vy4,9) — Spec(k(Va,0)), or a
complex fibre on the moduli stack of elliptic curves with complex multiplication by O = C°(L4,0) C Ok(v, o)
and To(N)-level structure.

3.4.5. Geodesic sets. Let W4 C V4 be any Lorentzian quadratic subspace of signature (1,1), with lattice
My = Wy N Ly. Note that the complement Ny = M j\- C L4, also determines a Lorentzian subspace
Us = Ng ®z Q C Vy of signature (1,1). We consider the corresponding domain

D(Wa) = DE(Wa) = {n = [a, 8] € Wa(R) : dim(y) = 1, orientation +, Qa|w () < 0}
of oriented hyperbolic lines h = [a, 8] = [a : 8] € P1(R), given equivalently as a space of projective lines
D(W4) = DEF(W,) = {v=[o: B] C PY(R) : orientation &, Qa|w, (a, 8) <0} .
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Recall that after fixing an oriented basis z = [z, y] of each negative definite hyperplane z C V4(R), and
fixing a Witt decomposition V4 = W4 & Qe & Qes corresponding to Wa, we have identifications

D*(Va) = QF(Va) = H(Va), z=[z,9] = [w(z) = 2 +iy] = 3(w) = 3(w(2)).

Here, we write the corresponding Witt decomposition of a point w € V4(C) as w = 3(w) + a(w)e; + b(w)e;.
Note that while the point w(y) = a + i3 € C determined by a hyperbolic line § = [a : 8] € P}(R) does not
lie in the upper-half plane ), the roots of the quadratic polynomial Q4w ,(X,1) =0 (or Qalw,(1,Y) =0)
determine endpoints of a geodesic arc in . For this reason, we shall sometimes call the corresponding sets
Q(WA) = GSpin(WA)(Q)\Di(WA) X GSpin(WA)(Af)/FA, FA = KA N GSpin(WA)(Af)

geodesic sets associated to the Hilbert modular surface X4 2 Yo(N) x Yo(N). We shall later see that the
summation of automorphic Green’s functions associated to certain linear combinations of the special divisors
ZA(u, m) gives information about central derivative values of certain Rankin-Selberg L-functions. Hence, we
have reason to believe that these geodesic sets are related to (Hirzebruch-Zagier) special arithmetic divisors
on X4 2 Yy(N) x Yo(N). In fact, clarifying such a relation forms the main motivation for this note.

4. GREEN’S FUNCTIONS FOR SPECIAL DIVISORS

We describe the automorphic Green’s functions that can be constructed from regularized theta lifts for the
special divisors Z (i, m). We start with the general setting, following [1], [40], [7], [13], and [54], then specialize
to the case of Hilbert modular surfaces parametrized by the rational quadratic spaces V4 of signature (2, 2).

4.1. Siegel theta functions. Fix (V, Q) a rational quadratic space of signature (n,2), with maximal lattice
L C V. We write LV /L for the discriminant group, and &, the finite-dimensional space of C-valued functions

on LY /L. Writing §f42 for the two-fold metaplectic cover of SLy, we consider the Weil representation
wr, §I:2(Z) — &y,
which for n > 1 even factors through SLy(Z) as wy, : SLy(Z) — S. We define the conjugate action wy, by

@ (7)® = w ()@, and write w for the contragredient action of SLy(Z) on the complex linear dual &Y.
We now describe how for each h € GSpin(V')(A¢)/Ky,, we can use wy, to construct a Siegel theta function

0r(r,2): Hx D(V) — &Y,

which in the variable z € D(V) = D*(V) is ['j,-invariant, and in the variable 7 = u + iv € §) transforms as a
nonholomorphic modular form of weight % — 1 and representation wy . We give the precise definition in (15).

4.1.1. Theta kernels. To give a more precise account of the Weil representation for later constructions of
theta series, let ¢ = ®,1, denote the standard additive character of A/Q, which has archimedean component
Yoo(x) = e(x) = exp(2mizx) for z € R = Q.
Recall that the two-fold metaplectic cover SLs fits into a short exact sequence
1 —> {£1} — SLy —» SLy — 1,

and that the general spin group GSpin(V) fits into a short exact sequence

1 — G,, — GSpin(V) — SO(V) — 1.
Both groups act on the space of Schwartz-Bruhat functions ® = ®,®, € S(V(A)) by the Weil representation

wr, = wpy : SLa(A) x GSpin(V)(A) — S(V(A)).
This gives a natural theta kernel, defined on g € SLy(A), h € GSpin(V)(A), and ® = ©,®, € S(V(A)) by
(11) Il hi®) = Y (wilg, )®) (x).
z€V(Q)

This function ¥, (g, h; ®) is seen by inspection to be left GSpin(V)(Q)-invariant, and by Poisson summation
to be left SLy(Q)-invariant. It is referred to as the theta kernel associated to the Weil representation wy, .
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4.1.2. Choice of local Schwartz functions. Following [3], [6], and [13, §2], we choose the following decompos-
able Schwartz functions ® = ®,%P, € S(V(A)) to construct Siegel theta functions from the theta kernel

(11).

We first define the following Gaussian function ®., € S(V(R)). Given a hyperplane z € D(V) = D*(V),
we define the corresponding majorant (z,z), = (z,1,2,1) — (2,,2.), which can be viewed as a positive
definite quadratic form on V(R). We then define the Gaussian function

(12) Ooo(x,2) = exp (—(,2).), z€ DV)=DV), zcV(R).
As a function z € V(R), this determines an archimedean local Schwartz function @, € S(V(R)). It satisfies
the transformation property ®o.(hw, hz) = @ (2, 2) for all h € GSpin(V)(R). It has weight § — 1 under the
action of the maximal compact subgroup of SLy(R.).
For the remaining finite part ®; = ®,<0c®y € S(V(A)[), we shall later take the characteristic functions
®; =1, := char (,u—i— L® 2) for a coset u € LY /L.

4.1.3. Construction of Siegel theta functions. Fix a basepoint zg € D(V) = D* (V). For any finite archimedean
Schwartz function @5 = ®y<co®y € S(V(A)y), we can define from (11) the theta function

(13) 0r(g,h; @) :=IL(g,h; Poo(-, 20) @ Py (-)).

We obtain a classical Siegel theta series on $ x D(V) from this as follows. Given any oriented hyperplane
z = D(V) = D*(V), we choose an element h, € GSpin(V)(R) for which h,zy = 2. Note that

wL(hz)éoo('7 Zo) = @m(,z)

Choosing i € §) as the basepoint, let us for any 7 = u 4 iv € §) write g, to denote the matrix

(U ) et

and g = (g, 1) its image in SL, (R). Note that g, -¢ = 7. Via (13), we can then define the Siegel theta series
OL(7 2 g3 @p) = v T DL (Gr hah; Boo(,20) @ Dp()) =07 HFE Y 7 wi (@) (Reo(2) ® wl(hy) @) (2)
2€V(Q)
for T =u+ive N, ze DV)=DHV), hy € GSpin(V)(Ay), and ®; = @y<o®, € S(V(Ay)). Since
0 E R (§r) (oo (- 2)) (2) = ve (Q(asa)T + Qa)7)
we have the more explicit expansion

(14) OL(r,2,hp; ®p) =v > e(Qr.)T + Q2.)7) ® By(hy ).
zeV(Q)

S

As explained for [13, (2.5)], this theta series satisfies a transformation property for S‘]:Q(Q). Viewing 0r,(7, z, hy; -)
as a function on 7 € §) taking values in the dual space S(V(Ay))Y of S(V(Ay)), we see that 0 (7, z, hy;-)

determines a nonholomorphic modular form of weight & — 1 and representation wy. In fact, it determines a

harmonic weak Maass form 0y (7, ) € H %_1(w\L/) in the sense of the definition given below.
Let &, denote the subspace of S(V (A y)) which are supported on LY ® Z, and constant on cosets of L® Z.

For instance, Sy, contains the characteristic function 1, = char(y + L ® 2) for a given coset p € L*/L. In
fact, these functions form a basis for the space, and we have the decompositon

6= P C1,cSV(Ay).
HELY/L
In particular, it follows that dimc &, = |LY/L| is finite. Writing ¢, for the standard basis element in
C[LY /L], we also have a natural identification &; = C[LY/L],1,, + ¢,. This space &, is stable under the
image of SLy(Z) in SLy(Af). We define from (14) the corresponding &-valued Siegel theta series
(15) QL(Tvza hf) = Z GL(Tazahf;lﬂ)l,u

nelLY /L
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We refer to [13, §2] for more on these theta series, which coincide with those considered by Borcherds in [3].

4.2. Harmonic weak Maass forms. Fix a half-integer | € %Z. Recall that a twice-differentiable function
f:9H — & is said to be a harmonic weak Maass form of weight | and representation wy, if

(1) fliw,y=f for all v € I' = SLy Z, where |;,, denotes the Petersson weight-I operator.

(ii) There exists an &p-value Fourier polynomial

Py(1) = Z Z c}'(u,m)e(mﬂlw 1, :=char(p+ L ® 2)
WELY /L m>0

known as the principal part of f for which f(7) = P¢(7) +O(e™¢") for some ¢ > 0 as v = J(7) — o0.

(iii) The function is harmonic: A;f = 0 for A; the hyperbolic Laplacian of weight ! defined by
0? 0? 0 0
A= ==+ == |+ i = J :
! v (8u2+avz>+zl(au+zav), T=u+wWESY

We write H;(wr,) to denote the C-vector space of harmonic weak Maass forms of weight ! and representation.
Each harmonic weak Maass form f € H;(wy,) has a unique decomposition f = f* + f~ where

Ffo= > Y cflumeim,

WELV /L mEQ
m>3>>—oo

and

Fr = >0 > ¢ (mm)Wi2rmu)e(mr)1,,

HELY /L mEQ
m<0

where Wi(a) := [7 e "t~'dt = T(1 —1,2|a|) denotes the Whittaker function given by the partial Gamma
function, and e(7) = exp(2mit) for 7 = u + v € H. We call f* the holomorphic part of f and f~ the
non-holomorphic part of f. We consider the subspace M;(wr,) C Hj(wz) of weakly holomorphic forms whose
poles are supported at the cusps, as well as the suspace of holomorphic forms M;(wy) C M;(wr), and the
subspace of holomorphic cusp forms S;(wy) € Mj(wr) C M} (wz) C Hy(wr).

Recall that we have the Maass weight lowering operator L; and the Maass weight raising operator R,

(16) L= 721'1)2.8%, R = 2z‘~%+l~v*1.
Bruinier and Funke [10] define an antilinear differential operator
(17) & Hi(wp) — So(@r),  f(r) — o' 2Ly f(7),

and show that it sits in a short exact sequence

0 —— M;(UJL) _— Hl(w) L Sg,l(w,;) — 0
so that ker(&) = M/ (wz). We refer to [10] and [13, §3] for more details and basic properties.

4.2.1. Definition of the divisor Z(f). Given f € Hy_»(wr), we define the corresponding divisor
SR
on XK = XKL~

In the special case of the quadratic spaces (Va,Q4) of signature (2,2) with maximal lattices Ly C Va,
we consider for any fo = fo 4 € Ho(wr,) the corresponding divisors on X4 = Xf, = Yy(N)? defined by

(19) ZA(fO) = Z Z C}i_o (,U, _m)ZA(.uam)'

M €Q
nely/La meg

4.3. Regularized theta lifts. We describe the regularized theta lifts ®(f, z, h) associated to f € H;_» (wr).
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4.3.1. The tautological pairing. Let ((-,-)) : &1 x &} — C denote the tautological pairing. Hence, given
f(r) = Z fu(m)1l, € Hi(wr) and g(7) = Z 9u(T)1, € Hy(wp),

HELY /L nELY /L
we have
{(f@gm = D fulP)gulr).
nwELV/L
4.3.2. Regularized theta integrals. Given f € H;_»(wr) a harmonic weak Maass form of weight 1 — & and

representation wy,, we define the corresponding regularized theta lift ®(f, z, h) for z € D(V) = D*(V) and
h € GSpin(V)(A ) by the regularized theta integral

B(f.2,h) = /F <<f<r>,0L<T,z,h>>>du<r>—CTs:o{ lim /F <<f<r>,eL<r,z,h>>>vSdum}.

T—o0

Here, we write F = {Tr € : —1/2 <R(7) <1/2,77 > 1} to denote the standard fundamental domain for
the action of SLy(Z) on 9, and u(r) = dg# the Poincaré measure on ). The regularized theta integral
®(f,z,h) is given by the constant term in the Laurent series around s = 0 of the function

lim ((f(7),00(T, 2, h))) v du(T),

T—00 Fr

where the limit is taken over truncated domains Fr = {r € H: —-1/2 < R(7) < 1/2,77 > 1,3(7) < T'}.

4.3.3. Arithmetic automorphic forms and Petersson norms. Let Lpyy be the restriction to D(V') =2 Q(V') of
the tautological bundle on P(V(C)). The natural action of O(V)(R) on V(C) induces one of the connected
component of the identity GSpin(V)(R)? € GSpin(V)(R) on Lpv). This gives a holomorphic line bundle

£ = GSpin(V)(Q)\Lp(v) x GSpin(V)(Af)/K — X,

which is known to have a canonical model defined over Q by work of Harris [27], cf. [40, §1], [28]. Note that
on the component I',\D(V), it takes the form I',\Lp(y). We define a hermitian metric hgz,,,, on Lpy) by
1
2
Observe that this metric is fixed by the action of O(V)(R), and hence descends to L.

We now describe the Petersson inner product on sections of £®! for | € Z any integer. Fix a Witt
decomposition V =W @& Qe; @ Qe for basis vectors eg, e satisfying (e1,e2) = 1 and (e1, e1) = (ea,e2) =0,
so that W = V Nei Ney determines a rational quadratic subspace of signature (n — 1,1). Given any vector

w € V(C), we then write the corresponding decomposition for the Witt decomposition as w = 3 + aey + bes.
Note that D(V) = Q(V) is isomorphic to the tube domain

H(V)={3eW(C):3G)eC (V)}, C(V):={yeW:(y,y) <0}

hipe, (Wi, we) = 5 - (w1, W2).

H(V)—V(C)=W(C)+Cey + Cex — Q(V), 33— w(3):=3+e1— Q(3ea — [w(3)]

The map 3 — w(3) := 3+ e1 — Q(3)2 can be viewed as a nowhere vanishing holomorphic section of Lpvy.
Observe that this section has norm for the hermitian metric hz ., given by

o) = —5 - (w(),w) = ~ (36).3G) = ~(4) = Iyl

Let us now write z = [z,y] € D(V) = D*(V) for the basis [z,y] of an oriented hyperplane z C V(R)
w(z) = x + iy, and [w(2)] its image in Q(V) = QF (V) = D*(V). Given h € GSpin(V)(R), we have

h-w(z) =w(hz)j(h,z)
for a holomorphy factor
j : GSpin(V)(R) x D(V) — C.
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In this way, we can identify the holomorphic sections of £®! with functions
U D(V) x GSpin(V)(Ay) — C
satisfying the transformation properties
o U(z,hk) =T(z,h) forall ke K
o U(yz,vh) = j(7,2)"¥(z, h) for all v € GSpin(V)(Q).
The norm of the section

(z,h) — U(z,h) - w(z)®
corresponding to any such function ¥ is given by
12 (2, W)I[* = [0z, h)Ply[*,
and referred to as the Petersson norm of W.
4.3.4. Borcherd’s products and automorphic Green’s functions. We now summarize several important results.
Theorem 4.1 (Borcherds). Let f € Mt% (wr) be a weakly holomorphic form with Fourier series expansion

f@ = > > eplpmle(mr)l,,  cp(p,m) € Z.

pneLY /L m”;f_Qoo
Then,
(20) O(f,2,h) = —2log [¥(f, z,h)|* — ¢} (0,0) - (2log |y + T"(1))
for U(f,z,h) a meromorphic modular form on D(V') x GSpin(V)(Ay) of weight ~c}r(0, 0) with divisor
Div (U(f,)?) =Z(f):= . > cflu,m)Z(um).
WL /L 1
Proof. See [3, Theorem 13.3] with [40, Theorems 1.2 and 1.3] and relevant discussions in Bruiner [6], [7]. O

Theorem 4.2 (Borcherds/Bruinier). Let f € Hi_=(wg) be any harmonic weak Maass form of weight 1 — 5
and representation wr,. The reqularized theta lift ®(f,-) is an automorphic Green’s function in the sense of
Arakelov theory for the divisor Z(f) on Xk . That is, ®(f, z, h) satifies the following characterizing properties:

(i) ®(f, z,h) is a smooth function on Xg\Z(f) with a logarithmic singularity along —2log Z(f).

(ii) The (1,1)-form dd°®(f, z,h) has a smooth extension to all of Xy, and satisfies the Green’s current
equation dd°[®(f, z,h)] = dzp) + [dd°®(f, 2z, h)] for 65y the Dirac current for Z(f).
(iil) ®(f,z, h) is an eigenvector for the generalized Laplacian A, on z € D(V'), and more precisely
n
Azq)(fa Z, h) = Z . C}r(()’ 0) : CI)(f’ Z, h)

Proof. See [13, Theorem 4.3] and more generally [6]. O

As explained in [28, §1.1], the Shimura variety Xx = Xk, comes equipped with a metrized line bundle

L € Pic(Xk)

of weight one modular forms, which has an extension to the integral model P/’l\c()( K)-

Theorem 4.3 (Borcherds/Howard-Madapusi Pera). Let f € M{_%(wL) be a weakly holomorphic form whose
principal part has integral Fourier coefficients,

fro= > > cf(wme(mn)l,,  cf(p,m) € Z.

Y €Q
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Replacing f by a suitable integer multiple if needed, there exists a rational section U(f) of the line bundle

Ec}r(o,o) on Xg whose norm under the metric defined by

2 L2202 - Q) - Q)

drer’

121l =

satisfies the relation

—2log [[T(f)[| = @(f)

and hence

Div(E(f) = 3 3 ¢f (w—m)Z(u.m).

Y meqQ
,LLEL /L m>0

In particular, the Borcherds product ®(f) is defined over Q, and takes algebraic values. To be more precise,
D(f,z,h) takes values in the algebraic number field to which the point (z,h) € Xk belongs.

Proof. See [28, Theorem 9.1.1], which refines the original theorem of Borcherds [3] (cf. [28, Theorem 5.2.2]).
O

4.4. Hejhal Poincaré series and Green’s functions of special divisors. For future reference, we now
describe the automorphic Green’s functions @, ., (2, h) = ®(F},m, 2, h) for each of the special divisors Z(p, m)
on X = Xk following [6] (cf. [9, §4]). This appears in the discussion leading to Corollary 4.7 below. We then
describe the setup more explicitly for the case of Hilbert modular surfaces corresponding to n = 2, leading
to classical higher Green’s functions on Xo(1) x Xo(1) and more generally Xo(N) x Xo(N).

4.4.1. Hejhal Maass-Poincaré series. We follow the discussion in [6, §1.3]. Hence, for complex numbers
a, B,z € C, we consider the standard Whittaker functions W, g(z) and M, g(z) giving linearly independent
solutions of the Whittaker differential equation

2 2 _
dw+<_1+a_ﬂ1/4>w:0,

dz? 4 2z 22
Note that these functions are related by
I'(=2p) I'(26)
Wap(z) = =———"— Myp(2) + =———— My _5(2),
a,ﬁ( ) F(%—ﬂ—a) a,ﬂ( ) I‘(%—&—B—a) o, ,3( )
from which it follows by inspection Wy, g(z) = Wy, _5(2). As z — 0, these functions behave as
1
Mo p(2) ~ 2P*% B¢ —5Z0
I'(25) _34l 1
Wap(2) v ———2 . ,7F+2 > —.

As y = S(z) — o0, they behave as
F(l + 2,@) Y — —1
Mop(y) = o—— €y “(1+0@)
T+ ) ( )
Was(y)=e % -y* (1+0(y™")).
Let I =1—n/2. Given s € C and y € R+, we define the normalized functions

_1 _ L
M) =y My () WallyD) = [ol 5 W sy e ().

-1
Note that these functions are both holomorphic in s, and also that we have the identities

M) =y *M_, 1 () =eb, Wi_i(y) =y *Wi1 1(y)=c %

T2'27 2 2 272

Recall that we consider the weight | hyperbolic Laplacian operator A;, defined on 7 = u + iv € §) by

0? 0? 0 0
— 2= 4 7 ; — i
Ar=-—v (8u2 +802>+m} (6u+28v>'
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This operator acts on smooth functions f : §§ — C[LY /L] component-wise. Recall as well that we have the
Petersson slash operator |; acting on such functions. To be more precise, for any generic element (M, () in
the two-fold metaplectic cover SLy(Z) of SLy(Z), this operator acts on such a function f via the rule

(21) (fle(M,€))(7) = ¢(r) " Hwr (M, )~ f(M7).
Note that the actions of A; and SLy(Z) via (21) on any smooth function f : § — C[LY /L] commute in that
(22) A(f1(M, Q) = (Auf)1(M, Q).

Given a coset p € LY /L with characteristic function 1, as above, and a negative integer m € Z + Q(p), is
it not hard to check that the function defined on 7 = u +iv € $ by

(23) M (47|m|v)1,,

is invariant under the action of the unipotent generator

T:(( 1 1),1)6812(2)

via the slash operator (21). Remarkably, this function (23) is an eigenfunction of the Laplacian A;, with
eigenvalue s(1 — s) + (1> — 21) /4. We can take sums of these functions to obtain the following Poincaré series.

Definition 4.4 (Hejhal Maass Poincaré series). Fiz an even quadratic lattice L = (L, Q) of signature (n,2),
and let | = 1 —n/2. Given any complex number s € C, coset u € LV/L, and integer m € Z + Q(u), let
F,, m(7,8) denote the Poincaré series defined on T = u+ v € §) by the summation

1
Fum(Tes) = Fin(ros) = gy 2 IMo(mlmlo)Lue(mu)] 1(1,0),
(M,¢)eT s \SL2(2)

where Too = (Do, 1) C é\f)Q(Z) denotes the image of the unipotent subgroup

roo:{(l Tf):neZ}eSLg(Z)

in the metaplectic group SAIZQ(Z). This series converges normally for T =u+iv € $ and s = o +it € C with
o > 1. Via the commutativity of the actions of A; and SLa(Z) described in (22), we deduce that the Poincaré
series Fy, (7, s) is an eigenfunction for the Laplacian A;, with

Ay (1, 8) = (s(1—8) + (I — 20)/4) Fp, (7, 5).
In particular, F m (7,1 —1/2) = F, m(7,8)|s=1-1/2 determines an eigenfunction of eigenvalue zero for A;.

Note that the Fourier series expansion of each F), ,,(7, s) is computed in [6, Theorem 1.9], with simplifica-
tions for the special case of F), ,, (7,1 —1/2) detailed in [6, Proposition 1.10]. Here, we note that the Fourier
series expansion of each of the latter functions F), ,, (7,1 —1/2) can be described crudely for our purposes as

(24) Fym(r,1=1/2) =1,e(m7) 4+ 1_,e(m7) + O(1).
4.4.2. Decompositions of cuspidal harmonic weak Maass forms. We now explain how the harmonic weak

Maass forms we consider above can be decomposed into linear combinations of Hejhal Maass Poincaré series.

Proposition 4.5. Let L = (L, Q) be a even lattice of signature (n,2), and putl = 1—n/2. Let f € H;""(wy)
be any cuspidal harmonic weak Maass form of weight I and representation Wy, with holomorphic part

() = Z Z c}“(u,m)e(mu)lu.

RELY /L mEZ+Q(u)
Then, we have the decomposition
1
=5 > Y i umm)Fun(r1-1/2).
RELY /L mEZ+Q ()
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Proof. We give a minor variation of [6, Proposition 1.12]. Consider the form g(7) defined by the difference

(=i -5 XY ) Eum(n - 1/2),

v €Z+Q(1)
HELY/L ™ meo

Note that this form g(7) is invariant under the action of

7= <( -1 L >z) € SLy(Z),

and hence c;f (,m) = c}'(—u, m) for all p € LV/L and m € Z + Q(u). Using these properties together with
the expansion (24), we deduce that g(7) must be bounded as ¥(7) — co. On the other hand, it is apparent
that g|;(M, () = g for all (M, () € SLy(Z) with A;g = 0. It follows that g(7) must be identically zero. [

4.4.3. Unfolding against the Maass-Poincaré series. We now explain how to compute the regularized theta
lifts ®,, (2, h) associated to the Poincaré series F), ,,(7,s) against the Siegel theta series 01 (7,z) defined
above?. Recall we start with L = (L, Q) an even full-rank lattice in V' of signature (n,2). We consider the
Siegel theta series (7, 2) € Mn_1(wg), defined for z € D(V'), 7 = u+iv € §, and h € GSpin(V)(Ay) by

OL(r,2,h) =v Y e(TQ\:) +TQ(N.1)) Ln-1(xs 1),
AeLY
which we decompose into coset components as
O(r,2,h) = > Ou(r2, B, Ou(r,2,h) = Y e(TQ\.) +7Q(\.1)).
welV /L ~ERA+L)

Here, we write A, to denote the orthogonal projection of A to z, with A, the orthogonal projection to the
complement z* C D(V). Note that the Fourier series expansion of each constituent theta series is given by

QM(T,Z,h) = Z 6(—271’@()\2) + QWUQ()‘ZL))e(Q()‘)u)v
AEh(p+L)
which via the elementary identity

Qo(7z) + Qo(7.1) = Q(v) = 2mvQ(y.1) = 2mvQ(y) — 2mQ(7=)

is the same as

Ou(,2,h) = > exp(2mvQi (M) exp (—4mvQ(A.) + 2mvQ(N)) e(Q(Mu)

Aeh(p+L)
= Y e 2rQ) — 4meQ() @)
Aeh(u+L)
and hence
(25) 0,.(r,2) = Z exp (2mvQ(A) — 4mvQo(A2)) e(—Q(N)u).
Aeh(u+L)

Theorem 4.6. Let L = (L, Q) be an even lattice of signature (n,2). Fiz any coset p € LV /L and negative
integer m € Z + Q(u). Then, for any point z € D(V') which is not contained in the set

Z(u,m) = U At
AEpu+L
Q=m

2Note that Bruinier [6, §2.2] considers the isomorphic lattice —L = (L, —Q) of signature (2, n) for this discussion, and hence
that we have to alter signs of weights accordingly to work with the quadratic lattice (L, Q) directly. In particular, his signature
(2,m) = (b, b7) will correspond to our signature (n,?2) in the unfolding calculations below.
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and element h € Spin(V')(Ay) together with any s,w € C satisfying R(s) > —1/2+R(w) = n/4+1/2+R(w),
the regularized theta lift defined® according to [6, Proposition 2.11] by the limit of truncated integrals
» dudv

Q,m(z, 8, hyw) == lm | ((Fum(7,s),00(7,2,h)))v 2

T—o0
Fr

is given by the explicit (absolutely convergent) formula

oFy (s+2%+w,54 1 525 g ) L))

2(47m)sti—al L(2-1+s+w)
@M,m(z7svh?w) = - = w1
2 AG%L) (47TQ(>‘ZL))S+Z_§+U)
QN\)=m

In particular, at w =0, we obtain for N(s) > n/4+ 1/2 the formula

or (s—i—ﬁ—l) m sti-3 n 1 n 1 m
B, (2.5 h:0) = - 173) F T ST gty 2sia |-
1, (Zasy ) ) F(QS) Z (Q()\ZL)> 2141 <S+ 4 278 4 +27 S5 Q()\ZL)>

X€h(pu+L)
QN\)=m

Proof. See Bruinier [6, Theorem 2.14]. We present a slight generalization to help make our later deductions
more explicit. Fix s € C with R(s) > n/4 +1/2 + R(w). Fix a point z € D(V)\Z(p, m). We have that

D, m (2,8, hyw) = Tlim I (p,m, s, hyw),
—00

where dud
(s, i) = [ ((Fn(r.9). (7.2 ) 5
Fr
— ., dvdu
o / S Ml Luelma)] (O, 1), B (72, R g
. MET\ SL2(2)

which via the transformatlon of the theta series is the same as
dudv

it M (|| S(M7)) S(M ) (L, e(mR(M ), B (7,2 1)) 5
]—'T MET o\ SL2(Z)
= /M (4m|m|v)v® e(mu)mdudv
: X x w ——dudv
TS / 2. M (4m|m|S(MT))I(M) " e(mR(M )0, (T, 2, h)= 5~

Fr < a b )
M= €0\ SLa(Z),c£0
c d

Using a standard unfolding argument we can evaluate the second integral in the latter expression as

/M (4m|m|v)v* 0, (T, Z)dzdv

where Gr = {T =u+iv € $ : |u| < 1/2,u% +v? < 1,v < T} denotes the truncated fundamental domain for
the action of ', on U av—r., MF. In this way, we compute

Ir(p,m, s, hyw) = /M (4m|m|v)v?e(mu)b, (1, 2 h)dUdv /M (4m|m|v)v* 0, (T, 2 h)dUdU
T 1 i
wi—————dudv
s )U QM(U-F’L’U,Z,}L) 1}2 9
v:Ou:O

3A priori, ®,, m(z,h) is defined as in [6, Definition 2.10] to be the constant term in the Laurent series expansion around
s =1—1/2=n/4+ 1/2 of the analytic continuation of ®, ,(z,h,s) = ®,,m(z,h,s;0). However, by to [6, Proposition 2.11],
we can define it equivalently as the stated limit of truncated theta integrals when s #1 —1/2=n/4 4+ 1/2.
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which after opening the Fourier series expansion (25) of 0,,(u + iv, z, h), switching the order of summation,
and evaluating the unipotent integral via the orthogonality of characters on R/Z 2 [0, 1] is the same as

1
Ir(p,m, s, hyw) Yo" exp (2mvQ(N\) — 4mvQ(A / e(mu — Q(N)u)dudv
2o AGh(,quL) uso
= Yo exp (—4mvQ(\,) + 2mvm) dv
2o Aeh(u+L)
=0 "Q)=m
Admlm|)~ |
= (;T'(?;S'))Q/ Z M_i 1 (4m|m|v)v®~ %_Zexp(—47er()\z)+2ﬂ'vm)dv

o MEh(p+L)
v= Q(N)=m

T
2(4 i3 n
_ 2nmDITE g oot 2 e (—Amu@Q) + 2mom)
X€h(p+L) Y
Q(x\)=m v=0

Here, we view the latter sum as one over lattice points A € h(p + L) for which

Q) =Q(A:) + QA1) =m,
where z1 denotes the orthogonal complement of z in D(V). Taking the limit with 7" — 0o, we obtain
(26)

o0
drm|) T2 .
D2, 8, hyw) = A WI‘T(];S)) - Z Ma_ 1 s (47r\m\v)v(w+1_%_l)_l exp (—4mvQ(A;) + 2mmu) dv.
S

Now, for each A € h(u+ L) with A, # 0, we view the corresponding integral in (26) as a Laplace transform of
the type computed in [21, p. 215 (11)], withv =w—1/2—1=w+ (n/4—-1/2)— 1, k = =1/2 = —-1/2+n/4,
w=s5—1/2, a=4xn|m|, and p = (47Qo(\,) — 2mm) = (47Q(\.) + 27|m|) to obtain?

(o)
/ Mﬂ_l,s_% (47r|m|v)1}(w+%_%_1)_1@7U(4“Q(Az)*2ﬂm)dv
v=0
(27) PP (4 1y2) 2@ AR 2 @ k4 12,20 4 Lo/ (p + 0/2))

0+ /277

[m]

) 2F1(S+%—%+’LU7S 4—1—2,25,@()\ ))
(7 QO F+

We treat the remaining contributions from A, = 0 the same way, using that Q(X;) = m — Q(A,+) and

hence 47Q(A,) — 2rm + 27|m| = —47Q(A,1) + 27m + 27|m| = —4wQ(A,1). Here, note that m < 0 implies

27m + 27|m| = 0. We can and do express all contributions A via this latter substitution as in [6, Theorem
2.14]. In this way, we deduce the stated formula from (26) via (27). O

1
= (4m|m|)°T (Z ~3 +s+w

4.4.4. Regularized theta lifts ®, ., of the Hejhal-Maass Poincaré series F), ,,. Note that the function of
Theorem 4.6 above, defined for R(s) > v = u(n) :=1—1/2 =n/4 + 1/2 by the absolutely convergent series

—— dudv

D, m(2,h,8) =@, m(z,h,s,0) = TlgnDO ((Fum(7,8),00(T, h,2))) 2
(28) ¢
28 el M 1

r (s + 2 — l) m sti—a n 1 n 1 m
S ety LT TR I PRI
T (2s) (Z) QM) U T4 2 a2 Q0w
Q(N)=m

4Noting that Q(A;) + |m| = Q(X,1) to simplify the expression for p
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determines a real analytic function on z € D(V'), with logarithmic singularities along the special divisors

U r

AEp+L
QN)=m

Defined a priori for #(s) > u, this function ®, (2, h, s) has an analytic continuation to all s € C, with a
simple pole at w. Hence, the sum defining (28) converges normally, and ®,, ,,, determines a smooth function
on X\ Z(u, m) with logarithmic singularities along Z(u, m), and an analytic continuation to a meromorphic
function in s € C. It is also an eigenfunction for the Laplacian A, described in Theorem 4.2, satisfying

1
(29) A, Dy m(z,h,s) = 3 (s—u)-(s+u—1)-Pym(z,h,s).

It can also be viewed as a square integrable function. We refer to the discussion of [9, §4] for more details.
At the point u =n/4 + 1/2, it determines the automorphic Green’s function of the special divisor Z(u, m):

Corollary 4.7. The regularized theta lift D, m(z,h,n/44+1/2) = O(F, m, 2, h) of the harmonic weak Maass
form Fy (1) = Fum(7,(2=1)/2) = Fym(T,n/441/2) € Hy_,,/5(wr) is the automorphic Green’s function
for the special dzmsor Z(u7 m) on the spin Shimura variety X = Xg = Xk, .

Proof. Cf. [10, Remark 3.10] with [6, Definiton 1.8 and Proposition 1.10], [9, §4], and [1, §5]. |

4.4.5. Extension to compactifications. Fix f € Hy_, /2(wr) a harmonic weak Maass form whose holomorphic
part f* has integral Fourier coefficients. Fix a compactification X* of the Shimura variety X = X . For the
divisor Z(f) C X defined in (18) above, there exists a divisor C(f) supported on the boundary X* = X*\ X
such that ®(f, ) is the automorphic Green’s function in the sense of Theorem 4.2 for the corresponding divisor

(30) Z(f) = 2(H+C(f)

of degree zero on X. For a more precise description of this in the setting of the modular curve, with the
quadratic space given in Example 7.2 below, we refer to the discussion in [13, §7.3].

4.4.6. The special case of Hilbert modular surfaces. Fix k any quadratic field with class group C(Ok), and
A = [a] € C(Ok) any ideal class. We now explain how to specialize the definition (28) to the setup we consider
with the spaces (Va,Qa) of signature (2,2) with lattices Ly C V4 giving rise to the Hilbert modular surface
Xk, 2 Yo(N)2 Here, we adapt the discussion of [9, §6.1] as follows. As explained above, we have a natural
identification D(V4) = D*(Va4) = §2, so can view the variable z € D(V4) as a pair z = (21, 20) € H2. Let
Q,_1 denote the classical Legendre function of the second kind

Qs—l(t)Z/O (t+ \/71cosh ) ’ du = F(S)Q (2>32F1 (3,3,23;12+t>.

2I'(2s) \ 1+t

Hence, we can rewrite the corresponding theta lift (28) in this setting as

Dpum(2,5) = @u,m(z,l,s):?w 2 <62;&)>82F1<8’8’28;Q<T»))

AEp+L 4
Qa(N)=m
4 2Q 4(A2)
Sy X 012
A€Ep+L 4
Qa(N)=m
4 2
= = Z Qs (]- - ()‘1 Z)‘ql— z )‘2,2)‘5 z)) :
F(S) A=(A1,A2)Ep+Lg=a+N—1a mNa
QaMN)=m

Here again, we write 7 € Gal(k/Q) to denote the nontrivial automorphism, with A = (A1, A\2) € L4 a vector,
and Aj . = Aj (2, z,) the corresponding projections to z = (z1,22) € $2. In this way, we see that

2
(I)m(zlsza 3) = (I)ﬁzA<Zla227s) = Z (I);L.,m(zlaz%s) = _@GEO(N)’m(Zl,ZQ),
,LLEL /La
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where GEO(N)’m(zl, za, 8) denotes a translate the higher Green’s function characterized in [25, §11.2, (2.3)] and
[64, §3.4], cf. [9, §6.1]. To be more precise, we see from (29) that ®,,(z,s) = ®LA(zy, 22, 5) is an eigenvector
for the hyperbolic Laplacian operator A, = A, .,) = A;, X A, on Xo(N) x Xo(N) satisfying

A, D, (21,29,5) = %(s — 1)®,,(21, 22, 5).

On the other hand, there is a unique resolvent kernel function GEO(N)(zl, z9) on §) x $ characterized by:

(i) GEO(N)(Zl, 29) is smooth $ x H\{(7,77) : v € To(N)}
(ii) GsFO(N)(%Zlﬁz@) = GEO(N)(21»Z2) for all v1,v2 € To(&V)

(iii) A, GEO(N)(zl, z9) = s(s— 1)G£°(N)(z1, z9) for each of j = 1,2, where A, — y]2 (872 + 33722) denotes
J

2
azj

the hyperbolic Laplacian of weight zero in either variable z; = x; +iy; € 9

(iv) GEO(N)(zl, z) = e, log |21 — 20> + O(1) as z1 — 2o, where e., = # Stabr,(n)(22) is the order of the
stabilizer of zo in I'o(IV)

(v) In a neighbourhood of a cusp a~!co, the function %(azl)S*IGEO(N) (21, 22) extends to a continuous
function.

The existence of such a function follows from the construction given in [25, §II1.2]. That properties (iii)-(v)
characterize it uniquely for R(s) > 1 is shown in [64, §3.4]. We deduce that the function —@@m(zl, 21, S)
L(s)

at m = 1 satisfies these properties, and that the corresponding “higher” Green’s functions ——=>®,,,(21, 22, 5)

for m > 1 can be viewed as translates of this resolvent kernel function GEO(N)(zl, z2).

5. SUMMATION ALONG ISOTROPIC QUADRATIC SUBSPACES

We now compute the regularized theta lifts ®(f, z, h) along CM cycles Z(V,) and geodesic sets G(W).

5.1. Eisenstein series and Siegel-Weil formulae. Fix V) C V any quadratic subspace of signature (0, 2),
writing Lo = Vo N L for the corresponding lattice and Qo = Q|y, the corresponding quadratic form. We also
fix W C V any rational quadratic space of signature (1,1), writing Ly, = WNL for the corresponding lattice
and Qw = Q|w the corresponding quadratic form. We now describe the Eisenstein series associated with
these quadratic spaces.

5.1.1. Langlands Fisenstein series and the Siegel-Weil formula. We first describe the construction in more
general terms. Let (U, Q) be any anistropic rational quadratic space of even dimension dim(U) and signature
(p(U),q(U)). Fix a lattice L C U, and consider the corresponding Weil representation wy, : SLy(Z) — Sp.

Let us write P = M N C SLy to denote the parabolic group of upper-triangular matrices, with Levi
subgroup M and unipotent radical N parametrized with the standard shorthand notations

)

Hence, writing Ko, = SO2(R) and K = SLQ(Z), we have the Iwasawa decomposition SLy(A) = N(A)M (A) K K.
Let xy denote the quadratic idele class character of Q given on x € A* by

xwi@) = (2, ()" det(v)

where (+,-)a denotes the Hilbert symbol on A*, and det(U) the Gram determinant of U. Given s € C, let
I(s,xv) denote the principal series representation of SLy(A) induced by the quasicharacter xy (+)|-|°. Hence,
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I(s, xu) consists of all smooth functions ¢(g, s) on g € SLy(A) satisfying the transformation property
¢ (n(bym(a)g, s) = xv(a)|al* ' é(g, s)
for all a € A* and b € A, with SLy(A) acting by right translation. There is a SLs(A)-intertwining map

_ dim(U)
=—

A:S(U(A)) — I(s0(U),xv),  A@)(9) := (wr(g)9) (0)  for so(U) : -1

Recall that a section ¢(s) € I(s,xv) is standard if its restriction to the maximal compact subgroup
KoK C SLy(A) does not depend on s. Via the Iwasawa decomposition, we see that any A(¢) € I(so(U), xv)
has a unique extension to a standard section A(¢)(s) € I(s, xv) such that A(¢)(so(U)) = A(¢). We consider
the following standard sections. Let us for any [ € Z write x; to denote the character of K., defined by

e . _ cosf  sinf
Xi(ko) = € = exp(ilf), ko = ( —sind  cosd ) € Ko

Let ¢’ (s) € I(s,xy) be the unique standard section for which ¢! (ks,s) = xi(ke) = €. In terms of the
Iwasawa decomposition, this section can be characterized by the transformation property

oo (n(b)m(a)koo, 5) = xv(a)|al**' e

Now, recall we defined the Gaussian ®o, € S(U(R)) in (12), at least for (U, Q) of signature (n,2). More
generally®, writing D(U) = {z C U(R) : dim(u) = p(U), Q|. < 0} for the corresponding domain, and defining
for a given z € D(U) the corresponding majorant (z,z), = (x,1,2,1) — (z,,2,) on x € U(R), we let

Poo (2, 2) = exp (—(z,2)2) -
Again, we see that @, (hx, hz) = Po(x, 2) for all h € GSpin(U)(R). Viewed as a function of z € U(R),

we obtain an archimedean local Schwartz function &, € S(U(R)). Through the Weil representation wy,, we
also know that Ko, acts on @ (z,z) with weight M. Hence, we see in general that

p(U)—q(U)

Aoo(Poo(,2)) = P 2 (s0(U))-

Given any standard section ¢(s) € I(s, xu), we define the corresponding Eisenstein series

EL(g,S;¢) = Z QS(’YQ,S)
vEP(Q)\ SL2(Q)

on g € SLa(A), first for R(s) > 1. This sum Ep(g,s;¢) has a meromorphic continuation to all s € C
via the Langlands functional equation, which relates Ep (g, s; ®) to Er(g, —s; M(s)¢) for the corresponding
intertwining operator M (s). This Langlands Eisenstein series Er,(g,s; ¢) determines an automorphic form
on g € SLy(A). Its value at so(U) is known classically to be holomorphic, as it is given as an average of the
theta series U1 (g, h; ) we considered above by the following well-known result.

Theorem 5.1 (Siegel-Weil). Let (U, Q) be any anisotropic quadratic space of signature (p(U),q(U)) and
even dimension p(U) + q(U). Let L C U be any mazimal lattice, and ® € S(U(A)) any Schwartz function.
The FEisenstein series Er(g,s; ®) is holomorphic at so(U) = (p(U) + q(U))/2 — 1, and given by the formula

! 2 ifpU)=0
& 01.(g, h; ®)dh = Ep(g, so(U); \(®)), a := .
S ek = Eulgso@iA@®), a {1 PR
SOU)(Q)\SOU)(A)
Here, we write dh to denote the Tamagawa measure on SO(U)(A).
Proof. See e.g. [40, Theorem 4.1] or [13, Theorem 2.1]. O

5We can assume without loss of generality for our later discussion that (p(U),q(U)) = (0,2) or (p(U), q(U)) = (1,1), so that
we only need to consider the case of (p(U),q(U)) = (1,1) separately.
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5.1.2. The CM case. We now consider the special case of the negative definite subspace (Lo, Qp). Consider
for each integer [ € Z the &,-valued Langlands Eisenstein series on 7 = u +iv € $ and s € C defined by

_ 1
(31) Ery(r,s:0):=v"2 > Er,(gr 505 @ Ap(1,))1,.
pneELY /Lo

We can then describe Theorem 5.1 in terms of the Siegel theta series (15) as

(32) / 01, (T, 20, hy)dh = Er,(1,0; —1).
SO(Vo)(Q)\ SO(Vo)(Ay)

Here (cf. [13, Proposition 2.2]), we write 29 € D(Vy) = D*(V;) to denote the oriented hypersurface deter-
mined by V5(R). We also normalize the measure on SO(V5)(R) = SO2(R) so that vol(SO(V)(R)) = 1. This
determines a normalization of the measure on SO(V;)(A ) so that vol (SO(V5)(Q)\ SO(Vh)(Ay)) = 2.

As explained in [13, §2.2], the Langlands Eisenstein series (31) has the following classical description.
Writing T' = SLy(Z) and T'ee = P(Q)NT = {n(b) : b € Z}, we see that P(Q)\ SL2(Q) = ', \I'. Using the

Iwasawa decomposition, we can write the action of each matrix in the sum as

d

A direct computation reveals that

7:(2 b)GF = 79 = n(B)m(a)ke  for some a € Rso and 3,6 € R.

, T+ d
a=v3er+d~" and €= T+
ler + d|
and hence
0k (gr) = 033 (7 + d)er + a7,
so that
B vits
ELy(gr 565 @ Ap(1,)) = > (e7 +d) Z'W'Af(lu)(v)
(* b\ \l
=\ . 4 o
_ vits _
= Z (et +d)~" ler it (1, (wLol(W)) 1p).
"/_( a b )el“oo\l“
c d
It follows that
s —1
(33) Bry(rsil)i= Y Er(gnsid @)= Y. [30)F 1| 4.
v Lwrg
weLY /Lo YELe\I'

Recall that we consider the Maass weight raising and lowering operators R; and L;, as defined in (16). A
simple computation with the series expansion on the right-hand side of (33) reveals that

1
LiEL,(1,s;1) = 5(5 +1-=10) - Er, (7,81 —2)

1
RiEL,(1,s;1) = 5(5 +1+1)-EL (7, s1+2),
and in particular
(34) LiEp,(1,8;1) = g - Ep,(r,s—1).

Since the Eisenstein series Er, (7, s; —1) on the right-hand side of (34) is holomorphic at s = sq(Vp) = 0 by
the Siegel-Weil formula (32), we deduce that the Eisenstein series Er,(7,s;1) appearing on the left-hand
side must vanish at its central point s = 0 for its functional equation. We also obtain from (34) the relation

1
(35) LlElLO(Tvo;]-) = §ELO(T,O;—1)
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for the derivative E7 (7,0;1) = LB (T7S;0)|S:0 at s = 0. Writing 0 and 9 to denote the Dolbeault
operators, so that the exterior derivative on differential forms on $) is given by d = 0 + 0, and again
du(r) = 44 for 7 = u+ iv € §, we can express the relation (35) in terms of differential forms as

(36) —20 (EL, (7,0;1)dr) = Ery(1,0; =1)dp(7).

More generally, we have the following useful description of the operator L;.

Lemma 5.2. The Maass weight-lowering operator L; can be described in terms of differential forms as
A(fdr) = —v*'&(f)dp(r) = —Lifdu(r).
Proof. See [22, Lemma 2.5] and [13, Lemma 2.3]. O

Let us now consider the Fourier series expansion of the Eisenstein series Er, (7, s; 1), which we write as
Er,(1,81) = Z Z Ay (s, p,m,v)e(mr)1,,.
pneLY /Lo meQ
Following the discussion of Kudla [40, Theorem 2.12] (cf. [13, §2.2]), and using the fact that Er,(7,0;1) =0
by (34), we compute the Laurent series expansions of each of the coefficients Ay, (s, i, m,v) around s =0 as
ALO(S’ s, m, ’U) = bLo (M7 m, U)S + 0(52)
We deduce from this that £7 (7,0;1) has the Fourier series expansion
E7,(7,0;1) Z Z bro(p, m,v)e(mr)1,.
neLY /Lo meQ

Viewing E7 (7,0;1) = E’Lf] (1,0;1) + B (7,0;1) € Hy(wy,) as a harmonic weak Maass form of weight 1 and
representation w\L/O, we also use the general calculation of Kudla [40, Theorem 2.12] to compute the Fourier
series expansion of the principal/holomorphic part £, (7) := E’LJ; (1,0;1) as

(37) ELy(r) =Eft(r,0:1) = > >k (u,m)e(mr)1,,
nELY /Lo mEQ

where the coefficients are given explicitly by the convergent limits

( ) limy, 00 bro (14, M, v) ifu£0orm#0
K ,m) =19 . .
LotHt lim, 00 b1, (0,0,v) —log(v) if p=0and m = 0.

Let us now specialize the setting we consider below, where the negative definite space (Lo, Qo) is incoherent
in the sense that it is constructed from an ideal Ly = a C Oy in an imaginary quadratic field k = k(Vp), with
its positive definite norm form Qq(-) := Ny,q(-)/Na, but we take (Vp, Qo) = (aq, —Qa) to get a negative
definite space of signature (0,2). This construction amounts to taking the positive definite quadratic space
(aq@, Qaq) at all of the finite places, but then switching invariants at the real place in replacing by (aq, —Qa).
Such a choice of (Vp,Qo) = (aq, —Qa) makes sense locally at each place of Q, but does not correspond
globally to any quadratic number field — hence the name “incoherent”.

Proposition 5.3. Suppose (Lo, Qo) = (a,—Qq4) for a C O a nonzero integral ideal of an imaginary
quadratic field k = k(Vp) of discriminant dy and odd quadratic Dirichlet character ny(-) = (%), with
Qa(-) = Ni/q()/Na the corresponding positive definite norm form. Let Er,(7,s) = Er,(7; ;1) denote the
corresponding Eisenstein series of weight Il = 1 defined in (31) and (33) above. Writing

A(s,mx) = |di|2Tr(s + 1)L(s, k), Tr(s) :=n 3T(s)
to denote the completed Dirichlet L-function L(s,ny) of the character ny, the completed Eisenstein series
BT, (7,8) == A(s + L) EL, (7, 8) = A(s + 1,k ) EL, (7,05 1)
satisfies the odd, symmetric functional equation
E7 (1,8) = —E} (T, —5).
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Proof. See [13, Proposition 2.5]. The functional equation is deduced from the Langlands functional equation
of each of the constituent incoherent Eisenstein series Er,(gr, s; ¢ @ Af(1,,)), where switching invariants
at infinity as we describe above leads to switching the corresponding archimedean local sign to —1. ]

5.1.3. The geodesic case. We summarize the discussion of [54, §4.6] for the subspace (Lw, Qw) of signature
(1,1). Consider for each [ € Z the &, -valued Eisenstein series on 7 = u +iv € §) and s € C defined by

(38) Bry (r,s:0)=v"% 3" Ep, (g5 6% ® (1)1,
HELY,/Lw

We can then describe Theorem 5.1 in terms of the Siegel theta series (15) as

(39) / QLW(T,Zw,hf)dh:ELW(T,O;O).
SO(W)(Q)\SO(W)(Ay)
Here, we fix an oriented hyperbolic line zyy € D(W) = D*(W), and again normalize the measure on

SO(V)(R) so that vol(SO(W)(R)) =1 and vol(SO(IW)(Q)\ SO(W)(Ay)) = 2.
In the same way as for (31), we can describe the Langlands Eisenstein series (38) in classical terms as

(40) Epy(rsil)i= > Ery(grnsidh®A(L) = 3 {3(7)¥1O} ‘ ~
pELY, /Lw AET o\ bery

Let us now specialize immediately to the setting we consider later on, where the quadratic space (L, Qw )
is given by a nonzero integer ideal Ly = a C Oy in a real quadratic field k¥ = k(W), with indefinite
quadratic form Qw given by the norm form Qw(-) = Qa(-) = N q(-)/Na. Unlike in the CM setup above
with the negative definite subspaces constructed from the positive definite subspaces attached to imaginary
quadratic fields, these quadratic spaces (Lw,Qw) = (a,Qq) are coherent in that they correspond globally
to integral ideals in some real quadratic number field k¥ = k(W). This has the following consequences for the
corresponding Eisenstein series Er,, (1,$) = EL,, (T, s;0).

Proposition 5.4. Suppose (Lw,Qw) = (a,Qq) for a C O a nonzero integral ideal of a real quadratic field
k = k(W) of discriminant dy, and even quadratic Dirichlet character n(-) = (df’“), with Qa(-) = Ny q(-)/Na
the corresponding indefinite norm form. Let Er,, (1,s) = Er,, (7;5;0) denote the corresponding Eisenstein
series of weight | = 0 defined in (38) and (40) above. Writing

A(s,me) = |de|2Tr(s + 1)L(s,mk), Tr(s):=n"2T(s)
to denote the completed Dirichlet L-function L(s,ny) of the character ny, the completed Eisenstein series
EZW (r,8) == A(s+1,m)EL,, (1,8) = A(s + 1,m) EL,, (,0;0)
satisfies the even, symmetric functional equation

EEW (T7 S) = EEW (T7 _S)'

Proof. See [54, Proposition 4.10], this can be deduced as a direct consequence of the Langlands functional
equation for the Eisenstein series on the right-hand side of (38) corresponding to the coherent quadratic
space (Lw, Qw) = (a,Qq) of signature (1,1). ]

Fixing such a coherent choice of Lorentzian quadratic space (L, Qw ) henceforth, we consider the images
of the Eisenstein series Er,, (7, s;1) under the Maass raising and lowering operators (16). Here, we see by
inspection of the series expansion on the right-hand side of (40) that

1
LiEL,, (1,s1) = 5(5 +1-10)-EL,(1,81—2)
1
RiEL,, (1,81) = 5(5 +1+10)-EL, (1,81+2),
and in particular
1
(41) LyEr, (1,8;2) = 3 (s—1)-EL, (1,5;0).
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Now, the Eisenstein series E, (7, s;0) on the right-hand side of (41) is holomorphic at s = so(W) = 0, and
so we can evaluate this relation at s = 0 to obtain the identity

1
LyEy, (1,0;2) = ~3 - Ep,, (1,0;0).
On the other hand, we can differentiate each side of (41) with respect to s to obtain the relation
1 1
LyE7  (T,5:2) = 3 (s—1)-Ep, (1,50) + 3 -Epr,, (71,80),
then evaluate this latter relation at s = 0 to obtain the identity

1 1
LQE}IW(TaO; 2) = 5 ' ELW(TaO;O) - 5 ’ E/LW (T7O;O)a

equivalently
(42) 2L,E7, (1,052) = Ep,, (7,0;0) — E7_ (7,0;0).
We now use the even functional equation of E7_ (7,s) (Proposition 5.4) to deduce that E7  (7,0;0) = 0.

Corollary 5.5. We have E, (7,0;0) = 0, and hence via (41) the relation —2Lo2E},  (7,0;2) = —EL,, (7,0;0).
Ezxpressed in terms of differential forms according to Lemma 5.2, we obtain the relation

—2LyE7, (1,0;2)du(r) = 20 (EL,, (7,05 2)dr) = —EL,, (7,0;0),
equivalently
(43) Ery, (7,0;0)du(r) = —20 (E/LW (7,0; 2)d7’) .

Proof. See [54, Proposition 4.12]. We know by the Siegel-Weil formula that Er, (7, s;0) is analytic at s = 0.
Hence, Epr,, (7,5;0) and all of its derivatives with respect to s are analytic at s = 0. In particular, both
values Ep, (7,0;0) and E} (7,0;0) are defined (finite), and we can expand Ep, (7, s;0) into its Taylor series
expansion around s = 0. Now, we know by Proposition 5.4 that the completed Eisenstein series E7 (1,5;0)
satisfies the even, symmetric functional equation E7 (7,s;0) = E} (7, —s;0). Comparing the Taylor series
expansions around s = 0 as we may, we then derive for any s € C with 0 < R(s) < 1 the relation

Bi (7,0:0) + B, (7,050)s + O(s2) = Ef,, (r,050) — B, (7. 0:0)s + O(s?),
equivalently
(44) E} (1,0;0)s + O(s*) = —Ef/ (7,0;0)s + O(s?).
Taking the limit as R(s) — 0 of (44), we see that £}’ (7,0;0) must vanish, and hence E7(7,0;0) =0. O

Remark 5.6. Observe that we could also have considered the Lorentzian lattice (Ly,—Qw) of signature
(1,1), denoted by — Ly, together with the corresponding incoherent Eisenstein series E_p,,,, (7, s;0). Writing
k = k(W) again to denote the real quadratic field attached to the genuine space (Lw,Qw) = (a,Qq),
with () = (%) its character, a minor variation of the argument for [13, Proposition 2.5] shows that the
completed Eisenstein series E* (7,s) := A(s + 1,mx) E_L,, (7, 5;0) satisfies an odd, symmetric functional

equation
EiLW (T7 S) = _EiLW (T7 _S)a

and hence that £*; (7, s) vanishes at the central point s = 0. In particular, E_r,, (7,0;0) = 0. Deriving
the corresponding identities (41) and (41) in the same way for the incoherent Eisenstein series E_r,,, (T, s;0),
the vanishing E_r,, (7,0;0) = 0 at the central point implies the corresponding functional identity

(45) 2L2E" | (7,0;2) = —E'  (7,0;0).

While this latter identity (45) describes the true analogue of the CM setup for the incoherent Eisenstein
series F_r,,, (7, s;0), it is unfortunately not useful for the derivation of integral presentations as we describe
below (cf. [13, Theorem 4.7]), in particular as it is the vanishing central value E_p,, (7,0;0) = 0 which
appears in the corresponding average over theta series 0_p,,,. (7, z, h) according to Siegel-Weil (Theorem 5.1).
It could be of independent interest to investigate vanishing averages of regularized theta integrals of this
type.
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Let us now consider the Fourier series expansion of the Eisenstein series Fr, (7, s;2),
Er, (1,82) = Z Z Ary (s, p,m,v)e(mT)1,.
PELY, /Lw meQ
Following [40, Theorem 2.12], we write the Laurent series expansions around s = 0 of the coefficients as
Ary (8, 1,m,0) = agy, (1, m,v) + by, (1, m, v)s + O(s?),
and deduce that the derivative Eisenstein series E’LW (1,0;2) at s = 0 has the Fourier series expansion
Er,, (1,0;2) = Z Z by (p,m,v)e(mr)1,,.
pELY, /Ly meQ

Viewing this derivative Eisenstein series as a harmonic weak Maass form

E'LW(T7O; 2) = E’L; (1,0;2) + E/[W (1,0;2) € HQ(UJXW)

of weight 2 and representation w}jw, we consider the principal/holomorphic part Eyp,, (1) := E'L; (1,0;2).
Using the argument of [40, Theorem 2.12] again, we can compute the coefficients in its Fourier series expansion

(46) Ery (T) = E},;—/ (7—7 0; 2) = Z Z KLw (:uv m)e(mT)lﬂ
rELY, /Lw mEQ
as the convergent limits

( ) limy 00 by, (18, m, v) ifu£0orm=#0
K ,m) =19 .
Lw LA lim, 00 b1, (0,0,v) —log(v) if 4 =0 and m = 0.

5.2. Summation formulae. Fix f € H;_»(wr). Write | = 1 — 5 for simplicity.

5.2.1. Decompositions of theta series. We first justify how to decompose the Siegel theta series (7, z, h)
for later calculation. Let L; for j = 1,2 be any pair of even lattices, with corresponding Weil representations

wy, : SLy(Z) — C[LY /L;).
The Weil representation of the direct sum L; & Lo is given by the tensor product wr, ® wr,. Given
f@) = > fu(m1, € Hy(wr,)
neLY /Ly

and

g(T) = Z gl/(T)lV € H, (WLQ)

veLy /Ly
harmonic weak Maass forms of weights [; and representations wr,;, the corresponding tensor product
f(T) ® g(T) = Z fﬂ(T)gV(T)]'H-FV € Hll+l2 (wL1€BL2) = Hl1+l2 (le ® WL2)
nweLY /Ly

veLy /Ly

determines a harmonic weak Maass form of weight [; + l5 and representation wr,q¢r, = wr, ® wWr,.
Suppose now that M C L is any sublattice of finite index. Observe that we have inclusions

McLcL'cMY = L/McLY/McM'/M,
and hence an inclusion of spaces Hy(wr) C Hj(wn) for any weight [ € 1Z. Consider the natural map

LY/M — LY/L, p+— 7.
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Lemma 5.7. Let M C L be any sublattice of finite index. We have natural restriction and trace maps
vespn : Hi(wp) — Hilwa), f(1) = > fa(Mlg— fu(r) = > fuu)l,
mELV /L peMY /M

and

trr v : Hi(wn) — Hi(wr),  g(7) = Z gu(T) 1 — g" (1) = Z g5 (T)1g
wEMY /M meLY /L

such that for any pair of vector-valued forms f € Hj(wr) and g € Hj(war), we have
(1), 9" (7)) = ({far(7), g(7)))-
Ezplicitly, the restriction map is given for any p € MV /M and f € Hy(wr) by
fz(T ifue LV /M
f]VI,/}.(T) — M( ) ' 1% \//
0 if pg LY /M
The trace map is given for any 1t € LV /L with fized preimage p € LV /M and g € Hy(wyr) by
gET) = Y gurulD).
veL/M

Proof. See [13, Lemma 3.1]. O

As explained in [13, Remark 3.2], we have for the Siegel theta series we consider the relation
(47) 0r, = (Ou)".

We shall use this relation (73) for the finite-index subgroups M = Lo @ Lg C L and M = Ly & Ly, C L.
In particular, we obtain from (73) the relations

Oroort =00, ®0r =  OL= (9LU@LOL)L
Orwory, =0y ®0p = 0= (GLWGBL‘%V)L
which via Lemma (5.7) imply the corresponding relations
(F.00)) = {UF. Oryor)™) = (Froprs Orowrs)) = (Fromrs: O ® 0r4))
(F,00)) = (s Oraor )™ = U ors O ors ) = (Frwors: Orw © 07:).

We shall take these relations (48) for granted in what follows, and drop various subscripts and bars from the
notations for simpler reading. That is, we shall simply write ((f,0r, ® 61)) = ((f,0L,, ® 01 )) to denote

the right-hand side(s) ((fr et 000 ® 004)) = ((fLwers 0oy ®0p1 ) of (48) from now on.

(48)

5.2.2. Preliminary calculations. We first relate our sums to the integrals appearing in the Siegel-Weil formula
(Theorem 5.1), (32) and (39). Recall we consider the CM cycle Z(Vj) on X i with complex points as described
in (6), as well as the geodesic set G(W') with complex points as described in (7). Let us write

To = T(Vp) := GSpin(Vy) = Resiv,)/Q Gm [k(Vo) : Q] = 2 imaginary quadratic
Tw = T(W) := GSpin(W) = Respw)/q Gm [k(W) : Q] = 2 real quadratic

for the corresponding maximal tori in GSpin(V') and quadratic number fields attached to these spaces.
Let us again write U to denote either of these subspaces Vo, W C V, with Ty = GSpin(U) = Resywy/q Gm
for k(U) the corresponding quadratic field. We have in each case a short exact sequence of algebraic groups

(49) 1 — G, — GSpin(U) — SO(U) — 1,
which after taking adelic points modulo rational points recovers the Hilbert exact sequence for k = k(U),
1 — QA" — E\AS — k"\A} — 1
Recall that we fix the Haar measure on SO(U)(A) so that vol(SO(U)(R)) =1 and
vol(SO(U)(Q)\SO(U)(Ay)) = 2.
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We fix the standard Haar measure on A* with vol(Z,’) = 1 for each prime p so that vol(Z) = 1, as well as

vol(Q*\AX) = 2, and vol(A} /Q*) = %. This determines a measure on Ty (A) & Ay via (49), with
1

VOl \A ;) = vol(Q\AF) - vol(1\ A} ;) = 5 - vol (SO(U)(Q)\ SO(U)(A)) = 1
and
vol(kX\A,:) = vol(Q™*\AX) - vol(kl\A,lﬁ) =2-vol (SO(U)(Q)\SO(U)(Ay)) = 2.

Hence, we derive the following result for future use.

Lemma 5.8. We have vol(Ty(Q)\Tu(Ay)) = 1 for either choice of quadratic space U = Vo, W. Writing
k = k(U) for either choice of quadratic field, let wy, = #u(k) denote the number of roots of unity in k. Hence,
by Dirichlet’s unit theorem, we know that #0Oy = wy, when k = k(U) = k(V) is an imaginary quadratic field.
When k = k(U) = k(W) is a real quadratic field, we know that O; = (e) x u(k) for ey the fundamental
unit, so the solution g = %(t + uy/dy) with u minimal to Pell’s equation t> — dyu® = 4. We have that

Vol(@kx) = %’
k
and that
~ 2wy : - . .
vol(kX OX) = { Ju if k is imaginary quadratic
ek %ﬁ(sk) if k is real quadratic.

Proof. Cf. [13, Lemma 6.3]. The first claim follows from the discussion above. Now, observe that

1= / d*z = / / d*x = i ovol(@:).
wy,

EX\AY EX\AY /O OX\OF

More generally, we have that

o / PO / / X = {Z,’j ~Vol(k§o(5,f1 . if k is imaginary quadratic

—he . vol(k if k is real quadratic.
. . wy, In(eg)
EX\AX EX\AY /RO OX\kLO)
U
Let us now consider the sums we wish to compute, which we now denote by
(f,Z(V0) = Y,  ®(fiz0.h)

20,h)€Z(Vo)(C
(50) (20,h)€Z(V0)(C)

B(f,G(W)) := > ®(f, zw, h).

(zw,h)EG(W)(C)

Note that we have two orientations 23 € D(Vp) and 25, € D(W) to consider in each case, but that we drop
this from the notation henceforth for simplicity.

Lemma 5.9. We have the following expressions for the sums (50) in terms of integrals over the corresponding
adelic quotients of orthogonal groups SO(Vy) and SO(W).

(i) If Vp is a rational quadratic space of signature (0,2), then we have
1
o(f, Z(Vo)) =
(f ( 0)) VO](Ko)
heSO(Vo)(Q)\SO(Vo)(Ay)
_ deg(Z2(W))
2

(I)(fa 20, h)dh

q)(fv 20, h)dha
heSO(Vo)(Q)\SO(Vo)(Ay)

where
4

VOI(K()) '

deg(Z(Vo)) =
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(ii) If W is a rational quadratic space of signature (1,1), then we have

2
(I)(f7 G(W)) = m
(2w ,h)ESO(W)(Q)\ SO(W) (A)

&(f, 2w, h)dh.

Proof. See [47, Lemma 2.13]. Write U = Vo, W C V for either of the quadratic subspaces we consider, with
corresponding torus Ty = GSpin(U) = Resy)/q Gm, quadratic field k(U), and compact open subgroup
Ky =Ty(Af) N Kp. Via the exact sequence (49), we have an identification of spaces

SO(U)(Q)\SO(U)(A) = GSpin(U)(Q)\ GSpin(U)(A) /A = k(U) \A[ () /A"
and
SO(U)(Q)\SO(U)(Ay) = GSpin(U)(Q)\ GSpin(U)(Ay)/AF = k(U)* \AT, 1,)/AF.

Both spaces are compact, and modding out by the compact open subgroup Ky C Ty(Ay) gives finite
quotients

SO(U)(Q)\SO(U)(A)/Ky = GSpin(U)(Q)\ GSpin(U)(A)/A* Ky = k(U)*\Aj ) /A" Ky
and
SO(U)(Q)\SO(U)(Ay)/Ky = GSpin(U)(Q)\ GSpin(U)(Ay)/AF Ky = k(U)*\AF )/ Af Ku.
Given B any function of h € Tyy(Ay) which depends only on the image of h € SO(U)(Ay) and is both
left-T (Q)-invariant and right Kp-invariant, the argument of [47, Lemma 2.13] shows that
B(h)dh = vol(Ky) > B(h).
SO(U)(Q)\SO(U)(Af) hETU(Q)\TU(Af)/KU

We apply this to the function B(h) = ®(f, z0, h) to obtain the relation

1
O(f,ZW)) = —— P h)dh
(f7 ( 0)) VOI(Ko) (fv 20, ) )
heSO(Vo)(Q)\ SO(Vo)(Ay)
and to the constant function B(h) =1 to obtain the relation
1 2
deg(Z(Vp)) = 1= dh = .
e8(Z(V0)) 2 vol(Ko) / vol(Ko)
=€supp(Z (Vo)) heSO(Vo)(Q)\SO(Vo)(A )

For the function B(h) = ®(f, zw, h), we also obtain

O(f, 2w, h)dh = vol(Kw) - ®(f, G(W)).
(2w h) ESO(W)(Q)\ SO(W) (A)

We now give the following more convenient expression for ®(f, z, h).
Proposition 5.10 (Kudla). We have the following expressions for the regularized theta integral ®(z,h) as
limits of truncated sums of integrals. Here, we take for granted the relation of scalar products (48).

(1) In the CM case with negative definite lattice Ly C L, we have for any (zo,h) € D(Vy) x To(Ay) that

B(f,200h) = i | [ (7). 0047) 9 0, 70, 1)) — Aalog(T)|.

T—o0
where
Ao = CT{(f(7),0,1 () @ Lo11o))-
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Here, we write 01 (7) = 0. (7,1,1), and note that the underlying theta series 0,1 (7, 20, h) for the
positive definite lattice Ly of signature (n,0) is holomorphic in the variable T € .

(ii) In the case with the signature (1,1) lattice Ly C L, we have for any (zw,h) € D(W) x To(Ay) that

q)(f7 AW, h) = lim |:/}_ <<f(T)7 gL‘%V (T) & 9LW (Ta ZW h)>>dﬂ(7—) - AO IOg(T) )

T—o0

where
Ao = CT{(f7(7),07, (7) @ LotLw))-

Here, we write QL‘%V (r) = OL‘%V (1,1,1), and note that the underlying theta series QL%(T, 2w, h) for
the Lorenztian lattice LJV;, of signature (n — 1,1) is nonholomorphic in the variable T € §). We write
0F . (1,2w,h) to denote its holomorphic/principal part.

Liy
Proof. See [40, Proposition 2.5, with [13, Lemma 4.5] and [54, Lemma 4.18]. Let Ly denote either of the
lattices Lo, Lyy C L, with M = Ly & Lﬁ C L the corresponding finite index lattice for (48) above, which
again we express simply as ((f,0r)) = ((f, 0. ®40r,)). Hence, for any zy € D(U) and h € Ty (Ay), we have

*

B0 0) = [ (000720 ))dtr) = [ U000 (7 1,1) @ 01, (120 )l

F F
Write 0. (1) = Ors (7,1,1). Splitting the regularized integral on the right-hand side into parts according to
the decomposition f(7) = f¥(7) + f~(7), we obtain

(I)(f, U, h)
= / (F1(), 004 (1) @ O (7, 20, M) dpal7) + Jim | {(F7(7), 00, (7) @ O (7, 20, ) dpa(7),
F o JFr

where the second integral is absolutely convergent. Let us now decompose . (1) = 97{ L (7)+ 0, . () in the
U U

same way, noting that we do not need to do this when U = Vj has signature (0, 2) so that the complement
L}, is positive definite and consequently the theta series 6 L (7) is holomorphic. We then get

000145 @ 00 (20, Yt

= / (fFH(T) 07, (1) @ Oy (7, 20, h)))dp(r) + Jim [ ((F7(7), 07, (7) @ Op, (7, 20, b)) dp(T),
F U T—ro00 Fr U
where the second integral is again absolutely convergent. We then use [40, Proposition 2.5] to evaluate the
first integral on the right-hand side of the latter identity as

.08, 0) 9 00, (o 1antr) = Jim | [ (450007, (1) 1 (r ) autr) — AptogT .
F v Fr v

T—o00
where
Ao = CT(f* (7). 67, (1) © 1011,)).
Putting the pieces back together, we get the stated formulae. O

Corollary 5.11. We have the following preliminary expressions for the sums (50).

(i) In the CM case with the negative definite lattice Ly C L of signature (0,2), we have

(I)(fv Z(VO)) = lim |:2 /}_ <<f(T)79Ld- (T) ® Er, (T’ 0, _1)>>dﬂ(7) — Ao IOg(T):| :

T—o00 VO](K())

(ii) In the geodesic case with the Lorenzian lattice Ly C L of signature (1,1), we have

BGOV) = i | s [ U804, (1) 8 By (7. 050))d(r) ~ Aolog(T)
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Proof. We start with the expressions of Lemma 5.9, evaluating the regularized theta integrals according to
Proposition 5.10. Switching the order of summation and applying the Siegel-Weil formula (Theorem 5.1), so
(32) for (i) and (39) for (ii), we obtain the stated formulae. O

5.2.3. Summation along CM cycles. We now evaluate ®(f, Z(Vp)). Let g(7) = g5(7) := &(f) = &1 (f)(7)
be the holomorphic modular form of weight 2 — 1 = 1 + & obtained by applying the antilinear differential
operator & to the initial harmonic weak Maass form f € H;(wy,). We consider the Rankin-Selberg L-function

L(S,g X HLOL) = <g(7)70LOL (T) ® ELO (7_7 S5 1)>7
as well as its completion
L*(s,9 x 0y ) := Ms + 1,mk)(9(7), 01 (T) @ EL,y(7,5:1)) = (9(7), EL, (7, 5)).

Here, we write k = k(V) for the imaginary quadratic field attached to the (incoherent) quadratic space
(Vo, Qo) = (a, —Qy), with discriminant dy and character ny(-) = (dfk), and Er,(s,7;1) for the corresponding
(incoherent) Eisenstein series with completion £ (s,7) := A(s + 1,m)EL,(s,7;1) = —E} (—s,7). Writing

gy =D D egluymle(mn)l,

\ €Q
nweLY /L mes

and

o= Y Y, rmemml, = > g (rm)e(m)1,

ne(Ld)Y/Lg meS ne(Ld)Y/Lg T2

for the Fourier series expansions of the holomorphic forms g(7) € Sz—i(wr) and 0, (1) € Hz(wy, ), the
L-function L(s,g x 01) = (9,01 ® Er,(-,5;1)) has for R(s) > 1 the Dirichlet series expansion

o Hog aLOL) - (470_(%)11 (5 5 n) Z Z cg(p, m)TLg (M,m)m‘(st").

2
pe(LF)V /L m=1

Theorem 5.12 (Bruinier-Yang). We have that

B(f,Z(Vo)) = — (CTUSH (7). 814 (7) @ E0y (7)) + L' (0,9 % b.))

VOI(K())
= —deg(Z(V0)) (CTU(F (7). 014 (1) @ E1, (1)) + L'(0,9 x 0,) ).

Proof. See [13, Theorem 4.7]. As there seems to be at least one sign error in their formula®, we supply a
detailed proof. We know from Corollary 5.11 that we have

B, 2000) = i |2 ()~ Aatos(r)].

where

Ir(f) = /<<f(7)79L0L(T)®EL0(T,0;*1)>>d#(T)
Fr

and

Ao = CT{(f(r), 0. (1) ® LotL,))-

6See also [1, Theorem 5.7.1], where the same sign error for the contribution of L'(0,&1 1 /2(f) % GLé) in [13, Theorem 4.7]

is acknowledged. That is, the integral in the last line of [13, p. 654] should be evaluated using the differential forms identity
A(fr) = =2t (f)du(r) = —Lfdu(r), and the substitution made implicity for the first identity in [13, p. 655] misses the
sign change. Moreover, the application of Stokes’ theorem for the remaining integral does not involve a change of sign after
identifying the boundary 8Fr with the interval [¢T,1 + iT].
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To evaluate the integral I7(f), we first use the identity (36) and the relation d = 9 + 9 to compute

In(f) = —2 / (F(7), 00y © BE,, (v,0;1)))dr = —2 / (OF (7). 0y ® B, (7,0;1)))dr

Fr Fr
_— / A((f(r). 00y © B}, (r,0:1)))dr +2 / (@ (), 6y ® B, (r,0:1)))dr,
Fr Fr

which after using Lemma 5.2 to compute the second integral in the latter expression becomes

In(f) = —2 / A((f (7). By © B}, (7,0;1)))dr — 2 / (&) (7). 01y ® B} (r, 0 1)) du(r),

Fr Fr

and which after using Stokes’ theorem to evaluate the first integral becomes

Irlf) = =2 [ ({50,005  Bp, (r.0:0))dr —2 [ (@(0)(r), 60 © Ep (.05 1)) d()

8]:’1“ ]:T
1+:T

_ / (7). 00y @ B} (r.0:1)))dr 2 / (1 (F)(r), By ® B}, (7, 0; 1))+ E du(r).
=iT Fr

Inserting this back into the initial formula, we obtain

B(1.Z(V)0) =~y - (907): 014 (7) © B (m.0:1)
14T
= Jim | [ U7).005 © By (m0:1)dr = Ay log(T)
T=4iT

To evaluate the limiting term in this latter expression, we first split the integral into parts according to
the decomposition f(7) = f¥(7)+ f~(7) of f(r) into principal/holomorphic and nonholomorphic parts as

1+iT
Jn | 0600005 B 01
TZZTH_l.T 1+4T
= lim [ ((f7(7),00y(r) ® Ep, (7,0:1)))dr + lim_ / {(f7(r), Oy (1) ® B, (7,0;1)))dr.
T=iT T=iT

We argue that the second integral on the right of this latter expression vanishes (cf. [22, Theorem 3.5]). To
be more precise, let us write the Fourier series expansion as

{f~ (), Ory (1) ® E’LO (1,0;1))) = Z a(m,iv)e(mt), T=u+iv € N.
meZ
Using the orthogonality of additive characters, we find that
14T 1
/T:iT (f7(7), 00 (1) ® B, (7,0;1)))dr = /O (f7(w+iT), 00y (u+iT) ® By, (u+ T, 0;1)))du
1
= a(m,iT)/ e(mu)du = a(0,:T).
meZ 0
Here,
a(0,iT) = Z Z ¢y (p, —m)Wi(=2mmov)cr (1, m,v)
WeLv /L g
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denotes the constant coefficient of the scalar-valued form ((f~(7),0,. (1) ® £}, (7,0;1))), and we write

F(r) := 054 (1) @ Ep,(7,0;1) = > > ep(p,m,v)e(mr)1,.
pe(Ly@Lo)Y/(Lg®Lo) MEQ

Recall that the Whittaker coefficients W;(y) := f:’;y e t~'dt = T'(1 — 1,2]y|) decay rapidly for y — —oo.
Using this together with standard bounds for the Fourier coefficients of f~(7) and F(7), we deduce that for
some integer M > 0 and constant C' > 0 we have for each integer m > M the bounds

cy (p, —m)Wi(=2rmu)ep(p, m,v) = O(e~™C"),

Hence, via geometric series, we derive the bound

e—CT
a(O,ZT) = O ((1_6—07‘)) .
It is then apparent that

14T
lim a(0,i¢T) = lim ((f7(7), 0Ly (1) ® EL (7,0;1)))d7T = 0.

T—o00 T—oo J—ir

Thus, it remains to evaluate the streamlined expression

14T

: o + . / ) _

Jim | i [ U0 By (00 )))dr — dglog(T)
T=iT

Here, we first use the calculation of coefficients (37) to see that

14T
Jim | [ ()0 @ B (7, 0:1)))dr ~ Aglog(T)
—00

=T

1+:T
—Jim [0 Y S (brynmeo) — Guodalog(e) elmr)L,))dr

T— o0 .
r=iT peLY /Lo meQ

= CT((f*(7), 01 (1) @ Ey (7))

To compute the remaining integral

1+:T
4
T (WI(KO)—Q / (FH ()00 © B}, (r,0:1)))dr,

we decompose the Eisenstein series E7 (7) € Hi(wr,) into principal/holomorphic nonholomorphic parts
Ep (1) = Ef (1) + E7_(7) to get the corresponding decomposition of integrals. Again, we argue that the
contributions from the nonholomorphic parts vanish. To be more precise, we claim here that

14T
Jim [ (0,005 © By (ros D)) =
— 00

T=iT
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To see this, we again open up Fourier series expansions and use the orthogonality of characters to find that

14T
Jim [ ()00 (1) @ Bl (r0:1)dr
T=4iT

1
= lim [ {((f"(u+1iT),00y (u+iT) ® B} (u+1iT,0;1)))dr

T—o0
0

— T +
= Th—I>noo Z Z cr (1, m)ceLOL@EIL_O (—p, —m)W1(—27mT)

RE(LE+Lo)¥ /(Lg+Lo) T2

— i -+ —
= Thj)n E E Cf (u,m) E E CQLJ- (,ul,ml)cE,L (,ug,mg)Wl(f%erT).
00 0 0
we(Lg+Lo)Y/(Lg+Lo) mEQ n1€(Lg)V /Ly m1€Q>0
(Lg W/ (Ly ) mSe uzeg\//LUo macQ=g
0 mi4+mo=—m
p1+inz=—p mod (Li+Lo)

Again, we use the rapid decay of the Whittaker function Wy (y) := ffozy et tdt =T(—1,2y|) withy — —o0
to see that each inner sum tends to zero with T — co. In this way, we derive the stated formula
4
25, 20%)) = = oy (CTUS (), 01 () @ 0, (7) + (0,9 x 1) )

O

5.2.4. Summation along geodesic sets. We now evaluate ®(f, G(W)). Again, we consider g(7) = 1= (f)(7)
the holomorphic modular form of weight 2 — 1 = 14 % obtained by applying & to f € Hj(wr). We consider
the Rankin-Selberg L-function

L(s,g % 01 ) = {g(r), 01 (1) @ Epy (7,5 2)),
as well as its completion
L*(5,9 % 01) i= Als + L) {g(7), 61, (1) @ By (7,5:2)) = (9(7), Fi, (75:2).

Here, we write k = k(W) for the real quadratic field attached to the quadratic space (W, Qw) = (a, Qq), with
discriminant di and character ng(-) = (df’“), and Er,, (s,7;2) for the corresponding (coherent) Eisenstein
series of weight [ = 2 with completion E} (s, 7;2) := A(s+1,n)EL,, (s, 7;2). Notice that by Corollary 5.5,
the image under the Maass weight lowering operator Ly of the first derivative E}’ (7,s;2) = d%EZW (1,8;2)
of this Eisenstein series E7 (7,8;2) at the central point s = 0 satisfies the functional identity

LQEZ/W (7,0;2) = EL,, (7,0;0).

Here, E7  (7,5;0) := A(s + 1,n1) EL,, (7,5;0) is the coherent Eisenstein series associated to the quadratic

space (a,Qq) satisfying the even, symmetric Langlands functional equation E} (7,s;0) = E}_ (7, —s;0).

Remark 5.13. Notice that while the latter Eisenstein series Er,, (7, s;0) of weight 0 (at s = 0) appears in
the Siegel-Weil formula (39) for the average over theta series 6r,, (7, s, h), it is rather the Eisenstein series
Er,, (1,s;2) of weight 2 that appears in integral presentation for the Rankin-Selberg L-function L(s, g x eLév)'

To describe the Dirichlet series expansion of L(s, g x 6 L, ), let us write the Fourier series expansion of the
holomorphic/principal part Hj.:ﬁ/ (7) of the theta series 6,1 (1) = 92}{/ (1) + 92% (1) € Hu (wZVLV) as

GLm= XX, (mmemm,

L 1
nE(Lyy)Y /Ly, mz;,Qoo

with positive coefficients denoted by rp.1 (1, m) := ey _ (p,m) for m > 0. We then have the expansion

Lw

" Uowg0uy) = () (5T (S : ”) SN epluem)rpy (pomym CF).

2
pe(Li )V /L m>1
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Theorem 5.14. We have that

B(f,GW)) = ——

itz (CTU T .07, () @ £ () + (0,9 % 01))

Proof. See [54, Theorem 4.16]. A minor generalization of the same argument works here, or that of Theorem
5.12 using the identity of differential forms (43) in lieu of (36). To be sure, we know from Corollary 5.11 that

B0V = i |2 n(f) = Aoton(T)

where

Irlf) = [ (A7), 014, (7) © Bny (7.0:0)))dur)
Fr

and
Ao = CT((f*(7), 9Z¢V (7) ® LotLy))-

To evaluate the integral I7(f), we first use the identity (43) and the relation d = 9 + 0 to compute

Ir(f) = 2 / (F(r).00y, ®DE,, (r,0;2)))dr

Fr
_ / d((f (7). 00y ® By, (7,0:2)))dr +2 / (B (). 6y, © B}, (7,0;2))dr,
Fr Fr

which after using Lemma 5.2 to compute the second integral in the latter expression becomes

Ir(f) =~ / d((f(7), 00y, ® B, (7,0;2)))dr — 2 / (& ()(7). Ory, @ By, (7,0:2)))0* dp(r),
]:T ]:T
and which after using Stokes’ theorem to evaluate the first integral becomes
14T

Ir(f) = =2 / ((f(7),0ry, ® EL,,(7,0:2)))dr —2 /<<£17g(f)(7)79% ® Bl (1,0;2))v* 2 dp(7).
T=iT Fr

Inserting this back into the initial formula, we obtain the preliminary formula

B(1.GOV)) = oz - 907014, (7) & B (7.052)
1+4+4T

- Jim | s [ 0y © B (032 dr = Ay log(T)
T=iT

As in the proof of Theorem 5.12, we argue that the limiting constant coefficient integral depends only on

the holomorphic parts. The only difference is that the theta series 6r,, (7) is not holomorphic. Hence, we

decompose it into holomorphic/principal and nonholomorphic parts 6z, (1) = HZFW (1) +0z,, (7). That is, we

split the constant coefficient term in this preliminary expression into three parts

iT+1
lim (f(r),0p. (1) ® EL,, (1,052)))dT
T—oo Jr=iT w
iT+1
_n + + / .
= gim [ )05, ) @ B, (ros2)ar
iT+1
+ lim ((er(T),GZl (1) ® EL,, (1,05 2)))dr
T—oo J T w
iT+1
+ lim (f7(7), 0,1 (1) ® EL,, (1,0;2)))dr.
T—oo JrmiT w
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We argue in the same way as for the proof of Theorem 5.12 that the third integral on the right-hand side
vanishes. The same argument also shows that the second integral in this expression vanishes. Hence, only
the first integral contributes. To evaluate its contribution to the initial expression

14T

- 4 + + / : _

Jin | [ .08, © P (r0:2)dr = Aglog(T) |
T=1T

we again use the calculations of (46) to find that

14T
Jim | [ (0000, © By, (7,0:2)dr - Aolog(T)
=zTlJriT
= lim ((FF), 000 (M@ Y > (bryw (1M, 0) = 8,.00m,0log(v)) e(mr)1,,))dr

T—oo J .
T=iT pELY, /Lw meQ

= CT<<f+(T)’ QL‘%V (T) ® gLW (7’)>>,
and argue the same way via the rapid decay of the Whittaker functions Ws(y) that

14T
Jin [ (0,00, @ B (7,0:2)dr =0,
T=iT
In this way, we see that
A 14T
- i | e [ by, © B (r.0:2))dr = Avlog(T)
T=1iT
4
- =, + +
= oy TS ()07, (1) @ £, (7))
The stated formula now follows from the preliminary formula. O

6. INTEGRAL PRESENTATIONS OF RANKIN-SELBERG L-FUNCTIONS

We now explain how to identify the Rankin-Selberg L-functions L*(s,&_,/2(f) x 9L§) appearing in
Theorems 5.12 and 5.14 with standard Rankin-Selberg L-functions for GLy(A) x GL2(A).

Let k be any (real or imaginary) quadratic field of discriminant dj and corresponding Dirichlet character
ne(:) = (d—k) We consider the ideal class group’ C(Oy) of k. Recall that we fix an integer ideal representative
a C Oy for each class A = [a] € C(Of), and write Qq(2) = Ny, q(2)/Na for the corresponding norm form.
Again, each space (a,Qq) has signature (2,0) when k is an imaginary quadratic field, and signature (1,1)
when k is a real quadratic field. We consider for each class A € C'(Oy) the rational quadratic space (V4,Q4)
of signature (2,2) given by Va4 = aq @ aq and quadratic form Q4(z) = Qa(z1,22) = Qu(21) — Qa(22). We
fix a level N prime to di, and consider the lattice L4 C V4 whose adelization corresponds to the compact
open subgroup K4 of GSpin(Va)(Ay) = GL2(Aj)? given by Ko(N)?, as in Proposition 2.4. Hence, the
corresponding spin Shimura variety X, can be identified with Y5(IV) x Yo(N). In this setting, we explain
two ways to associate with a cuspidal newform ¢ € S;(T'o(N)) a vector-valued cusp form g4 = gp.4 € Si(wr,)-
As we explain below, we can use the Doi-Naganuma lift (see e.g. [7, §3.1], [61]) to show the existence of such
a form. We can also use the theorem of Stromberg [51, Theorem 5.4] — see also Scheithauer [47, Theorem
3.1], Zhang [60, Theorem 4.15], and Bruinier-Bundschuh [8] — to construct such a form more explicity. We
then show that we have identifications of completed Rankin-Selberg L-functions

(53) L*(25 — 5,994 X 04) = A(s —1/2,¢ x 04),

"More generally, we could consider the ring class group C(O) of any order O C O for all of the analytic/archimedean
discussion here. However, since the discussion of integral models and arithmetic heights in [1] is so far only understood for the
maximal order Oy, we stick to this case for simplicity.
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where 04 denotes the Hecke theta series associated to the class A € C(O), and hence that

(54) > X(AL*(25—s,95a x0a) = > X(A)A(s —1/2,¢ x 04) = A(s — 1/2,7 x (X))
AeC(0Oy) AeC(0Oy)

We then use this to reinterpret the calculations of Theorems 5.12 and 5.14 in terms of A(s, ¢ x 0(x)).
6.1. Equivalences of L-functions. We now show the identifications (53) and (54).

6.1.1. Hecke theta series associated to class group characters of quadratic fields. Given a quadratic field k
as above and a class group character y : C(Oy) — C*, we consider the corresponding Hecke theta series

000(T) = Y x(A)ba(r).

AeC(0y)

Here, each 04(7) denotes the theta series associated to the class A € C(Oy) and quadratic space (a,Qq).
Hence, when k is an imaginary quadratic field, this theta series has the explicit expansion

aA(T):iZe(Qu(A)T): > ra(me(mr),

w
k Xea mEZ>q

where wy, = #u(k)/2 denotes half the number of roots of unity in k, and r4(m) the counting function
1
ra(m) = o ~H#{A€a:Qq(N) =m}.

A classical theorem of Hecke shows that this theta series 04 € My (To(|dk|), nx) is a modular form of weight
1=(2-0)/2,level T'o(|dg]|), and character n. Hence, 8(x) € M1(To(|dk|), nk) when k is imaginary quadratic.
When £ is a real quadratic field, the unit group O = Z x pu(k) = (ex) x p(k) is no longer torsion, and we
must fix a fundamental domain a* for the action of O, /u(k) = (ex) on the lattice a C koo = R? We can
then describe the corresponding theta series via the explicit expansion

ba(r) = — 3 (@) = 3 ra(me(mr),

w
F xea mMmEZ>

where wy, = #u(k)/2 again denotes half the number of roots of unity in k, and r4(m) the counting function
1 *
rA(m):w—k~#{)\€a $Qa(N) =m}.

The theorem of Hecke shows that this 04 € Mo(T'o(dk), nx) is a modular form of weight 0 = (1 —1)/2, level
T'o(|dk|), and character 7. Hence, 8(x) € Mo(To(dk),n,) when k is real quadratic.
Let us henceforth fix such a Hecke theta series

1 if k is imaginary quadratic

0(x) € Myy(L(|di|), me), (k) := {

0 if k is real quadratic

6.1.2. Rankin-Selberg L-functions. Let ¢ € Sy4)(I'o(N)) be a holomorphic cusp form of weight [(¢) on
To(NN). We write the Fourier series expansion as

)1
$(r) =Y cslme(mr) = Y ag(m)m™ = e(mr).
m>1 m>1
so that the finite part L(s, ) of the standard L-function A(s,¢) = Loo(s,¢)L(s,®) has Dirichlet series
expansion for R(s) > 1 given by L(s, f) = 3_, .5 ap(m)m™ =3 -, cg(m)ym~(+1/2) Let us also write the
Fourier series expansion of the theta series 6(x) € M) (Fo(|dk|), nx) as

0(x)(7) = Z Cox) (m)e(mt) = Z ag(X)(m)ml(k%_le(mT).

m>1 m>1
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We look at the corresponding Rankin-Selberg L-functions

L(s,¢ x 0(x)) = L(2s,mx) Z C¢(m)ce(x)(m)m7(s+{w}*l)

m>1
= L(2s,m%) Z a¢(m)a9(x)(m)m75.
m>1
That is, we consider the corresponding partial Rankin-Selberg L-functions, defined first for R(s) > 1 by
L(s,¢ x 04) = L(2s, ;) Z c¢(m)rA(m)m_(s+{w);l(k)}_1)
m>1
whose y-twisted linear combinations give the y-twisted Rankin-Selberg L-function
(s fUDE Y
L(s, ¢ x 0(x)) = L(2s,m1) Z x(A) Z cp(m)ra(m)m (s+{=25 2 -,
AeC(0y) m>1

We can also consider the quadratic twist ¢ @ nx, € Sj(g) (Do(d2N),nx), with Fourier series expansion
e

s@m(r) =Y comm(m)emr) = Y ay(mym ™ n(m)e(mr).

m>1 m>1

Here, the corresponding partial Rankin-Selberg L-functions
L(s, ¢ @i x 04) = (6,04 Ea(-, 531(0) +1(k))) = L(2s,12) 3 e (m)mp(m)ra(mym~ ({5 1-1)
m>1
give rise to the corresponding x-twisted Rankin-Selberg L-function
(s fUDHI) Y
Lis.é x 6() = A2s.n0) D x(4) Y co(mm(mra(m)m™ -+,
AeC(0Oy) m>1

Note (cf. [25, §V.1]) that we have the integral presentation

I s+ M -1 () +1(k
(55) L {5 )Zcqs(m)cwm)m(s%( T = (0,04 B 4, (53 1(0) + 1(K))

(D) +1(k)
(47T)S+{l ¢J2rl k }_1 =

for Exp, (1,8:U(¢) — (k) € Myp)—ir)(To(lem(dg, N)),nx) some uniquely-determined Eisenstein series of
weight I(¢) — I(k), level T'g(lem(dg, N)), and character ;. Similarly, we have the integral presentation

I'is+ l(¢)+l(k) 1 1) +l(k
(56) G - )Z%@m m)cag (mym =TT = 6 0, B (-, 51(0) — L(K))

l(¢)+l(k)
( )S+{ } ! m>1

for Ea(7,5;1(¢) —1(k)) € Myg)—ik)(Lo(di N)) some Eisenstein series of weight I(¢) —1(k), level To(d7N), and
trivial character 77,3 = 1. The classical theory of Rankin-Selberg convolution shows that these Rankin-Selberg
L-functions have analytic continuations given by a functional equation inherited from the Eisenstein series
appearing in these integral presentations (55) and (56). Here, we have the following more precise result.

Proposition 6.1. Let ¢ € Sy4)(I'o(N)) be a normalized newform. Assume that (N,dy) = 1 and that
I(¢) > I(k), where [(k) = {0,1} denotes the weight of the Hecke theta series 0(x) € My (To(|dk|), me). Put

Loo(s,6 x 0(x)) = (27)~*T (s - {l(@ =0 }) r <s + {l(é) il } - 1) .

Then, the completed L-function
A(s, ¢ x 0(x)) = Loo(s, ¢ x 0(x))L(s, ¢ x 0(x))

satisfies the symmetric functional equation

A(s, ¢ x 0(x)) = m(=N)[deN[' T2 AL — 5,6 x 0(x)).
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Proof. The proof is well-known for the more general setup of GL2(A) x GL2(A) Rankin-Selberg L-functions
given by Jacquet [30] and Jacquet-Langlands [31]. Here, we give the more explicit classical calculation of Li
[43, Theorem 2.2, Example 2]. |

Remark 6.2. Note that the class group characters x are wide ray class characters, and hence the archimedean
factor Lo (s, x60(x)) does not depend on the choice of x, although it does depend on the choice of quadratic
field k. This is also apparent by inspection of the formula for Lo (s, ¢ x 6(x)) given in Proposition 6.1.

6.1.3. Quadratic basechange equivalences. Fix a cuspidal newform ¢ € Sj(4)(I'o(NN)) of weight I(¢) > (k) on
To(N) of trivial central character as in Proposition 6.1. Let 7(¢) = ®,7(¢), denote the cuspidal automorphic
representation of GLa(A) determined by ¢, with A(s,7(¢)) = [],<. L(s,m(¢),) its standard L-function.
Note that this coincides with the corresponding completed L-function A(s, ¢) = Lo (s, #)L(s, ¢) of ¢. Let us
also write 7(x) to denote the automorphic representation of GLo(A) determined by the class group character
x € C(Og)Y, determined by the corresponding theta series 6(x) € M) (Lo(dy), mx). Hence, we consider the
corresponding Rankin-Selberg L-function

A(s, (@) xm(x)) = [ Ls,m(@)o x 7(x)0) = Als, & X 0(x)) = Loo(s, ¢ x 0(x)) L(s, ¢ x 0(x))-

Let us now consider the quadratic basechange lifting

II(¢) = ®uIl(¢)w = BCk/q(7(0))

of m(¢) to a cuspidal automorphic representation of GLa(Ag). Such a lifting exists by the theta lifting
construction of Shintani (c.f. [7, §2.7]), and more generally for any GL2(A)-automorphic representation by
Langlands [42], and for any GL,, (A)-automorphic representation by Arthur-Clozel [2]. We refer to the article
[24] for more background on these quadratic basechange liftings and their L-functions. In brief, writing
A(s,11(¢)) = [],py<oo L(5,11(4)w) to denote the corresponding completed standard L-function of II(x), we
have a equivalences of standard L-functions

(57) A(s,I1(¢)) = A(s, m(¢))A(s, () @ mi) = Als, §)A(s, d @ i)
and
(58) A(s, () ® x) = A(s, () x m(x)) = A(s, ¢ x 0(x)).

To be clear, the identity (58) relates the GLa(Ay) x GL1(Ay) automorphic L-function A(s, II(¢) ® x) to the
GL3(A) x GL2(A) Rankin-Selberg L-function A(s,7(¢) x 7(x)) = A(s, ¢ x 0(x)). Although we do not use
it, we can derive from these basechange equivalences of L-functions the following consequence.

Lemma 6.3. Let ¢ € Sy (Do(N)) be any cuspidal form, with quadratic twist ¢ @ ni, € Sye)(Lo(dZN), m).
We have an equivalence of Rankin-Selberg L-functions

Als, o @i x 0(x)) = Als, ¢ x 0(x))-

Proof. Replacing the cusp form ¢ with its quadratic twist ¢@mn € Sj(4) (Do(diN),ny) in the discussion above,
we consider the corresponding GLy (A )-automorphic representation m(¢ ® nx) = 7(¢) ® n, and its quadratic
basechange lifting I1(¢ ® 1) to GL2(Ay). We have via (57) the equivalences of standard L-functions

A(S’ H(¢ ® 77k)) = A<s> 71'((;5 ® nk))A(s> W((ZS ® 77k) ® nk) = A(s> 71—((;5) ® nk)A<s7 71'((;5)) = A(S7 H)'

Consequently, for any character x of A} /k*, we have A(s, II(¢®@n,)®@x) = A(s, II(¢)®x). We then obtain the
stated identification of Rankin-Selberg L-functions from the corresponding basechange equivalence (58). O

6.1.4. Vector-valued lifts of cuspidal eigenforms via the Doi-Naganuma lift. Let us return to the quadratic
spaces (L4, Q4) of signature (2,2) described in Proposition 2.1 and Corollary 2.3. Hence, we fix an integer
N > 1 prime to the discriminant dj of the quadratic field k. We then consider the lattice

Li=La(N)=N"1tagpNltacVy

of level N and trivial discriminant d(L4) = 1 whose adelization L4 ® Z is fixed under the conjugation

action of GSpin(V4)(Af) = GL2(A)? by the compact open subgroup Ko(N) & Ko(N). Here, we introduce

the Doi-Naganuma lift (see e.g. [7, §3.1]) to describe how to construct from the scalar-valued cusp form
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¢ € Sy(¢)(T'o(NN)) and the classical scalar-valued Siegel theta series O, , ;(4)(T, 2) associated to (La,Qa) a
Hilbert modular form Fy 1, (2) of parallel weight I(¢) on X4(C) = Yy(N) x Yp(N). As we explain, this
construction allows us to find a unique vector-valued cusp form gy = gg a € Hyg) (wr,,) which lifts ¢, and
consequently for which the corresponding Rankin-Selberg L-function L*(s, g4 X 0 L\A/,U) describes the partial
completed Rankin-Selberg L-function A(s, ¢ x 64).

Let us first describe the Siegel theta series O, i(7, 2) of weight [ € Z associated to the signature (2, 2)
lattice Ly C Vg, as described in Corollary 2.3 above. We refer to [7, §2.6] for more background. Hence, this
lattice Ly = La(N) has level N and discriminant d(V4) = 1, so that the corresponding Dirichlet character
Nava) (1) = (M) can be identified with the trivial/principal character modulo N. Given z € D(V4) and
A € V4(R), we have a unique decomposition A = A, + A1, where A, and A, denote the corresponding
projections to z and zt. Let us write Qa()\), := Qa()\.) — Qa(),1) for the corresponding majorant. We
consider the Siegel theta function Oy, ; : $ x D(V4) — C of weight [ associated to the lattice L4, defined
onT=u+i € $H and z € D(Vy) by the series

Orai(mz)=v Y (20

XeLYy (2 2)}s

e (QA()\Z)NT + QA()‘ZJ-)NF) .

This series converges normally, is nonholomorphic in both variables, and satisfies the transformation property
a b
O1.01(02:2) = Ty (Der + /010 1(r) = (er + ) Orui(r2) ¥ y=( 4 1) ETola)

Theorem 6.4 (Doi-Naganuma). Let ©r,, ;(T, z) denote the Siegel theta series of weight | associated to the
signature (2,2) lattice Ly C V4 chosen according to Corollary 2.4, whose adelization Ly ® Z is fized by the
compact open subgroup subgroup Ko(N) ® Ko(N) of GLQ(Z)Q C GLa(Ay)? = GSpin(Va)(Ay). Hence, we
identify this function ©r, (7,-) in the variable T € § as a nonholomorphic modular form of weight 1, level
To(N), and trivial character. Let ¢ € SP¥(To(N)) be a cuspidal holomorphic newform of the same weight,
level, and character. Assume that @ lies in the corresponding Kohnen plus space

S (To(N)) = {f € SiTo(N)) : ¢f(n) = =1 = ¢f(n) = 0} C §7"(To(N)),

and hence that ¢ is invariant under the Fricke involution Wy, equivalently that the corresponding standard
L-function A(s,¢) = Loo(s,)L(s, @) has odd, symmetric functional equation A(s, ) = —A(1—s,¢). Then,
the theta lift defined on z € D(Va) = D (V4) 2 $? by the convergent integral

dudv
Fara(2) = [ 6(nOLur 2 S

f

determines a cuspidal eigenform of parallel weight I on the Hilbert modular surface Xo(N) x Xo(N). Here
again, we write F to denote the standard fundamental domain for the action of SLa(Z) on $).

Proof. This is a special case of the Doi-Naganuma lifting for the setup we consider above for Proposition
2.3, leading to the identifications (8) and (9) with Remark 2.4. See [7, §3.1], and more generally the relevant
discussions in Doi-Naganuma [20], Naganuma [44], van der Geer [53, §4], and Zagier [61] for more background.

(|

Let us now return to the setup of Theorems 5.12 and 5.14 above with vector-valued forms for Ly C Vjy.
We now write 0, :(7,2) = 0r,,:(7,2) to denote the Siegel theta function 6z, : § x D(Va) — &7, of
weight | constructed from the Weil representation wr, : SLz(Z) — &7 , in the same way as (13) above. To be
more precise, we make the following modification to the choice of Gaussian archimedean Schwartz function
oo (,2) = exp(—(z,2) 4 ) for z € D(V4) = H? and z € V4(R) in (12). Let Py(, z) be a weight [ harmonic
polynomial, so that wy, , (kg)Pi(x,z) = e0P)(x, z) for all kg € SO2(R). We then define the corresponding
function & (x,2) = Pz, 2)Poo(x, z). Hence, in the variable x € V(R), we obtain an archimedean local
Schwartz function ®(z,-) € S(V(R)) which transforms with weight | under the action of the maximal
compact subgroup SO2(R) C SLa(R). Using the same conventions and notations as above with the Iwasawa
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decomposition, we then define the corresponding theta series
GLAJ(TVZ) = GLA,Z(Tvzal) = Z ﬁLA(gT,l;(I)((Q(',Zo)@lH)l#
HELL/La
from the theta kernel
19LA (ga h; (I)) = Z (wLA(gvh)q)) (.Z‘)
z€Va(Q)

Here again, we fix a basepoint zp € D(Va) = D¥(V4) = $2, and we write g € SL2(A), h € GSpin(Va)(A),
and ® = ®,P, € S(V4(A)) to denote generic elements. We also write 01, ;(7, z) to denote the theta series
obtained from the conjugate Weil representation wr, , .

Corollary 6.5. Fiz a holomorphic cuspidal newform ¢ € S;(To(N)). Assume ¢ lies in the Kohnen plus
space S;"(To(N)) C Si(To(N)), hence that ¢ is invariant under the Fricke involution W, equivalently that
¢ equivalently that the corresponding standard L-function A(s,¢) = Loo(s,¢)L(s, ) has odd, symmetric
functional equation A(s,¢) = —A(1 — s, ). There exists a unique gy = gp,.a € Hi(Wr,) for which

(59) ((96(7),00.4.0(7,2))) = OL,1(7T,2)¢ @ ni(7),

so that the Doi-Naganuma lifting Fy 1,,(z) can be characterized equivalently as the theta integral

Fypa(s) = / (g0(r). B p (r, 2)))ot T2
F

v

Remark 6.6. The lifting g, € H;(wr,) of ¢ € S;(T'o((IV)) can be described explicitly in special cases by
Zhang [60, Theorem 4.15] and Scheithauer [46, Theorem 3.1]. In the special case of prime discriminant p,
Bruinier-Bundschuh [8, Theorem 5] shows that the plus space S;" (Io(p), (2)) € Si(To(p), (2)) is isomorphic
to the corresponding space of holomorphic vector-valued cusp forms Sj(wy,) for any even lattice L with
discriminant group LV /L = F,. More generally, the theorem of Stromberg® [51, Theorems 5.2 and 5.4] allow
us to construct such a lift of any modular form ¢ € M;(I'o(M (L)), nqzy) of level M(L) equal to that of
the lattice L and quadratic character 141y (-) = (M) with d = d(L) the discrimnant of the lattice to a
vector-valued form g, € M;(wy) via the expansion

9s(T) = > wr (M) ™ 1o¢ 1M (7).
METo(M(L))\ SLz (Z)

6.1.5. Equivalences of Rankin-Selberg L-functions. We now return to Theorems 5.12 and 5.14 for the special
case of the quadratic space (Va,Q4) of signature (2,2) with lattice L4 corresponding to the congruence
subgroup Ko(N) C GL2(Ay), as described in Corollary 2.4.

Proposition 6.7. Fiz a holomorphic cuspidal newform ¢ € S5V (To(N)) of weight 2, level T'o(N), and trivial
character. Let gy 4 € S2(Wr,) denote the lifting of ¢ to a vector-valued cusp form of weight 2 and conju-
gate Weil representation W, ,. We have the following identifications of completed Rankin-Selberg L-functions.

(1) If k is the imaginary quadratic field associated to the negative definite subspace Vao C Va with
Lao=LaNVao, then we have the identifications of completed Rankin-Selberg L-functions
L*(QS — 2,g¢,)A X GLXO) = A(S - 1/2,(;5 X GA)
for each class A € C(Ok), and for each class group character x € C(O)Y the identification

S AL 25— 2,004 x 0y ) = Als — 1/2,6 x 0(x).
AeC(0y)

8taking the isotropic subgroup Sy = {0} CcLV/L
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(ii) If k is the real quadratic field associated to the Lorentzian subspace Wa C Va with Law NWaN Ly,

then we have the identifications of completed Rankin-Selberg L-functions
L*(QS — 2,g¢,A X eLij) = A(S — 1/2,(;5 X 9,4)
for each class A € C(Of), and for each class group character x € C(O)Y that

S AL 25— 2,004 x Oy ) = Als — 1/2,6 % 0(x).
AeC(0y)

Proof. Cf. [54, Corollary 4.18]. Fix any class A € C(Oy). If k is imaginary quadratic as for (i), we write the

Fourier series expansions of the corresponding holomorphic vector-valued forms as
goalm) = > D cpalp,me(mr)l, € Sy(@pL,)
uEL /L4 m>0
and

Oy, = 3 S ry (m)elmr) L € Moy ),

HE(L o)V /L o m20

and consider the Dirichlet series of the corresponding Rankin-Selberg L-function for R(s) > 1,

F (s+2) CQ¢A M, M TLL (Mam)

L379,AX0J- = 252 2
( [ LA)U) (47‘_); J—Z Z

ne(L LL m>1

Here, we can identify the discriminant group as
(L0)" /Lo =0, 'N'a/N " a0, 0}/ O,
and the counting functions appearing in the Fourier series expansion of the theta series as
1 1L 1 -1
oy, (m) = o 7 {A €ptLiag:Qalry (A) = m} o ? {Aep+Nla:Qa(N)
It is easy to see from this that we have the identification® of counting functions
1 _
D rug ) = o #{AE NI Qu(N) = m) = ra(m).
ﬂe(qu:o)v/Lj,o
Similarly, as a consequence of the relation

((90,4(7),01,4.2(7,2))) = O, 2(7, 2)(7)
implied by (59), we deduce that we have the relation of Fourier coefficients
> cg,a(p,m) = cg(m),
l"e(Lf&,o)v/Lj,o
and more generally, that we have an identification of scalar-valued forms
((99.4(7), 001 (T) @ EL, ,(7,5:1))) = ¢(7)0a(T) Ea(T, 5:1),

—m}.

where E4(7, s; 1) denotes the Eisenstein series in the Rankin-Selberg integral presentation (56) corresponding
to Er, ,(7,s:1) € Hy(wr, ). This implies the corresponding identification of Rankin-Selberg products

L(s,goa 015 ) = (g0.a(r). 05 (1) © Ep, ,(r.5:1)) = / (96.4(T): 015 () ® Er o (r.5: 1)

F

T (52) 3 Cgga ()T s (11, m)
()5 euy e rns ot m

_ () ¢ eolm)ra(m) _ T (2 3 co(m)ra(m)
Um0 mT Um0 mT

9More formally, we use that [N~ta] = [(N~1)a] = [a] € C(O) = I(k)/P(k).
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We then deduce from (56) that Proposition 6.1 that we have the identification of completed L-functions
L*(25 — 2,944 X oLﬁ,o) =A(s—1/2,¢px04)
and hence that
S AL (25— 2igoaxOps )= D X(AAGs —1/2,6 % 0) = Als — 1/2,6 x 6(x)).

AEC(0y) A€eC(0y)

If k is real quadratic as for (ii), we again first open up the Dirichlet series expansion (for R(s) > 1)

F (ﬁ) C% A ,ua (:u7m)
L(s,9p.a % Oy ) = (4@2# > > g Ax :

BE(LL )V /Ly y m21

Again, we can identify the discriminant group as
(Laxw)"/Law =0 "N a/N" a2 0,104 /O,

and the counting functions appearing in the Fourier series expansion of the theta series 0 (1) as
A w

1 1 _
TLjYW(M,m) = o # {)\ €+ Liw/(ex) : QA‘Lj)W(A) = m} = o #{Aep+N"1a":Qu(N) =m}
so that
1 _
Z TLX,W(M’m): w—k~#{)\€N Yot Qa(A) =m} =ra(m).
/LE(L,J&,VV)V/LIJ&,W
We obtain from the corresponding relation (59) the identification of Fourier coefficients
> cg,a(p,m) = cg(m),
ey w)V /Ly w

and more generally the identification of scalar-valued forms

((96.4(7), 015 (T) ® EL, 4 (7,5:2))) = ¢(7)0a(T) Eal(7, 5;2),

where F 4(7, s;2) denotes the Eisenstein series in the Rankin-Selberg integral presentation (56) corresponding
to Er, (7,5;2) € Ha(wr, ). Taking Petersson inner products, we then obtain the same identifications

L5, 90 01y ) = {g0a(P) gy (1) ® Fp o (7,52)) = / (gs.A(T) 00 (7) © B (7,5 2))
f
Cgg,a (p, m i w (1, m)

D DD

T (s+2

~—

w
+

() (L v /Ly o1
RAGS 3 co(m)ra(m) _ T (*F%) 3 cg(m)ra(m)
(47T) ER m>1 m* (477) + m>1 m

of the corresponding Rankin-Selberg inner products. We then deduce from (56) that Proposition 6.1 that we
have the identification of completed L-functions

L*(QS — 2,g¢,)A X QLJA_ W) = A(S - 1/2,¢ X 9A)
and hence that
Yo X(ALM2s = 2,954 %015 )= D X(A)A(s = 1/2,6 x 04) = Als = 1/2,6 x 0(x)).

AeC(0y) AeC(Ox)
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6.2. Relations to sums of Green’s functions along anisotropic subspaces. Putting all of these
observations together, we derive the following consequences of Theorems 5.12 and 5.14.

Theorem 6.8. We retain the setup of Proposition 6.7. For each class A € C(Oy), let fo,a € Ho(wr,) be
any harmonic weak Maass form whose image under the antilinear differential operator &, equals g 4, so

0(f0,4)(T) = gp,a(T).

We have the following integral presentations of completed Rankin-Selberg L-functions, given in terms of sums
over CM cycles or geodesic sets as in Theorems 5.12 and 5.1/ above respectively.

(i) If k is imaginary quadratic and ny(—N) = —ni(N) = —1, then
A(1/2,6 x 0(x))

= —A(1,m) Z X(A)[(VOI(KW

) B a0 ZVa0) + CTUS A By, (1) 8 €00

4
AeC(0y)
= —A(Lm) D X(A) [deg(Z(Vao)@(fo.n, Z(Vao)) + CTU S (1), 0y (1) @ Epu(T))]
AeC(0Oy)

(ii) If k is real quadratic and np(—N) = ni(N) = =1, then

A(1/2,6 x 0(x))

a3 ) | ) (o0, GOV + TS0, (1) 0 € 7).
AeC(Oy)

Proof. For (i), we have for each class A € C(Oy) the relation
— 4 + /
B ZV0) = = oz (CTUTA): Bus (1)@ B () + L Orgon x 013.)

and hence

00— (MHFA) @0a, Z0Van)) ~ UM, (1) EnaolT)) = LOuson X 1)

by Theorem 5.12. Observe that since L*(s,gg 4 X HLjO) = —L*(s,9p,4 X eLjo) by the odd, symmetric

functional equation E} = (7,8;1) = —=E} . (1,—s;1) described in Proposition 5.3, we have the vanishing of

LA,O LA,O

the central value L*(0, gg 4 X QLJA:O) = L(0, 94,4 X eLjYO) = 0, and hence that
(61) A0, 9p.4 x Opy ) = A(Lmk)L'(0, gg.a X Opy ).

Moreover, observe that by the equivalence of L-functions shown in Proposition 6.7 (i) with the functional
equation for A(s, ¢ x 6(x)) described in Proposition 6.1, we are only in the non-degenerate situation when
Nk (—N) = —ni(N) = —1. Hence, we can multiply each side of (60) to obtain the corresponding relation

=) | (G @0 Z(Va0)) + CTUSA (s (1) €01

= L"(0,gg.a x b4 ).

(62)

Taking a twisted linear combination of the L-values on each side of (62) and using Proposition 6.7, we obtain

a3 ) [ (LY 0o, 20000 + TS 00, 1) 9 1)
(63) AeC(Oy)

= S A0, goa x Ops ) = N(1/2,6 % 0(0) = N (1/2,6 x 6(x).
AeC(0Oy)
For (ii), we have for each class A € C(Oy) the relation

®(fo,4,G(Wa)) = fm (CT((fng(T), 07 o (1) ®Eraw (M) + L0964 eLiW))
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and hence

04) = (M) @0, GOVA) + CTUALAMLOL, (1)@ Ea () = L0500 % 5,

by Theorem 5.14. Using the identification of completed L-functions of Proposition 6.7 (ii) with the functional
equation of Proposition 6.1, we see that L*(s,0, gy 4 x 6 Lt W) satisfies an odd symmetric functional equation

when 7y (=N) = n(N) = —1, whence L*(0, 94,4 X 0+ W) =L(0,9¢,4 X 01+ W) =0, and
A0, 99,4 % Ops ) = AL ne) L' (0,994 X Op1 ).

Hence, we can multiply each side of (64) to obtain the corresponding relation

= A (A @0 GOV + CTUSA) O, (1) 8 Er ()]

= L*/(O,g¢7A X GLXW).

(65)

Taking a twisted linear combination of the L-values on each side of (65) and using Proposition 6.7, we obtain
vol(K 4
a3 ) [ (B a4, GOV + OO0, () ()]
(66) AeC(0Oy)

= Z X(A)L*I(OagQA X GLXW) = A/(1/27 (b X G(X)) = A/(1/27 (b X G(X))
AEC(Ox)

Now, using the Dirichlet analytic class number formula

ﬂ 3 ta . .
(67) L(lm) = L moytag 1K is imaginary duadratic
y k) = 21n(eg) h T 1 drati
—va. Uk i1sreal quadratic
to evaluate
TS if k is imaginary quadratic
68 A 1, = d %F NL 17 — Wi
(68) (L) = |di|>Tr(2) L(1, nx) {QIH(ek)hk if k is real quadratic

we can simplify the formulae of Theorem 6.8. Here, we observe that each of the compact open subgroups
Kap C Tao(Ay) and Kaw € Taw(Ay) must be the maximal compact group O;. We then calculate
vol(K 4,0) = wi/hi and vol(K 4 w) = (wg In(ey))/hy for each class A € C(Oy) using Lemma 5.8 to obtain
Corollary 6.9. We have the following identities for the central derivative value A'(1/2,¢ x 0(x)).

(i) If k is imaginary quadratic and nx,(—N) = —ng(N) = —1, then

A'(1/2,¢ x 0(x))

S ) (2) @0 Za0) + CTUS A 05 ()8 £ (D).
Wk AeC(0Oy) F |

(ii) If k is real quadratic and n(—N) = n,(N) = —1, then
A'(1/2,¢ x 0(x))

= —zinee Y x4 |(0) 00, GOV + CTUIT A1, (1) Enan ()]
AeC(0y)

7. ARITHMETIC IMPLICATIONS

We now explain how to compute the Faltings heights of arithmetic divisors Z(f) along zero cycles to
prove higher Gross-Zagier formulae. We also explain how to derive a new proof/variant of the theorem of
Gross-Zagier [25, §I. (6.3)] in terms of arithmetic Hirzebruch-Zagier divisors on the Hilbert modular surface
Yo(IV) x Yo(IV). We also explain some applications to the refined conjecture of Birch-Swinnerton-Dyer.

55



7.1. Arithmetic heights and higher Gross-Zagier formulae. Let us first explain how to derive from
the theorems of Bruinier-Yang [13, Theorem 4.7] — as presented in Theorem 5.12 above — and Andreatta-
Goren-Howard-Madapusi Pera [1, Theorem A] the following “higher Gross-Zagier formula”, relating the
central derivative values L'(0,&1-2 (f) x 611) of the Rankin-Selberg L-functions

L(s,&1-5 () x 030) = (€1-5 (N)(7), 0,2 (1) © Bry(rosi 1)), f € Hy_y(wr)

to Faltings heights of arithmetic divisors Z(f) = (Z(f), ®(f,-)) along the CM cycles Z(Vp) on the spin
Shimura variety X = Xg = Xk, introduced in (4) and (6) above.

7.1.1. Extension to integral models. Let us henceforth fix the level structure K = K C GSpin(V)(Ay)
associated to a choice of lattice L C V in the quadratic space (V,Q), and simply write X = Xy for the
corresponding spin Shimura variety. Hence, the orbifold X (C) = X (C) describes the set of complex points
of a quasi-projective Shimura variety X over Q of dimension n. As explained in [1], X(C) can be viewed
as the space of complex points of an algebraic Mumford-Deligne stack X — Spec(Q). In general, apart
from some cases of small dimension (n < 3), the Shimura variety X is not of PEL type, and hence does not
generally represent a moduli space of abelian variety with PEL structure. it is however of Hodge type, and
so the theorems of Kisin [36], Madapusi Pera [41], and Kim-Madapusi Pera [35] apply to show the existence
of a regular, flat integral model X — Spec(Z).

Recall from (5) that we have for each coset u € LY /L and rational number m € Q for which the quadric

Qn(Q)={z €V :Q(x) =m}
is nonempty the special divisor Z(u, m) — X defined by the sum
Z(p,m) = Z 1, (z) pr(D(V)a).
2€(GSpin(V)(Q)NK)\2m (Q)

As explained in [1], each of these special divisors admits an extension Z(u, m) — X to the integral model.
Roughly speaking, this is obtained as follows through the Kuga-Satake abelian scheme A — X. That is, the
Shimura variety X = X comes equipped with a family of Kuga-Satake abelian varieties A, — X indexed
by points z € D(V). To describe the construction of such an abelian variety A, — X, consider that we
have a natural functor

{algebraic representations of GSpin(V)} — {local systems of Q-vectorspaces on X(C)}
(GSpin(V) — GL(W)) — (Wgetti,q — X(C))

where
Whetti, = GSpin(V)(Q)\ (W x D(V)) x GSpin(Ay)/K.

This allows us to associate to each algebraic representation GSpin(V) — GL(W) a pair (Wygg, V) consisting
of a locally free Ox (c)-module Wyr = Wgetti,q ® Ox(c) and a connection V = 1 ® d. Each such pair can
be viewed as a vector bundle Wyr with integrable connection V such that W(X{:O = Whetti,q ®q C and:

(i) For all z € D(V), the map h, : S — GSpin(V)(R) — GL(Wg) induces a map S(C) — GL(W¢).
ii) The fibre Wygr_, at z € D(V) has a bigradation Wyr_ ., = W24 induced by the action of S(C).
s ) p,q " dR,z

(iii) The Ox(c)-module Wy is endowed with a decreasing filtration Fil;(War) € War of submodules,
defined pointwise by FilJ(WdR’Z) = @pztl Wfﬁq,z-

Here, have have natural identifications S(C) = C* x C* and GL(W¢) = GL(Wq ® C) Now, consider the
representation of the Clifford algebra C (V') on GSpin(V) induced by the inclusion
GSpin(V) c C*(V)* == C°(V)\{0},
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with action given by left multiplication of C°(V)* on GSpin(V'). The corresponding vector bundle C(V )qr
gives rise to the following variation of Hodge structures: For each z € D(V'), we have

(69) C(V)ar,- =C(V); 0 C(V)2

Note that having such a variation of Hodge structures (69) for each z € D(V) is equivalent to having a
complex structure on the Clifford algebra C(Vr) = C(Vq ® R) for each z € D(V). In particular, we obtain
from this complex structure for each z € D(V) a corresponding abelian variety

A, =C(Wr)/C(L)

of dimension 2"*! known as the Kuga-Satake abelian variety associated to X = X, at a point z € D(V).
As explained in [1], this construction extends'® to give an abelian scheme A — X.

Example 7.1. Suppose we consider a rational quadratic space (Vp, Qo) of signature (0,2) with maximal
lattice Ly C Vp. In this case, the submodule C°(Lgy) € C°(Vp) corresponds to an order O C Oh(vy) of the
imaginary quadratic field k(Vp) associated to Vj, as described above. Each point z € D(Vp) determines
a Kuga-Satake abelian surface A, = Af x A7 = C(Vy(R))/C(Ly), where A} is an elliptic curve with
complex multiplication by the order O = C°(Vj), and A, is the elliptic curve with CM by O given by
Az_ = A;‘— ®o Lg = A;‘— ®CO(L0) L.

Example 7.2. Consider the rational quadratic space (V,Q) of signature (1,2) given by V = Mi=%(Q)
and Q(-) = Ndet(:). As explained in [13, §7.3] and Appendix A below, we have an accidental isomorphism
GSpin(V) = GL2 of algebraic groups over Q. Let L C V denote the lattice

L{(I; _“_/bN > :a,b,cez}

Lv:{<b/c2n —b?é%);a,b,ceZ}

so that the discriminant group LY /L can be identified as

with dual lattice

v _ [ /2N
Z/2NZ — LY /L, T}—)ﬂr.—( —7’/2N>'
Hence, L has level 4N, and the corresponding quadric

Qum(Q) :=={z € p+L:Q(x) =m}

is nonempty unless Q(r) = m mod 1. The corresponding compact open subgroup K = K, is given by

K = [ K, C GSpin(V)(Aj) = GLy(Q,), K, := {( “! ) € CGLy(Z,): c e sz}.

p<oo

In this setting, we have an isomorphism of Shimura varieties
Yo(N) i= To(N)\H = Xxc(C), To(N)z — GSpin(V)(Q)(z, K.
In the other direction, using the moduli description of the noncompactified modular curve Yy(V), we have
Xic(C) := GSpin(V)(Q\D(V) x GSpin(V)(Af)/K = Yo(N), 2 (E. — EL)

for (E., EY) a pair of elliptic curves with CM by some order O C Oyy,) in the imaginary quadrtic field k(V})
determined by a negative definite subspace V) C V' (given by a Heegner embedding). In this case, each point
z € D(V) = D*(V) = § has the corresponding Kuga-Satake abelian fourfold A, = C(V(R))/C(L) given by

A, =AfF x A7, Af=A; =E,xE..

We shall return to this example in Appendix A below to explain how to recover the formula of Gross-Zagier
[25, Theorem I (6.3)] from [13, Theorem 4.7, Theorem 7.7] and [1, Theorem A].

10T hey also show that the associated vector bundle with connection (C(V)qr,V) extends to the integral model X, with
vector bundle C'(V)q4gr given by the relative de Rham cohomology HéR (A), connection V given by the Gauss-Manin connection,
and filtration Fil/(C(V)qr,-) given by the Hodge filtration 0 —» Ry« (0.4) — HIp (A) — m.(QY) — 0.
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Now, the Kuga-Satake abelian scheme 4 — X comes equipped with an action of the Clifford algebra
C(L) = C°(L) ® C*(L), and acquires from this a Z/2Z-grading A = A" x A~. For each scheme S — X,
we can associate to the pullback Ag a distinguished Z-module of special endomorphisms

V(As) C End(As),

together with an associated quadratic form ¢ : V(Ag) — Z defined by z o x = ¢(x) - id. More generally,
for each coset p € LY /L, we can associate to the pullback Ag a distinguished subset V,(Ag) C V(As) ® Q
with the property that V;(As) = V(Ag).

As explained in [1], we can define from each of these subsets V,(Ag) a divisor on X as follows: For each
coset p € LY /L and rational number m € Q, let

Z(u,m) — X
denote the moduli stack that assigns to each X-scheme S — X the set
Z(u,m)(S) :=A{z € Vu(As) : q(x) = m}.

This morphism Z(u, m) — X turns out to be finite and relatively representable, and to determine a Cartier
divisor on X. It agrees on the generic fibre with the special cycles (5) defined above, Z(p, m)(C) = Z(u, m).
Recall that we write Ty = GSpin(Vp) = Res(vy)/Q Gm to denote the torus corresponding to a rational
quadratic subspace (Vp, Qo) of signature (0,2) and associated imaginary quadratic field k(Vp). We consider
the corresponding zero-dimensional Shimura variety Z(Vy) — Spec(k(V5)) with complex points given by (6).
Note that we can identify the corresponding compact open subgroup Ko := K NTy(A ) with Ky = 6;(‘/0),
and that this acts trivially on the discriminant group LY /Lg. Hence, we can identify the complex points

Z(Vo)(C) = k(Vo)*\{zi; } x Aoyt Orive
with two copies of the ideal class group C(Ojy(yy)). Observe that by Lemma 5.8 (cf. [13, Lemma 6.3]) with
the Dirichlet analytic class number formula (67), we have that the degree deg Z(Vy) = 4/ vol(Ky) of Z(Vy)
as defined in Lemma 5.9 (i) is given by the relation

deg Z(Vo) 1 heovy) |dk(v0)|%

4 N VOI(K()) WE(Vy) N 27

: L(lank(Vo))'

Viewing Z(Vy) — Spec(k(Vp)) as the moduli space of elliptic curves with complex multiplication by Oy v;),
we obtain a smooth integral model Z(Vy) — Spec(Oyvy)). As explained in [1], if the imaginary quadratic
field k = k(Vp) has odd discriminant dj,(y; ), then the embedding of reductive groups To C GSpin(V) induced
by the embedding of quadratic spaces Vy C V' gives a finite, relatively representable, umramified morphism

Z(Vh) — X.
This algebraic stack has its own Kuga-Satake abelian scheme Ay — Z(V}) equipped with an action of
the Clifford algebra C(Lg) = C°(Lg) ® C'(Lg) and hence a Z/2Z-grading Ay = AJ x Ay . Here, Al
can be identified with the universal elliptic curve with CM by Oy (v, with Ay = AL ROk (vy) C(Loy) and
Ay = Aar ®0o(k(vy)) Lo. Moreover, this Kuga-Satake abelian scheme Ay — Z(Vp) is related to the Kuga-
Satake abelian scheme A — X by a C(L)-linear isomorphism
Alzvy) = Aolz(ro) ®c(ry) C(L).

7.1.2. Arithmetic degrees along CM cycles and central derivative Rankin-Selberg L-values. Recall we saw in
Theorem 5.12 above that we have for any harmonic weak Maass form f € Hy_» (wr) the formula

(T0)  @(f, Z(Ve)) = —deg(Z(Ve)) - (CTUST(7), 014 (7) @ E, (7)) + L0, &1-nja(f) X bz )

We can now describe this formula in terms of arithmetic heights, according to the calculations of [13, §5-6]
and more generally [1, Theorem A], which we now summarize. Recall that an arithmetic divisor = = (x, G)
on the integral model X — Spec(Z) counsists of a divisor  on X and a corresponding Green’s function G, for
the the divisor 2(C) induced by z on the complex variety X(C) = X (C). That is, the G is a smooth function
on X(C)\z(C) with a logarithmic singularity along 2(C) which satisfies the Green’s current equation

dd®[G ] + 65y = [Qa]
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~1
for some smooth (1,1)-form Q, on X(C). Let Ch (X) denote the first arithmetic Chow group of X, so the
free abelian group generated by arithmetic divisors on X modulo rational equivalence. Let

[,]:Ch (X) x Z"(X) — R

—~1
denote the height pairing defined in Bost-Gillet-Soulé [4, § 2.3]. Given an arithmetic divisor € Ch (X’) and
an n-cycle y € Z™(X) intersecting properly, we know that this pairing is given by the Faltings height

[/x\a y] = [/.’L‘\, y]Fal = [m>y]ﬁn + [f, y]oo :
Here, the archimedean component is given by half the value of the Green function G, along y(C),

1

The setup we consider above with regularized theta lifts ®(f) = ®(f,-) is relevant here as it provides us

with a supply of such arithmetic divisors 2(]‘) = (Z(f),®(f)) on the integral model X — Spec(Z). To
be more precise, each CM-cycle Z(Vy) — XOk(VO) associated to a rational quadratic subspace Vo C V of

signature (0,2) provides us with a zero-cycle y € Z°(X) which intersects Z(f) = (Z(f), ®(f)) properly. In
particular, this allows us to reinterpret (70) in terms of the archimedean local height as
(71)

2().200)]_= % ‘a(fy) =-3elZh)

0 (CTUS (7). 034 (7) @ Ena (1)) + /(0,61 /(1)1 00) ) -

Remark 7.3. When the Shimura variety X = X is not compact, we can add suitable boundary components
C(f) to the divisor Z(f) as in (30) to get an arithmetic divisor

~ 1
Z°(f) = (2°(f),®) € Ch (X7)
on the integral model &A* of the compactification X*. See [13, §5-7] for more details. When f € H;_,/2(wr)

is not cuspidal, we also have to work with generalized arithmetic Chow groups in the sense of [17].

Suppose now that f = f* + f~ € Hy_, 2(wr) has integral holomorphic part f*, so that the Fourier
coefficients c}“(u, m) are integers for all m € Q and p € LY /L. Then,

neI I S
determines a divisor on X, with extension
peELY /L Zi‘g

to a Cartier divisor on the integral model X', and with corresponding arithmetic divisor

2(f) = (2(f), Gz(p) € Ch' ().

If f € ker(§_pn/2) = Ml!—n/Q(wL) is weakly holomorphic, then we expect Z(f) = (Z(f), ®(f,-)) to be
rationally equivalent to a torsion element, by the relation given by the Borcherds lift U(f,-) described in
(20) above (Theorem 4.1). If this rational equivalence to zero were known to be true, we would derive the
corresponding vanishing of the Faltings height the relation

~ 1
(72) (2(5).204)] = [E(), 2Vl + 5 - O, (V) =0,
from which it would follow that the nonarchimedean height pairing is given by the constant coefficient term
deg(V/
73) 27, 200l = - B 01((£(7), 0, (7) @ 1, ().

Expanding out both sides of this relation (73) leads to the following expectation for the general case.
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Conjecture 7.4 (Bruinier-Yang). Let f = f+ + f~ € Hy_,2(wr) be any weakly harmonic Maass form
whose holomorphic part has integral Fourier coefficients,

ff(r) = Z Z cj[(,u,m)e(rm’)lm c}"(u,m) €Z.

\ EQ
pneELY /L m"’>>700

We have for each coset u € LV /L and each positive rational m € Q(u) + Z that the nonarchimedean local
height [Z(p,m), V]g,, is given by the (p,m)-th Fourier coefficient of the modular form 0p1 () ® Er,(7),

(2w m), 2(Vo)ln = = > > T (1 ma)k (p2, mo).
ulG(Lé-)\//L(Jf,uszg/Lo m1,ma€Q>(
w1 +po=p mod L mi1+mo=m

Putting this into (70) (Theorem 5.12), taking the sum over m > 0, we obtain the arithmetic height formula

_deg(Z (Vo))

(74 [2(0).200)] = [20).2W)], = —=B522 - (cF(0,0) - k2,(0,0) + L0, €1 y2(£),01)) -

Theorem 7.5 (Bruinier-Yang, Andreatta-Goren-Howard-Madapusi Pera). Let (Vp, Qo) = (aq, —Qa(+)) be a
rational quadratic subspace of signature (0,2) given by a fractional ideal ag in an imaginary quadratic field
k(Vo) of odd discrimant dy v,y determined by a nonzero integral ideal a C Oyy,). Let Lo = a denote the
corresponding lattice. Assume that the even part C°(Lg) of the Clifford algebra C(Ly) is identified with the
mazimal order Oy, = C°(Vy). Then, Conjecture 7.4 is true. In particular, the arithmetic height formula

A~ /\1
(74) is true. Equivalently, writing T € Ch (X) to denote the metrized cotautological defined in [1, §5.3],

Z(f): Z(VO)} +¢}(0,0) - [T : z(f)} = —Z—’; L0, &1 nya(f) X Op1).

Proof. This follows from the combined results of [13, Theorem 1.2] and [1, Theorem A, Theorem 5.7.3]. O

Remark 7.6. Note that Conjecture 7.4 is not yet established in general; see [13, Conjectures 5.1 and 5.2].
That is, the conjecture is posed more generally for (Vp, Qo) any negative definite quadratic subspace of
signature (0,2). In particular, it should be possible to take (Vo, Qo) = (a,—Qa()) with C*(Lg) = O any
(non-maximal) order O C Oy(y,), and without any condition on the partity of the discriminant dj,(ys).

7.2. Gross-Zagier via special (Hirzebruch-Zagier) divisors on Xy(N) x Xo(N). We now return to
the quadratic spaces (Va,Q4) of signature (2,2) parametrizing Xx, = Yo(N) x Yy(N). Here, we give a
geometric interpretation of the formulae of Theorem 6.8 and Corollary 6.9 above. In case (i) where k is
imaginary quadratic, this will give a new proof of the formula of Gross and Zagier [25, I Theorem (6.3)],
including a comparison of the arithmetic heights of Heegner divisorss on Xy(NN) and the corresponding
arithmetic heights of Hirzebruch-Zagier divisors on Xo(N) x Xo(N). For the convenience of the reader, we
explain in Appendix A how the Gross-Zagier formula [25, Theorem I (6.3)] can be derived by a variation of
the proof of Bruinier-Yang [13, Theorem 7.7], developing Theorem 7.5 for the special case of signature (1, 2)
described in Example 7.2 above. Here, we give a distinct deduction of the formula via the Hilbert modular
surfaces Yp(N) x Yp(N) and Xo(N) x Xo(N).

For each class A € C(Oy), recall that we fix a representative a C Ok, and consider the quadratic space
(V4,Qa4) of signature (2,2) defined by V4 = aq ® aq and quadratic form Qa(z1,22) = Qa(21) — Qa(22)
(for Qa(2) := Ny q(2)/Na the norm form), so that (V4,0,Q4,0) = (&, —Qq) determines a rational quadratic
space of signature (0,2). Recall that we have an accidental isomorphism GSpin(V4) = GL3 of algebraic
groups over Q by Proposition 2.3, and that we take L4 C V4 to be the maximal lattice corresponding to the
compact open subgroup K4 = K, & Ko(N)? C GLQ(Z)Q so that X4 2 Yy(N) x Y(N) as in Corollary 2.4.
Hence, we consider the corresponding integral model X4 = Vy(N) x Vo(N). Let us fix a compactification
X5 2 Xo(N) x Xo(N) (see e.g. [7, §81.2 and 2.4]), so that we can identify the corresponding integral model
X% with Xp(N) x Xo(N).

Remark 7.7. Note that we have the following moduli descriptions of these Hilbert modular surfaces and their

special divisors. Recall that the noncompactified modular curve Yy(N) has the following moduli description

(see e.g. [25]). For any scheme S over Q, Y;(IV)(S) represents the isomorphism class of triples (E, E’, )

consisting of a pair of elliptic curves E/S, E’'/S and an isogeny ¢ : E — E’ of degree N. Hence, ¢ is finite
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flat of degree N, and its kernel ker(p) = Z/NZ is a finite locally free group scheme over S. The compactified
modular curve Xo(N)(S) represents triples (E, E’, @) of generalized elliptic curves E/S, E'/S and a cyclic
isogeny ¢ : E — E’ of degree N. We use this to deduce that X 4(S) = Yo(N)(S) x Yo(N)(S) represents
pairs of triples (E1, EY, ¢1), (E2, F), v2). More precisely, Yo(N)(S) x Yo(N)(S) represents the moduli space
of triples A = (4, k4(®), Aa) made up of the abelian surface A = E; X Es, the endomorphism k4 (p) of A
determined by the isogeny ¢ = 1 X g : A — A’ for A’ = E{ x E} and its dual ¢ : A’ — A, and the product
principal polarization Ay = Ag, X Ag,. Similarly, Xo(N)(S) x Xo(N)(S) represents the moduli space of triples
A = (A, ka(p), Aa) made up of the abelian surface A = Ey x Ey with E1/S, E5/S generalized elliptic curves,
special endomorphism x4 (¢) € End(A) determined by the isogeny ¢ : A — A’ and its dual ¢¥ : A’ — A, and
the product principal polarization A 4. We can then describe the special arithmetic (Hirzebruch-Zagier) divisor
Z 4(u,m) in either of these spaces as the moduli of triples (A4, ka(x),Aa) = (E1 X Ea, kg, x5, (T), AB, X AE,)
with endomorphism k() of degree deg(ka(p)) = m supported on p + L. We can also describe the CM
cycles Z(Vy4 ) — cf. [13, Proposition 7.2], and the descriptions of Heegner divisors in [25] and [26]. We can
identify the CM cycles Z(V4 ) with Heegner divisors corresponding in the moduli descriptions of Y,(N) and
Xo(N) to a triple (E, E’, p) consisting of elliptic curves E and E’ with complex multiplication by Oy and
a cyclic isogeny ¢ : E — E' of degree N annihilated by a primitive ideal of the form n = [N, (r + /d})/2].
We then deduce that the CM cycles Z(Vy4 ) we consider will correspond to triples A = (A, ka(p), Aa)
with A = E x E the self-product of the elliptic curve E with CM by Oy, and ka(yp) the endomorphism
corresponding to the cyclic isogeny ¢ : E — E’ and its dual ¢V : E' — E. We refer to the discussions in [53]
and [29] for a more general description of these moduli spaces of abelian surfaces with special endomorphisms.

As in Remark 7.3, we extend each arithmetic divisor

Za(0) = (Zal)2(£.), Zalum) = (Za(u.m), Bun() € Ch' (M(V) x Yo(N))

to the compatification

o~ ~ . —~1
(75) Z3(f) = (Za(f),@(f.),  Za(p,m) = (Z4(k,m), Ppm(-)) € Ch (Xo(N) X Xp(N)).
We derive the following consequence of Theorem 7.5 in this setting, using Proposition 6.7 and Theorem 6.8.

Theorem 7.8. Let ¢ € SV (T'o(N)) be a cuspidal newform of level N and trivial character. Let k be
an imaginary quadratic field of odd discriminant dj and (odd) quadratic Dirichlet character ng(-) = (d—’“)
Assume that (N, d) = 1, and that n,(—N) = —np(N) = —1. Let gy, 4 € S2(wWr,) denote the vector-valued
lift of ¢ described lift in Corollary 6.5. Let fo 4 € Ho(wr,) be a harmonic weak Maass form of weight zero
and representation for which

0(fo,4)(T) = gp,a(T) € S2(Wr,),

where & : Ho(wr,,) — S2(@Wr,) denotes the antilinear differential operator defined in (17). Then, for any
class group character x € C(Ok)Y, we have the central derivative value formula

N(1/2,6x000) = =21 > x(4) [Za(for) : Z(Vao)

AeC(0Oy)

for the completed Rankin-Selberg L-function A(s,¢ x 6(x)) of ¢ times the Hecke theta series 0(x), where
each term on the right-hand side denotes the arithmetic height of the arithmetic special divisor

Za(fo,a) = Z Z C}FOYA (1, —m)Za(p, m)
HELY/La :’y‘]i‘g
on the integral model X = Yo(N) X Vo(IN) of the Hilbert modular surface X = Yo(N) X Yo(N) evaluated along
the corresponding CM cycle Z(Va) C X = Vo(N) x Yo(N). Here, each Za(u, m) is the Hirzebruch-Zagier

divisor Z(j,m) = (Z4(u, m), ®La) on X = Vo(N)x Vo (N) described above. We can also extend arithmetic
divisors to the compactification X* = Xo(N) x Xo(N) as described in (75) to get the corresponding formula

N(1/2,6x000) = =21 > x(4) [Z5(foa) : Z(Vao)

AeC(0O)
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Proof. For each class A € C(Oy), we have by Theorem 7.5 the arithmetic height formula

~ hy D,
Zatio.n): 2(Van)] = =5 L0 6upalfon) X O ) = =5 L (0,900 x Oy ).
Using the relation (61) from the proof of Theorem 6.8, we can extend this to the completed Rankin-Selberg
L-function L*(s, gp.a x 0y ) = A1+ s,m6)L(s, gp,a x 01y ) to get the corresponding formula

~ h h
AL ) |Zalfo.n) 2 2(Vao)| = =25 - A mIL (0,900 % 01 ) = =5 (0,004 X 1),

which by Proposition 6.7 (i) is the same as
ML) [Zalloa)  2(Va)] = =25 N(1/2,6 % 0),
and which after evaluating A(1, ;) via (68) then dividing each side by —hy /wy, is the same as
—2m [ Za(fo.n) : Z(Vao)] = N(1/2,6 x 0.4).

Taking the twisted sum A’(1/2,¢ x 0(x)) = >, x(A)A(1/2,6 x 04) then gives the stated formula. O
AeC(0Oy)

Corollary 7.9. Let E be an elliptic curve of level N defined over Q, parametized via modularity by a cuspidal
newform ¢ = ¢ € S2(T'o(N)), so that the Hasse-Weil L-function L(E,s) has an analytic continuation
A(E,s) = A(s — 1/2,¢) given by a shift of the standard L-function A(s, ) = Loo(s,d)L(s,d) of ¢. Let k be
an imaginary quadratic field of odd discriminant dj, and (odd) quadratic Dirichlet character ny.(-) = ().
Assume that (N,dy) = 1, and that the “Heegner hypothesis” ng(—N) = —nip(N) = —1 holds. Then, for any
class group character x € C(O)*, we have the following central derivative value formula

N(B/K,x 1) = =21 3 x(4) [2a(fo.1) : Z2(Vao)
AeC(0Ok)
for the Hasse-Weil L-function A(E/K,x,s) = A(s—1/2,¢x0(x)) of E over K twisted by x in terms of arith-
metic divisors on the Hilbert modular surface Yo(N) X Yo(N) — Spec(Z). Extending to the compactification
Xo(N) x Xy(N) — Spec(Z), we also have the central derivative value formula

N(E/Kx, D)= =21 > x(4) [Z5(foa) : Z(Vao)] .
AeC(0y)

Note that by comparing with the formula of Gross-Zagier [25, Theorem I (6.3)], we also obtain a relation
of arithmetic heights on Xy(N) and Xy(N) x Xo(N). We explain this in more detail in Appendix A below,
where we develop the discussion of [13, §7.3, Theorem 7.7] to prove the full version of [25, Theorem I (6.3)]
this way, i.e. via Theorem 7.5 applied to the setup described in Example 7.2.

7.3. Relations to Birch-Swinnerton-Dyer constants and periods. As explained in the introduction,
we have the following application to the refined conjecture of Birch and Swinnerton-Dyer.

Theorem 7.10. Let E/Q be an elliptic curve parametrized by a cuspidal newform ¢ € S5V (To(N)). Let k
be a quadratic field of discriminant dy prime to N. Assume that E has semistable reduction, hence N square-
free. Assume that the completed L-function A(E/K,s) = A(E,s)A(E@) ) = A(s—1/2,¢)A(s—1/2, @)
has order of vanishing ords—1 A(E/K,s) = 1, so that exactly one of the central values A(E,1) = A(1/2,¢)
or A(B) 1) = A(1/2, ¢ @) vanishes. Write [e, €] to denote either the requlator R(E/Q) or the regulator
R(E(dk)/Q) according to which factor vanishes. Let us also assume for each prime p > 5 that

e The residual Galois representations E[p] and E(%)[p] are irreducible.

e There exists a prime l | N distinct from p where E[p] is ramified, and a prime q | N distinct from p
where E(@)[p] is ramified.
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Then, up to powers of 2 and 3, we have the following unconditional identifications for the constant(s)
KE(Q) - Ky (Q)
_ #(B/Q) - #LL(E/Q) - [e,e] - T(E/Q) - T(EWQ) - Qo (B/Q) - Voo (£ /Q)
#E(Q)tors #E(dk)(Q)tors .
(i) If k is imaginary quadratic with ng(—N) = —ni(N) = —1, then
RE(Q) - Ko (Q) & N(B/E1) = =2 S ®(fon, 2(Vag)) = =21 Y. [Zilfoa) : Z(Vao)] .
AeC(0y) AeC(Ox)
(ii) If k is real quadratic with ng(—N) = np(N) = —1, then
kE(Q) - Kpun (Q) ~ A(E/k,1)
ot Y| () 0(oa, GOV + CTUGA(), 00, (7)€ ()]

4hy,
AeC(0y)

Here, in either case, we write = to denote equality up to powers of 2 and 3.

Proof. Cf. [54, Theorem 5.1] for the case of k real quadratic. In either case, we use the product rule with the
Artin decomposition A(E/k,s) = A(E,s)A(E(%) s) = A(E/Q, )A(E(dk)/Q, $) to compute

N(E/k,1) = N(E,1)A(E) 1) + N(E@) 1)A(E, 1),
equivalently

N(1/2,1I(m)) = A'(1/2,6)A(1/2, ¢ @ mi) + A'(1/2, ¢ @ mi)A(1/2, ¢),
where exactly one of the summands on the right-hand side vanishes. For the nonvanishing summand, we
can take for granted the refined conjecture of Birch and Swinnerton-Dyer up to powers of 2 and 3 using
the combinations of various theorems on the Iwasawa main conjectures and subsequent Euler characteristic
calculations; see [15] and [16] for details. In brief, we use the combined works of Kato [33], Kolyvagin
[37], Rohrlich [45], and Skinner-Urban [48] to establish the cyclotomic main conjectures!!, followed by the
relevant Euler characteristic calculations of Burungale-Skinner-Tian [15], [16], and Castella [18] for the rank
zero factor, and those of Jetchev-Skinner-Wan [32], Skinner-Zhang [50], and Zhang [66] for the rank one
factor. This allows us to deduce that A'(E/k,1) ~ kg(Q) - £ g (Q). We then identify the central derivative
values according to Theorem 6.8 and Corollary 6.9, as well as Theorem 7.8 and Corollary 7.9 when k is
imaginary quadratic. ]

Recall that a complex number o = o + it is said to be a period if its real and imaginary parts ¢ and
it can be expressed as integrals of rational functions, over domains in R™ given by polynomial inequalities
with rational coefficients. We write P C C to denote the set of all such numbers. We refer to the paper of
Kontsevich-Zagier [38] for a definitive expository account of this countable subring P of C, which contains
the algebraic numbers Q and their logarithms log Q (for instance). This paper also describes the conjecture
of Birch-Swinnerton-Dyer from this perpective, including the conjecture [38, Question 4] that the central
derivative value A=) (E/k 1) should lie in the ring of periods P. Assuming the finiteness of the Tate-
Shafarevich group, the argument of [38, §3.5] shows that the Birch-Swinnerton-Dyer constant kg (Q) € P is
a period. The same argument works for the more general setting of number fields, to show that kg (k) € P.

Corollary 7.11. Let us retain the setup of Theorem 7.10.

(i) If k is imaginary quadmtic with N (—N) = —ni(N) = —1, then the central derivative value
N(E/k,1) Z ®(fo,4,Z(Va)) Z [ZA(fO A): (VA,O)]

AEC(Ok) AeC(Oy)

H\We also consider the anticyclotomic main conjecture for the rank one factor, after passing to an imaginary quadratic field,
then descend back down to Q using various converse theorems and Euler characteristic calculations — see [15] and [16] for a
desciption of the state of the art.
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lies in the ring of periods P.

(ii) If k is real quadratic with ng(—N) = np(N) = —1, then the central derivative value

NE/ D) = -2t 3 |(Pr) @ GOV + CTURA MO, (1) 8 € ()
AeC(0Oy)

lies in the ring of periods P.

Proof. We use the argument of [38, §3.5] to deduce that kg (k) € P, up to powers of 2 and 3. That is, we take
for granted the conditions of Theorem 7.10 so that various theorems on Iwasawa main conjectures described
above allow us to bound the p-primary Tate-Shafarevich groups II(E/Q)[p>] and III(E@)/Q)[p>] for
primes p > 5 through the corresponding bounds for the p-primary Selmer groups. The argument [38, § 3.5]
then shows that each of the corresponding Birch-Swinnerton-Dyer constants kg (Q) and kg, (Q), up to
powers of 2 and 3, lies in the ring of periods P. O

APPENDIX A. GROSS-ZAGIER VIA THE SIGNATURE (1,2) SETTING

We now explain how a variation of the argument of Bruinier-Yang [13, Theorem 7.7 and Corollary 7.8]
can be used to deduce the full Gross-Zagier formula [25, Theorem I (6.3)], for twists by class group charac-
ters. This generalizes [25, Theorem 7.7], which recovers the formula of [25, Theorem I(6.3)] for the case of
trivial /principal ring class character xo = 1 € C(O})V. Although perhaps well-known to experts, we include
details for lack of reference. We also do this to compare with the arithmetic Hirzebruch-Zagier divisors in
Theorem 7.8 and Corollary 7.9.

Al. Xy(N) as spin Shimura variety. See [12, §2.4] and [13, §7.3]. Fix an integer N > 1. Let (V, Q) be
the rational quadratic space with underlying vector space

V =Maty5 (Q)
given by 2x2 matrices with rational coordinates and trace zero, and quadratic form given by Q(z) = N det(x).
The corresponding bilinear form is then given by (z,y) = —N tr(xy) for x,y € V. This rational quadratic

space (V,Q) has signature (1,2). The group GL2(Q) acts on the trace zero matrices V' by conjugation
y-x =~yxy~ ! for ¥ € V and v € GL2(Q). This action leaves the form @ invariant, and induces isomorphisms

GSpin(V) = GL, Spin(V) = SLy
of algebraic groups over Q. The Grassmannian D(V) = D*(V) can be identified with $ U $) via the map

2 .2
z:x—i—iyej’jHR%(i _ZZ )—i—R%(i _7; )ED(V).

Note that GSpin(V)(R) acts on D(V) 2 §US by fractional linear transformation. The congruence subgroup

To(N) C SL2(Z) determines both a lattice L C V and a compact open subgroup K = Kj = Hp K, of
GSpin(V)(Ay). To be more concrete, we take the lattice

(76) L:{(i _a/bN>:a,b,ceZ},

with dual lattice
v _ b/2N —a/N '
L —{( . _b/2N ta,byceZ ;.

We have a natural identification of the corresponding discriminant group

(77) (Z/NZ) = LY|L, r—> p, = < r/2N 2N )
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The lattice L C V has level 4N, and the quadratic form on LY/L can be identified with x — —z? on
Z/4ANZ. The compact open subgroup K = K, C GSpin(V)(Ay) = GL2(Ay) is given by K = [[, K, with
each K, C GSpin(V)(Z,) = GL2(Z,) defined by

Kp:{< . Z) eGLQ(zp):cesz}.
In this way, we obtain the identification of Shimura curves
(78)
Yo(N) =To(n)\$H — Xg(C) = GSpin(V)(Q)\D(V) x GSpin(V)(Ay)/K, To(N)z— GSpin(V)(Q)[z, 1]K.
A.2. Heegner divisors as special divisors.

A.2.1. Special divisors and CM cycles associated to the lattice L. We have the following correspondence
between the special divisors Z(u, m) and Heegner divisors Pp . described'? in Gross-Kohnen-Zagier [26].
Given m € Qx and a coset p € LY /L such that Q(u) = m mod L, we again consider the quadric
Qum(Q)={zepn+L:Q(x)=m}.
Note that ©,,,,(Q) = 0 unless Q(x) = m mod L.
Let us for each m € Qs and p € LY /L with Q(1) = m mod L consider the fundamental discriminant
D=—-4Nm € Z.

Given an integer r € Z with coset representative p = p, under the natural bijection (77),

p= = ( r/2N —r/2N ) € 2,,-(Q),

we have that D = r2 mod 4N. In this way, we produce a positive norm vector in the quadric

(79) o= alpm) =l -0/a0) = (5 ) € (@)

Conversely, given integers D < 0 and r such that D = 72 mod 4N, let m = —D/4N and u = p,.. Observe
that m € Q(u) + Z is positive. As in [13, §7.1], we take this identification for granted, and note that the
corresponding special divisor Z(u, m) = Z(p,, —D/4N) defined in (5) above can be identified with a sum of
Heegner divisors Pp , + Pp,_, defined in Gross-Kohnen-Zagier [26, IV.1(1)]. We remark that each of these
Heegner divisors Pp 1, has degree equal to the Hurwitz class number H(D),

deg(Pp,+r) = H(D) = 2}33)))~

Here, h(D) denotes the class number of the imaginary quadratic field Q(v/D), equivalently the cardinality of
the class group of positive definite binary quadratic forms of discriminant D. We also write w(D) to denote
the number of roots of unity in Q(v/D), equivalently the cardinality of the unit group of Q(v/D). Hence, we
deduce that for a pair (@, m) = (-, —D/4N) corresponding to (D, r) in this way, we have the relation

deg Z(p,m) = deg Z(pir, —D/AN) = deg(Pp 1) = H(D) = 2};15(12)

Fixing a positive norm vector = z(u,m) € Q,,,(Q) as in (79) above, we consider the positive and
negative definite subspaces defined by

Vi:=Qz, U:=Vnat

1275 be more precise, let 7 € §) be a root of the quadratic equation ar2 4+ br 4+ ¢ = 0 for a,b,c € Z, a > 0, a = 0 mod N,
b = rmod 2N and D = b? — 4ac. The image Ta,b,c Of such a root in Xo(N) is rational over the Hilbert class field k[1] of
the imaginary quadratic field k of discriminant D, and the Galois group Gal(k[1]/k) = C(O},) permutes these images simply
transitively. We then define Pp, = %t Z[a,b,c]EQD%C(Ok) Ta,b,c @S 3¢ times the sum of these hy points. In the moduli
description of Xo(N), this point Pp , corresponds to a triple (E, E’, ¢) of elliptic curves E and E’ with complex multiplication
by Ok and ¢ : E — E’ is an isogeny of kernel annihilated by the primitive ideal n = [N, (r + \/5)/2] of norm N.
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of (V,Q) = (Maty=(Q), N - det(-)), as well as the respective positive definite and negative definite lattices
P:=LNV,, N:=Lnaz*

Notice that we can present the negative definite lattice N C L more explicitly as

N:Z( 5 ‘f)@z( (ﬂ‘-%)/zuv 1/0N>’

and also that A has determinant —D. Writing ¢ = ged(r, 2N), the positive definite lattice P C L and its
dual lattice PV can be presented more explicitly as
N

_ r 2 _ 2 LW _pv_ gt

Let us now consider the ideal n = [N, (r ++/D)/2] of Z[(D ++/D)/2]. This ideal has norm N, and we can
associate with it the quadratic form given by the corresponding norm form
2z N(z)
G =F = N

As shown in [13, Lemma 7.1], if D is a fundamental discriminant of the imaginary quadratic field & = Q(v/D),
we have an isomorphism of quadratic lattices

r++vD x —y/N
(n,—Qn) — (N, —Qn), $N+y< 9 ) — ( —rz —y(r? — D)/4N ! )

Both lattices are equivalent to the integral quadratic form defined by

[N, —r,—(r? = D)/4N] = —Na” — ray — (* — D) /ANy

Now, recall that the spin group GSpin(U) = GSpin(U(z)) can be identified as the multiplicative group
Ty = GSpin(U) = k>, with Kpr = KNT & (5: maximal. According to [13, Proposition 7.2], if the
fundamental discriminant D is coprime to N, then we have an identification of zero cycles Z(U) = Z(m, p).
More precisely, writing F, (1) = F_,,(7,3/4) for the Hejhal Poincaré series of Definition 4.4 above, we
have the identifications of CM cycles

Z(U) = Z(U(x)) = Z(u,m) = Z(Fm) = Z(EL,,)
on Yo(N)(C) = Xx(C) = Shyc(GSpin(V), D(V))(C).

A.2.2. Ideal class representatives. Let k be any quadratic field (real or imaginary) of discriminant dj and
class group C(Oy). In the subsections of this appendix, we shall take k to be an imaginary quadratic field
of discriminant dx = D, though we consider the more general situation for future reference. Let Q4, denote
the class group of binary quadratic forms g, p.c(z,y) = ax? + bx + ¢ of discriminant d = b%> — 4a. Write
[a,b,¢] = [qa,b,c] € Qa, to denote the class represented by a binary quadratic form g, . .(z, y) of discriminant
di = b? — 4ac. A classical theorem shows that we have an isomorphism of class groups Qg, = C(O). For
instance (see e.g. [19, Theorem 7.7]), we have the explicit isomorphism

2 Qdk = C(Ok)v [(l, b’ C] — [CL, (_b + \/CTk)/Q]

Recall that for each class A € C(Oy) we fix an integral ideal representative a C Oy of A. Let us then
consider the sublattice L4 C L defined by

(80) La= ( lc) —a_/bN > ca,b,c€Z, Ndet ( IC) —a_/bN > = —qap,c for (la,b,c]) =A

Lau

with dual lattice

LY = (WN —o/N >:a,b,c€Z, Ndet(lc) _“/N>

¢ —b/2N b = —qa.c for ¢([a,b,c]) = A

Lau

66



Again, we have a natural identification of the corresponding discriminant group

(Z/NZ)= L% /La, r— pp = ( r/2N L j2N )
and the quadratic form on L%/L4 can again be identified with x — —z? on Z/4NZ. The correspond-
ing compact open subgroup K4 = K, C GSpin(V)(Af) = GLa(Ay) is given by Ka = [[, Ka,, with
each K4, = K, for K, C GSpin(V)(Z,) = GL2(Z,) as defined above. That is, we have identified the
corresponding compact open subgroups K = K 4 for each A € C(Oy).

Let us now assume k is imaginary quadratic with discriminant dj = D. Adapting the discussion above,
we consider for each m € Qo and u € LY /L4 with Q(u) = m mod L4 the corresponding quadric

Qapm(Q)={zep+La:Qx)=m}.

Here, we see that Q4 ,,.,»(Q) is empty unless Q(1) = m mod L4. Given m € Qso, let p € LY /L4 be such
that Q(p) = m mod 1. Hence, D = —4Nm € Z is again a negative discriminant. If r € Z with p =, mod L4,
then again D = 2 mod N, and we have a positive norm vector

_ _ _ r/2N 1/N

TaA= xA(u,m) = LCA(MM _D/4N) = < (D _ ’/‘2)/4N —7‘/2N ) € QA,/J,m(Q)‘

Conversely, given D < 0 and r with D = 72 mod 4N, put m = —D/4N and u = p,. Then, m € Q(u) + Z is
positive. The corresponding special divisor

Za(pm) = Zalur, ~D/AN) =To(N)\ [T D(V)a =P8, +Pb_,

zEp+L 4
Q(z)=m

corresponds to the Heegner divisor Pf) . + Pf _,., where each point Pp +, € Xo(N)(k[1]) in the moduli
description is represented by a triple (E, E’, ) with E(C) 2 C/a and E'(C) = C/n"'a and kernel ker(y)
of the isogeny ¢ : E — E’ annihilated by the primitive ideal n (see e.g. [25, §I1.1]). In this way, we see that
each class A € C(Oy) has a representative special (Heegner) divisor Z4(u, m) = Pg’r + P‘Sﬁr, as well as a
representative positive norm vector x4 = xa(p,m) = xa(ttr, —D/4N) € Q4 ,;,m(Q). Let us henceforth fix
this set of representative special (Heegner) divisors and positive norm vectors

(81) {Za(n,m) = Zalur,~D/AN)} gecion+ {@alm) = 2a(r,~D/AN) s, A € C(O4).
Fixing such a set of representatives (81), we consider the positive and negative definite subspaces
Var =Vai(za) = Qua, Us=Uaslza)=Vnay
of (V,Q) = (Maty2,(Q), N - det(-)), with corresponding positive and negative definite lattices
Pa=Palxa):=LanNVay, Na=Na(za)=LanNUs=LsNnzy.

In what follows, we shall apply the results of Theorems 5.12 and 7.5 to these negative definite subspaces
Va4 =Na®z Q CV for each class A € C(Oy).

A.3. Cuspidal eigenforms from vector-valued Shimura lifts. We now describe the harmonic weak
Maass forms f € Hy_,/o(wr) = Hyj2(wr) that appear. Let L C V be the lattice described in (76) corre-
sponding to the compact open subgroup Ko(N) C GLg(i). Let S3/9(wr) denote the space of holomorphic
cuspidal modular forms of weight 3/2 and representation wy,. A theorem of Eichler-Zagier [23, Theorem 5.1]
shows that we have the identification

(82) 53/2(WL) = ch,llz@p

with the space J;'5” of Jacobi cusp forms of weight 2 and index N. There is a theory of Hecke operators
and newforms for the space of Jacobi cusp forms J;'5". We write J, """ C J3'3” to denote its subspace of
newforms, with ng;" (wr) C S3/2(wr) the induced subspace of vector-valued newforms.

To describe this in a more exact way, we again consider the space S2(I'g(N)) of scalar-valued holomorphic
cusp forms of weight 2 on Xo(N) with trivial nebentype character. Let S5(I'o(N)) C S2(I'o(N)) denote
the subspace of holomorphic cusp forms which are invariant under the Fricke involution Wjy. Note that a
cusp form ¢ € S5(T'o(N)) is invariant under the Fricke involution if and only if its corresponding standard
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L-function'® A(s, ¢) = Loo(s, ¢)L(s, ¢) has an odd, symmetric functional equation A(s,¢) = —A(1 — s, ¢).
Let S5V (To(N)) C S2(Ty(IN)) denote the subspace of newforms, and

837 (To(N)) = 55 (To(N)) N1 S5 (To(N) € Sx(T'o(N)

the subspace of Fricke-invariant newforms. The theorem of Skoruppa-Zagier [49] shows that the Shimura
correspondence can be realized explicitly as an isomorphism of J; "“"*"-Hecke modules

(53) S5 (Lo(N)) 2 T3y .

Explicitly, fix a positive rational mg € Q~, and a coset po € LY /L such that mg = Q(pp) mod 1. Suppose
that Dy := —4Nmg € Z determines a fundamental discriminant, with « € Q,, m,(Q) the corresponding
positive norm vector defined in (79), and U = U(z) = V Nt the corresponding negative definite space.
Consider the space S3/(wr) C Ms)a(wr) C Mé/Q(wL) C Hj/o(wr) of holomorphic cuspidal forms of weight
3/2 and representation wy,. We have for each such pair (ug, mg) a linear map

Sﬁbo,mo : ‘93/2(wL) — SQ(FO(N))’ gr— Smo,uo (g)
defined on Fourier series expansions

g(1) = Z Z cg(p, m)e(mr)1, € S3/2(wr)

HELY /L mEQ>o

by the rule

S0 =3 | 3 ()« <uZmZ> ().

n>1 \ dln
Here, we shall also write the Fourier series expansion of Sy, m, (9)(7) € S2(T'o(N)) with the simpler notations
Dy n n?
Sug,mo (g) (T) = Z CSug.mo (9) (n)e(nT)’ CS,,mo (9) (n) = Z (d> €q (/140 ' E’mo ’ d2> s
n>1 dln

as well as the normalized Fourier series expansion

[N

oo (9)(T) = Y _nZas, . () (W)e(nT), s, . ()(1) = 5, () (W)
n>1

Hence, the standard L-function A(s,S,;,m0(9),5) = Loo(S, Suo,mo(9))L(8, Spuy,me(g)) has Dirichlet series
expansion for £(s) > 1 given by

—s —(s+1
L(3,Suomo(9)) = D a5, o))" =D s, o (g ()07 0F2),

n>1 n>1
Writing np, () = (&) for the quadratic Dirichlet character of discriminant Dy, this can also be written as
(84) L(5 = 1/2,800.m0(9) = D €89y (9) (W1 = L(s,11D,) D g (on, mon*)n=>.

n>1 n>1

Each of the linear maps Sy m, : S3/2(wr) — S2(I'o(N)) is Hecke-equivariant, and some linear combination
of them supplies the isomorphism Sy (wr) = S5 *(To(N)) implicit in the combination of (83) and (82).

Observe from the Dirichlet series expansion of (84) that if g € S35 (wr) is related via Shimura correspon-

dence to a scalar-valued cusp form ¢ = ¢, € S5 (T'o(N)), then we have the relation of L-series

(85) L(8, Spug,mo(9)) = cg(po, mo) - L(s, ¢),

and hence the relation of central derivative values

L/(1/27SH07TTLO (g)) = Cg(/*LOamO) ' L/(l/Qv (b)

13Which we normalize here to have central value at s = 1/2, as in the discussion above, but distinct from the classical
normalizations used by [13, §7.3], [26], and [25].
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Lemma A.1. Fizmg € Qsg and g € LV /L with mg = Q(uo) mod 1. Consider a fundamental discriminant
Dy = —4Nmg € Z, with corresponding positive norm vector xo € Q5 m,(Q) and negative definite space
U =U(xzg) = VNag as described above. Given any vector-valued cuspidal form g € Ss2(wr) whose (po, mo)
Fourier coefficient cq(o, mo) does not vanish, we have the identification of L-series

L(s,g.U) = (4wmo)~ ()T ( : 1) L(s Z?ﬁ’ f‘i;’;”§ (9))

new,*

In particular, if g € S3/2(@L) and ¢ € S;°""(T'g(N)) are linked by the Shimura correspondence (83) via
(85), then we have the relation of L-series

(= + 1Y ¢g(po,mo) - L(s +1/2,9)
L(s,9.U) = (47m mr(s ) , ’
( g ) (ﬂ- 0) 9 L(S+1777D0)
from which we can derive the identification of central derivative values

@ ¢g(to, mo)
dm \ deg Z (o, mo)

b

L'(0,9,U) = >~L’(1/2,¢).

Proof. See [13, Lemma 7.3] with [13, (4.24)], which we state here in the unitary normalization for the standard
L-function of ¢ € S3°™*(I'g(N)). Since we obtain a slightly distinct identification for the central derivative
value (by a factor of 27%), we provide details. To be clear, we have from definitions (first for ®(s) > 1) that

K9, 0) = (4m (5T (S+ 1) Z Z rp (s m)eg(p, m)m~ ().

2
m>1puePVv /P

Viewing g € S3/2(Wr) as a form of weight 3/2 and representation wpg s via [13, Lemma 3.1], we argue as in
[13, Lemma 7.3] that ¢,((A),\) =0 for all A € PY unless A € PY N LY = Zz to deduce that

K(s,00) = (om0 (252 ) 37 600 @000,
2

AEPY

On the other hand, we deduce from (84) that we have the relation

L(s +1/2,80,m0(9) = L(s + 1,npy) Y ¢g(pom, mom®)m =+

m>1
= L(s+1,mp,) A;v cg (oA, moQ(N)) - (mOQ()\))*(Sgl)
— L(s+1,mp,) -mg F) 3 (M)
and hence <
AGZPV cy(X, QN)QN) () = mg(%) L(s Zé/if;;);; (9))
so that

)= o (500 (57 S

which by (85) gives the desired relation of L-series

L(s,9,U) = (d7mg)~ (F)T ( ; 1) cg<uo,£z(z>+-§<;l)+)1/z,¢>_

Using that L(1,¢) = 0 as ¢ is invariant under the Fricke involution, we deduce via the product rule that

(86) L'(0,9,U) = (47mg) 2T (;) Cg(umzz(ol)’ -7;;()1/27@ _ cg(zu\;%o.)i(ﬁl,(;gfi ¢)
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Using the Dirichlet class number formula (67) for the imaginary quadratic field k = Q(+/Dg), we evaluate

2mhy, 47 hy 47 2
— T H(Dy) = - deg Z (110, mo).-
( 0) \/m €g (H’O mo)

wiv/Dol /Dol 2w \/]Dy|

Again, H(Dy) = hy /2wy, denotes the Hurwitz class number, and we have H(Dg) = deg Z(uo, mo). Hence,
(87)

L(lanDo) -

L(0,9,U) = cg(to,mo) - L'(1/2,6) _ v/ Nmg - cg(po,mo) - L'(1/2,6) _ NE gm0, m0) L'(1/2,0)

2y/mq - L(1,mp,) 2y/mq - 2m - deg Z(po, mo) 4m deg Z (o, m0)

O

To relate this to the discussion of Theorems 5.12 and 7.5 above, we choose the harmonic weak Maass form
f=[f"+f € Hy(@L) according to the following result.

new new,x

Lemma A.2. Fiz any cuspidal form g € 53/2 (@r), and let ¢ € S3°7 " (To(N)) denotes its image under
the Shimura correspondence via (83). There exists a harmonic weak Maass form f € Hyo(Wr) with Fourier
coefficients cf(m,u) as above such that:

(i) We have the relation & (f) = g/l|9]|*-

(ii) The Fourier coefficients c}'(,u,m) of the principal part Py of f lie in the Hecke field Q(¢) obtained
by adjoining to Q the Fourier coefficients of the cuspidal newform ¢ € S5 (Lo(N)).

(iil) The constant Fourier coefficient c}r(0,0) of f vanishes.

Proof. See [13, Lemma 7.4] or [12, Lemma 7.3]. O
We also have the following result, to ensure the nonvanishing of coefficients ¢4 (1o, mo) in Lemma A.1.

Lemma A.3. Fiz a newform
g(r) = Y D colum)e(mr)1, € S5y (wi).
nELY /L m>0

There exist infinitely many fundamental discriminants D < 0 such that

(i) Each prime divisor q | N splits in the imaginary quadratic extension Q(v' D).

(i) The coefficient cy(p, m) does not vanish form = —2- and any p € LV /L for which m = Q(p) mod 1.

Proof. See [13, Lemma 7.5]. This is deduced from the nonvanishing theorem of Bump-Friedberg-Hoffstein
[14] together with the Waldspurger formula shown in [26, §I1.4 Corollary 1] and [49]. O

A 4. Relation to heights. We now consider the moduli stack Vy(IV) over Z of cyclic isogenies of degree
N of elliptic curves 7 : E — E’ for which ker(m) meets each irreducible component of each geometric fibre.
We also consider the moduli stack Xy(IN) over Z of cyclic isogenies of degree N of generalized elliptic curves
7 : E — E' for which ker(7) meets each irreducible component of each geometric fibre. Hence, we have the
relation Xy(N)(C) = Xo(N) = X} (C), and Xp(N) is smooth over Z[1/N], regular away from supersingular
points z in characteristic p for p | N any prime divisor.

Recall that each of the special divisors Z (i, m) has an extension Z(u, m) to the integral model X = Yy ().
More precisely, we can view each Z(u, m) as a Deligne-Mumford stack which assigns to a base scheme S
over Z a set of pairs (r: E — E’ 1) consisting of

e A cyclic isogeny 7 : E — E’ of elliptic curves E, E’ over S of degree N
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* An action ¢ : Oq( /5 < End(7) = {a € End(E) : mar~! € End(E’)} of Oq(vp) on 7 for which
t(n) ker(m) = 0.
Again, we take n to be the ideal n = [N, (r + v/d)/2] in k = Q(v/D), with

D =—-4Nm and ,u:,urz<2N - )
T 2N

Remark A.4. Although Aj(V) is not regular, we may use intersection theory for the special divisors Z(u, m)
and for cuspidal divisors on Xy(N). To justify this, we consider the corresponding forgetful maps

Z(u,m) — Yo(N), (r:E—=FE,)— (r:E— E'),

each of which is finite étale, and generally 2 to 1. The image of each of these forgetful maps consists of the
flat closure of Z(u, m) in Ay(N), which does not intersect the boundary Xo(N)\Yo(N), and which moreover
lies in the regular locus of Xy(N).

Let us now fix a harmonic weak Maass form f(7) = f*(7) + f~(7) € Hy/2(@) as in Lemma A.2 above.
Hence, the principal part P¢(7) has Fourier coefficients contained in the Hecke field Q(¢), and c? (0,0) =0.
Note that if ¢(7) € S5 (Io(N)) is the eigenform parametrizing a modular elliptic curve E over Q of
conductor N, then we can deduce that the Fourier coefficients of P;(7) are in fact rational integers. Now,
recall that we have associated to this harmonic weak Maass form f a divisor

Z(h =Y 3 ef(u—m)Z(um) € Div(Yy(NV)),

Y €Q
nweLY /L TL>0

and that the corresponding reguarized theta lift ®(f;:) = ®(f;z,h) can be identified as the automorphic
Green’s function G'z()(-) = Gz(s)(2, h) with logarithmic singularity along this divisor Z(f). As explained
in [13, § 7.3], there exists a divisor C(f) on Xo(N) supported on the cusps for which the divisor

Z(f) = 2(f) +C(f)

has degree zero on Xy(NN). Moreover, the regularized theta lift ®(f,-) can be viewed as the automorphic
Green’s function Gze(s)(+) for this divisor Z¢(f) on the compactification Xo(N) = X . We write

Z8(f) = 2(H) +cf)

to denote its flat closure in Xy(N), and consider the corresponding arithmetic divisor

~ —~1
ZE(f) = (Z°(f), @(f,-)) = (2°(f), Gze(5) () € Ch (Xo(NV))q(e)-
Given a rational number m € Qs and a coset u € LY /L, we consider this divisor on Xo(N) given by

deg(Z(p, m))
- S (00) 4 (0)).
Note that this divisor y(u, m) has degree zero, and is invariant under the Fricke involution. Let Y(u, m)
denote its flat closure in Xp(N). As explained in [13, § 7.3], for each prime p not dividing the discriminant
D = —4Nm, this latter divisor }(u, m) has zero intersection with each fibre component of X,(N) over F,.
We also consider the divisor defined by

y(f) = > > cf(u—m)y(u,m) € Div(Xo(N)) = Div(X}),

\ €Q
peELY /L 77’;>0

y(p,m) := Z(p,m)

and write Y(f) to denote its flat closure in AH(NV).

Let Jo(NN) denote the Jacobian of Xo(N), with Jo(NN)(F) the F-rational points for some number field F.
Hence, elements of Jo(IN)(F) correspond to divisor classes of degree zero on Xo(N) which are rational over
F. Now, observe that y(f) is a divisor of degree zero on Xo(N) which differs from the Z¢(f) by a divisor
of degree zero supported at the cusps. We deduce from the Manin-Drinfeld theorem that y(f) and Z¢(f)
represent the same point in Jo(N) ®z Q. Keeping with the setup of Lemmas A.1, A.2, and A.3 above, let us
now consider the generating series

= Y Y ylume(mn)i,.

\% meQ
HEEV/L 1SS
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By the theorem'* of Gross-Kohnen-Zagier [26], this generating series 7K (7) can be viewed as a modular form
taking values Jo(N)(Q) ®z Q. Given a normalized newform ¢ € S"*V*(I'y(N)) as above, we can consider the
corresponding projection #K?(7) of K(7) to the ¢-isotypical component. The coefficients of this projection
#K? (1) consist of the projections y?(u, m) of each of the divisors y(u, m) to the ¢-isotypical component,

AT = D > v (mom)e(mr)1,.

Y €Q
pneELY /L f";>0

Theorem A.5. Let us retain the setups of Lemmas A.1, A.2, and A.3 above, so that g = £1/2(f) € S3/2(wr)
is the vector-valued Shimura lift of the Fricke-invariant newform ¢ € S5°" " (T'o(N)). We have the identity

K (1) = (1) @ y(f) € S32(@1) ® Jo(N)(Q)-
In particular, the divisor y(f) factors through the ¢-isotypical component of the Jacobian Jo(N)(Q) ®z Q.
Proof. See [13, Theorem 7.6], which explains how to deduce this from [26] and [12, Theorem 7.7]. O

Theorem A.6. Let us retain the setups of Lemmas A.1, A.2, and A.3 above, so that g = & /2(f) € S3/2(wr)
is the vector-valued Shimura lift of the Fricke-invariant newform ¢ € S3°""*(Lo(N)). The Néron-Tate height
W(f),y(f)nr of the divisor y(f) is given by the preliminary Gross-Zagier formula

VN

= W'L/(1/2»¢)~

() y(H)lnr

Proof. See [13, Theorem 7.7]; we modify the proof via Lemma A.1 and Theorem 5.12 above as follows.
Observe that Theorem A.5 implies the identification of Fourier coefficient divisors c,(u, m)y(f) = y®(u, m)
for each of the pairs (u, m) we consider. Using this identification together with the Manin-Drinfeld theorem,
we deduce that

(88) () y(Nlwr - cgltsm) = [y(F)y® ()] o = Wy m)lr = [Z2°()s y (i, m)]er

for each pair (p, m) contributing to the principal part Py(7) of f € Hy/o(@pr).
Let us now fix two distinct pairs (ug, mo) and (p1,m1), and for simplicity write

d(pj,m;) = deg Z(u;, m;) for j =0,1.
Define the constant
¢ = c(po, g1, mo, m1) := d(p1,m1)cq (o, mo) — d(po, mo)cg(p1,ma).
Consider the divisor of degree zero on Xo(N) defined by
Z = d(p1, m1)y(po, mo) — d(po, mo)y(p1, ma) = d(pr, m1) Z(po, mo) — d(po, mo) Z (pa, ma).

We also write Z to denote its flat closure in Xp(IV). Observe that Z is supported outside of the cusps of
Xo(N). Let M denote the least common multiple of all the discriminants of the special divisors Z(u, m) in
the support of Z(f). Assume that for each j = 0,1 the discriminant D; = —4Nm; is coprime to M N. This
ensures that the divisors Z and Z°(f) are coprime. It also allows ensures for each prime p that Z and Z¢(f)
have zero intersection with each fibral component of Xy(N) over F,,. Via (88), we compute

c- [y, y(Nler = [2°(f), d(p1, m1) Z (o, mo) — d(po, mo) Z (1, ma)ler
—d(jur,mn) |20, Z (o, mo) |+ dlpuo.mo) [2°(S), Z(ua,mi)|

Note that the cuspidal divisor C(f) does not intersect with any of the special divisors Z(u, m). We now
apply the arithmetic height formula (74) shown!® in Theorem 7.5 for each of the negative definite spaces
U; = V Na(us,my)* and lattices Nj = U; N L and P; = N;- C L with Lemma A.1 (cf. [13, Lemma 7.3])

14This was reproven later by Borcherds using Borcherds products for weakly holomorphic forms in the space Mi'/2(wL).

15Here, we could also use the original argument of Bruinier-Yang [13, Theorem 7.7], replacing their substitution of the
formula [13, Theorem 4.7] with the slightly modified version we derive in Theorem 5.12 above to obtain the same result,
i.e. without any condition on the parity of the discriminant dj,.
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and the identification of central derivative L-values (87) and Lemma A.2 (i) and (iii) for the cuspidal form
[ € Hyj3(wr) to each index j = 0,1 to obtain the arithmetic height formulae

Bf), Zzmy)] = 5 B Ztgmg)) + 1205 2ty + €O 2 g,ms ),

= ) (12(0,€0,0(1),Uy) + (0,00 0,0)) + [C07), 2o iy,

_ _M 0,6 5(F),U;)

2[lg[l> A deg Z(y15,m;)

— o ) L1/2.0)
so that
¢ ly(F)y(Dlyr = =l m) [Z°(F), Z(uo.mo) |+ d(pio, mo) [Z5(F), Zu,mn)]|
(89) N3 N3

= d(p1,m1) - - g(pto,mo) - L' (1/2,¢) — d(po, mo) - ~g(pr,ma) - L'(1/2,9).

8lg||? 8l[8]]>
Now, it is not hard to show that we can choose the pairs (po, mo) and (u1,m1) in such a way that the
constant ¢ = ¢(po, p1, Mo, m1) does not vanish. We can then deduce from the calculation (89) that

vN
e ly()y(Plnr =c- - L'(1/2,9),
o 8llgl?
so that the claimed formula follows after dividing out by the nonzero constant c. |

Corollary A.7. For any coset u € LV /L and positive integer m € Q(u) + Z, we have for D := —4Nm that

il

[yd)(/hm),y(b(%m)]NT = 2o L(1/2,9@np) - L'(1/2,9).

Proof. Cf. [13, Corollary 7.8]. We deduce this from Theorem A.6 using the relation y?(u, m) = c,(u, m)-y(f)
with the Waldspurger-like formula theorem shown shown in Gross-Kohnen-Zagier [26, II, §4 Corollary 1]:

¢j, (m,m)®>  \/ID] L(1/2,¢ @ np)

(Jgrdg) 2w (9, 0)
where j, € J; """ denotes the Jacobi form corresponding to g. Using that the Petersson norm ||g|| is equal

to Ni|| Jgll, by Eichler-Zagier [23, Theorem 5.3], we derive from this the coefficient formula

1” llgll?

2 2 Wll® s _ et
(90) Cg(u,m) _ng(u7m) 27T||¢H2 |D| L(1/27¢®77D) QTI'N%||¢H2 |D| L(1/27¢®77D)
to get
[y (1), y® (1, m)] op = leg (s m)y (), g (,m)y (e = (s m)® - () y(Hlnr
|D[2|lg|? N: o |D|? /
— CL(1/2 . . L 2 = - L(1/2 - L 2,0).

O

A.5. Class group twists. We now explain how to adapt Theorem A.6 and Corollary A.9 to derive the
full Gross-Zagier formula [25, T Theorem (6.3)], which applies to twists by any character x of the ideal class
group C(O}) for k = Q(v/D) as we consider above. Note that this general form of the Gross-Zagier formula
is not derived in [13]. We take for granted all of the discussion above leading to Corollary A.9, and fix a
set of representatives as in (81) above. Hence, we choose for each class A a point x4 € Q4 ., (Q) which
gives rise to a negative definite space Uy = V N J;j. Note that each space Uy4 corresponds to a fractional
ideal representative of the class A of C'(Oy). We also obtain a negative definite lattice Ny = Us N L4 and a
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positive definite lattice P4 = N4 C La. Recall that in (81), we also fix for each class A € C(Oy) a divisor
Za(p,m) = Za(pr,—D/4N) on Xg, = Yy(N). Fixing f € Hy/o(wr) as in Lemma A.2, and taking the
restriction f4 to the sublattice Ly C L as in Lemma 5.7 and (48) we then define the corresponding divisor

Za(fa)= > 3 cf(w—m)Za(n,m) € Div(Yp(N)),

v €Q
nELY/La TL>0

There exists for each A € C(Oy) a divisor C4(f) supported on the cusps Xo(N)\Yy(N) for which the divisor
Z5(f) =Za(f)+ Ca(f) on Xo(N) has degree zero. Again, the regularized theta lift ®(f4,-) determines the
automorphic Green’s function for this divisor Z§(fa) € Div(Xo(N)). Writing

Z3(fa) = Za(fa) +Ca(fa)

for the extension to the flat closure in Xy(N) of this divisor Z4(fa), we obtain an arithmetic divisor

~ 1
Z4(fa) = (Z4(fa), ®(fa,) = (Z4(fa); Gzg (40 () € Ch (Xo(N)).
We also consider for each class A € C(Oy) the Fricke-invariant divisor of degree zero on Xo(N) defined by

)_w(( )

yA(/’L’m) = ZA(M7m 2 o) + (O)) s

with Ya(p, m) its flat closure in Xy(N). We also consider
ya(fa)= > > ¢l (—m)ya(u,m) € Div(Xo(N)),

RELY/La ’:f;g
with Y4 (f) its flat closure in Xy(N).

A.5.1. Decompositions of basechange L-functions. For each class, a minor variation of the argument of
Lemma A.1 allows us to make the identification

Hs.0,U) = ()G (72 5757 ey G mym ()

m2>1puePy /Pa

— ) e (1) 3 ennamnew )

XEPY
B (=2 s+1 LA(3+1/2a¢)
— (4mm)~( >p( ! ) aer g

Here, we view g = ga € S3/2(Wr,) as a form of weight 3/2 and representation wp,gar, via Lemma 5.7 and
(48) (cf. [13, Lemma 3.1]), and we argue as in [13, Lemma 7.3] that ¢4, ((A),A) = 0 for all A € P){ unless
A€ PYNLY =Zxs. We then define L4 (s, ) by the corresponding relation

L(s,Su.m(9a)) = cgu(pr,m) - La(s, ¢).

Using the same argument as for (87), we compute

L/(O,gA,UA) — (47rm)7%F <;> L:4(1/27¢) _ VvV Nm CgA(Mam)L;l(l/Zgb) _ N% . CQA(;vam)LiA(]-/ZQS)

L(1,np) 2y/m 2rH(D) A deg Za(p,m) '
which via Lemma A.2 (i) and (iii) is the same as

N: g, (mm)Ly(1/2,9)
4rllgall? deg Za(p,m)

(91) Ll(07gA7UA) =

We can intepret L 4(s,¢) as the partial/class basechange L-function of ¢ to k with our unitary normal-
izations for the standard L-function (cf. [25]), so that in this setup we have the identifications of L-functions

L(S>¢ X G(X)) = Z X(A)LA(57¢)LA(57¢®771€) = Z X(A)L(S,(bx HA)
A€C(0y) AeC(0y)
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To be clear, we define each L (s, ¢) according to the partition of the lattice L = @AGC(Ok)%QD L 4 so that

Z LA(Sa¢) :L(S7¢)

AeC(0y)

is the finite part L(s, ¢) of the standard L-function A(s, ) = Lo (8, @) L(s, ). We can then define L4 (s, p@n)
simply as the quadratic twist. Writing IT = BCy,,q(7(¢)) to denote the quadratic basechange lifting of the
cuspidal automorphic representation 7(¢) of GLa(A) associated to ¢ to GLo(Ay),with standard L-function

A(s,IT) = Loo(s, I L(s, IT) = A(s, ¢)A(s, ¢ ® k) = Loo(s, ) L(s,T) Leo (s, ¢ @ m1) L(s, ¢ @ k),
we have an identification of L-functions
Y La(s,6)La(s,¢ @) = L(s,$)L(s, ¢ ® i) = L(s, T0).
AeC(0y)
Moreover, we have for any character xy € C(Og)Y the equivalence of L-functions
AEC(Oy)

Note that we can justify this latter identification after opening up Dirichlet series expansions for R(s) > 1
to see that both sides describe the Dirichlet series expansion of the basechange L-function L(s,II ® x) over
nonzero ideals a C Oy, corresponding to sums over partial basechange L-functions (first for R(s) > 1)

aqs(Na ar(a
Laslex) =xWhism=xa) Y 2N,y al
[u?:cfgéﬁg)}k) [a‘]j:cfééi(%}k)

determined by sums over ideals a € A in each ideal class A € C(Oy). That is, we have for each class
A € C(Of) the identification of partial/class basechange L-functions (first for f(s) > 1)

as(Na arr(a
La(s.0)Las0m) = L= Y ‘N5 an(@)
aCO\{0} aCOL\{0}
[a]l=A€C(O}) [a]=AE€C(Oy)

Hence, we have the identifications of quadratic basechange and Rankin-Selberg L-functions

> x(A)La(s, @) Lals, ¢ @ i)

AeC(0y)
AeC(0y) AeC(0y)
= L(s,¢ x0(x)) == > X(A)L(s,¢ x 0a).
AeC(0y)

Remark A.8. Note that this realization of the Rankin-Selberg L-function L(s,¢ x 6(x)) is distinct from
that considered in Gross-Zagier [25], where the corresponding L 4(s, f) for A € C(O),) denotes to the partial
Rankin-Selberg L-function L(s—1/2,¢ X 64) in our description above. In particular, the L4(s, ¢) here forms
a summand of the GLa(A)-automorphic L-function L(s, ¢) as described in Lemma A.1. In other words, we
are working with some explicit form of the basechange equivalence L(s,II® x) = L(s, ¢ x 6(x)) in this setup.

A.5.2. Relation to arithmetic heights of Heegner divisors. We argue as in the proof of Theorem A.6 that
when D is prime to 2N, we have for each class A € C'(Oy) the corresponding arithmetic height formulae

~ N3
2800 Zalm)] | = —gr s -ealiom) - a(1/2,0)
and
N3
[a(fa),ya(fa)lyt = sellgall - L4(1/2,¢).
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We then argue as in Corollary A.6 that we can use the Waldspurger-like formula (90) to derive the formula

[ ). s )| = g (s )y (), ea it m)ya (£l e = eaa () - [ga(£a), ya(Fa)lr

52 _ |Dilgalr N, D} /
- 2N ||¢| |2 L(1/2,¢®np) - IlgAl 2 Ly (1/2,9) = W‘L(1/27¢®m)) <L (1/2,9)

for the ¢-isotypical components. Taking the y-twisted linear combination for any x € C(Og)Y, we obtain

1 ~

@) = [ = Do x(A) [yfﬁ(u, m), y% (. m)}NT

k AeC(0y)

D3
(93) — b L1/260) Y x(ALA(1/20)
AeC(0Oy)

_ Ipj3 ) _ |D# )
= W.L (1/2,1®x) = 2|0 ~L'(1/2,6 x 0(x))-

This is the same as the formula of Gross-Zagier [25, Theorem I (6.3)] when |D| > 4:

Theorem A.9 (Gross-Zagier). Assume the fundamental discriminant D is coprime to 2N, and that |D| > 4.

Let f € Hyjs(wyr) as described in Lemma A.2 with g/||g||> = & /2(f) € S3/2(@r) and ¢ € S *(Co(N)) the

corresponding Shimura lift. For x any character of the ideal class group C(Oy) of k = Q(v/D), we have that
D[

1 ~
e hi(y9) = (592 p = Z x(A) [Z/ﬁ(%m),yﬁ(%m) N e L'(1/2,¢ x 0(x)).
AeC(0Oy)

Proof. See [25, Theorem I (6.3)], as presented in Theorem 1.1, which gives a distinct proof, e.g. without using
the Shimura correspondence. This approach is also distinct from the re-proofs and generalizations established
by Zhang [64], [65], [62], [63] and Yuan-Zhang-Zhang [59] for Shimura curves over totally real fields. O

Phrasing the result in terms of completed L-functions

N(1/2:6 % 000) = AL '(1/2,6 x 000) = 22 - L/(1/2,0 x ()

and comparing with Theorem 7.8 and Corollary 7.9, we obtain the following relations.
Corollary A.10. We have the arithmetic height formula

n |D|% / Zc
27 - hk(yfz) = &2|o]? “A(1/2,6 x0(x)) = —27 AE%JX(A) {Z (fo,a) : Z(VA,O)] ;

where the twisted sum of special arithmetic divisors on the right-hand side represents the arithmetic Hirzebruch-
Zagier diwvisors on Xo(N) x Xo(N) described in Remark 7.7, Theorem 7.8, and Corollary 7.9 above.

APPENDIX B. RELATION TO METAPLECTIC FOURIER COEFFICIENTS

We now use the connection to the regularized theta lifts ®(f1/2,2) = Gz, ,)(2) € L?(Xy(N)) of Theorem
A9 and ®(fo, 2) = Gz, (2) € L*(Xo(N) x Xo(N)) of Theorem 7.8 to relate the central derivative values
A (1/2,¢ x 0(x)) to Fourier coefficients of half-integral weight forms; cf. the works [12], [34], and [11].

B.1. The setting of signature (1,2) with ®(f)/s,2) € L'*¢(Xo(NV)). Let us first recall the harmonic
weak Maass form described in Lemma A.2, adapted to class group representatives as in Theorem A.9 above.
Hence, we retain all of the setup of the previous section, with (V,Q) = (Maty2y (Q), N det(-)), the lattice
L C V giving rise to the congruence subgroup I'g(/N) C SLo(Z), and the sublattices L4 C V' corresponding
to ideal classes A € C(Oy) described in (80). To be clear, we fix a cuspidal newform ¢ € S5 (To(V))
which is invariant under the Fricke involution wpy.

76



B.1.1. Quadratic sublattices. If k is an imaginary quadratic field of discriminant d < 0, we fix a set of
lattice representatives as in (80) above, together with positive-norm vectors x € Q4 ,,.,,(Q) and Heegner
divisors Z4(u,m) € Yo(IN) as in (81). If k is a real quadratic field of discriminant dy > 0, we fix for each
class A € C(Oy,) an integer ideal representative a C Oy. We then fix a Witt decomposition

Va=Ka®Qea1 ®Qea,p,

so that the orthogonal complement W4 = K4 C V of the Lorentzian subspace K4 of signature (1,0) is
isomorphic to the signature (1,1) subspace determined by (aq,Q4) = (aq,Ni/q(-)/Na). Here, we write
ea,; € V to denote the corresponding nonzero isotropic basis vectors with (e4 j,ea ;) = 0 for j = 1,2 and
(ea1,€4,2) = 1. We then write Law = LN W4 for the corresponding lattice as in the discussion above,
leading to Theorem 5.14 (for the case of n = 1). Note that (Law,Q|w,) corresponds to the quadratic
lattice (a,Qq(-)). Note as well that this quadratic lattice L4 w is isomorphic to the sublattice Ly C V
defined in (80) above. Hence, for either case on of the quadratic field k, we have for each class A € C(Oy) a
corresponding sublattice L4 C L corresponding to an integral ideal representative a C O.

B.1.2. Vector-valued Shimura lifts. Fix a quadratic field k, real or imaginary, with discriminant dj, and
character 7;(-) = (%). For each ideal class A € C(Of), we let g4 € S35 (wr,) denote the holomorphic
vector-valued cusp form of weight 3/2 and (Weil) representation wr, , associated to ¢ by the Shimura corre-
spondence via the isomorphism (83). By Lemma A.2 (cf. [13, Lemma 7.4], [12, Lemma 7.3]), there exists for
each class A € C(O) a harmonic weak Maass form f/5 4 € Hi/2(wr,) such that

(i) We have the relation &; /o(f1/2,4) = ga/llgall?.
(ii) The Fourier coefficients C}—I/Q,A (11, m) of the principal/holomorphic part f{?z 4 lie in Q(¢).

(iii) The constant coefficient clf (0,0) vanishes.
1/2,A

Proposition B.1. For each class A € C(Ok), consider the corresponding regularized theta lift

(fi/2,4,2) = ®(f1/2,4,2,1) = /;<<f1/2,A(T)79LA (1,2,1)))dp(r)

= CTumo fim [ {{fi/2a(7), 60, (72, D))o dutr)
Fr
as a function of the variable z € D(V) = D¥(V) = §. The following assertions are true.

(i) ®(f1/2,4,2) determines a (weight zero) modular function on Xo(N) with Laplacian eigenvalue 0.
(ii) ®(f1/2,4,2) is the automorphic Green’s function for the special divisor Z°(f1/2.4) on Xo(N).

(iii) ®(f1/2,4,2) € LY#(Xo(N)).

Proof. All three assertions follow from Theorem 4.2, using the identification X, = Yy(N) and extending
to the cusps, as well as that c;flm A(0, 0)=0. |

Remark B.2. Note that for A € C(Oy) with k real quadratic, the Fourier series expansions of these modular
functions ®(f1/2.4,2) can be calculated according to [12, Theorem 5.3, cf. (5.10)]. More precisely, let » € Z
be any integer such that dj, = r? mod 4N. Let us for each lattice L4 as defined in (80) above fix a primitive
isotropic vector 4 € Ly and I’y € LY so that (l4,1’;) = 1. We then have the corresponding positive definite
subspace defined by K4 = La Nl5 N1,. We choose these vectors so that

1 O
=z} %),
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Given a vector A € K4 ® R, we write A > 0 if it is a positive multiple of ( 0

0 —1
d — 4 bt i X’ A1 A b
(fi/2,4,2) = — Z Z i ( )Cfl/ZA —5 7 og|l—e (’Z)—Fdik :
>\/\E;C64bmodd;c

B.1.3. Relation to metaplectic Fourier coefficients. If we knew the functions ®(f1/2,4,2) € L***(Xy(N))
were square integrable, then a straightforward generalization of the theorem of Katok-Sarnak [34] would
relate the sums over CM cycles and geodesic sets we compute in Theorems 5.12 and 5.14 for the case of n =1
to twisted sums over the half-integal weight forms F}; related to ®(f1/2 4,2) by the Shimura correspondence
Shim(F;) = ®(f1/2,4,-) of the Fourier coefficients cr, (dx)cr,;(1). On the other hand, we have the following
more precise result in this direction. To describe it, we first need to describe the following trace coefficients
t1,,m (P(f1/2,4)) for each case on the quadratic field k.

When dj, < 0 so that k is imaginary quadratic, define for each m € Qs and p € LY /L 4 the trace function

1
trym (‘I’(fl/z,A)) = Z T ? (f1/2,A7 L(D(V)z)) .
e (VAT (@ T STEPT0(0 (@)

Here, we write ¢ to denote the identification ¢ : D(V) = §. We also write «(D(V),) to denote the image of
D(V), in the modular curve Xy(N), so that the special (Heegner) divisors Z4(u, m) we consider above is

ZA(M7m) = Z L(D(V)w)

zETo(N)\Qa,u,m (Q)

). We then have

When dj, > 0 so that k is real quadratic, we fix a vector z € V(Q) of positive length m € Q, and consider
the corresponding geodesic in D(V') 2 § defined by 7, = D(V),. Here, we fix the following orientation:

T = ( (1) _01 ) = 7, = £(0,4i00) is the imaginary axis with the orientation +.

The orientation-preserving action of SLs(R) then induces an orientation on each geodesic ~,. We also define

m

1 0
dzy = £dz//mz for z =+ N(O _1>.

Let a(z) = Stabr,(n)(7)\7z, as well as its image in Xo(/V). Note that when the stabilizer Stabrn)(z) is
infinite, a(z) determines a closed geodesic in Xo(N). We then define for each m € Qo and p € LY /L4 the
corresponding trace function

tru,m ((I)(fl/Q,A)) = QL Z / (I)(fl/271472)d293.

€L (NN\Q2a,1u,m (Q) oz
Here, each a(z) is a closed geodesic, equivalently, 2= is nonsplit over Q, and we again write
Qapm(Q)={zepn+La:Qx)=m}
for the corresponding quadric!S.

Theorem B.3 (Bruinier-Funke-Imamoglu). Fiz any class A € C(Oy). The generating series defined by
I1/2,y(‘1)(f1/2,A7 ')ﬂ')

erf(2/7|m|v)
= =2V tr,0(2(f172,4)) + D trpum(®(f1/2,4)) ———=—e(m7) + Y  trum(®(fi/2,4))e(m7)
o(®(f1/2,4 ;;0 N ngo /2.4

1611 the remaining case where a(x) is an infinite geodesic, equivalently when Stabp (n)(z) is trivial and the complement
z1 C V determines an isotropic quadratic space — which only happens if Q(z) e N(Q* )2 — then the trace is defined according
to the regularization procedure described in [11, §3.3], and the corresponding complementary trace in [11, §3.3.2]. However,
as the orthogonal complement z- C V always determines an anisotropic subspace (W4,Qlw,) = (aq,Qa) in the setup we
consider above, we do not need to consider these variations of the trace here.
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determines the p part of a harmonic weak Maass form in Hy o(wr,),

Lo ((f1/2,4),7) = Z L2, (®(f1/2,4),7) € Hija(wr,)-
MELY/La

Proof. This is special case of [11, Theorem 4.1] detailed for the setup we consider above. (Il

Now, we identify these traces with the CM cycles Z(Ua) = Z(La o) and geodesic sets G(W4) described
for Theorems 5.12 and 5.14 above (for the special case of n = 1).

Proposition B.4. Let k be any quadratic field of discriminant dy, prime to the level N. We have the follow-
ing identifications of the traces defined above in terms of the sums (50) of the regularized theta lift ®(f1/2,4, 2)
along the CM cycles Z(U ) defined in (6) and the geodesic sets G(Wy) defined in (7).

(i) If A € C(Oy) for k an imaginary quadratic field of discriminant dy, < 0, then for each positive norm
vector & € Qa_u.m(Q) with orthogonal complement Uy = Ua(z) ==z C V, we have that

tr0,m (P(f1/2,4)) = ©(f1/2,4, Z(Ua)).

(ii) If A € C(Ok) for k a real quadratic field of discriminant dy > 0, then for each positive norm vector
z € Vaum(Q) C Ka with orthogonal complement W = Wa(z) := x+ C V, we have that

tr,u,m(q)(fl/Q,A)) = (I)(fl/Q,Aa G(WA))

Proof. Cf. [13, Proposition 7.2]. We use that Q4 , m(Af) = Kaz = K, 2 in either case. Hence for (i), we
see from the corresponding definition (5) of Z4(u, m) that Z4(u,m) = Z(Ua). The result then follows from
the definitions. Similarly, for (ii), we see from the corresponding definition (7) of the geodesic G(W,) with
the natural identification D(V'), = D(W4) that the identification follows from the definitions. O

Putting these results together with Theorem 5.12, Theorem 5.14, and Lemma A.2 (cf. [13, Lemma 7.4]),
we obtain the following.

Theorem B.5. We have via Theorem 5.12 and Theorem 5.14 for the quadratic space (V,Q) of signature
(1,2) described above the following identification of central derivative values of L-functions as Fourier coef-
ficients of half-integral weight forms.

(i) Let k be an imaginary quadratic field of discriminant D = dj, < 0. Assume as in Lemma A.1 that
m = —D/4N for D = —4Nm with D = r?> mod 4N, and take p = .. Then, for x and character of
the ideal class group C(Oy), we have the relation

|D|?

T 1674 L'(1/2,¢ x 0(x)).

D x(A) - coulpm) - trpm (2(fany) =

AeC(0y)

(ii) Let k be a real quadratic field of discriminant d > 0, and x € Qa,,m(Q) C Ka a positive norm
vector with orthogonal complement W = Wa(x) := 2+ C V as in Proposition B./4 (ii). We have for
each class A € C(Oy) the relation

_ 4hy, ,
trm (®(f1/2,4)) = T wrln(en) L(0,94 % 0py )
Proof. For (i), we combine Proposition B.4, Theorem 5.12, Lemma A.1 (cf. (91)) and Lemma A.2 to find
deg(Z (U
o (®(f172,0)) = ®gaa Z200)) = ~ BT 0 40110 0)  01)
deg(ZUn) NP cpu(nm)I(1/2,0)

2 drllgall? deg Za(pn,m)

(94) =

Nz -y, (p,m)
= 2 CalN T g (179, 6).
Srllgal? Lall/29)
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A variation of the formula (90) implied by [26, §11.4, Corollary 1] gives us the corresponding relation
_llgalPIDl}
27N 3 |g][2
Multiplying both sides of (94) by the Fourier coefficient ¢4, (1, m) and applying (95), we find that

(95) CgA(//‘7m)2 LA(1/27¢®77D)'

Nz ¢y, (p,m)

Cga (g, m) AT m ((I)(fA,l/Z)) = - 0L2(1/27 ®)

87||gall?
D /2w ) L1220
= 167T2||¢H2 A ) D A ) .
Taking the twisted linear combination for any class group character xy € C(Oy)V, we then find that
D|?
S ) ou ) (Bfas/3)) =~ pogiom 3 XALAL/20@ m0)LA(1/2.0)
A€C(0y) AeC(Ok)
|D|? /
=————-L'(1/2 0 .
167T2H¢||2 ( / ad) X (X))
For (ii), we put together Proposition B.4, Theorem 5.14, and Lemma 5.8 to get the relation
4
trm (P(f1/2,4)) = (f1/2,4, GWa)) = T Yol(Kwy) L0, &1 /2(f1/2,4) X 01)
4hy,
=——F—-I(0 0 .
wg ln(r‘fk) ( ,gA X Li,w)

O

Remark B.6. In the situation of Theorem B.5 (ii), we expect there to be an analogue of the adjoint map of
[26, §11.4] to give a precise relation between the L-function of the vector-valued Shimura lift L(s, g4) and the
standard L-function L(s, ¢), and from this an analogue of [26, §I1.4, Corollary 1] to derive a precise relation
between the squares of the Fourier coefficients ¢, , (1, m)? and the twisted central values L(1/2,¢ ® np). Of
course, some relation between these values is known fairly generally by the works of Waldspurger [56], [55]
and Kohnen-Zagier [38]. We hope to make this more explicit this in a subsequent work, and in this way
perhaps to resolve the conjecture implied by Bruinier-Ono [12, Theorem 1.1 (2)] in this way.

B.2. The setting of signature (2,2) with ®(fy, 2) € L'*¢(Xy(N) x Xo(N)). We now return to the setup
of Theorem 7.8 and Corollary 7.9. Hence, for k a real or imaginary quadratic field of discriminant dj, prime
to N and quadratic Dirichlet character ng(-) = (%), we fix for each ideal class A € C(O}) an integer ideal
representative a C Oy with norm form Qq(-) = Nj,q(-)/Na. We then consider the quadratic space (Va,Q4)
of signature (2,2) defined by (Va,Q4) = (aq ® aqQ,Qa — Qa). We fix Ly = N~ la+ N~'a C V4 to be
the lattice whose adelization corresponds to the compact open subgroup K4 = K1, = Ko(N) ® Ko(N), as
described in Corollary 2.4. We fix a cuspidal newform ¢ € S5V (I'g(IV)). We then argue following Corollary
6.5 that there exists a vector-valued form g4 4 € S2(@y,, ) lifting ¢. For each ideal class A € C(O), we then
take fo 4 € Ho(wr,) to be any cuspidal harmonic weak Maass form of weight zero and representation wy, ,
whose image under the differential operator &; /5 equals gy a.

Proposition B.7. For each class A € C(Ok), consider the corresponding regularized theta lift

B(fonz) = D(fou 211) = /F (fo.a(r). 810 (7, 2, 1)) ds(r)

= CTuo § i [ (Uo.a(): 00 (1,2, D))
Fr

as a function of the variable z € D(Va) = D*(Va) = §H2. The following assertions are true.
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(i) ®(fo.a,2) determines a (parallel weight 0) modular function on Xo(N)? with Laplacian eigenvalue 0.
(ii) ®(fo,.4,2) is the automorphic Green’s function for the special divisor Z¢(fo.a) on Xo(N)?.

(iii) ®(fo,a,2) € L1e(Xo(N)?).

~

Proof. Again, all three assertions follow from Theorem 4.2, using the identification Xx, = Y5(N)? and
extending to the cusps, as well as that c;{o ,(0,0) =0. |

Again, we note that if these regularized theta lifts ®(fy 4,2) € L'T5(Xo(IN)?) were known to be square
integrable, then a straightforward generalization of the main theorem of Katok-Sarnak [34] would allow us
to relate the twisted linear combinations of Theorem 6.8 and Corollary 6.9 to twisted linear combinations of
metaplectic Hilbert modular forms (on Xo(4N)?) of parallel weight 1/2. Here, we expect there to be some
version of Theorem B.3 that generalizes the theorems of Waldspurger [56] and Gross-Kohnen-Zagier [26,
§IL.4, Corollary 1] relating central values of quadratic twists of GLy(A)-automorphic L-functions to Fourier
coefficients of half-integral weight forms to central derivative values.

Conjecture B.8. Retain the setups of Theorem 5.12 and 5.14, with k the corresponding quadratic field.
Through the connection to the sums ®(fo.4,Vao) and ®(fo,.4,G(Wa)) of the automorphic Green’s functions
D(fo,4) along CM cycles Vao C Va or geodesic sets respectively via Theorem 6.8 and Corollary 6.9, we have
for any class group character x € C(Oy) a relation between the central derivative value L'(1/2,¢ x 6(x))
and a twisted linear combination of Fourier coefficients of some Hilbert modular form of parallel weight 3/2
on the Hilbert modular surface Xo(4N) x Xo(4N), as well as a relation to a twisted linear combintation of
Fourier coefficient of a harmonic weak Maass form of parallel weight 1/2 and representations wry, , .

That is, we expect to have an analogue of the main theorem of Bruinier-Funke-Imamoglu [11] for this setup
of type with rational quadratic spaces (Va4, Q) of signature (2, 2), linking to Fourier coefficients of harmonic
weak Hilbert Maass forms of parallel weight 1/2. We also expect to have an analogue of the theorems of
Waldspurger [56], [55], Kohnen-Zagier [38], and Gross-Kohnen-Zagier [26, § I1.4, Corollary 1] to express the
central derivative values L'(1/2,¢ x 6(x)) — at least for the principal class group character y = xo where
L'(1/2,¢ x 0(x0)) = L'(1/2,¢)L(1/2, ¢ ®@ ng) — relating to squares of Fourier coefficients of Hilbert modular
forms of parallel weight 3/2. Although we do not pursue the idea here, we use this method of proof of the
Gross-Zagier formula via regularized theta lifts to illustrate the natural connection for some future work.

REFERENCES

[1] F. Andreatta, E.Z. Goren, B. Howard, and K. Madapusi Pera, Height pairings on orthogonal Shimura varieties, Compos.
Math. 153 (2017), 474-534.
[2] J. Arthur and L. Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Ann. of Math. Stud.
120 Princeton Univ. Press, Princeton, NJ (1989).
[3] R. Borcherds, Automorphic forms with singularities on Grassmannians, Invent. math. 132 (1998), 491-562.
[4] J.B. Bost, H. Gillet, and C. Soulé, Heights of projective varieties and positive Green forms, J. Amer. Math. Soc. 7 (1994),
903-1027.
[5] C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modularity of elliptic curves over Q: wild 3-adic exercises, J.
Amer. Math. Soc. 14 (2001), 843-939.
(6] J.H. Bruinier, Borcherds products on O(2,1) and Chern classes of Heegner divisors, Springer Lecture Notes in Math. 1780,
Springer New York (2002).
(7] J.H. Bruiner, Hilbert Modular Forms and Their Applications, in “The 1-2-3 of Modular Forms”, Lectures at a Summer
School in Nordfjordeid, Norway, Ed. Ranestad, Springer Universitext 2007.
(8] J.H. Bruinier, On Borcherds products associated with lattices of prime discriminant, Ramanujan J. 7 (2003), 49-61.
[9] J.H. Bruinier, S. Ehlen, and T. Yang, CM wvalues of higher automorphic Green functions for orthogonal groups, Invent.
math. 225 (2021), 693-785.
[10] J.H. Bruinier and J. Funke, On two geometric theta lifts, Duke Math. J. 125 (2004), 45-90.
[11] J. H. Bruinier, J. Funke, and O. Imamoglu, Regularized theta liftings and periods of modular functions J. Reine Angew.
Math. 703 (2015), 43-93.
[12] J. Bruinier and K. Ono, Heegner divisors, L-functions and harmonic weak Maass forms, Ann. of Math. 172 (2010),
2135-2181.
[13] J.H. Bruinier and T. Yang, Faltings heights of CM cycles and derivatives of L-functions, Invent. math. 177 (2009), 631-681.

81



[14]

[15]
[16]
[17]
(18]

19]

[20]
(21]
[22]

23]
[24]

[25]
[26]
27]
28]
29]

(30]
(31]
(32]

(33]
34]
(35]

(36]
37]
(38]

(39]
[40]
[41]
[42]
[43]
44]

[45]
[46]

[47)
(48]
[49]
[50]
[51]
[52]
(53]
[54]

[55]
[56]

[57)

[58]
[59]

[60]

D. Bump, S. Friedberg, and J. Hoffstein, Eisenstein series on the Metaplectic Group and Nonwvanishing Theorems for
Automorphic L-Functions and their Derivatives, Ann. of Math. 131 no. 1 (1990), 53-127.

A. Burungale, C. Skinner, and Y. Tian, Elliptic curves and Beilinson-Kato elements: rank one aspects (preprint), 2020.
A. Burungale, C. Skinner, and Y. Tian, The Birch and Swinnerton-Dyer Conjecture: a brief survey (preprint), 2023.

J. Burgos, J. Kramer, and J. Kithn, Cohomological arithmetic Chow groups, J. Inst. Math. Jussieu 6 (2007), 1-178.

F. Castella, On the p-part of the Birch-Swinnerton-Dyer formula for multiplicative primes, Camb. J. Math 6 no. 1 (2018),
1-23.

D.A. Cox, Primes of the form x? + ny?: Fermat, Class Field Theory, and Complex Multiplication, John Wiley & Sons
(1989).

K. Doi and H. Naganuma, On the functional equation of certain Dirichlet series, Invent. math. 9 (1969), 1-14.

A. Erdélyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi, Tabls of Integral Transforms, vol. I, McGraw-Hill (1954).
S. Ehlen, CM wvalues of regularized theta lifts and harmonic Maass forms of weight one, Duke Math. J. (13) 166 (2017),
2447-2519.

M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Mathematics 55, Birkhduser Boston (1985).

P. Gérardin and J.-P. Labesse, The solution of a base change problem for GL(2) , in “Automorphic forms, representations
and L-functions”, Pt. 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., (1979), 115-133.

B. Gross and D. Zagier, Heegner points and derivatives of L-series, Invent. math. 84 (1986), 225-320.

B. Gross, W. Kohnen, and D. Zagier, Heegner points and derivatives of L-series. II, Math. Ann. 278 (1987), 497-562.
M. Harris, Arithmetic vector bundles and automorphic forms on Shimura varieties, Invent. math. 82 (1985), 151-189.

B. Howard and K. Madapusi Pera, Arithmetic of Borcherds Products, Astérisque 421 (2020), 187-297.

B. Howard and T. Yang, Intersections of Hirzebruch-Zagier Divisors and CM Cycles, Lecture Notes in Math. 2041,
Springer (2012).

H. Jacquet, Automorphic forms on GL(2), Part II, Springer Lecture Notes in Math., New York, 1972.

H. Jacquet and R. Langlands, Automorphic forms on GL(2), Springer Lecture Notes in Math. 278, New York, 1970.

D. Jetchev, C. Skinner, and X. Wan, The Birch and Swinnerton-Dyer formula for elliptic curves of analytic rank one,
Camb. J. Math. 5 no. 3 (2017), 369-434.

K. Kato p-adic Hodge theory and values of zeta functions of modular forms, Astérisque 295 (2004), 117-290.

S. Katok and P. Sarnak, Heegner Points, Cycles, and Maass Forms, Israel J. Math. 84 (1993), 193-227.

W. Kim and K. Madapusi Pera, 2-adic integral canonical models and the Tate conjecture in characteristic 2, Forum Math.
Sigma 4 (2016), 28.

M. Kisin, Integral models for Shimura varieties of abelian type, J. Amer. Math. Soc. 23 (2010), 967-1012.

V. Kolyvagin, Finiteness of E(Q) and X (E, Q) for a class of Weil curves, Math. USSR Izv. 32 (3) (1989), 523-541.

M. Kontsevich and D.B. Zagier, Periods, In Mathematics Unlimited-2001 and Beyond (B. Engquist and W. Schmid, eds.),
Springer, Berlin-Heidelberg-New York (2001), 771-808.

S.S. Kudla, Algebraic cycles on Shimura varieties of orthogonal type, Duke Math. J. 86 (1997), 39-78.

S.S. Kudla, Integrals of Borcherds Forms, Compos. Math. 137 (2003), 293-349.

K. Madapusi Pera, Integral canonical models for spin Shimura varieties, Compositio Math. 152 (2016), 769-824.

R. Langlands, Base change for GL(2), Annals of Math. Stud. 96, Princeton University Press (1980).

W.-C. W. Li, L-series of Rankin Type and Their Functional Equations, Math. Ann. 224 (1979), 135-166.

H. Naganuma, On the coincidence of two Dirichlet series associated with cusp forms of Hecke’s “Neben”-type and Hilbert
modular forms over a real quadratic field, J. Math. Soc. Japan 25 (1973), 547-555.

D. Rohrlich, On L-functions of elliptic curves and cyclotomic towers, Invent. math. 75 (1984), 409-423.

N. R. Scheithauer, The Weil representation of SL2(Z) and some applications, Int. Math. Res. Not. IMRN 2009 (2009),
no. 8, 14881545. 10.1093/imrn/rnn019

J. Schofer, Borcherds forms and generalizations of singular moduli, J. reine angew. Math. 69 (2009), 1-36.

C. Skinner and E. Urban, The Iwasawa main conjecture for GL(2), Invent. math. 195 (2014), 1-277.

N. Skoruppa and D. Zagier, Jacobi forms and a certain space of modular forms, Invent. math. 94 (1988), 113-146.

C. Skinner and W. Zhang, Indivisibility of Heegner points in the multiplicative case, arxiv:1407.1099.

F. Stromberg, On liftings of modular forms and Weil representations, Forum Math. 36 (1) (2024), 33-52.

R. Taylor and A. Wiles, Ring theoretic properties of certain Hecke algebras, Ann. of Math. 141 (1995), 553-572.

G. van der Geer, Hilbert Modular Surfaces, Ergeb. Math. Grenzgeb., Springer (1988).

J. Van Order, L-functions of elliptic curves in ring class extensions of real quadratic fields via arithmetic theta liftings,
preprint, available at https://www.math.uni-bielefeld.de/vanorder/realquad.pdf.

J.L. Waldspurger, Correspondence de Shimura, J. Math. Pure Appl. 59 (1980), 1-113.

J.L. Waldspurger, Sur les coefficients de Fourier des formes modulaires do poids demi-entiers, J. Math. Pures Appl. 60
(9) no. 4 (1981), 375-484.

J.-L. Waldspurger, Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie, Compos. Math. 54
(1985), 173-242

A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. 141 (1995), 443-551.

X. Yuan, S.-W. Zhang, and W. Zhang, The Gross-Zagier Formula for Shimura Curves, Ann. of Math. Stud. 184, Princeton
University Press (2013).

Y. Zhang, An isomorphism between scalar-valued modular forms and modular forms for Weil representations, Ramanujan
J. 37 (2015), 181-201.

82



[61] D. Zagier, Modular Forms Associated to Real Quadratic Fields, Invent. math. 30 (1975), 1-46.

[62] S.-W. Zhang, Gross-Zagier formula for GL2, Asian J. Math. 5 no. 2 (2001), 183-290.

[63] S.-W. Zhang, Gross-Zagier formula for GLa. II, in “Heegner points and Rankin L-series”, MSRI Publications 49, 191-214.
[64] S.-W. Zhang, Heights of Heegner cycles and derivatives of L-series, Invent. math. 130 (1997), 99-152.

[65] S.-W. Zhang, Heights of Heegner points on Shimura curves, Ann. of Math. 153 (2001), 27-147.

[66] W. Zhang, Selmer groups and the indivisibility of Heegner points, Camb. J. Math. 2 no. 2 (2014), 191-253.

83



	1. Introduction
	1.1. Main results

	2. Quadratic spaces and spin groups
	2.1. Quadratic spaces associated to class groups of quadratic fields
	2.2. Spin groups

	3.  GSpin Shimura varieties
	3.1. Complex Shimura varieties
	3.2. Special divisors
	3.3. CM cycles and geodesic sets
	3.4. Classical description as Hilbert modular surfaces

	4. Green's functions for special divisors
	4.1. Siegel theta functions
	4.2. Harmonic weak Maass forms
	4.3. Regularized theta lifts
	4.4. Hejhal Poincaré series and Green's functions of special divisors

	5. Summation along isotropic quadratic subspaces
	5.1. Eisenstein series and Siegel-Weil formulae
	5.2. Summation formulae

	6. Integral presentations of Rankin-Selberg L-functions
	6.1. Equivalences of L-functions
	6.2. Relations to sums of Green's functions along anisotropic subspaces

	7. Arithmetic implications
	7.1. Arithmetic heights and higher Gross-Zagier formulae
	7.2. Gross-Zagier via special (Hirzebruch-Zagier) divisors on X0(N) X0(N)
	7.3. Relations to Birch-Swinnerton-Dyer constants and periods

	Appendix A. Gross-Zagier via the signature (1,2) setting
	A.1. X0(N) as spin Shimura variety
	A.2. Heegner divisors as special divisors
	A.3. Cuspidal eigenforms from vector-valued Shimura lifts
	A.4. Relation to heights
	A.5. Class group twists

	Appendix B. Relation to metaplectic Fourier coefficients
	B.1. The setting of signature (1,2) with (f1/2, z) L1 + (X0(N))
	B.2. The setting of signature (2,2) with (f0, z) L1 + (X0(N) X0(N))

	References

