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Abstract. We derive two distinct proofs of the Gross-Zagier formula in terms of sums of automorphic

Green’s functions realized as regularized theta lifts, including one involving arithmetic Hirzebruch-Zagier

divisors on the Hilbert modular surface X0(N) × X0(N). We then describe applications to the refined
conjecture of Birch and Swinnerton-Dyer. Through these calculations, we also describe known and conjectural

relations of the central derivative values of Rankin-Selberg L-functions that appear to Fourier coefficients of
certain half-integral weight forms.
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1. Introduction

The theorem of Gross-Zagier [25, Theorem §I (6.3)] represents one of the most significant advances on the
conjecture of Birch and Swinnerton-Dyer to date, and forms the foundation for all progress made on the case
of Mordell-Weil rank one through the techniques of Kolyvagin Euler systems and Iwasawa main conjectures.

To recall it, let E be an elliptic curve of conductor N defined over the rationals Q. Hence, E is modular by
fundamental work of Wiles [58], Taylor-Wiles [52], and Breuil-Conrad-Diamond-Taylor [5], and consequently
parametrized by some cuspidal newform

φ(τ) =
∑
m≥1

cφ(m)e(mτ) =
∑
m≥1

aφ(m)m
1
2 e(mτ) ∈ Snew

2 (Γ0(N)), τ = u+ iv ∈ H, e(z) = exp(2πiz).

In particular, the Hasse-Weil L-function L(E, s) = L(E/Q, s) of E over Q has an analytic continuation
Λ(E, s) = L∞(E, s)L(E, s) to all s ∈ C given by a shift of the standard L-function, Λ(s, φ) = L∞(s, φ)L(s, φ)

Λ(E, s) = L∞(E, s)L(E, s) = Λ(s− 1/2, φ) = L∞(s− 1/2, φ)L(s− 1/2, φ).

Here, L∞(s, φ) = (2π)−sΓ(s) denotes the archimedean local Euler factor, with L(s, φ) =
∏
p<∞ L(s, π(φ)p)

the finite Euler product whose Dirichlet series expansion for <(s) > 1 is given by

L(s, φ) =
∑
m≥1

aφ(m)m−s =
∑
m≥1

cφ(m)m−(s+1/2).

Hence, Λ(s, φ) satisfies a symmetric functional equation Λ(s, φ) = ±N1−2sΛ(1− s, φ) with odd sign or root
number Λ(s, φ) = −N1−2sΛ(1− s, φ) if and only if φ is invariant under the Fricke involution wNφ = φ.

Let k be an imaginary quadratic field of discriminant dk prime to N and odd quadratic Dirichlet character
ηk(·) = (dk· ). Write C(Ok) = I(k)/P (k) to denote the ideal class group of k, with class number hk = #C(Ok).
Let χ ∈ C(Ok)∨ be any class group character, with

θ(χ)(τ) =
∑

A∈C(Ok)

χ(A)θA(τ) ∈M1(Γ0(|dk|), ηk)

the corresponding Hecke theta series of weight 1, level Γ0(|dk|), and character ηk. By the theory of Rankin-
Selberg convolution, the twisted basechange Hasse-Weil L-function L(E/k, χ, s) of E over K twisted by χ
has an analytic continuation Λ(E/k, χ, s) = L∞(E/k, χ, s)L(E/k, χ, s) given by a shift of the completed
Rankin-Selberg L-function Λ(s, φ× θ(χ)) = L∞(s, φ× θ(χ))L(s, φ× θ(χ)),

Λ(E/k, χ, 1) = Λ(s− 1/2, φ× θ(χ)) = L∞(s− 1/2, φ× θ(χ))L(s− 1/2, φ× θ(χ)).

Here, the archimedean local factor is given by

Λ∞(s, φ× θ(χ)) = (2π)−sΓ

(
s− 1

2

)
Γ

(
1 +

1

2

)
,

and does not depend on the choice of class group character χ ∈ C(Ok). As we explain in Proposition 6.1,
this L-function has a well-known analytic continuation to s ∈ C via the symmetric functional equation

Λ(s, φ× θ(χ)) = ηk(−N)|dkN |1−2sΛ(1− s, φ× θ(χ)).

In particular, if ηk(−N) = −1 so that the sign of this symmetric functional equation is odd, then the
central value Λ(1/2, φ× θ(χ)) = 0 is forced to vanish, and it makes sense to study central derivative values
Λ′(1/2, φ× θ(χ)) = Λ′(E/k, χ, 1). This happens for instance if the level N is squarefree, and the number of

prime divisors q | N which remain inert in k (so (dkq ) = −1) is even, or more stringently if N is squarefree

and totally split, so that the “Heegner hypothesis” of Gross-Zagier [25] holds. In this latter setting, the
compactified modular curve X0(N) comes equipped with a family of Heegner divisors y of conductor dk. In
brief, there are hk many Heegner points z : E → E′ of conductor dk on X0(N)(k[1]), where k[1] denotes
the Hilbert class field of k. More precisely, the class group C(Ok) ∼= Gal(k[1]/k) acts simply transitively
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on the set of these points, and we denote this natural action by zA. We obtain from each Heegner point
z ∈ X0(N)(k[1]) the divisor y = (z)− (∞) in the corresponding jacobian J0(N)(k[1]).

Theorem 1.1 (Gross-Zagier). Let E be an elliptic curve of conductor N , parametrized by a cuspidal newform
φ ∈ Snew

2 (Γ0(N)). Let k be an imaginary quadratic field of discriminant dk prime to 2N and odd Dirichlet

character ηk(·) = (dk· ). Assume the Heegner hypothesis, so that ηk(−N) = −1. Then for any character χ of
the ideal class group C(Ok) of k, we have the central derivative value formula

Λ′(E/k, χ, 1) = Λ′(1/2, φ× θ(χ)) =
8π2||φ||2

hku2
k

·
[
yφχ, y

φ
χ

]
NT

.

Here, ||φ||2 = 〈φ, φ〉 denoted the Petersson inner product of φ, hk = #C(Ok) the class number, uk = wk/2
half the number of roots of unity in k, and

[
yφχ, y

φ
χ

]
NT

the Néron-Tate height of the projection yφχ to the

φ-isotypical component of J0(N)(k[1])⊗C of the twisted Heegner divisor

yχ =
∑

A∈C(Ok)

χ(A)yA

We remark that this theorem has been generalized by the various works of Zhang [64], [65], [62], [63] and
Yuang-Zhang-Zhang [59] to quaternionic Shimura curves over totally real fields, developing similar ideas with
the theta correspondence and the Jacquet-Langlands correspondence [30] [31] in the style of Waldspurger’s
theorem [57]. Here, we give a distinct proof using regularized theta lifts and arithmetic Hirzebruch-Zagier
divisors on the Hilbert modular surface X0(N) × X0(N), developing the main theorems of Bruinier-Yang
[13] and Andreatta-Goren-Howard-Madapusi Pera [1] on the Kudla programme for Shimura varieties or
orthogonal type for this setting, and describing the integral presentations of the Rankin-Selberg L-functions
in more detail. We explain implications for the refined conjecture of Birch and Swinnerton-Dyer through
Euler characteristic calculations, after Iwasawa main conjectures. In Appendix A, we explain how the theorem
of Bruinier-Yang [13, Theorem 7.3] can be developed to recover the full Gross-Zagier formula. In Appendix
B, we describe known and conjectural links between the central derivative values and Fourier coefficients
of half-integral weight forms, using the theorem of Bruinier-Funke-Imamoglu [11] on traces and periods of
modular functions. Finally, we derive many of the analytic results more generally for real quadratic fields.

1.1. Main results. Let us first suppose more generally that (V,Q) is a rational quadratic space of signature
(n, 2) for any integer n ≥ 1. Write (v1, v2) = Q(v1 +v2)−Q(v1)−Q(v2) for the corresponding inner product.
Let GSpin(V ) denote the corresponding general spin group, which fits into the short exact sequence

1 −→ Gm −→ GSpin(V ) −→ SO(V ) −→ 1.

Let

D(V ) = D±(V ) = {z ⊂ V (R) : dim(z) = 2, Q|z > 0}

denote a fixed connected component of the Grassmannian of oriented negative definite hyperplanes in V (R).

Given any maximal lattice L ⊂ V , the adelization L̂ = L⊗ Ẑ is fixed under the action of GSpin(V )(Af ) via
conjugation by a uniquely-determined compact open subgroup K = KL of GSpin(V )(Af ). We consider the
corresponding Shimura variety XK with complex points

XK(C) = GSpin(V )(Q)\D(V )×GSpin(V )(Af )/K,

which determines a quasiprojective variety of dimension n over Q. This Shimura variety XK is projective
if and only if the space (V,Q) is anisotropic, and smooth only if the corresponding level structure K = KL

is neat. We refer to the discussion below for more details. Fixing a set of reprentatives h for the finite set
GSpin(V )(Q)\GSpin(V )(Af )/K and writing Γh = GSpin(V )(Q) ∩ hKh−1 for the arithmetic subgroup for
each representative, we have the decomposition into geometrically connected components

XK(C) =
∐

h∈GSpin(V )(Q)\GSpin(V )(Af )/K

Γh\D(V ).

One important feature is that any subspace (V ′, Q′) = (V ′, Q|V ′) of signature (n′, 2) determines an alge-
braic cycle of dimension n′, given by the corresponding Shimura variety for GSpin(V ′) and D(V ′) (see [39]).
In particular, we obtain from this construction special divisors of the following type. Let L∨ denote the dual
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lattice of L, and L∨/L the corresponding discriminant group. Given any vector x ∈ V with Q(x) = m > 0, we
consider the corresponding divisor given by the orthogonal complement D(V )x = {z ∈ D(V ) : (z, x) = 0}.
Given any coset µ ∈ L∨/L and positive rational m > 0, we consider the divisor Z(µ,m) ⊂ XK defined by

Z(µ,m) =
∐

h∈GSpinV (Q)\GSpinV (Af )/K

Γh

∖ ∐
x∈µh+Lh
Q(x)=m

D(V )x

 ,

where Lh ⊂ V denotes the lattice determined by L̂h = h · L̂, and µh = h ·µ ∈ L∨h/Lh. Note that when (V,Q)
has signature (1, 2), these special divisors Z(µ,m) recover summands of classical Heegner divisors or CM
divisors on quaternionic Shimura curves. Similarly for (V,Q) of signature (2, 2), the special divisors Z(µ,m)
recover summands of classical Hirzebruch-Zagier divisors on quaternionic Hilbert modular surfaces.

Important theorems of Borcherds [3] and more generally Bruinier [6] give explicit constructions of the
Arakelov theoretic automorphic Green’s functions for these divisors Z(µ,m). As we describe in detail below,
these are given by the regularized theta lifts Φ(Fµ,m, ·) of certain Maass Poincaré series Fµ,m. To be more

precise, let ωL : S̃L2(Z) → SL denote the Weil representation associated to the chosen lattice L ⊂ V ,
and let θL(τ, z) : H × D(V ) → S∨L denote the corresponding Siegel theta series defined in (15) below. Let
f = f+ + f− ∈ Hl(ωL) more generally be any harmonic weak Maass form of weight l = 1 − n/2 and
representation ωL. Here, we write the Fourier series expansion of the holomorphic part f+ as

f+(τ) =
∑

µ∈L∨/L

∑
m∈Q
m�−∞

c+f (µ,m)e(mτ)1µ

and the Fourier series expansion of the nonholomorphic part f− as

f−(τ) =
∑

µ∈L∨/L

∑
m∈Q
m<0

c−f (µ,m)Wl(2πmv)e(mτ)1µ,

where Wl(a) :=
∫∞
−2a

e−tt−ldt = Γ(1 − l, 2|a|) denotes the Whittaker function given by the partial Gamma

function, and 1µ = char(µ + L̂) the characteristic function of µ + L̂. Write M !
l (ωL) ⊂ Hl(ωL) for the space

of weakly holomorphic forms whose poles are supported at the cusps, the subspace of holomorphic forms
Ml(ωL) ⊂M !

l (ωL), and the suspace of holomorphic cusp forms Sl(ωL) ⊂Ml(ωL) ⊂M !
l (ωL) ⊂ Hl(ωL). Here,

we also have the antilinear differential operator ξl : Hl(ωl) → S2−l(ωL) of Bruinier-Funke [10] defined in
(17) below, which allows us to identify the weakly holomorphic forms as the kernel ker(ξl) = M !

l (ωL). Given
harmonic weak Maass forms

f(τ) =
∑

µ∈L∨/L

fµ(τ)1µ ∈ Hl(ωL) and g(τ) =
∑

µ∈L∨/L

gµ(τ)1µ ∈ Hl(ω
∨
L),

we consider the pairing

〈〈f(τ), g(τ)〉〉 =
∑

µ∈L∨/L

fµ(τ)gµ(τ).

Hence, 〈〈f, g〉〉 determines a scalar-valued Maass form of weight l. We write

CT〈〈f, g〉〉 =
∑

µ∈L∨/L

∑
m∈Q

cf (µ,−m)cg(µ,m)

to denote the constant term in its Fourier series expansion. Let F = {τ ∈ H : −1/2 ≤ <(τ) ≤ 1/2, ττ ≥ 1}
denote the standard fundamental domain for the action of SL2(Z) on H. Given any positive real number T >
0, we also consider the truncated fundamental domain FT = {τ ∈ H : −1/2 ≤ <(τ) ≤ 1/2, ττ ≥ 1,=(τ) ≤ T}.
Let µ(τ) = dudv

v2 denote the Poincaré measure on H. We define the regularized theta lift Φ(f, z, h) for
f ∈ H1−n/2(ωL), z ∈ D(V ) and h ∈ GSpin(V )(Af ) by the regularized integral

Φ(f, z, h) =

∫ ?

F
〈〈f(τ), θL(τ, z, h)〉〉dµ(τ) = CTs=0

{
lim
T→∞

∫
FT
〈〈f(τ), θL(τ, z, h)〉〉v−sdµ(τ)

}
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given by the constant term in the Laurent series around s = 0 of the function

lim
T→∞

∫
FT
〈〈f(τ), θL(τ, z, h)〉〉v−sdµ(τ).

As we explain for Theorem 4.2, the main theorems of [3] and [6] show that regularized theta lift Φ(f, ·)
determines an automorphic Green’s function in the sense of Arakelov theory for the divisor defined by

Z(f) =
∑

µ∈L∨/L

∑
m∈Q
m>0

c+f (µ,−m)Z(µ,m) ⊂ XK .

1.1.1. Quadratic summation formulae. As a preliminary step for our main result, we calculate these Green’s
functions Φ(f, ·) along zero cycles corresponding to subspaces of signature (0, 2) of (V,Q) following the
theorems of Bruinier-Yang [13, Theorem 4.7] and Schofer [47], as well as along “geodesic sets” corresponding
to Lorenzian subspaces of signature (1, 1) in the style of [54]. To be more precise, each rational quadratic
subspace (V0, Q0) of (V,Q) of signature (0, 2) gives rise to a zero cycle Z(V0) ⊂ XK with complex points

Z(V0)(C) = GSpin(V0)(Q)\{z±0 } ×GSpin(V0)(Af )/(K ∩GSpin(V0)(Af )), z±0 = V0(R) ∈ D(V )

as defined in (6) below. Such as cycle is sometimes called a CM cycle, as it can be associated to an imaginary
quadratic field k = k(V0). We associate to the lattice L0 = V0∩L, an Eisenstein series EL0

(τ, s; 1) ∈ H1(ωL0
)

of weight 1 = 2 + (0− 2)/2 and representation ωL0
as defined in (31), as well as its derivative

E′L0
(τ, s; 1) =

d

ds
EL0

(τ, s; 1) = E′+L0
(τ, s; 1) + E′,−L0

(τ, s; 1) ∈ H1(ωL0
),

and we write

EL0
(τ) = E′+L0

(τ, 0; 1) =
∑

µ∈L∨0 /L0

∑
m∈Q

κL0
(µ,m)e(mτ)1µ

to denote the holomorphic part of this latter Eisenstein series at s = 0. Similarly, any rational quadratic
space (W,QW ) = (W,Q|W ) of signature (1, 1) of (V,Q) gives rise to a geodesic set G(W ) with complex
points

G(W )(C) = GSpin(W )(Q)\D(W )×GSpin(W )(Af )/(K ∩GSpin(W )(Af ))

as defined in (7) below, where D(W ) = {z ∈ W (R) : dim(z) = 1, QW |z < 0} denotes the corresponding
domain of oriented negative definite lines in W (R) This space can be associated to a real quadratic field
k = k(W ). We associate to the lattice LW = W ∩ L, an Eisenstein series ELW (τ, s; 2) ∈ H2(ωLW ) of weight
2 = 2 + (1− 1)/2 and representation ωLW as defined in (38), as well as its derivative

E′LW (τ, s; 2) =
d

ds
ELW (τ, s; 2) = E′+LW (τ, s; 2) + E′,−LW (τ, s; 2) ∈ H2(ωLW ),

and we write

ELW (τ) = E′+LW (τ, 0; 2) =
∑

µ∈L∨W /LW

∑
m∈Q

κLW (µ,m)e(mτ)1µ

to denote the holomorphic part of this latter Eisenstein series at s = 0. Using the functional equations and
behaviour under Maass lowering operators of these Eisenstein series, we compute the sum

Φ(f, Z(V0)) =
∑

(z±0 ,h)∈Z(V0)

Φ(f, z±0 , h)

of the Green’s function Φ(f, ·) along the CM cycle Z(V0) ⊂ XK corresponding to an imaginary quadratic
field k(V0), by a minor variation of the arguments of [13, Theorem 4.7] and [47] (cf. [1, Theorem 5.7.1]). We
also use such properties to compute the sum

Φ(f,G(W )) =
∑

(zW ,h)∈G(W )

Φ(f, zW , h)

of the Green’s function Φ(f, ·) along the geodesic set G(W ) corresponding to a real quadratic field k(W ).
Writing U = V0,W ⊂ V to denote either of these subspaces of dimension 2 with k(U) the corresponding
quadratic field, we fix Tamagawa measures on the special orthogonal group SO(U) as follows: We fix the
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Tamagawa measure on SO(U)(A) for which vol(SO(U)(R)) = 1 and vol(SO(U)(Q)\SO(U)(Af )) = 2. We

also fix the Haar measure on A×f with vol(Z×p ) = 1 for each prime p so that vol(Ẑ) = 1 and vol(A×f /Q
×) = 1

2 .

This determines Haar a measures on A×k(U) via the exact sequence 1→ A×f → A×k(U),f → SO(U)(Af )→ 1.

Theorem 1.2 (Theorem 5.12 and 5.14). Let (V,Q) be any rational quadratic space of signature (n, 2). Fix a
maximal lattice L with corresponding Weil representation ωL. Let f ∈ Hl(ωL) be any harmonic weak Maass
form of weight l = 1− n/2 and representation ωL, with g = ξl(f) ∈ S2−l(ωL) its image under the antilinear
differential operator ξl : Hl(ωl)→ S2−l(ωL).

(i) Let (V0, Q0) be a rational quadratic subspace of signature (0, 2) with sublattices L0 = V0∩L, L⊥0 ⊂ V ,
and L0 ⊕ L⊥0 ⊂ L. Write k = k(V0) for the imaginary quadratic field determined by the space. Let

θL⊥0 (τ) = θL⊥0 (τ, 1, 1)

denote the holomorphic Siegel theta series associated to the positive definite lattice L⊥0 of signature
(n, 0), defined via restriction of θL(τ, z, h) as in Lemma 5.7 and (48). Let

L(s, g × θL⊥0 ) = 〈g(τ), θL⊥0 (τ)⊗ EL0(τ, s; 1)〉

denote the Rankin-Selberg L-series defined in (51), with L?(g × θL⊥0 ) = Λ(s+ 1, ηk)L(s, g × θL⊥0 ) its

completion. Let vol(K0) denote the volume of the compact open subgroup K0 = K ∩GSpin(V0)(Af ).
Then, we have the summation formula

Φ(f, Z(V0)) = − 4

vol(K0)

(
CT〈〈f+(τ), θL⊥0 (τ)⊗ EL0

(τ)〉〉+ L′(0, g × θL⊥0 )
)

= −deg(Z(V0))
(

CT〈〈f+(τ), θL⊥0 (τ)⊗ EL0(τ)〉〉+ L′(0, g × θL⊥0 )
)
.

(ii) Let (W,QW ) be a rational quadratic subspace of signature (1, 1) with sublattices LW = W ∩ L,
L⊥W ⊂ V , and LW ⊕ L⊥W ⊂ L. Write k = k(W ) for the real quadratic field determined by W . Let

θL⊥W (τ) = θL⊥W (τ, 1, 1)

denote the nonholorphic Siegel theta series associated to the Lorenztian lattice L⊥W of signature
(n− 1, 1), defined via restriction of θL(τ, z, h) as in Lemma 5.7 and (48). Let

L(s, g × θL⊥W ) = 〈g(τ), θL⊥W (τ)⊗ ELW (τ, s; 2)〉

denote the Rankin-Selberg L-series defined in (52), with L?(g× θL⊥W ) = Λ(s+ 1, ηk)L(s, g× θL⊥W ) its

completion. Let vol(K0) denote the volume of the compact open subgroup KW = K∩GSpin(VW )(Af ).
Then, we have the summation formula

Φ(f,G(W )) = − 4

vol(KW )

(
CT〈〈f+(τ), θ+

L⊥W
(τ)⊗ ELW (τ)〉〉+ L′(0, g × θL⊥W )

)
.

We note again that Theorem 1.2 (i) (Theorem 5.12) a reproof of Bruinier-Yang [13, Theorem 4.7] and
Schofer [47] (cf. [1, Theorem 5.7.1]). On the other hand, Theorem 1.2 (ii) (Theorem 5.14) appears to be new,
and generalizes the main calculation of [54].

1.1.2. Spaces of signature (2, 2) associated to quadratic fields and relations to standard Rankin-Selberg L-
functions. We apply these calculations to the following quadratic spaces. Let k be any quadratic field,
real or imaginary, of discriminant dk prime to N . We again write ηk(·) = (dk· ) to denote the quadratic
Dirichlet character, and C(Ok) = I(k)/P (k) to denote the ideal class group. We consider he following
rational quadratic spaces (VA, QA) attached to each class A ∈ C(OK). Given a class A ∈ C(Ok), fix an
integer ideal representative a ⊂ Ok, and let aQ := a ⊗Z Q be the corresponding fractional ideal. We write
Qa(z) = N(z)/Na = Nk/Q(z)/a to denote the corresponding norm form, where N(z) = Nk/Q(z) = zzτ for
τ ∈ Gal(k/Q) the nontrivial automorphism denotes the norm homomorphism. Hence, Qa has signature (2, 0)
if k is imaginary quadratic, and signature (1, 1) if k is real quadratic. In either case, we consider the space
(VA, QA) defined by VA = aQ ⊕ aQ with quadratic form QA(z) = QA((z1, z2)) = Qa(z1) − Qa(z2). As we

explain in Proposition 2.3 below, we have an exceptional isomorphism of algebraic groups GSpin(VA) ∼= GL2
2

over Q. As we explain in Corollary 2.4, we can choose a lattice LA = LA(N) = N−1a⊕N−1a ⊂ VA whose
adelization LA(N) ⊗ Z is fixed under the action of GSpin(VA)(Af ) ∼= GL2(Af )2 via conjugation by the
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compact open subgroup KA = KLA(N) = K0(N)⊕K0(N). In this way, we find that XA
∼= Y0(N)×Y0(N) is

isomorphic to two copies of the noncompactified modular curve Y0(N), and that the corresponding special
divisors ZA(µ,m) ⊂ XA

∼= Y0(N)2 corresponding to summands of classical Hirzebruch-Zagier divisors.
In this setting, we deduce from known theorems in the literature such as Strömberg [51, Theorem 5.2]
or more directly via the Doi-Naganuma lifting (Theorem 6.4) that each cuspidal holomorphic newform
φ ∈ Snew

l (Γ0(N)) has a unique/canonical lifting to a vector-valued form gφ,A ∈ Sl(ωLA) (Corollary 6.5). We
use this to derive the following integral presentation of standard Rankin-Selberg L-functions. Fix a character
χ of C(Ok), and let θ(χ) denote the corresponding Hecke theta series. Hence,

θ(χ) =
∑

A∈C(Ok)

χ(A)θA ∈Ml(k)(Γ(|dk|), ηk), l(k) :=

{
1 if k is imaginary quadratic

0 if k is real quadratic
.

Let Λ(s, φ × θ(χ)) = L∞(s, φ × θ(χ))L(s, φ × θ(χ)) denote the corresponding standard Rankin-Selberg L-
function, whose analytic continuation and functional equation we recall in Proposition 6.1. We first show
the following link between these completed Rankin-Selberg L-functions, and the Rankin-Selberg L-functions
appearing in Theorem 1.2 for the spaces (V,Q) = (VA, QA).

Theorem 1.3 (Proposition 6.3, Theorem 6.8 and Corollary 6.9). Fix a holomorphic cuspidal newform
φ ∈ Snew

2 (Γ0(N)) of weight 2, level Γ0(N), and trivial character. Let gφ,A ∈ S2(ωLA) denote the lifting of φ
to a vector-valued cusp form of weight 2 and conjugate Weil representation ωLA . Let f0,A ∈ H0(ωLA) be any
harmonic weak Maass form of weight zero and representation ωLA whose image ξ0(f0,A) under the antilinear
differential operator ξ0 : H0(ωLA)→ S2(ωLA) equals gφ,A. We have the following identifications of completed
Rankin-Selberg L-functions.

(i) If k is the imaginary quadratic field associated to the negative definite subspace VA,0 ⊂ VA with
LA,0 = LA ∩ VA,0, then we have the identifications of completed Rankin-Selberg L-functions

L?(2s− 2, gφ,A × θL⊥A,0) = Λ(s− 1/2, φ× θA)

for each class A ∈ C(Ok), and for each class group character χ ∈ C(Ok)∨ the identification∑
A∈C(Ok)

χ(A)L?(2s− 2, gφ,A × θL⊥A,0) = Λ(s− 1/2, φ× θ(χ)).

Hence, if k is imaginary quadratic with (dk, N) = 1 and ηk(−N) = −ηk(N) = −1, then we have

Λ′(1/2, φ× θ(χ))

= −2πhk
wk

∑
A∈C(Ok)

χ(A)

[(
wk
4hk

)
Φ(f0,A, Z(VA,0)) + CT〈〈f+

0,A(τ), θL⊥A,0(τ)⊗ ELA,0(τ)〉〉
]
.

Here, hk = #C(Ok) denotes the class number, and wk = #O×k the number of roots of unity in k.

(ii) If k is the real quadratic field associated to the Lorentzian subspace WA ⊂ VA with LA,W ∩WA ∩LA,
then we have the identifications of completed Rankin-Selberg L-functions

L?(2s− 2, gφ,A × θL⊥A,W ) = Λ(s− 1/2, φ× θA)

for each class A ∈ C(Ok), and for each class group character χ ∈ C(Ok)∨ that∑
A∈C(Ok)

χ(A)L?(2s− 2, gφ,A × θL⊥A,W ) = Λ(s− 1/2, φ× θ(χ)).

Hence, if k is real quadratic with (dk, N) = 1 and ηk(−N) = ηk(N) = −1, then we have

Λ′(1/2, φ× θ(χ))

= −2 ln(εk)hk
∑

A∈C(Ok)

χ(A)

[(
wk ln(εk)

4hk

)
Φ(f0,A, G(WA)) + CT〈〈f+

0,A(τ), θL⊥A,W (τ)⊗ ELA,W (τ)〉〉
]
.

Here, hk = #C(Ok) denotes the class number, and εk the fundamental unit of O×k ∼= µ(k)× 〈εk〉.
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1.1.3. Relations to arithmetic Hirzebruch-Zagier divisors, Birch-Swinnerton-Dyer constants, and periods. To
derive applications to arithmetic heights in the first setting (i) with k = k(VA,0) an imaginary quadratic
field, we first recall the arithmetic height formula implied by the combined works of Bruinier-Yang [13]
and Andreatta-Goren-Howard-Madapusi Pera [1] for the general setup we consider above for Theorem 1.2.
Hence, let us again take (V,Q) to be any rational quadratic space of signature (n, 2). Since we know that
the regularized theta lift Φ(f, ·) gives the automorphic Green’s function for the divisor Z(f) ⊂ XK , we

have a supply of arithmetic divisors Ẑ(f) = (Z(f),Φ(f, ·)) in the corresponding arithmetic Chow group of

codimension one cycles on XK . It then makes sense to consider the arithmetic/Faltings height [Ẑ(f), Z(V0)]

of such a divisor Ẑ(f) along the a CM cycle Z(V0). As we explain for Theorem 7.5 below, if dk is odd, then
the combined works of Bruinier-Yang [13, Theorem 4.7] and Andreatta-Goren-Howard-Madapusi-Pera [1,
Theorem A] imply that we have the arithmetic height formula[

Ẑ(f),Z(V0)
]

=
[
Ẑ(f),Z(V0)

]
Fal

= −deg(Z(V0))

2
·
(
c+f (0, 0) · κL0

(0, 0) + L′(0, ξ1−n/2(f), θL⊥0 )
)
.

Here, we suppress the discussion of the extensions Z(f) of the divisors Z(f) and Z(V0) of the CM cycles
Z(V0) to the integral model X = XK of XK , and refer to the discussion below for more details. Writing
ZA(µ,m) ∈ XA

∼= Y0(N)2 for the arithmetic special divisors for the spaces (VA, QA) we consider above,
with ZcA(µ,m) ⊂ X0(N)2 their extensions to the compactification X?

A
∼= X0(N) × X0(N), we obtain the

following consequence. Here, we write ZA(µ,m) to denote the extension of ZA(µ,m) to the integral model
X = XKA = Y0(N) × Y0(N), and ZcA(µ,m) to denote the extension of ZcA(µ,m) to the integral model
X ? = X×KA ∼= X0(N)×X0(N).

Theorem 1.4 (Theorem 7.8, Corollary 7.9, Corollary A.10). Retain the setup of Theorem 1.3 (i). Then, for
any class group character χ ∈ C(Ok)∨, we have the central derivative value formula

Λ′(1/2, φ× θ(χ)) = −2π
∑

A∈C(Ok)

χ(A)
[
ẐA(f0,A) : Z(VA,0)

]
for the completed Rankin-Selberg L-function Λ(s, φ × θ(χ)) of φ times the Hecke theta series θ(χ), where
each term on the right-hand side denotes the arithmetic height of the arithmetic special divisor

ẐA(f0,A) =
∑

µ∈L∨A/LA

∑
m∈Q
m>0

c+f0,A(µ,−m)ZA(µ,m)

on the integral model X = Y0(N) × Y0(N) of the Hilbert modular surface X = Y0(N) × Y0(N) evaluated
along the corresponding CM cycle Z(VA,0) ⊂ X = Y0(N) × Y0(N). Here, each ZA(µ,m) is the arithmetic

Hirzebruch-Zagier divisor ẐA(µ,m) = (ZA(µ,m),ΦLAµ,m) on X = Y0(N) × Y0(N) for the theta lift ΦLAµ,m
of the corresponding Poincaré series FLAµ,m described below. We can also extend arithmetic divisors to the
compactification X ? ∼= X0(N)×X0(N) as described in (75) to derive the corresponding formula

Λ′(1/2, φ× θ(χ)) = −2π
∑

A∈C(Ok)

χ(A)
[
ẐcA(f0,A) : Z(VA,0)

]
In particular, if the newform φ ∈ Snew

2 (Γ0(N)) parametrizes an elliptic curve E/Q, then we have the
central derivative value formula

Λ′(E/K,χ, 1) = −2π
∑

A∈C(Ok)

χ(A)
[
ẐA(f0,A) : Z(VA,0)

]
for the Hasse-Weil L-function Λ(E/K,χ, s) = Λ(s−1/2, φ×θ(χ)) of E over K twisted by χ in terms of arith-
metic divisors on the Hilbert modular surface Y0(N)×Y0(N) −→ Spec(Z). Extending to the compactification
X0(N)×X0(N) −→ Spec(Z), we derive the central derivative value formula

Λ′(E/K,χ, 1) = −2π
∑

A∈C(Ok)

χ(A)
[
ẐcA(f0,A) : Z(VA,0)

]
.
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By comparison with the Gross-Zagier formula (Theorem 1.1) for L′(E/K,χ, 1), we also derive the relation

2π · ĥk(yφχ) =
|D| 12

8π2||φ||2
· Λ′(1/2, φ× θ(χ)) = −2π

∑
A∈C(Ok)

χ(A)
[
Ẑc(f0,A) : Z(VA,0)

]
,

between heights of Heegner divisors on the modular curve X0(N) and arithmetic heights of arithmetic
Hirzeburch-Zagier divisors on the Hilbert modular surface X0(N)×X0(N).

Here, in both cases on the quadratic field k, we also use Theorem 1.2 to derive some results towards the
refined conjecture of Birch and Swinnerton-Dyer for the principal class group character χ0 = 1 ∈ C(Ok)∨

and Euler characteristic calculations, using known results on the Iwasawa main conjectures in the setting of
Mordell-Weil rank one. To fix ideas, let E be an elliptic curve of conductor N defined over Q, parametrized
via modularity by a cuspidal newform φ ∈ Snew

2 (Γ0(N)) as above. Let k be a quadratic field with discriminant

dk and character ηk(·) =
(
dk
·
)
. We consider the Mordell-Weil group E(k) ∼= ZrE(k) ⊕ E(k)tors, along with

that of the quadratic twist E(dk)(Q) ∼= ZrE(dk) (Q) ⊕ E(dk)(Q)tors and E(Q) ∼= ZrE(Q) ⊕ E(Q)tors over Q.
Recall that the conjecture of Birch and Swinnerton-Dyer predicts that the completed L-function

Λ(E/K, s) = Λ(s− 1/2, φ× θ(1)) = Λ(s− 1/2,Π(φ))

= Λ(s− 1/2, φ)Λ(s− 1/2, φ⊗ ηk) = Λ(E, s)Λ(E(dk), s)

has order of vanishing ords=1 Λ(E/K, s) = rE(k). Moreover, the leading term in the Taylor series expansion
around s = 1 of this function is expected to be given by the corresponding Birch-Swinnerton-Dyer constant
κE(k), which is defined more generally as follows. For any number field K, we put

(1) κE(K) :=
#X(E/K) · T (E/K) ·R(E/K) · Ω∞(E/K)

|dK |
1
2 |E(K)tors|2

.

Here, #X(E/K) denotes the cardinality of the conjecturally finite Tate-Shafarevich group

X(E/K) = ker

(
H1(K,E) −→

∏
w

H1(Kw, E)

)
.

We write R(E/K) to denote the regulator, defined for any basis {ej}j of E(K)/E(K)tors by the determinant
of the corresponding height matrix ([ei, ej ]NT)i,j ,

R(E/K) = det
(
[ei, ej ]NT

)
i,j
.

We write T (E/K) to denote the product over the local Tamagawa factors,

T (E/K) =
∏
v<∞

v⊂Ok prime

[E(Kv) : E0(Kv)] ·
∣∣∣∣ ωω∗v

∣∣∣∣
v

,

where ω denotes a fixed invariant differential for E/k, and each ω∗v denotes the local Néron differential at v.
We then define the corresponding archimedean local periods

Ω∞(E/K) =
∏
v|∞

v:k↪→R
real

∫
E(kv)∼=E(R)

|ω| ·
∏
v|∞

v,v:k↪→C
complex

2

∫
E(kv)∼=E(C)

ω ∧ ω.

Theorem 1.5 (Theorem 7.10 and Corollary 7.11). Let E/Q be an elliptic curve parametrized by a newform

φ ∈ Snew
2 (Γ0(N)). Let k be a quadratic field of discriminant dk prime to N and character ηk(·) = (dk· ).

Assume E has semistable reduction, hence that N squarefree. Assume that the completed L-function

Λ(E/K, s) = Λ(E, s)Λ(E(dk), s) = Λ(s− 1/2, φ)Λ(s− 1/2, φ⊗ ηk)

has order of vanishing ords=1 Λ(E/K, s) = 1, so that exactly one of the central values Λ(E, 1) = Λ(1/2, φ)
or Λ(E(dk), 1) = Λ(1/2, φ⊗ ηk) vanishes. Write [e, e] to denote either the regulator R(E/Q) or the regulator
R(E(dk)/Q) according to which factor vanishes. Let us also assume for each prime p ≥ 5 that
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• The residual Galois representations E[p] and E(dk)[p] are irreducible.

• There exists a prime l | N distinct from p where E[p] is ramified, and a prime q | N distinct from p
where E(dk)[p] is ramified.

Then, up to powers of 2 and 3, we have the following unconditional identifications for the constant(s)

κE(Q) · κE(dk)(Q)

=
#X(E/Q) ·#X(E(dk)/Q) · [e, e] · T (E/Q) · T (E(dk)Q) · Ω∞(E/Q) · Ω∞(E(dk)/Q)

#E(Q)2
tors ·#E(dk)(Q)2

tors

.

(i) If k is imaginary quadratic with ηk(−N) = −ηk(N) = −1, then

κE(Q) · κE(dk)(Q) ≈ Λ′(E/k, 1) = −π
2

∑
A∈C(Ok)

Φ(f0,A, Z(VA,0)) = −2π
∑

A∈C(Ok)

[
ẐcA(f0,A) : Z(VA,0)

]
.

(ii) If k is real quadratic with ηk(−N) = ηk(N) = −1, then

κE(Q) · κE(dk)(Q) ≈ Λ′(E/k, 1)

= −2 ln(εk)hk
∑

A∈C(Ok)

[(
wk ln(εk)

4hk

)
Φ(f0,A, G(WA)) + CT〈〈f+

0,A(τ), θL⊥A,W (τ)⊗ ELA,W (τ)〉〉
]
.

Here, in either case, we write ≈ to denote equality up to powers of 2 and 3. Moreover, in each case, the
central derivative value Λ′(E/K, 1) lies in the ring of periods P described by Kontsevich-Zagier [38].

1.1.4. Relation to quadratic spaces of signature (1, 2) and Fourier coefficients of half-integral weight forms.
Finally, we explain in Appendix A how to develop similar ideas via the rational quadratic space

(V,Q) = (Mattr=0
2×2 (Q), N det(·))(2)

of signature (1, 1) from Bruinier-Yang [13, Theorem 1.5, Theorem 7.7, § 7] to reprove the full Gross-Zagier
formula (Theorem 1.1). We refer to Theorem A.9 for details.

In both this case and the case of the signature (2, 2) spaces (VA, QA) described above, we explain in
the second Appendix B the known and conjectural links between the central derivative values and Fourier
coefficients of half-integral weight Maass forms. We refer to Theorem B.5 for the main result derived in
Appendix B, using the main theorem of Bruinier-Funke-Imamoglu [11] for quadratic spaces of the form
(2) to interpret the sums Φ(f, Z(V0)) and Φ(f,G(W )) of Theorem 1.2 as the Fourier coefficients of some
harmonic weak Maass form of weight 1/2. To describe this in some more detail, let k be any quadratic
field of discriminant dk = D prime to N , and let Qdk denote the class group of binary quadratic forms
qa,b,c(x, y) = ax2 + bxy + cy2 of discriminant dk = b2 − 4ac. We write [qa,b,c] = [a, b, c] ∈ Qdk to denote the
corresponding class. We have a well-known identification of class groups

ϕ : Qdk ∼= C(Ok), [a, b, c] 7−→ [a, (−b+
√
dk)/2].

For each class A ∈ C(Ok), we fix an integral ideal representative a ⊂ Ok, so that the norm form [Qa] ∈ Qdk
represents the corresponding class, i.e. ϕ([Qa]) = A ∈ C(Ok). We then define LA = LA(N) ⊂ V to be the
lattice of the space (2) given by

LA =


(
b −a/N
c −b

)
: a, b, c ∈ Z, N det

(
b −a/N
c −b

) ∣∣∣∣∣
LA,U

≡ −qa,b,c for ϕ([a, b, c]) = A

 ,

with dual lattice

L∨A =


(
b/2N −a/N
c −b/2N

)
: a, b, c ∈ Z, N det

(
b −a/N
c −b

) ∣∣∣∣∣
LA,U

≡ −qa,b,c for ϕ([a, b, c]) = A

 .

As explained in Lemma A.2 (cf. [13, Lemma 7.4] or [12, Lemma 7.3]), if we assume φ ∈ Snew
2 (Γ0(N)) is

invariant under the Fricke involution wN , then there exists both a vector-valued lift gA = gφ,A ∈ Sold
3/2(ωLA)

of the Shimura lift of φ, as well as a harmonic weak Maass form f1/2,A ∈ H1/2(ωLA) such that
10



• We have the relation ξ1/2(f1/2,A) = gA/||gA||2.

• The Fourier coefficients c+f1/2,A(µ,m) lie in the Hecke field Q(φ) = Q of the newform φ.

• The constant Fourier coefficient c+f1/2,A(0, 0) vanishes.

When k is an imaginary quadratic field, the map Sµ0,m0 of Gross-Kohnen-Zagier [26, § II.4] can be used to
relate the L-series L(s, gA×θL⊥A,0) to L(s+1/2,Sµ,m(g)) (see Lemma A.1). We derive the following relations.

Theorem 1.6 (Theorem B.5). We have via Theorem 5.12 and Theorem 5.14 for the quadratic space (V,Q)
of signature (1, 2) described above the following identification of central derivative values of L-functions as
Fourier coefficients of half-integral weight forms.

(i) Let k be an imaginary quadratic field of discriminant D = dk < 0. Assume as in Lemma A.1 that
m = −D/4N for D = −4Nm with D ≡ r2 mod 4N , and take µ = µr. Then, for χ and character of
the ideal class group C(Ok), we have the relation∑

A∈C(Ok)

χ(A) · cgA(µ,m) · trµ,m
(
Φ(fA,1/2)

)
= − |D| 12

16π2||φ||2
· L′(1/2, φ× θ(χ)).

(ii) Let k be a real quadratic field of discriminant dk > 0, and x ∈ ΩA,µ,m(Q) ⊂ KA a positive norm
vector with orthogonal complement WA = WA(x) := x⊥ ⊂ V as in Proposition B.4 (ii). We have for
each class A ∈ C(Ok) the relation

trµ,m(Φ(f1/2,A)) = − 4hk
wk ln(εk)

· L′(0, gA × θL⊥A,W ).

As we describe in Appendix B, it should be possible to extend these calculations in the real quadratic
case (Theorem 1.2 (ii)) to derive an affirmative answer to the conjecture posed implicitly in Bruinier-Ono
[12, Theorem 1.1 (2)], relating Fourier coefficients of the holomorphic part of the vector-valued Shimura lift
to the nonvanishing central derivative values of the real quadratic twisted L-function. We speculate that
such relations via Green’s functions along CM cycles or geodesics to singular moduli should be possible to
establish for Hilbert Maass cusp forms in the setup of signature (2, 2) described in Theorem 1.2 and Theorem
1.3 above; see Conjecture B.2. We plan to return to this in a subsequent work, however describe it here as it
fits organically into the topic of proving the formula of Gross-Zagier (Theorem 1.1) via sums of automorphic
Green’s functions along CM cycles of spin Shimura varieties.

2. Quadratic spaces and spin groups

Let k = Q(
√
d) be a quadratic field of discriminant

dk =

{
d if d ≡ 1 mod 4

4d if d ≡ 2, 3 mod 4.

We write Ok for its ring of integers, C(Ok) for its ideal class group, and hk = #C(Ok) its class number. We
also write wk = #µ(k) to denote the number of roots of unity in k.

2.1. Quadratic spaces associated to class groups of quadratic fields. Fix an ideal class A ∈ C(Ok).
Let a ⊂ Ok be an integral ideal representative. Consider the corresponding fractional ideal aQ = a ⊗Z Q,
which when equipped with the norm form Qa(λ) := λ 7→ Nk/Q(λ)/Na can be viewed as a rational quadratic
space over Q. That is, (aQ, Qa) determines a rational quadratic space of signature{

(2, 0) if d < 0 so that k = Q(
√
d) is imaginary quadratic

(1, 1) if d > 0 so that k = Q(
√
d) is real quadratic.

On the other hand, we can also consider the corresponding isomorphic quadratic space (aQ,−Qa) of signature{
(0, 2) if d < 0 so that k = Q(

√
d) is imaginary quadratic

(1, 1) if d > 0 so that k = Q(
√
d) is real quadratic.

Thus, we obtain for each class A = [a] ∈ C(Ok) a rational quadratic space of signature (2,2) defined by

(VA, QA), VA := aQ + aQ, QA(z) = QA((z1, z2)) := Qa(z1)−Qa(z2).(3)
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2.1.1. Anisotopic subspaces. Henceforth, we consider the isotropic quadratic space (VA, QA) of signature
(2, 2) for each class A ∈ C(Ok). We then consider the corresponding isotropic subspaces (VA,1, QA,1) =

(Va, Qa) and (VA,2, QA,2) = (aQ,−Qa) of respective signatures (2, 0) and (0, 2) when k = Q(
√
d) is imaginary

quadratic (d < 0), and signature (1, 1) when k = Q(
√
d) is real quadratic (d > 0).

2.2. Spin groups. Let V = (V,Q) be a rational quadratic space of signature (n, 2) for any n ∈ Z≥1. We
consider the reductive group GSpin(V ) over Q, which fits into the short exact sequence

1 −→ Gm −→ GSpin(V ) −→ SO(V ) −→ 1.

2.2.1. General characterization. Given R a commutative ring with identity, we consider a quadratic space
(V,Q) over R. Hence, V is a projective R-module of finite rank equipped with a homogeneous function
Q : V → R of degree two for which the corresponding symmetric pairing (x, y) = Q(x + y) − Q(x) − Q(y)
is R-bilinear. We call the space (V,Q) self-dual if this pairing induces an isomorphism V ∼= Hom(V,R). We
call the space (V,Q) non-degenerate if its orthogonal complement V ⊥ = {x ∈ V : (x, y) = 0 ∀y ∈ V } is {0}.

Let C(V ) = T (V )/I(V ) denote the Clifford algebra of V , given by the quotient of the tensor algebra

T (V ) =

∞⊕
m=0

V ⊗ = R⊕ V ⊕ (V ⊗R V )⊕ · · ·

of V by the two-sided ideal I(V ) generated by elements of the form v ⊗ v − Q(v) for v ∈ V . Note that we
have canonical embeddings of R and V into C(V ). In this way, we see that R-algebra C(V ) is generated by
the image of the natural injection V → C(V ), and that the grading on T (V ) induces a Z/2Z grading

C(V ) = C0(V )⊕ C1(V ).

Concretely, C0(V ) is the R-subalgebra of C(V ) generated by products of an even number of basis vectors,
and C1(V ) is the R-subalgebra of C(V ) generated by products of an odd number of basis vectors. We call
C0(V ) the even (or second) Clifford algebra of V . For simplicity, we shall write v1 · · · vm to denote the
element of C(V ) represented by v1 ⊗ · · · ⊗ vm (for v1, . . . , vm ∈ V ). Observe that for v1, v2 ∈ V ⊂ C(V ), we
have v2

i = Q(vi) (for i = 1, 2) and v1v2 + v2v1 = (v1, v2). In particular, we have that v1v2 = −v2v1 if and
only if v1 and v2 are orthogonal.

As explained in [7, §2.2], multiplication by −1 defines an isometry on V , which by the universal property of
C(V ) (e.g. [7, Proposition 2.3]) induces an algebra automorphism J : C(V )→ C(V ) known as the canonical
automorphism. If 2 is invertible in R, then the even Clifford algebra can be characterized equivalently as

C0(V ) = {v ∈ C(V ) : J(v) = v} .

We also consider the anti-automorphism defined by tCV −→ CV , (x1 ⊗ · · · ⊗ xm)t := xm ⊗ · · · ⊗ x1, better
known as canonical involution on C(V ). This is the identity on R⊕ V , and gives rise to the Clifford norm

NC(V ) : C(V ) −→ C(V ), NC(V )(x) := txx.

On vectors x ∈ V , this reduces to NC(V )(x) = Q(x), and so NC(V ) can be viewed as an extension of the
quadratic form Q. Note that NC(V ) is not generally multiplicative. We have the following classical results.

Proposition 2.1. Let (V,Q) be a non-degenerate quadratic space over a field F of characteristic char(F ) 6= 2.
Fix an orthogonal basis v1, . . . , vm of V , and let δ(V ) := v1 · · · vm ∈ C(V ). Let d(V ) denote the discriminant
of the space (V,Q), given by the determinant of the Gram matrix ((vi, vj))i,j (for any basis v1, · · · vm of V ).

(i) We have that

δ(V )2 =

{
(−1)

m
2 2−md(V ) ∈ F×/(F×)2 if m ≡ 0 mod 2

(−1)
m−1

2 2−md(V ) ∈ F×/(F×)2 if m ≡ 1 mod 2
.

(ii) The centre Z(C(V )) of C(V ) is given by

Z(C(V )) =

{
F if m ≡ 0 mod 2

F + Fδ(V ) if m ≡ 1 mod 2
,
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and the centre Z(C0(V )) of C0(V ) is given by

Z(C0(V )) =

{
F + δ(V )F if m ≡ 0 mod 2

F if m ≡ 1 mod 2
,

Proof. For (i), see [7, Remark 2.5]. For (ii), see [7, Theorem 2.6]. �

Let us now consider the Clifford group of C(V ),

GC(V ) =
{
x ∈ C(V ) : x is invertible and xV J(x)−1 = V

}
.

We can then define the general spin group GSpin(V ) as the intersection GSpin(V ) = GC(V ) ∩ C0(V ), and

the spin group as the subgroup Spin(V ) =
{
x ∈ GSpin(V ) : NC(V )(x) = 1

}
of elements of Clifford norm one.

Lemma 2.2. If m = dimF (V ) ≤ 4, then we have identifications

GSpin(V ) ∼=
{
x ∈ C0(V ) : NC(V )(x) ∈ F×

}
and Spin(V ) ∼=

{
x ∈ C0(V ) : NC(V )(x) = 1

}
.

Proof. See [7, Lemma 2.14]. �

2.2.2. Exceptional isomorphisms. Let (VA, QA) = (aQ+aQ, Qa−Qa) be any of the rational quadratic spaces
of signature (2, 2) considered above. Hence, dimQ(VA) = 4, dimQ C(VA) = 24 = 16, and dimQ C

0(VA) = 8.

Proposition 2.3. Let k be a quadratic field with class group C(Ok). Fix any class A ∈ C(Ok), together
with an integer ideal representative a ⊂ Ok, and write Qa(z) = Nk/Q(z)/Na to denote the corresponding
norm form. Consider the corresponding rational quadratic space (VA, QA) = (aQ +aQ, Qa−Qa) of signature
(2, 2), with Clifford algebra C(VA) and even Clifford subalgebra C0(VA) ⊂ C(VA). We have the identification
C0(VA) ∼= M2(Q)2, from which we derive exceptional isomorphisms Spin(VA) ∼= SL2

2 and GSpin(VA) ∼= GL2
2

of algebraic groups over Q.

Proof. Fix a Z-basis [αa, za] of the chosen integral ideal representative a ⊂ Ok for each class A. We also
let Qa(z) = Nk/Q(z)/Na denote the norm form. Here, writing τ ∈ Gal(k/Q) to denote the nontrivial
automorphism, we define the norm Nk/Q(z) = zzτ and the trace Trk/Q(z) = z + zτ . Consider the basis

v1 = (αa, 0), v2 = (za, 0), v3 = (0, αa), v4 = (0, za).

We compute the inner products

(v1, v1)A = Qa(2αa)− 2Qa(αa) = Na−12Nk/Q(αa)

(v1, v2)A = Qa(αa + za)−Qa(αa)−Qa(za) = Na−1 Trk/Q(zaα
τ
a) = (v2, v1)A

(v1, v3)A = Qa(αa)−Qa(αa)−Qa(αa) +Qa(αa) = 0 = (v3, v1)A

(v1, v4)A = Qa(αa)−Qa(za)−Qa(αa) +Qa(za) = 0 = (v4, v1)A

(v2, v2)A = Qa(2za)− 2Qa(za) = Na−1(2Nk/Q(za))

(v2, v3)A = Qa(za)−Qa(αa)−Qa(za)−Qa(αa) = 0 = (v3, v2)A

(v2, v4)A = (Qa(za)−Qa(za))−Qa(za) +Qa(za) = 0 = (v4, v2)A

(v3, v3)A = −Qa(2αa) + 2Qa(αa) = −Na−12Nk/Q(αa) = −(v1, v1)A

(v3, v4)A = −Qa(αa + za) +Qa(αa) +Qa(za) = −Na−1 Trk/Q(zaα
τ
a) = (v4, v3)A = −(v1, v2)A

(v4, v4)A = −Qa(2za) + 2Qa(za) = −Na−12Nk/Q(za) = −(v2, v2)A.
13



We then compute the determinant of the corresponding Gram matrix

d(VA) = det((vi, vj)A)i,j = det


2Nk/Q(αa)

Na

Trk/Q(zaα
τ
a)

Na 0 0
Trk/Q(zaα

τ
a)

Na

2Nk/Q(za)

Na 0 0

0 0 − 2Nk/Q(αa)

Na −Trk/Q(zaα
τ
a)

Na

0 0 −Trk/Q(zaα
τ
a)

Na − 2Nk/Q(za)

Na



=
2Nk/Q(αa)

Na

∣∣∣∣∣∣∣
2Nk/Q(za)

Na 0 0

0 − 2Nk/Q(αa)

Na −Trk/Q(zaα
τ
a)

Na

0 −Trk/Q(zaα
τ
a)

Na − 2Nk/Q(za)

Na

∣∣∣∣∣∣∣
−

Trk/Q(zaα
τ
a)

Na

∣∣∣∣∣∣∣
Trk/Q(zaα

τ
a)

Na 0 0

0 − 2Nk/Q(αa)

Na −Trk/Q(zaα
τ
a)

Na

0 −Trk/Q(zaα
τ
a)

Na − 2Nk/Q(za)

Na

∣∣∣∣∣∣∣
=

4Nk/Q(zaαa)

Na2

(
4Nk/Q(zaαa)

Na2
−

Trk/Q(zaα
τ
a)2

Na2

)
−

Trk/Q(zaα
τ
a)2

Na2

(
4Nk/Q(zaαa)

Na2
−

Trk/Q(zaα
τ
a)2

Na2

)
=

(
4Nk/Q(zaαa)

Na2
−

Trk/Q(zaα
τ
a)2

Na2

)2

≡ 1 ∈ Q×/(Q×)2.

That is, we find that d(VA) ∈ (Q×)2 is a nonzero rational square, and hence trivial. Using the relation
δ(VA)2 = 2−4d(VA) of Proposition 2.1 (i), we deduce that the volume form δ(VA) ∈ Q× must be rational. We
then deduce from Proposition 2.1 (ii) that Z(C0(VA)) = Q + δ(VA)Q = Q, and hence that the even Clifford
algebra C0(VA) of dimQ(C0(VA)) = 8 must be a direct sum of two isomorphic copies of a quaternion algebra
B over Q. Using the classifications of Clifford algebras over R, we see that C(VA ⊗R) ∼= C2,2(R) ∼= M4(R)
and C0(VA⊗R) ∼= C0

2,2(R) ∼= M2(R)⊕M2(R). Hence, B must be indefinite. Since the discriminant d(VA) = 1
is trivial, we deduce that B must be the matrix algebra M2(Q), with the Clifford norm corresponding to the
reduced norm homomorphism nrd : B → Q, which for B = M2(Q) is simply the determinant det = nrd. The
claimed isomorphisms for the spin groups then follow from the characterization given in Lemma 2.2. �

Corollary 2.4. Fix N ∈ Z≥1. Let LA = LA(N) ⊂ VA denote the lattice whose adelization LA ⊗ Ẑ is
stabilized under the action via conjugation by GSpin(VA)(Af ) ∼= GL2(Af )2 by the compact open subgroup

K0(N)⊕K0(N), where K0(N) ⊂ GL2(Ẑ) ⊂ GL2(Af ) denotes the congruence subgroup defined by

K0(N) =

{(
a b
c d

)
∈ GL2(Ẑ) : c ≡ 0 mod N

}
.

(i) The lattice is LA = LA(N) = N−1a⊕N−1a, with dual lattice L∨A = LA(n)∨ = d−1
k N−1a⊕ d−1

k a
(ii) The level of the lattice is N = {min a ∈ Z≥1: aQA(λ) ∈ Z∀γ ∈ L∨A}.
(iii) The discriminant d(LA) = d(LA(N)) of the lattice is 1.

Proof. Consider GSpin(VA)(Af ) ∼= GL2(Af )2 acting on VA = aQ⊕aQ ∼= [αa, za]Q⊕[αa, za]Q by conjugation.
Here, we use the canonical embedding VA → C(VA) and the identification C0(VA) ∼= M2(Q)⊕M2(Q). Writing

R(N) =

{(
a b
c d

)
: c ≡ 0 mod N

}
⊂M2(Q)

to denote the Eichler order of level N , we can characterize LA = LA(N) as the lattice stabilized under
conjugation by invertible elements of R(N) ⊕ R(N). We claim that the conjugation action g · v = gvg−1

for g = (g1, g2) ∈ GSpin(VA)(Af ) ∼= GL2(Af )2 and v = (v1, v2) ∈ aAf
⊕ aAf

takes the simpler form

(g1, g2) · (v1, v2) = (g1v1g
−1
1 , g2v2g

−1
2 ), for gi ∈ GL2(Af ) and vi ∈ aAf

= [αa, za]Af for i = 1, 2. We

can then see by inspection that LA = LA(N) = N−1a ⊕ N−1a is the stabilized lattice, with dual lattice
L∨A = LA(N)∨ = d−1

k N−1a⊕d−1
k N−1a, and that this lattice has level N . A minor variation of the calculation

given in Proposition 2.3, replacing αa with αa/N and za with za/N to get the basis

v1 = (αa/N, 0), v2 = (za/N, 0), v3 = (0, αa/N), v4 = (0, za/N),

shows that the discriminant d(LA) = det((vi, vj)A) = 1.
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3. GSpin Shimura varieties

We now describe the GSpin Shimura varieties and special cycles that appear, starting with the general
setting, then describing the Hilbert modular surfaces corresponding to the rational quadratic spaces (VA, QA)
of signature (2, 2) introduced above.

3.1. Complex Shimura varieties. Let (V,Q) be any rational quadratic space of signature (n, 2) with
bilinear form (x, y) = Q(x + y) − Q(x) − Q(y). Write GSpin(V ) for the corresponding general spin group.
We consider the Grassmannian D(V ) = D±(V ) of oriented1 negative two-planes in V (R),

D(V ) = {z ⊂ VR : dim(z) = 2, Q|z < 0} .

Extending the bilinear form (·, ·) to VC, we see that this real manifold D(V ) is isomorphic to the complex
manifold of dimension n defined by the quadric

Q(V ) = {w ∈ VC\{0} : (w,w) = 0, (w,w) < 0} /C× ⊂ P(V (C)),

from which D(V ) acquires the structure of a complex manifold. Here, the isomorphism sends an oriented
hyperplane z = [x, y] with basis [x, y] such that Q(x) = Q(y) and (x, y) = 0 to w = x+ iy ∈ VC.

We now explain how (GSpin(V ), D(V )) determines a Shimura datum. We have a natural embeddings of
R-algebras C→ C(z)→ C(VR) for any hyperplane z = [x, y] ⊂ VR, with the first induced by the map

i 7−→ xy√
Q(x)Q(y)

.

The induced map C× → C(VR)× takes values in GSpin(V )(R), and arises from a morphism of real algebraic
groups αz : ResC/R Gm → GSpin(V )(R). In this way, we can identify D(V ) with a conjugacy class in
Hom(ResC/R Gm,GSpin(V )(R)). Hence, we can associate a Shimura variety to (GSpin(V ), D(V )).

Any choice maximal lattice L ⊂ V determines a compact open subgroup

K = KL := GSpin(V )(Af ) ∩ C(L) ⊂ GSpin(V )(Af ), L̂ = LẐ.

We write L∨ = {x ∈ V : (v, L) ⊂ Z} for the dual lattice, and L∨/L ∼= L̂∨/L̂ for the discriminant group.

Note that K = KL acts trivially on L̂. Fixing such a choice, we consider the corresponding Shimura variety

XK(C) = GSpin(V )(Q)\D(V )×GSpin(V )(Af )/K ∼=
∐

h∈GSpinV (Q)\GSpinV (Af )/K

Γh\D(V )(4)

for arithmetic subgroups Γh = GSpin(V )(Q) ∩ hKh−1. This complex orbifold XK(C) has the structure of
a quasiprojective variety XK of dimension n over Q which is projective if and only if V is anisotropic. It is
smooth if K = KL is neat. We refer to [1, §2], [39], and [40, §1] for more background.

3.2. Special divisors. Given a vector x ∈ V with Q(x) > 0, we define a divisor

D(V )x = {z ∈ D(V ) : z ⊥ x} .

For each µ ∈ L∨/L and m ∈ Q>0, we consider the divisor Z(µ,m) on XK given by the complex orbifold

Z(µ,m)(C) =
∐

h∈GSpinV (Q)\GSpinV (Af )/K

Γh

∖ ∐
x∈µh+Lh
Q(x)=m

D(V )x

 .(5)

Here, for any element h ∈ GSpinV (Af ), we write Lh ⊂ V for the lattice determined by L̂h = h · L̂, and
µh = h·µ ∈ L∨h/Lh. As explained in [1, §2] (cf. [39], [40, §1]), these Z(µ,m)(C)→ XK(C) determine effective
Cartier divisors, and admit a moduli description given in terms of the Kuga-Satake abelian scheme over XK .

1Although we drop it from the notation henceforth, we write D+(V ) to denote the hyperplanes with positive orientation,
and D−(V ) the hyperplanes with negative orientation, so that D±(V ) denotes one of these choices – which we fix consistently.
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3.3. CM cycles and geodesic sets. Let V0 ⊂ V be any rational quadratic subspace of signature (0, 2)
with corresponding lattice L0 = V0∩L. The Clifford algebra C(L0) then determines an order in a quaternion
algebra over Q, and its even part C0(L0) an order in some imaginary quadratic field k(V0) determined by
V0. The corresponding spin group GSpin(V0) ∼= Resk(V0)/Q Gm forms a rank-two torus T (V0) in GSpin(V ).
Fixing an embedding k(V0) ⊂ C, the left multiplication in V0(R) gives V0(R) the structure of a complex
vector space, and determines an orientation. In this way, we see that each of the two oriented negative definite
subspaces z±0 = V0(R) determines a point in D(V ) = D±(V ), and (T (V0), z±0 ) a Shimura datum associated
to the zero-dimensional complex orbifold

Z(V0)(C) = T (V0)(Q)\
{
z±0
}
× T (V0)(Af )/K0, K0 = KL0 = T (V0)(Af ) ∩KL.(6)

We call the corresponding zero cycle Z(V0) ⊂ XK the CM cycle associated to V0.
As explained in [1], if we assume that C0(V0) ∼= Ok(V0) is the maximal order, then the Z/2Z-grading on

C(L0) takes the form C(L0) ∼= Ok(V0) ⊕ L0, where L0 is both a left and right Ok(V0)-module. In this case,
there exists a proper fractional Ok(V0)-ideal b and left Ok(V0)-module isomorphism L0

∼= b which identifies
the corresponding quadratic form Q0 = Q|V0

with the norm form Q0(·) = Nk(V0)/Q(·)/Nb. The dual lattice

L∨0 is then identified with d−1
k(V0)L0 for d−1

k(V0) the inverse different of k(V0). In this setting, the zero cycle

Z(V0) can be reinterpreted as the moduli stack of elliptic curves with complex multiplication by Ok(V0). We
refer to [1, §4] for details, and note that there appears to be some subtlety in extending this discussion to the
setting where C0(V0) ∼= O is a nonmaximal order (which at the time of writing remains an open problem).

Motivated by the study of real quadratic fields, we consider sets attached to rational quadratic subspaces
W ⊂ V of signature (1, 1). Writing D(W ) = D±(W ) = {z ⊂W (R) : dim(z) = 1, orientation ±, QW |z < 0}
to denote the corresponding domain of oriented lines in W (R), we consider the sets defined

G(W )(C) = GSpin(W )(Q)\D(W )×GSpin(W )(Af )/(KL ∩GSpin(W )(Af )).(7)

We call G(W ) the geodesic set associated to W .

3.4. Classical description as Hilbert modular surfaces. Fix any class A in C(Ok), together with any
integral ideal representative a, and consider the corresponding rational quadratic space (VA, QA) of signature
(2,2) introduced in (3). By Proposition 2.3, we have an accidental isomorphism

ζ : GSpin(VA) ∼= GL2
2(8)

of algebraic groups over Q. Write LA ⊂ VA for the maximal lattice whose corresponding compact open
subgroup KA = KLA ⊂ GSpin(VA)(Af ) given by KA =

∏
p<∞KA,p =

∏
p<∞KΛA,p has the property that

each KA,p ⊂ GSpin(VA)(Qp) corresponds under (8) to the Cartesian product of congruence subgroups

ζ(KA,p) = K0,p(N)2, K0,p(N) :=

{(
a b
c d

)
∈ GL2(Zp) : c ∈ NZp

}
⊆ GL2(Zp)(9)

for some fixed integer N ≥ 1. That is, we assume that KA is identified under (8) with the Cartesian self-

product K0(N)2 of the congruence subgroup K0(N) =
∏
p<∞K0,p(N) of GL2(Ẑ) ⊂ GL2(Af ).

3.4.1. Hermitian symmetric domains. Recall that we consider the Grassmannian

D(VA) = D±(VA) = {z ⊂ VA(R) : dim(z) = 2, orientation ± , QA|z < 0}

of oriented negative definite hyperplanes in VA(R) ∼= aR + aR. Extending the bilinear pairing (·, ·)A to C,
we saw that the real manifold D(VA) is isomorphic to the complex surface defined by the quadric

Q(VA) = {w ∈ VA(C) : (w,w)A = 0, (w,w)A < 0} /C× ⊂ P(VA(C))

via the isomorphism sending a properly oriented hyperplane z with standard basis z = [x, y] ∈ D(VA) such
that (x, x)A = (y, y)A = −1 and (x, y)A = 0 to the complex point w = w(z) := x + iy ∈ Q(VA). Here,
we remark that the quadric Q(VA) determines a complex surface with two connected components Q±(VA).
Our choice of orientation D±(VA) determines one of these, so that we have the corresponding identification
D±(VA) ∼= Q±(VA). This identification is sometimes referred to as the projective model for D(VA) = D±(VA).
It is useful for identifying the complex structure on D(VA), which makes it a hermitian symmetric domain.

We also have the following equivalent description. Fix a Witt decomposition VA = WA ⊕ Qe1 ⊕ Qe2,
with nonzero isotropic basis vectors e1 and e2 chosen so that (e1, e1)A = (e2, e2)A = 0 and (e1, e2)A = 1.
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Hence, WA ⊂ VA denotes the Lorentzian rational quadratic subspace of signature (1, 1) determined by the
intersection WA = VA ∩ e⊥1 ∩ e⊥2 . We can then identify D(VA) ∼= Q(VA) with the corresponding tube domain

H(VA) = {z ∈WA(C) : QA(=(z)) < 0} .

To be more precise, given an element w ∈ VA(C) = WA(C)⊕Ce1⊕Ce2, let us write its corresponding Witt
decomposition w = z + ae1 + be2 for z ∈WA(C) and a, b ∈ C as w = (z, a, b). Given an element w ∈ VA(C),
we also write [w] to denotes its image in Q(VA) ⊂ P(VA(C)). We have a biholomorphic map

H(VA) ∼= Q(VA), z 7−→ [(z, 1,−QA(z)−QA(e2))] = [z + e1 −QA(z)e2 +QA(e2)e2] .

We refer to [7, Lemma 2.18] (for instance) for more details. The domain H(VA) ⊂ WA(C) ∼= C2 has two
connected components H±(VA) corresponding to the two cones of negative norm vectors in the Lorenzian
subspace WA(R), and we have natural identifications H±(VA) ∼= H2 with products of two copies of the
Poincaré upper-half plane H = {τ ∈ C,=(τ) > 0}. The corresponding identification D±(VA) ∼= H±(VA) ∼= H2

is sometimes referred to as the tube domain model for D(VA) = D±(VA).

3.4.2. Hilbert modular surfaces. Taking for granted the various identifications of domains

D±(VA) ∼= Q±(VA) ∼= H±(VA) ∼= H2

with the accidental isomorphism (8) and the choice of level structure (9), we obtain the identifications

(10)
XKA(C) = GSpin(VA)(Q)\D±(VA)×GSpin(VA)(Af )/KA

∼= GL2(Q)2\H2 ×GL2(Af )2/ζ(KA) = Y0(N)× Y0(N),

where

Y0(N) = Γ0(N)\H ∼= GL2(Q)\H×GL2(Af )/K0(N), K0(N) :=
∏
p<∞

K0,p(N)

denotes the noncompactified modular curve of level Γ0(N) ⊂ SL2(Z). Hence, we can identify each spin
Shimura surface XKA(C) = XKLA

(C) with the Hilbert modular surface Y0(N)× Y0(N).

3.4.3. Hirzebruch-Zagier divisors. We see from (8), (9), and (10) that each special divisor Z(µ,m) =
ZA(µ,m) as defined in (5) above for µ ∈ L∨A/LA and m ∈ Q>0 is given more explicitly by the analytic
divisor

ZA(µ,m)(C) =
∐

h∈GSpin(VA)(Q)\GSpin(VA)(Af )/KA

Γh

∖ ∐
x∈µh+LAh
QA(x)=m

D(VA)x


∼= Γ0(N)2

∖ ∐
x∈µ+LA
QA(x)=m

D(VA)x = Γ0(N)2
∖ ∐

x∈µ+LA
QA(x)=m

{
z ∈ D±(VA) : (z, x)A = 0

}
∼= Γ0(N)2

∖ ∐
x∈µ+LA
QA(x)=m

{
z = (z1, z2) ∈ H2 : QA(z + x)−QA(z) = m

}
⊂ Y0(N)(C)× Y0(N)(C).

Note that these divisors can be viewed as embeddings of modular curves into Y0(N)×Y0(N). This is apparent
from the description above, as well as their more intrinsic characterization as analytic divisors in [39, §2].
That is, we choose a positive norm vector x ∈ VA, or more precisely, an element of the quadratic

ΩA,µ,m(Q) = {x ∈ µ+ LA : QA(x) = m} .

We consider the corresponding one-dimensional subspace VA,+ := Qx ⊂ VA, with its orthogonal complement
UA := V ⊥A,+ ⊂ VA. Hence, UA ⊂ VA determines a subspace of signature (1, 2). Its spin group GSpin(UA)

is isomorphic to the stabilizer of VA,+ in GSpin(VA) ∼= GL2
2 ([39, Lemma 2.1]). The natural subspace

embedding UA ⊂ VA gives rise to an embedding of reductive algebraic groups GSpin(UA) → GSpin(VA).
Writing D(UA) = D±(UA) = {z ⊂ UA(R) : dim(z) = 2, QA|z < 0} for the corresponding Grassmannian, and
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KA,U = KA ∩ GSpin(UA)(Af ) the corresponding compact open subgroup, we can identity ZA(µ,m) with
the Shimura subcurve

ZA(µ,m)(C) = GSpin(UA)(Q)\D(UA)×GSpin(UA)(Af )/KA,U −→ XA(C) ∼= Y0(N)× Y0(N)

GSpin(UA)(Q)(z, h)KA,U 7−→ GSpin(VA)(Q)(z, h)KA.

To be more precise, we know from the discussion above that ZA(µ,m) can be identified with the modular
curve Γ(UA)\D(UA), where D(UA) = D±(UA) ∼= H and Γ(UA) = GSpin(UA)(Q) ∩ KA,U ⊆ Γ0(N)2 is a
congruence subgroup. As can be seen through this description, the sums over cosets µ ∈ L∨A/LA of these
divisors ZA(µ,m) give the classical Hirzebruch-Zagier divisors of the forms described in [29] and [7, §2]. We
shall return to this relation to the classical Hirzebruch-Zagier divisors on Y0(N) × Y0(N) given in terms of
the moduli discussion (see e.g. [29]) in our discussion of arithmetic heights below.

3.4.4. CM cycles. Let V0,A ⊂ VA be any rational quadratic subspace of signature (0, 2), with corresponding
lattice L0,A = V0,A∩VA and quadratic form QA,0 = QA|VA,0 . The even Clifford algebra C0(LA,0) ⊂ C0(VA,0)
determines an order in the imaginary quadratic field k(VA,0) determined by VA,0. Recall that any such
subspace VA,0 ⊂ VA determines a rank-two torus GSpin(V0,A) ∼= Resk(VA,0)/Q Gm and the even Clifford

algebra C0(LA,0) ∼= O an order in Ok(VA,0). Again, if C0(LA,0) ∼= Ok(VA,0) is maximal, then the Z/2Z-grading
on C(LA,0) takes the form C(LA,0) ∼= Ok(VA,0)⊕LA,0, with LA,0 being both a left and right Ok(VA,0)-module,
and there exists a fractional Ok(VA,0)-ideal b and an isomorphism LA,0 ∼= b of left Ok(VA,0)-modules which

identifies the quadratic form QA,0 on LA,0 with the norm form −Nk(VA,0)/Q(·)/Nb and L∨A,0
∼= d−1

k(VA,0)LA,0.

Remark 3.1. If we start with k = Q(
√
d) an imaginary quadratic field in our setup, each of the anisotropic

subspaces (VA,0, QA,0) = (VA,1,−QA,1) = (Va,−Qa) is a rational quadratic subspace of signature (0, 2)
associated to the imaginary quadratic field k(VA,1) = k. In the same way, each of the anisotropic subspaces
(VA,0, QA,0) = (VA,2, QA,2) = (Va, Qa) determines a rational quadratic subspace of signature (0, 2) associated
to the same imaginary quadratic field k(VA,2) = k.

If on the other hand we start with k = Q(
√
d) a real quadratic field, any subspace (VA,0, QA,0) ⊂ (VA, QA)

of signature (0, 2) will also determine an imaginary quadratic field k(VA,0). For instance, writing τ to denote
the nontrivial automorphism of Gal(k/Q), we see that UA,0 := V τA,1⊕ (VA,2/V

τ
A,2) with QA|UA,0 is a rational

quadratic subspace (VA, QA) of signature (2, 0), and that VA,0 = UA,0 with QA,0 = −QA|UA,0 is a rational
quadratic subspace VA of signature (0, 2) which determines an imaginary quadratic field k(UA,0).

Each sublattice LA,0 ⊂ LA of signature (0, 2) gives rise to a group scheme TA over Z with functor of points
TA(R) = (C0(LA,0)⊗ZR)× for any Z-algebra R. This gives a rank-two torus TA⊗Z Q = GSpin(VA,0) which

appears as a maximal subgroup of GSpin(VA) ∼= GL2
2. Writing ΛA,0 = L⊥A,0 ⊂ LA for the complement of the

lattice LA,0, this maximal subgroup acts trivially on the corresponding subspace V ⊥A,0 = ΛA,0⊗ZQ ⊂ VA. Let

KA,0 = TA(Af ) ∩KLA denote the corresponding compact open subgroup of TA(Af ) = GSpin(VA,0)(Af ).
Fixing an embedding Ok(VA,0) ⊂ C, we can view VA,0(R) = VA,0 ⊗Q R as an oriented hyperplane

of C, and hence as a point zA,0 = VA,0(R) ⊂ VA(R) in D(VA) ∼= Q(VA) ∼= H(VA) ∼= H2. This makes
(TA⊗Z Q, zA,0) = (GSpin(VA,0), zA,0) a Shimura datum with reflex field k(VA,0). The corresponding orbifold

Z(VA,0)(C) = TA(Q)\ {zA,0} × TA(Af )/KA,0

= GSpin(VA,0)(Q)\ {V0,A(R)} ×GSpin(VA,0)(Af )/ (GSpin(VA,0)(Af ) ∩KLA)

can be viewed as the complex points of a zero-dimensional Shimura variety Z(VA,0) −→ Spec(k(VA,0)), or a
complex fibre on the moduli stack of elliptic curves with complex multiplication by O ∼= C0(LA,0) ⊂ Ok(VA,0)

and Γ0(N)-level structure.

3.4.5. Geodesic sets. Let WA ⊂ VA be any Lorentzian quadratic subspace of signature (1, 1), with lattice
MA = WA ∩ LA. Note that the complement NA = M⊥A ⊂ LA, also determines a Lorentzian subspace
UA = NA ⊗Z Q ⊂ VA of signature (1, 1). We consider the corresponding domain

D(WA) = D±(WA) = {y = [α, β] ⊂WA(R) : dim(y) = 1, orientation ±, QA|WA
(y) < 0}

of oriented hyperbolic lines y = [α, β] ≡ [α : β] ∈ P1(R), given equivalently as a space of projective lines

D(WA) = D±(WA) =
{
y = [α : β] ⊂ P1(R) : orientation ±, QA|WA

(α, β) < 0
}
.

18



Recall that after fixing an oriented basis z = [x, y] of each negative definite hyperplane z ⊂ VA(R), and
fixing a Witt decomposition VA = WA ⊕Qe1 ⊕Qe2 corresponding to WA, we have identifications

D±(VA) ∼= Q±(VA) ∼= H±(VA), z = [x, y] 7→ [w(z) = x+ iy] 7→ z(w) = z(w(z)).

Here, we write the corresponding Witt decomposition of a point w ∈ VA(C) as w = z(w) + a(w)e1 + b(w)e1.
Note that while the point w(y) = α+ iβ ∈ C determined by a hyperbolic line y = [α : β] ∈ P1(R) does not
lie in the upper-half plane H, the roots of the quadratic polynomial QA|WA

(X, 1) = 0 (or QA|WA
(1, Y ) = 0)

determine endpoints of a geodesic arc in H. For this reason, we shall sometimes call the corresponding sets

G(WA) := GSpin(WA)(Q)\D±(WA)×GSpin(WA)(Af )/KA, KA := KA ∩GSpin(WA)(Af )

geodesic sets associated to the Hilbert modular surface XA
∼= Y0(N) × Y0(N). We shall later see that the

summation of automorphic Green’s functions associated to certain linear combinations of the special divisors
ZA(µ,m) gives information about central derivative values of certain Rankin-Selberg L-functions. Hence, we
have reason to believe that these geodesic sets are related to (Hirzebruch-Zagier) special arithmetic divisors
on XA

∼= Y0(N)× Y0(N). In fact, clarifying such a relation forms the main motivation for this note.

4. Green’s functions for special divisors

We describe the automorphic Green’s functions that can be constructed from regularized theta lifts for the
special divisors Z(µ,m). We start with the general setting, following [1], [40], [7], [13], and [54], then specialize
to the case of Hilbert modular surfaces parametrized by the rational quadratic spaces VA of signature (2, 2).

4.1. Siegel theta functions. Fix (V,Q) a rational quadratic space of signature (n, 2), with maximal lattice
L ⊂ V . We write L∨/L for the discriminant group, and SL the finite-dimensional space of C-valued functions

on L∨/L. Writing S̃L2 for the two-fold metaplectic cover of SL2, we consider the Weil representation

ωL : S̃L2(Z) −→ SL,

which for n ≥ 1 even factors through SL2(Z) as ωL : SL2(Z) → SL. We define the conjugate action ωL by

ωL(γ)Φ = ωL(γ)Φ, and write ω∨L for the contragredient action of S̃L2(Z) on the complex linear dual S∨L.
We now describe how for each h ∈ GSpin(V )(Af )/KL, we can use ωL to construct a Siegel theta function

θL(τ, z) : H×D(V ) −→ S∨L,

which in the variable z ∈ D(V ) = D±(V ) is Γh-invariant, and in the variable τ = u+ iv ∈ H transforms as a
nonholomorphic modular form of weight n

2 − 1 and representation ω∨L. We give the precise definition in (15).

4.1.1. Theta kernels. To give a more precise account of the Weil representation for later constructions of
theta series, let ψ = ⊗vψv denote the standard additive character of A/Q, which has archimedean component
ψ∞(x) = e(x) = exp(2πix) for x ∈ R ∼= Q∞.

Recall that the two-fold metaplectic cover S̃L2 fits into a short exact sequence

1 −→ {±1} −→ S̃L2 −→ SL2 −→ 1,

and that the general spin group GSpin(V ) fits into a short exact sequence

1 −→ Gm −→ GSpin(V ) −→ SO(V ) −→ 1.

Both groups act on the space of Schwartz-Bruhat functions Φ = ⊗vΦv ∈ S(V (Af )) by the Weil representation

ωL = ωL,ψ : S̃L2(A)×GSpin(V )(A) −→ S(V (A)).

This gives a natural theta kernel, defined on g ∈ S̃L2(A), h ∈ GSpin(V )(A), and Φ = ⊗vΦv ∈ S(V (A)) by

ϑL(g, h; Φ) =
∑

x∈V (Q)

(ωL(g, h)Φ) (x).(11)

This function ϑL(g, h; Φ) is seen by inspection to be left GSpin(V )(Q)-invariant, and by Poisson summation

to be left S̃L2(Q)-invariant. It is referred to as the theta kernel associated to the Weil representation ωL.
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4.1.2. Choice of local Schwartz functions. Following [3], [6], and [13, §2], we choose the following decompos-
able Schwartz functions Φ = ⊗vΦv ∈ S(V (A)) to construct Siegel theta functions from the theta kernel
(11).

We first define the following Gaussian function Φ∞ ∈ S(V (R)). Given a hyperplane z ∈ D(V ) = D±(V ),
we define the corresponding majorant (x, x)z = (xz⊥ , xz⊥) − (xz, xz), which can be viewed as a positive
definite quadratic form on V (R). We then define the Gaussian function

Φ∞(x, z) = exp (−(x, x)z) , z ∈ D(V ) = D±(V ), x ∈ V (R).(12)

As a function x ∈ V (R), this determines an archimedean local Schwartz function Φ∞ ∈ S(V (R)). It satisfies
the transformation property Φ∞(hx, hz) = Φ∞(x, z) for all h ∈ GSpin(V )(R). It has weight n

2 − 1 under the

action of the maximal compact subgroup of S̃L2(R).
For the remaining finite part Φf = ⊗v<∞Φv ∈ S(V (A)f ), we shall later take the characteristic functions

Φf = 1µ := char
(
µ+ L⊗ Ẑ

)
for a coset µ ∈ L∨/L.

4.1.3. Construction of Siegel theta functions. Fix a basepoint z0 ∈ D(V ) = D±(V ). For any finite archimedean
Schwartz function Φf = ⊗v<∞Φv ∈ S(V (A)f ), we can define from (11) the theta function

θL(g, h; Φf ) := ϑL(g, h; Φ∞(·, z0)⊗ Φf (·)).(13)

We obtain a classical Siegel theta series on H ×D(V ) from this as follows. Given any oriented hyperplane
z = D(V ) = D±(V ), we choose an element hz ∈ GSpin(V )(R) for which hzz0 = z. Note that

ωL(hz)Φ∞(·, z0) = Φ∞(·, z).
Choosing i ∈ H as the basepoint, let us for any τ = u+ iv ∈ H write gτ to denote the matrix

gτ =

(
1 u

1

)(
v

1
2

v−
1
2

)
∈ SL2(R),

and g̃τ = (gτ , 1) its image in S̃L2(R). Note that g̃τ · i = τ . Via (13), we can then define the Siegel theta series

θL(τ, z, hf ; Φf ) = v−
n
4 + 1

2ϑL(g̃τ , hzhf ; Φ∞(·, z0)⊗ Φf (·)) = v−
n
4 + 1

2

∑
x∈V (Q)

ωL(g̃τ ) (Φ∞(·, z)⊗ ω(hf )Φf ) (x)

for τ = u+ iv ∈ H, z ∈ D(V ) = D±(V ), hf ∈ GSpin(V )(Af ), and Φf = ⊗v<∞Φv ∈ S(V (Af )). Since

v−
n
4 + 1

2ωL(g̃τ ) (Φ∞(·, z)) (x) = ve (Q(xz⊥)τ +Q(xz)τ) ,

we have the more explicit expansion

θL(τ, z, hf ; Φf ) = v
∑

x∈V (Q)

e (Q(xz⊥)τ +Q(xz)τ)⊗ Φf (h−1
f x).(14)

As explained for [13, (2.5)], this theta series satisfies a transformation property for S̃L2(Q). Viewing θL(τ, z, hf ; ·)
as a function on τ ∈ H taking values in the dual space S(V (Af ))∨ of S(V (Af )), we see that θL(τ, z, hf ; ·)
determines a nonholomorphic modular form of weight n

2 − 1 and representation ω∨L. In fact, it determines a
harmonic weak Maass form θL(τ, ·) ∈ Hn

2−1(ω∨L) in the sense of the definition given below.

Let SL denote the subspace of S(V (Af )) which are supported on L∨⊗Ẑ, and constant on cosets of L⊗Ẑ.

For instance, SL contains the characteristic function 1µ = char(µ + L ⊗ Ẑ) for a given coset µ ∈ Lµ/L. In
fact, these functions form a basis for the space, and we have the decompositon

SL =
⊕

µ∈L∨/L

C1µ ⊂ S(V (Af )).

In particular, it follows that dimC SL = |L∨/L| is finite. Writing eµ for the standard basis element in
C[L∨/L], we also have a natural identification SL

∼= C[L∨/L],1µ 7→ eµ. This space SL is stable under the

image of SL2(Ẑ) in S̃L2(Af ). We define from (14) the corresponding SL-valued Siegel theta series

(15) θL(τ, z, hf ) =
∑

µ∈L∨/L

θL(τ, z, hf ; 1µ)1µ
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We refer to [13, §2] for more on these theta series, which coincide with those considered by Borcherds in [3].

4.2. Harmonic weak Maass forms. Fix a half-integer l ∈ 1
2Z. Recall that a twice-differentiable function

f : H −→ SL is said to be a harmonic weak Maass form of weight l and representation ωL if

(i) f |l,ωLγ = f for all γ ∈ Γ = SL2 Z, where |l,ωL denotes the Petersson weight-l operator.

(ii) There exists an SL-value Fourier polynomial

Pf (τ) =
∑

µ∈L∨/L

∑
m≥0

c+f (µ,m)e(mτ)1µ, 1µ := char(µ+ L⊗ Ẑ)

known as the principal part of f for which f(τ) = Pf (τ)+O(e−εv) for some ε > 0 as v = =(τ)→∞.

(iii) The function is harmonic: ∆lf = 0 for ∆l the hyperbolic Laplacian of weight l defined by

∆l := −v2

(
∂2

∂u2
+

∂2

∂v2

)
+ il

(
∂

∂u
+ i

∂

∂v

)
, τ = u+ iv ∈ H.

We write Hl(ωL) to denote the C-vector space of harmonic weak Maass forms of weight l and representation.
Each harmonic weak Maass form f ∈ Hl(ωL) has a unique decomposition f = f+ + f− where

f+(τ) =
∑

µ∈L∨/L

∑
m∈Q
m�−∞

c+f (µ,m)e(mτ)1µ

and

f−(τ) =
∑

µ∈L∨/L

∑
m∈Q
m<0

c−f (µ,m)Wl(2πmv)e(mτ)1µ,

where Wl(a) :=
∫∞
−2a

e−tt−ldt = Γ(1 − l, 2|a|) denotes the Whittaker function given by the partial Gamma

function, and e(τ) = exp(2πiτ) for τ = u + iv ∈ H. We call f+ the holomorphic part of f and f− the
non-holomorphic part of f . We consider the subspace M !

l (ωL) ⊂ Hl(ωL) of weakly holomorphic forms whose
poles are supported at the cusps, as well as the suspace of holomorphic forms Ml(ωL) ⊂ M !

l (ωL), and the
subspace of holomorphic cusp forms Sl(ωL) ⊂Ml(ωL) ⊂M !

L(ωL) ⊂ Hl(ωL).
Recall that we have the Maass weight lowering operator Ll and the Maass weight raising operator Rl,

Ll := −2iv2 · ∂
∂τ
, Rl := 2i · ∂

∂τ
+ l · v−1.(16)

Bruinier and Funke [10] define an antilinear differential operator

ξl : Hl(ωL) −→ S2−l(ωL), f(τ) 7−→ vl−2Llf(τ),(17)

and show that it sits in a short exact sequence

0 −−−−→ M !
l (ωL) −−−−→ Hl(ω)

ξl−−−−→ S2−l(ωL) −−−−→ 0

so that ker(ξl) = M !
l (ωL). We refer to [10] and [13, §3] for more details and basic properties.

4.2.1. Definition of the divisor Z(f). Given f ∈ H1−n2 (ωL), we define the corresponding divisor

Z(f) =
∑

µ∈L∨/L

∑
m∈Q
m>0

c+f (µ,−m)Z(µ,m)(18)

on XK = XKL .
In the special case of the quadratic spaces (VA, QA) of signature (2, 2) with maximal lattices LA ⊂ VA,

we consider for any f0 = f0,A ∈ H0(ωLA) the corresponding divisors on XA = XKA
∼= Y0(N)2 defined by

ZA(f0) =
∑

µ∈L∨A/LA

∑
m∈Q
m>0

c+f0(µ,−m)ZA(µ,m).(19)

4.3. Regularized theta lifts. We describe the regularized theta lifts Φ(f, z, h) associated to f ∈ H1−n2 (ωL).
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4.3.1. The tautological pairing. Let 〈〈·, ·〉〉 : SL ×S∨L −→ C denote the tautological pairing. Hence, given

f(τ) =
∑

µ∈L∨/L

fµ(τ)1µ ∈ Hl(ωL) and g(τ) =
∑

µ∈L∨/L

gµ(τ)1µ ∈ Hl(ω
∨
L),

we have

〈〈f(τ), g(τ)〉〉 =
∑

µ∈L∨/L

fµ(τ)gµ(τ).

4.3.2. Regularized theta integrals. Given f ∈ H1−n2 (ωL) a harmonic weak Maass form of weight 1 − n
2 and

representation ωL, we define the corresponding regularized theta lift Φ(f, z, h) for z ∈ D(V ) = D±(V ) and
h ∈ GSpin(V )(Af ) by the regularized theta integral

Φ(f, z, h) =

∫ ?

F
〈〈f(τ), θL(τ, z, h)〉〉dµ(τ) = CTs=0

{
lim
T→∞

∫
FT
〈〈f(τ), θL(τ, z, h)〉〉v−sdµ(τ)

}
.

Here, we write F = {τ ∈ H : −1/2 ≤ <(τ) ≤ 1/2, ττ ≥ 1} to denote the standard fundamental domain for
the action of SL2(Z) on H, and µ(τ) = dudv

v2 the Poincaré measure on H. The regularized theta integral
Φ(f, z, h) is given by the constant term in the Laurent series around s = 0 of the function

lim
T→∞

∫
FT
〈〈f(τ), θL(τ, z, h)〉〉v−sdµ(τ),

where the limit is taken over truncated domains FT = {τ ∈ H : −1/2 ≤ <(τ) ≤ 1/2, ττ ≥ 1,=(τ) ≤ T}.

4.3.3. Arithmetic automorphic forms and Petersson norms. Let LD(V ) be the restriction to D(V ) ∼= Q(V ) of
the tautological bundle on P(V (C)). The natural action of O(V )(R) on V (C) induces one of the connected
component of the identity GSpin(V )(R)0 ⊂ GSpin(V )(R) on LD(V ). This gives a holomorphic line bundle

L = GSpin(V )(Q)\LD(V ) ×GSpin(V )(Af )/K −→ XK ,

which is known to have a canonical model defined over Q by work of Harris [27], cf. [40, §1], [28]. Note that
on the component Γh\D(V ), it takes the form Γh\LD(V ). We define a hermitian metric hLD(V )

on LD(V ) by

hLD(V )
(w1, w2) =

1

2
· (w1, w2).

Observe that this metric is fixed by the action of O(V )(R), and hence descends to L.
We now describe the Petersson inner product on sections of L⊗l for l ∈ Z any integer. Fix a Witt

decomposition V = W ⊕Qe1 ⊕Qe2 for basis vectors e1, e2 satisfying (e1, e2) = 1 and (e1, e1) = (e2, e2) = 0,
so that W = V ∩ e⊥1 ∩ e⊥2 determines a rational quadratic subspace of signature (n− 1, 1). Given any vector
w ∈ V (C), we then write the corresponding decomposition for the Witt decomposition as w = z+ ae1 + be2.
Note that D(V ) ∼= Q(V ) is isomorphic to the tube domain

H(V ) =
{
z ∈W (C) : =(z) ∈ C−(V )

}
, C−(V ) := {y ∈W : (y, y) < 0}

via

H(V ) −→ V (C) = W (C) + Ce1 + Ce2 −→ Q(V ), z 7−→ w(z) := z + e1 −Q(z)e2 7−→ [w(z)].

The map z 7−→ w(z) := z + e1 −Q(z)2 can be viewed as a nowhere vanishing holomorphic section of LD(V ).
Observe that this section has norm for the hermitian metric hLD(V )

given by

||w(z)||2 = −1

2
· (w(z), w(z)) = − (=(z),=(z)) = −(y, y) =: |y|2.

Let us now write z = [x, y] ∈ D(V ) = D±(V ) for the basis [x, y] of an oriented hyperplane z ⊂ V (R)
w(z) := x+ iy, and [w(z)] its image in Q(V ) = Q±(V ) ∼= D±(V ). Given h ∈ GSpin(V )(R), we have

h · w(z) = w(hz)j(h, z)

for a holomorphy factor

j : GSpin(V )(R)×D(V ) −→ C.
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In this way, we can identify the holomorphic sections of L⊗l with functions

Ψ : D(V )×GSpin(V )(Af ) −→ C

satisfying the transformation properties

• Ψ(z, hk) = Ψ(z, h) for all k ∈ K
• Ψ(γz, γh) = j(γ, z)lΨ(z, h) for all γ ∈ GSpin(V )(Q).

The norm of the section

(z, h) 7−→ Ψ(z, h) · w(z)⊗l

corresponding to any such function Ψ is given by

||Ψ(z, h)||2 = |Ψ(z, h)|2|y|2l,

and referred to as the Petersson norm of Ψ.

4.3.4. Borcherd’s products and automorphic Green’s functions. We now summarize several important results.

Theorem 4.1 (Borcherds). Let f ∈M !
1−n2

(ωL) be a weakly holomorphic form with Fourier series expansion

f(τ) =
∑

µ∈L∨/L

∑
m∈Q
m�−∞

cf (µ,m)e(mτ)1µ, cf (µ,m) ∈ Z.

Then,

Φ(f, z, h) = −2 log |Ψ(f, z, h)|2 − c+f (0, 0) · (2 log |y|+ Γ′(1))(20)

for Ψ(f, z, h) a meromorphic modular form on D(V )×GSpin(V )(Af ) of weight 1
2 · c

+
f (0, 0) with divisor

Div
(
Ψ(f, ·)2

)
= Z(f) :=

∑
µ∈L∨/L

∑
m∈Q
m<0

c+f (µ,m)Z(µ,m).

Proof. See [3, Theorem 13.3] with [40, Theorems 1.2 and 1.3] and relevant discussions in Bruiner [6], [7]. �

Theorem 4.2 (Borcherds/Bruinier). Let f ∈ H1−n2 (ωL) be any harmonic weak Maass form of weight 1− n
2

and representation ωL. The regularized theta lift Φ(f, ·) is an automorphic Green’s function in the sense of
Arakelov theory for the divisor Z(f) on XK . That is, Φ(f, z, h) satifies the following characterizing properties:

(i) Φ(f, z, h) is a smooth function on XK\Z(f) with a logarithmic singularity along −2 logZ(f).

(ii) The (1, 1)-form ddcΦ(f, z, h) has a smooth extension to all of XK , and satisfies the Green’s current
equation ddc[Φ(f, z, h)] = δZ(f) + [ddcΦ(f, z, h)] for δZ(f) the Dirac current for Z(f).

(iii) Φ(f, z, h) is an eigenvector for the generalized Laplacian ∆z on z ∈ D(V ), and more precisely

∆zΦ(f, z, h) =
n

4
· c+f (0, 0) · Φ(f, z, h).

Proof. See [13, Theorem 4.3] and more generally [6]. �

As explained in [28, §1.1], the Shimura variety XK = XKL comes equipped with a metrized line bundle

L ∈ P̂ic(XK)

of weight one modular forms, which has an extension to the integral model P̂ic(XK).

Theorem 4.3 (Borcherds/Howard-Madapusi Pera). Let f ∈M !
1−n2

(ωL) be a weakly holomorphic form whose

principal part has integral Fourier coefficients,

f+(τ) =
∑

µ∈L∨/L

∑
m∈Q
m�−∞

c+f (µ,m)e(mτ)1µ, c+f (µ,m) ∈ Z.
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Replacing f by a suitable integer multiple if needed, there exists a rational section Ψ(f) of the line bundle

Lc
+
f (0,0) on XK whose norm under the metric defined by

||z|| = (z, z)

4πeγ
, (z, z) = Q(z, z)−Q(z)−Q(z)

satisfies the relation

−2 log ||Ψ(f)|| = Φ(f)

and hence

Div(Ψ(f)) =
∑

µ∈L∨/L

∑
m∈Q
m>0

c+f (µ,−m)Z(µ,m).

In particular, the Borcherds product Φ(f) is defined over Q, and takes algebraic values. To be more precise,
Φ(f, z, h) takes values in the algebraic number field to which the point (z, h) ∈ XK belongs.

Proof. See [28, Theorem 9.1.1], which refines the original theorem of Borcherds [3] (cf. [28, Theorem 5.2.2]).
�

4.4. Hejhal Poincaré series and Green’s functions of special divisors. For future reference, we now
describe the automorphic Green’s functions Φµ,m(z, h) = Φ(Fµ,m, z, h) for each of the special divisors Z(µ,m)
on X = XK following [6] (cf. [9, §4]). This appears in the discussion leading to Corollary 4.7 below. We then
describe the setup more explicitly for the case of Hilbert modular surfaces corresponding to n = 2, leading
to classical higher Green’s functions on X0(1)×X0(1) and more generally X0(N)×X0(N).

4.4.1. Hejhal Maass-Poincaré series. We follow the discussion in [6, §1.3]. Hence, for complex numbers
α, β, z ∈ C, we consider the standard Whittaker functions Wα,β(z) and Mα,β(z) giving linearly independent
solutions of the Whittaker differential equation

d2w

dz2
+

(
−1

4
+
α

z
− β2 − 1/4

z2

)
w = 0.

Note that these functions are related by

Wα,β(z) =
Γ(−2β)

Γ( 1
2 − β − α)

·Mα,β(z) +
Γ(2β)

Γ( 1
2 + β − α)

·Mα,−β(z),

from which it follows by inspection Wα,β(z) = Wα,−β(z). As z → 0, these functions behave as

Mα,β(z) ∼ zβ+ 1
2 β /∈ −1

2
Z>0

Wα,β(z) ∼ Γ(2β)

Γ(β − α+ 1
2 )
· z−β+ 1

2 β ≥ 1

2
.

As y = =(z)→∞, they behave as

Mα,β(y) =
Γ(1 + 2β)

Γ(β − α+ 1
2 )
· e

y
2 · y−α

(
1 +O(y−1)

)
Wα,β(y) = e−

y
2 · yα

(
1 +O(y−1)

)
.

Let l = 1− n/2. Given s ∈ C and y ∈ R>0, we define the normalized functions

Ms(y) = y−
l
2M− l

2 ,s−
1
2
(y), Ws(|y|) = |y|− l

2W l
2 sgn(y),s− 1

2
(|y|).

Note that these functions are both holomorphic in s, and also that we have the identities

M l
2
(y) = y−

l
2M− l

2 ,
l
2−

1
2
(y) = e

y
2 , W1− l

2
(y) = y−

l
2W l

2 ,
1
2−

l
2
(y) = e−

y
2 .

Recall that we consider the weight l hyperbolic Laplacian operator ∆l, defined on τ = u+ iv ∈ H by

∆l = −v2

(
∂2

∂u2
+

∂2

∂v2

)
+ ilv

(
∂

∂u
+ i

∂

∂v

)
.
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This operator acts on smooth functions f : H −→ C[L∨/L] component-wise. Recall as well that we have the
Petersson slash operator |l acting on such functions. To be more precise, for any generic element (M, ζ) in

the two-fold metaplectic cover S̃L2(Z) of SL2(Z), this operator acts on such a function f via the rule

(f |l(M, ζ))(τ) = ζ(τ)−2lωL(M, ζ)−1f(Mτ).(21)

Note that the actions of ∆l and S̃L2(Z) via (21) on any smooth function f : H→ C[L∨/L] commute in that

∆l(f |l(M, ζ)) = (∆lf)|l(M, ζ).(22)

Given a coset µ ∈ L∨/L with characteristic function 1µ as above, and a negative integer m ∈ Z + Q(µ), is
it not hard to check that the function defined on τ = u+ iv ∈ H by

Ms(4π|m|v)1µ(23)

is invariant under the action of the unipotent generator

T =

((
1 1

1

)
, 1

)
∈ S̃L2(Z)

via the slash operator (21). Remarkably, this function (23) is an eigenfunction of the Laplacian ∆l, with
eigenvalue s(1− s) + (l2− 2l)/4. We can take sums of these functions to obtain the following Poincaré series.

Definition 4.4 (Hejhal Maass Poincaré series). Fix an even quadratic lattice L = (L,Q) of signature (n, 2),
and let l = 1 − n/2. Given any complex number s ∈ C, coset µ ∈ L∨/L, and integer m ∈ Z + Q(µ), let
Fµ,m(τ, s) denote the Poincaré series defined on τ = u+ iv ∈ H by the summation

Fµ,m(τ, s) = FLµ,m(τ, s) =
1

Γ(2s)

∑
(M,ζ)∈Γ̃∞\S̃L2(Z)

[Ms(4π|m|v)1µe(mu)] |l(M, ζ),

where Γ̃∞ = (Γ∞, 1) ⊂ S̃p2(Z) denotes the image of the unipotent subgroup

Γ∞ =

{(
1 n

1

)
: n ∈ Z

}
∈ SL2(Z)

in the metaplectic group S̃L2(Z). This series converges normally for τ = u+ iv ∈ H and s = σ+ it ∈ C with

σ > 1. Via the commutativity of the actions of ∆l and S̃L2(Z) described in (22), we deduce that the Poincaré
series Fµ,m(τ, s) is an eigenfunction for the Laplacian ∆l, with

∆lFµ,m(τ, s) =
(
s(1− s) + (l2 − 2l)/4

)
Fµ,m(τ, s).

In particular, Fµ,m(τ, 1− l/2) = Fµ,m(τ, s)|s=1−l/2 determines an eigenfunction of eigenvalue zero for ∆l.

Note that the Fourier series expansion of each Fµ,m(τ, s) is computed in [6, Theorem 1.9], with simplifica-
tions for the special case of Fµ,m(τ, 1− l/2) detailed in [6, Proposition 1.10]. Here, we note that the Fourier
series expansion of each of the latter functions Fµ,m(τ, 1− l/2) can be described crudely for our purposes as

Fµ,m(τ, 1− l/2) = 1µe(mτ) + 1−µe(mτ) +O(1).(24)

4.4.2. Decompositions of cuspidal harmonic weak Maass forms. We now explain how the harmonic weak
Maass forms we consider above can be decomposed into linear combinations of Hejhal Maass Poincaré series.

Proposition 4.5. Let L = (L,Q) be a even lattice of signature (n, 2), and put l = 1−n/2. Let f ∈ Hcusp
l (ωL)

be any cuspidal harmonic weak Maass form of weight l and representation ωL, with holomorphic part

f+(τ) =
∑

µ∈L∨/L

∑
m∈Z+Q(µ)

m<0

c+f (µ,m)e(mu)1µ.

Then, we have the decomposition

f(τ) =
1

2

∑
µ∈L∨/L

∑
m∈Z+Q(µ)

m<0

c+f (µ,m)Fµ,m(τ, 1− l/2).
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Proof. We give a minor variation of [6, Proposition 1.12]. Consider the form g(τ) defined by the difference

g(τ) = f(τ)− 1

2

∑
µ∈L∨/L

∑
m∈Z+Q(µ)

m<0

c+f (µ,m)Fµ,m(τ, 1− l/2).

Note that this form g(τ) is invariant under the action of

Z =

((
−1

−1

)
, i

)
∈ S̃L2(Z),

and hence c+f (µ,m) = c+f (−µ,m) for all µ ∈ L∨/L and m ∈ Z +Q(µ). Using these properties together with

the expansion (24), we deduce that g(τ) must be bounded as =(τ)→∞. On the other hand, it is apparent

that g|l(M, ζ) = g for all (M, ζ) ∈ S̃L2(Z) with ∆lg = 0. It follows that g(τ) must be identically zero. �

4.4.3. Unfolding against the Maass-Poincaré series. We now explain how to compute the regularized theta
lifts Φµ,m(z, h) associated to the Poincaré series Fµ,m(τ, s) against the Siegel theta series θL(τ, z) defined
above2. Recall we start with L = (L,Q) an even full-rank lattice in V of signature (n, 2). We consider the
Siegel theta series θL(τ, z) ∈Mn

2−1(ωL), defined for z ∈ D(V ), τ = u+ iv ∈ H, and h ∈ GSpin(V )(Af ) by

θL(τ, z, h) = v
∑
λ∈L∨

e (τQ(λz) + τQ(λz⊥)) 1h−1(λ+L∨),

which we decompose into coset components as

θL(τ, z, h) =
∑

µ∈L∨/L

θµ(τ, z, h)1µ, θµ(τ, z, h) :=
∑

γ∈h(λ+L)

e (τQ(λz) + τQ(λz⊥)) .

Here, we write λz to denote the orthogonal projection of λ to z, with λz⊥ the orthogonal projection to the
complement z⊥ ⊂ D(V ). Note that the Fourier series expansion of each constituent theta series is given by

θµ(τ, z, h) =
∑

λ∈h(µ+L)

e (−2πQ(λz) + 2πvQ(λz⊥)) e(Q(λ)u),

which via the elementary identity

Q0(γz) +Q0(γz⊥) = Q(γ) =⇒ 2πvQ(γz⊥) = 2πvQ(γ)− 2πQ(γz)

is the same as

θµ(τ, z, h) =
∑

λ∈h(µ+L)

exp (2πvQ1(λ1)) exp (−4πvQ(λz) + 2πvQ(λ)) e(Q(λ)u)

=
∑

λ∈h(µ+L)

exp (2πvQ(λ)− 4πvQ(λz)) e(Q(λ)u)

and hence

(25) θµ(τ, z) =
∑

λ∈h(µ+L)

exp (2πvQ(λ)− 4πvQ0(λz)) e(−Q(λ)u).

Theorem 4.6. Let L = (L,Q) be an even lattice of signature (n, 2). Fix any coset µ ∈ L∨/L and negative
integer m ∈ Z +Q(µ). Then, for any point z ∈ D(V ) which is not contained in the set

Z(µ,m) =
⋃

λ∈µ+L
Q(λ)=m

λ⊥

2Note that Bruinier [6, §2.2] considers the isomorphic lattice −L = (L,−Q) of signature (2, n) for this discussion, and hence
that we have to alter signs of weights accordingly to work with the quadratic lattice (L,Q) directly. In particular, his signature

(2, n) = (b+, b−) will correspond to our signature (n, 2) in the unfolding calculations below.
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and element h ∈ Spin(V )(Af ) together with any s, w ∈ C satisfying <(s) > −l/2+<(w) = n/4+1/2+<(w),
the regularized theta lift defined3 according to [6, Proposition 2.11] by the limit of truncated integrals

Φµ,m(z, s, h;w) := lim
T→∞

∫
FT

〈〈Fµ,m(τ, s), θL(τ, z, h)〉〉vw dudv
v2

is given by the explicit (absolutely convergent) formula

Φµ,m(z, s, h;w) =
2(4πm)s+

n
4−

1
2 Γ
(
n
4 −

1
2 + s+ w

)
Γ(2s)

∑
λ∈h(µ+L)
Q(λ)=m

2F1

(
s+ n

4 −
1
2 + w, s− n

4 + 1
2 , 2s;

m
Q(λ

z⊥0
)

)
(4πQ(λz⊥))s+

n
4−

1
2 +w

.

In particular, at w = 0, we obtain for <(s) > n/4 + 1/2 the formula

Φµ,m(z, s, h; 0) =
2Γ
(
s+ n

4 −
1
2

)
Γ(2s)

∑
λ∈h(µ+L)
Q(λ)=m

(
m

Q(λz⊥)

)s+n
4−

1
2

2F1

(
s+

n

4
− 1

2
, s− n

4
+

1

2
, 2s;

m

Q(λz⊥)

)
.

Proof. See Bruinier [6, Theorem 2.14]. We present a slight generalization to help make our later deductions
more explicit. Fix s ∈ C with <(s) > n/4 + 1/2 + <(w). Fix a point z ∈ D(V )\Z(µ,m). We have that

Φµ,m(z, s, h;w) = lim
T→∞

IT (µ,m, s, h;w),

where

IT (µ,m, s, h;w) =

∫
FT

〈〈Fµ,m(τ, s), θL(τ, z, h)〉〉vw dudv
v2

=
1

Γ(2s)

∫
FT

∑
M∈Γ∞\ SL2(Z)

〈〈[Ms(4π|m|v)1µe(mu)] |l(M, 1), θL(τ, z, h)〉〉vw dvdu
v2

,

which via the transformation of the theta series is the same as

IT (µ,m, s, h;w) =
1

Γ(2s)

∫
FT

∑
M∈Γ∞\ SL2(Z)

Ms(4π|m|=(Mτ))=(Mτ)w〈〈1µe(m<(Mτ)), θL(τ, z, h)〉〉dudv
v2

=
2

Γ(2s)

∫
FT

Ms(4π|m|v)vwe(mu)θµ(τ, z, h)
dudv

v2

+
1

Γ(2s)

∫
FT

∑
M=

 a b
c d

∈Γ∞\ SL2(Z),c 6=0

Ms(4π|m|=(Mτ))=(Mτ)we(m<(Mτ))θµ(τ, z, h)
dudv

v2
.

Using a standard unfolding argument, we can evaluate the second integral in the latter expression as

2

Γ(2s)

∫
GT

Ms(4π|m|v)vwθµ(τ, z)
dudv

v2
,

where GT = {τ = u+ iv ∈ H : |u| ≤ 1/2, u2 + v2 ≤ 1, v ≤ T} denotes the truncated fundamental domain for
the action of Γ∞ on

⋃
M−Γ∞

MF . In this way, we compute

IT (µ,m, s, h;w) =
2

Γ(2s)

∫
FT

Ms(4π|m|v)vwe(mu)θµ(τ, z, h)
dudv

v2
+

2

Γ(2s)

∫
GT

Ms(4π|m|v)vwθµ(τ, z, h)
dudv

v2

=
2

2Γ(2s)

T∫
v=0

1∫
u=0

Ms(4π|m|v)vwθµ(u+ iv, z, h)
dudv

v2
,

3A priori, Φµ,m(z, h) is defined as in [6, Definition 2.10] to be the constant term in the Laurent series expansion around
s = 1 − l/2 = n/4 + 1/2 of the analytic continuation of Φµ,m(z, h, s) = Φµ,m(z, h, s; 0). However, by to [6, Proposition 2.11],

we can define it equivalently as the stated limit of truncated theta integrals when s 6= 1− l/2 = n/4 + 1/2.
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which after opening the Fourier series expansion (25) of θµ(u+ iv, z, h), switching the order of summation,
and evaluating the unipotent integral via the orthogonality of characters on R/Z ∼= [0, 1] is the same as

IT (µ,m, s, h;w) =
2

Γ(2s)

T∫
v=0

∑
λ∈h(µ+L)

Ms(4π|m|v)vw exp (2πvQ(λ)− 4πvQ(λz))

1∫
u=0

e(mu−Q(λ)u)dudv

=
2

Γ(2s)

T∫
v=0

∑
λ∈h(µ+L)
Q(λ)=m

Ms(4π|m|v)vw exp (−4πvQ(λz) + 2πvm) dv

=
2(4π|m|)− l

2

Γ(2s)

T∫
v=0

∑
λ∈h(µ+L)
Q(λ)=m

M− l
2 ,s−

1
2
(4π|m|v)vw−

l
2−2 exp (−4πvQ(λz) + 2πvm) dv

=
2(4π|m|)n4− 1

2

Γ(2s)

∑
λ∈h(µ+L)
Q(λ)=m

T∫
v=0

Mn
4−

1
2 ,s−

1
2
(4π|m|v)vw+n

4−
1
2−2 exp (−4πvQ(λz) + 2πvm) dv.

Here, we view the latter sum as one over lattice points λ ∈ h(µ+ L) for which

Q(λ) = Q(λz) +Q(λz⊥) = m,

where z⊥ denotes the orthogonal complement of z in D(V). Taking the limit with T →∞, we obtain

Φµ,m(z, s, h;w) =
2(4π|m|)n4− 1

2

Γ(2s)

∑
λ∈h(µ+L)
Q(λ)=m

∞∫
v=0

Mn
4−

1
2 ,s−

1
2
(4π|m|v)v(w+n

4−
1
2−1)−1 exp (−4πvQ(λz) + 2πmv) dv.

(26)

Now, for each λ ∈ h(µ+L) with λz 6= 0, we view the corresponding integral in (26) as a Laplace transform of
the type computed in [21, p. 215 (11)], with ν = w− l/2− 1 = w+ (n/4− 1/2)− 1, κ = −l/2 = −1/2 +n/4,
$ = s− 1/2, α = 4π|m|, and p = (4πQ0(λz)− 2πm) = (4πQ(λz) + 2π|m|) to obtain4

(27)

∞∫
v=0

Mn
4−

1
2 ,s−

1
2
(4π|m|v)v(w+n

4−
1
2−1)−1e−v(4πQ(λz)−2πm)dv

= αµ+1/2Γ (µ+ ν + 1/2) · 2F1 ($ + ν + 1/2, $ − κ+ 1/2, 2$ + 1;α/(p+ α/2))

(p+ α/2)$+ν+1/2

= (4π|m|)sΓ
(
n

4
− 1

2
+ s+ w

)
·

2F1

(
s+ n

4 −
1
2 + w, s− n

4 + 1
2 , 2s;

|m|
Q(λz0 )

)
(4πQ(λz))s+

n
4−

1
2 +w

.

We treat the remaining contributions from λz = 0 the same way, using that Q(λz) = m − Q(λz⊥) and
hence 4πQ(λz)− 2πm+ 2π|m| = −4πQ(λz⊥) + 2πm+ 2π|m| = −4πQ(λz⊥). Here, note that m < 0 implies
2πm + 2π|m| = 0. We can and do express all contributions λ via this latter substitution as in [6, Theorem
2.14]. In this way, we deduce the stated formula from (26) via (27). �

4.4.4. Regularized theta lifts Φµ,m of the Hejhal-Maass Poincaré series Fµ,m. Note that the function of
Theorem 4.6 above, defined for <(s) > u = u(n) := 1− l/2 = n/4 + 1/2 by the absolutely convergent series

(28)

Φµ,m(z, h, s) = Φµ,m(z, h, s, 0) = lim
T→∞

∫
FT

〈〈Fµ,m(τ, s), θL(τ, h, z)〉〉dudv
v2

= 2 ·
Γ
(
s+ n

4 −
1
2

)
Γ (2s)

∑
λ∈g(µ+L)
Q(λ)=m

(
m

Q(λ⊥z )

)s+n
4−

1
2

2F1

(
s+

n

4
− 1

2
, s− n

4
+

1

2
, 2s;

m

Q(λz⊥)

)
,

4Noting that Q(λz) + |m| = Q(λz⊥ ) to simplify the expression for p
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determines a real analytic function on z ∈ D(V ), with logarithmic singularities along the special divisors

Z(µ,m) =
⋃

λ∈µ+L
Q(λ)=m

λ⊥.

Defined a priori for <(s) > u, this function Φµ,m(z, h, s) has an analytic continuation to all s ∈ C, with a
simple pole at u. Hence, the sum defining (28) converges normally, and Φµ,m determines a smooth function
on X\Z(µ,m) with logarithmic singularities along Z(µ,m), and an analytic continuation to a meromorphic
function in s ∈ C. It is also an eigenfunction for the Laplacian ∆z described in Theorem 4.2, satisfying

∆zΦµ,m(z, h, s) =
1

2
· (s− u) · (s+ u− 1) · Φµ,m(z, h, s).(29)

It can also be viewed as a square integrable function. We refer to the discussion of [9, §4] for more details.
At the point u = n/4 + 1/2, it determines the automorphic Green’s function of the special divisor Z(µ,m):

Corollary 4.7. The regularized theta lift Φµ,m(z, h, n/4 + 1/2) = Φ(Fµ,m, z, h) of the harmonic weak Maass
form Fµ,m(τ) = Fµ,m(τ, (2− l)/2) = Fµ,m(τ, n/4 + 1/2) ∈ H1−n/2(ωL) is the automorphic Green’s function
for the special divisor Z(µ,m) on the spin Shimura variety X = XK = XKL .

Proof. Cf. [10, Remark 3.10] with [6, Definiton 1.8 and Proposition 1.10], [9, §4], and [1, §5]. �

4.4.5. Extension to compactifications. Fix f ∈ H1−n/2(ωL) a harmonic weak Maass form whose holomorphic

part f+ has integral Fourier coefficients. Fix a compactification X? of the Shimura variety X = XK . For the
divisor Z(f) ⊂ X defined in (18) above, there exists a divisor C(f) supported on the boundary ∂X? = X?\X
such that Φ(f, ·) is the automorphic Green’s function in the sense of Theorem 4.2 for the corresponding divisor

Zc(f) = Z(f) + C(f)(30)

of degree zero on X. For a more precise description of this in the setting of the modular curve, with the
quadratic space given in Example 7.2 below, we refer to the discussion in [13, §7.3].

4.4.6. The special case of Hilbert modular surfaces. Fix k any quadratic field with class group C(OK), and
A = [a] ∈ C(OK) any ideal class. We now explain how to specialize the definition (28) to the setup we consider
with the spaces (VA, QA) of signature (2, 2) with lattices LA ⊂ VA giving rise to the Hilbert modular surface
XKA

∼= Y0(N)2. Here, we adapt the discussion of [9, §6.1] as follows. As explained above, we have a natural
identification D(VA) = D±(VA) ∼= H2, so can view the variable z ∈ D(VA) as a pair z = (z1, z2) ∈ H2. Let
Qs−1 denote the classical Legendre function of the second kind

Qs−1(t) =

∫ ∞
0

(
t+
√
t2 − 1 cosh(u)

)−s
du =

Γ(s)2

2Γ(2s)

(
2

1 + t

)s
2F1

(
s, s, 2s;

2

1 + t

)
.

Hence, we can rewrite the corresponding theta lift (28) in this setting as

Φµ,m(z, s) = Φµ,m(z, 1, s) = 2 ·
Γ
(
s+ 2

4 −
1
2

)
Γ (2s)

∑
λ∈µ+LA
QA(λ)=m

(
m

QA(λ⊥z )

)s
2F1

(
s, s, 2s;

m

Q(λz⊥)

)

=
4

Γ(s)

∑
λ∈µ+LA
QA(λ)=m

Qs−1

(
1− 2QA(λz)

m

)

=
4

Γ(s)

∑
λ=(λ1,λ2)∈µ+LA=a+N−1a

QA(λ)=m

Qs−1

(
1− 2

mNa

(
λ1,zλ

τ
1,z − λ2,zλ

τ
2,z

))
.

Here again, we write τ ∈ Gal(k/Q) to denote the nontrivial automorphism, with λ = (λ1, λ2) ∈ LA a vector,
and λj,z = λj,(z1,z2) the corresponding projections to z = (z1, z2) ∈ H2. In this way, we see that

Φm(z1, z2, s) = ΦLAm (z1, z2, s) :=
∑

µ∈L∨A/LA

Φµ,m(z1, z2, s) = − 2

Γ(s)
GΓ0(N),m
s (z1, z2),
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where G
Γ0(N),m
s (z1, z2, s) denotes a translate the higher Green’s function characterized in [25, §II.2, (2.3)] and

[64, §3.4], cf. [9, §6.1]. To be more precise, we see from (29) that Φm(z, s) = ΦLAm (z1, z2, s) is an eigenvector
for the hyperbolic Laplacian operator ∆z = ∆(z1,z2) = ∆z1 ×∆z2 on X0(N)×X0(N) satisfying

∆zΦm(z1, z2, s) =
s

2
(s− 1)Φm(z1, z2, s).

On the other hand, there is a unique resolvent kernel function G
Γ0(N)
s (z1, z2) on H× H characterized by:

(i) G
Γ0(N)
s (z1, z2) is smooth H× H\{(τ, γτ) : γ ∈ Γ0(N)}

(ii) G
Γ0(N)
s (γ1z1, γ2z2) = G

Γ0(N)
s (z1, z2) for all γ1, γ2 ∈ Γ0(N)

(iii) ∆zjG
Γ0(N)
s (z1, z2) = s(s− 1)G

Γ0(N)
s (z1, z2) for each of j = 1, 2, where ∆zj − y2

j

(
∂2

∂x2
j

+ ∂2

∂y2j

)
denotes

the hyperbolic Laplacian of weight zero in either variable zj = xj + iyj ∈ H

(iv) G
Γ0(N)
s (z1, z2) = ez2 log |z1− z2|2 +O(1) as z1 → z2, where ez2 = # StabΓ0(N)(z2) is the order of the

stabilizer of z2 in Γ0(N)

(v) In a neighbourhood of a cusp α−1∞, the function =(αz1)s−1G
Γ0(N)
s (z1, z2) extends to a continuous

function.

The existence of such a function follows from the construction given in [25, §II.2]. That properties (iii)-(v)

characterize it uniquely for <(s) > 1 is shown in [64, §3.4]. We deduce that the function −Γ(s)
2 Φm(z1, z1, s)

at m = 1 satisfies these properties, and that the corresponding “higher” Green’s functions −Γ(s)
2 Φm(z1, z2, s)

for m > 1 can be viewed as translates of this resolvent kernel function G
Γ0(N)
s (z1, z2).

5. Summation along isotropic quadratic subspaces

We now compute the regularized theta lifts Φ(f, z, h) along CM cycles Z(V0) and geodesic sets G(W ).

5.1. Eisenstein series and Siegel-Weil formulae. Fix V0 ⊂ V any quadratic subspace of signature (0, 2),
writing L0 = V0 ∩L for the corresponding lattice and Q0 = Q|V0

the corresponding quadratic form. We also
fix W ⊂ V any rational quadratic space of signature (1, 1), writing LW = W ∩L for the corresponding lattice
and QW = Q|W the corresponding quadratic form. We now describe the Eisenstein series associated with
these quadratic spaces.

5.1.1. Langlands Eisenstein series and the Siegel-Weil formula. We first describe the construction in more
general terms. Let (U,Q) be any anistropic rational quadratic space of even dimension dim(U) and signature
(p(U), q(U)). Fix a lattice L ⊂ U , and consider the corresponding Weil representation ωL : SL2(Z) −→ SL.

Let us write P = MN ⊂ SL2 to denote the parabolic group of upper-triangular matrices, with Levi
subgroup M and unipotent radical N parametrized with the standard shorthand notations

M = {m(a) : a ∈ Gm} , m(a) : =

(
a

1
2

a−
1
2

)
N = {N(b) : b ∈ Ga} , n(b) : =

(
1 b

1

)
.

Hence, writingK∞ = SO2(R) andK = SL2(Ẑ), we have the Iwasawa decomposition SL2(A) = N(A)M(A)K∞K.
Let χU denote the quadratic idele class character of Q given on x ∈ A× by

χU (x) =
(
x, (−1)

dim(U)
2 det(U)

)
A
,

where (·, ·)A denotes the Hilbert symbol on A×, and det(U) the Gram determinant of U . Given s ∈ C, let
I(s, χU ) denote the principal series representation of SL2(A) induced by the quasicharacter χU (·)| · |s. Hence,
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I(s, χU ) consists of all smooth functions φ(g, s) on g ∈ SL2(A) satisfying the transformation property

φ (n(b)m(a)g, s) = χU (a)|a|s+1φ(g, s)

for all a ∈ A× and b ∈ A, with SL2(A) acting by right translation. There is a SL2(A)-intertwining map

λ : S(U(A)) −→ I(s0(U), χU ), λ(φ)(g) := (ωL(g)φ) (0) for s0(U) :=
dim(U)

2
− 1.

Recall that a section φ(s) ∈ I(s, χU ) is standard if its restriction to the maximal compact subgroup
K∞K ⊂ SL2(A) does not depend on s. Via the Iwasawa decomposition, we see that any λ(φ) ∈ I(s0(U), χU )
has a unique extension to a standard section λ(φ)(s) ∈ I(s, χU ) such that λ(φ)(s0(U)) = λ(φ). We consider
the following standard sections. Let us for any l ∈ Z write χl to denote the character of K∞ defined by

χl(kθ) = eilθ = exp(ilθ), kθ =

(
cos θ sin θ
− sin θ cos θ

)
∈ K∞.

Let φl∞(s) ∈ I(s, χU ) be the unique standard section for which φl∞(kθ, s) = χl(kθ) = eilθ. In terms of the
Iwasawa decomposition, this section can be characterized by the transformation property

φl∞(n(b)m(a)k∞, s) = χU (a)|a|s+1eilθ.

Now, recall we defined the Gaussian Φ∞ ∈ S(U(R)) in (12), at least for (U,Q) of signature (n, 2). More
generally5, writing D(U) = {z ⊂ U(R) : dim(u) = p(U), Q|z < 0} for the corresponding domain, and defining
for a given z ∈ D(U) the corresponding majorant (x, x)z = (xz⊥ , xz⊥)− (xz, xz) on x ∈ U(R), we let

Φ∞(x, z) = exp (−(x, x)z) .

Again, we see that Φ∞(hx, hz) = Φ∞(x, z) for all h ∈ GSpin(U)(R). Viewed as a function of x ∈ U(R),
we obtain an archimedean local Schwartz function Φ∞ ∈ S(U(R)). Through the Weil representation ωL, we

also know that K∞ acts on Φ∞(x, z) with weight p(U)−q(U)
2 . Hence, we see in general that

λ∞(Φ∞(·, z)) = φ
p(U)−q(U)

2∞ (s0(U)).

Given any standard section φ(s) ∈ I(s, χU ), we define the corresponding Eisenstein series

EL(g, s;φ) =
∑

γ∈P (Q)\ SL2(Q)

φ(γg, s)

on g ∈ SL2(A), first for <(s) > 1. This sum EL(g, s;φ) has a meromorphic continuation to all s ∈ C
via the Langlands functional equation, which relates EL(g, s;φ) to EL(g,−s;M(s)φ) for the corresponding
intertwining operator M(s). This Langlands Eisenstein series EL(g, s;φ) determines an automorphic form
on g ∈ SL2(A). Its value at s0(U) is known classically to be holomorphic, as it is given as an average of the
theta series ϑL(g, h; Φ) we considered above by the following well-known result.

Theorem 5.1 (Siegel-Weil). Let (U,Q) be any anisotropic quadratic space of signature (p(U), q(U)) and
even dimension p(U) + q(U). Let L ⊂ U be any maximal lattice, and Φ ∈ S(U(A)) any Schwartz function.
The Eisenstein series EL(g, s; Φ) is holomorphic at s0(U) = (p(U) + q(U))/2− 1, and given by the formula

α

2

∫
SO(U)(Q)\ SO(U)(A)

ϑL(g, h; Φ)dh = EL(g, s0(U);λ(Φ)), α :=

{
2 if p(U) = 0

1 if p(U) > 1
.

Here, we write dh to denote the Tamagawa measure on SO(U)(A).

Proof. See e.g. [40, Theorem 4.1] or [13, Theorem 2.1]. �

5We can assume without loss of generality for our later discussion that (p(U), q(U)) = (0, 2) or (p(U), q(U)) = (1, 1), so that
we only need to consider the case of (p(U), q(U)) = (1, 1) separately.
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5.1.2. The CM case. We now consider the special case of the negative definite subspace (L0, Q0). Consider
for each integer l ∈ Z the SL0 -valued Langlands Eisenstein series on τ = u+ iv ∈ H and s ∈ C defined by

EL0
(τ, s; l) := v−

l
2

∑
µ∈L∨0 /L0

EL0
(gτ , s;φ

l
∞ ⊗ λf (1µ))1µ.(31)

We can then describe Theorem 5.1 in terms of the Siegel theta series (15) as∫
SO(V0)(Q)\ SO(V0)(Af )

θL0(τ, z0, hf )dh = EL0(τ, 0;−1).(32)

Here (cf. [13, Proposition 2.2]), we write z0 ∈ D(V0) = D±(V0) to denote the oriented hypersurface deter-
mined by V0(R). We also normalize the measure on SO(V0)(R) ∼= SO2(R) so that vol(SO(V0)(R)) = 1. This
determines a normalization of the measure on SO(V0)(Af ) so that vol (SO(V0)(Q)\ SO(V0)(Af )) = 2.

As explained in [13, §2.2], the Langlands Eisenstein series (31) has the following classical description.
Writing Γ = SL2(Z) and Γ∞ = P (Q) ∩ Γ = {n(b) : b ∈ Z}, we see that P (Q)\SL2(Q) = Γ∞\Γ. Using the
Iwasawa decomposition, we can write the action of each matrix in the sum as

γ =

(
a b
c d

)
∈ Γ =⇒ γgτ = n(β)m(α)k∞ for some α ∈ R>0 and β, θ ∈ R.

A direct computation reveals that

α = v
1
2 |cτ + d|−1 and eiθ =

cτ + d

|cτ + d|
and hence

φl∞(γgτ ) = v
s
2 + 1

2 (cτ + d)−l|cτ + d|l−s−1,

so that

EL0
(gτ , s;φ

l
∞ ⊗ λf (1µ)) =

∑
γ=

 a b
c d

∈Γ∞\Γ

(cτ + d)−l · v
s
2 + 1

2

|cτ + d|s+1−l · λf (1µ)(γ)

=
∑

γ=

 a b
c d

∈Γ∞\Γ

(cτ + d)−l · v
s
2 + 1

2

|cτ + d|s+1−l · 〈1µ,
(
ω−1
L0

(γ)
)
10〉.

It follows that

EL0(τ, s; l) :=
∑

µ∈L∨0 /L0

EL0(gτ , s;φ
l
∞ ⊗ λf (1µ)) =

∑
γ∈Γ∞\Γ

[
=(τ)

s+1−l
2 10

] ∣∣∣
l,ωL0

γ.(33)

Recall that we consider the Maass weight raising and lowering operators Rl and Ll, as defined in (16). A
simple computation with the series expansion on the right-hand side of (33) reveals that

LlEL0
(τ, s; l) =

1

2
(s+ 1− l) · EL0

(τ, s; l − 2)

RlEL0
(τ, s; l) =

1

2
(s+ 1 + l) · EL0

(τ, s; l + 2),

and in particular

L1EL0
(τ, s; 1) =

s

2
· EL0

(τ, s;−1).(34)

Since the Eisenstein series EL0(τ, s;−1) on the right-hand side of (34) is holomorphic at s = s0(V0) = 0 by
the Siegel-Weil formula (32), we deduce that the Eisenstein series EL0

(τ, s; 1) appearing on the left-hand
side must vanish at its central point s = 0 for its functional equation. We also obtain from (34) the relation

L1E
′
L0

(τ, 0; 1) =
1

2
EL0

(τ, 0;−1)(35)
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for the derivative E′L0
(τ, 0; 1) = d

dsEL0(τ, s; 0)
∣∣
s=0

at s = 0. Writing ∂ and ∂ to denote the Dolbeault

operators, so that the exterior derivative on differential forms on H is given by d = ∂ + ∂, and again
dµ(τ) = dudv

v2 for τ = u+ iv ∈ H, we can express the relation (35) in terms of differential forms as

−2∂
(
E′L0

(τ, 0; 1)dτ
)

= EL0(τ, 0;−1)dµ(τ).(36)

More generally, we have the following useful description of the operator Ll.

Lemma 5.2. The Maass weight-lowering operator Ll can be described in terms of differential forms as

∂(fdτ) = −v2−lξl(f)dµ(τ) = −Llfdµ(τ).

Proof. See [22, Lemma 2.5] and [13, Lemma 2.3]. �

Let us now consider the Fourier series expansion of the Eisenstein series EL0(τ, s; 1), which we write as

EL0
(τ, s; 1) =

∑
µ∈L∨0 /L0

∑
m∈Q

AL0
(s, µ,m, v)e(mτ)1µ.

Following the discussion of Kudla [40, Theorem 2.12] (cf. [13, §2.2]), and using the fact that EL0
(τ, 0; 1) = 0

by (34), we compute the Laurent series expansions of each of the coefficients AL0(s, µ,m, v) around s = 0 as

AL0
(s, µ,m, v) = bL0

(µ,m, v)s+O(s2).

We deduce from this that E′L0
(τ, 0; 1) has the Fourier series expansion

E′L0
(τ, 0; 1) =

∑
µ∈L∨0 /L0

∑
m∈Q

bL0(µ,m, v)e(mτ)1µ.

Viewing E′L0
(τ, 0; 1) = E′+L0

(τ, 0; 1) +E′−L0
(τ, 0; 1) ∈ H1(ω∨L0

) as a harmonic weak Maass form of weight 1 and
representation ω∨L0

, we also use the general calculation of Kudla [40, Theorem 2.12] to compute the Fourier

series expansion of the principal/holomorphic part EL0(τ) := E′+L0
(τ, 0; 1) as

EL0(τ) = E′+L0
(τ, 0; 1) =

∑
µ∈L∨0 /L0

∑
m∈Q

κL0(µ,m)e(mτ)1µ,(37)

where the coefficients are given explicitly by the convergent limits

κL0(µ,m) =

{
limv→∞ bL0

(µ,m, v) if µ 6= 0 or m 6= 0

limv→∞ bL0
(0, 0, v)− log(v) if µ = 0 and m = 0.

Let us now specialize the setting we consider below, where the negative definite space (L0, Q0) is incoherent
in the sense that it is constructed from an ideal L0 = a ⊂ Ok in an imaginary quadratic field k = k(V0), with
its positive definite norm form Qa(·) := Nk/Q(·)/Na, but we take (V0, Q0) = (aQ,−Qa) to get a negative
definite space of signature (0, 2). This construction amounts to taking the positive definite quadratic space
(aQ, Qa) at all of the finite places, but then switching invariants at the real place in replacing by (aQ,−Qa).
Such a choice of (V0, Q0) = (aQ,−Qa) makes sense locally at each place of Q, but does not correspond
globally to any quadratic number field – hence the name “incoherent”.

Proposition 5.3. Suppose (L0, Q0) = (a,−Qa) for a ⊂ Ok a nonzero integral ideal of an imaginary

quadratic field k = k(V0) of discriminant dk and odd quadratic Dirichlet character ηk(·) =
(
dk
·
)
, with

Qa(·) = Nk/Q(·)/Na the corresponding positive definite norm form. Let EL0(τ, s) = EL0(τ ; s; 1) denote the
corresponding Eisenstein series of weight l = 1 defined in (31) and (33) above. Writing

Λ(s, ηk) = |dk|
s
2 ΓR(s+ 1)L(s, ηk), ΓR(s) := π−

s
2 Γ(s)

to denote the completed Dirichlet L-function L(s, ηk) of the character ηk, the completed Eisenstein series

E?L0
(τ, s) := Λ(s+ 1, ηk)EL0

(τ, s) = Λ(s+ 1, ηk)EL0
(τ, 0; 1)

satisfies the odd, symmetric functional equation

E?L0
(τ, s) = −E?L0

(τ,−s).
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Proof. See [13, Proposition 2.5]. The functional equation is deduced from the Langlands functional equation
of each of the constituent incoherent Eisenstein series EL0(gτ , s;φ

1
∞ ⊗ λf (1µ)), where switching invariants

at infinity as we describe above leads to switching the corresponding archimedean local sign to −1. �

5.1.3. The geodesic case. We summarize the discussion of [54, §4.6] for the subspace (LW , QW ) of signature
(1, 1). Consider for each l ∈ Z the SLW -valued Eisenstein series on τ = u+ iv ∈ H and s ∈ C defined by

ELW (τ, s; l) := v−
l
2

∑
µ∈L∨W /LW

ELW (gτ , s;φ
l
∞ ⊗ λf (1µ))1µ.(38)

We can then describe Theorem 5.1 in terms of the Siegel theta series (15) as∫
SO(W )(Q)\ SO(W )(Af )

θLW (τ, zW , hf )dh = ELW (τ, 0; 0).(39)

Here, we fix an oriented hyperbolic line zW ∈ D(W ) = D±(W ), and again normalize the measure on
SO(V )(R) so that vol(SO(W )(R)) = 1 and vol(SO(W )(Q)\SO(W )(Af )) = 2.

In the same way as for (31), we can describe the Langlands Eisenstein series (38) in classical terms as

ELW (τ, s; l) :=
∑

µ∈L∨W /LW

ELW (gτ , s;φ
l
∞ ⊗ λf (1µ)) =

∑
γ∈Γ∞\Γ

[
=(τ)

s+1−l
2 10

] ∣∣∣
l,ωLW

γ.(40)

Let us now specialize immediately to the setting we consider later on, where the quadratic space (LW , QW )
is given by a nonzero integer ideal LW = a ⊂ Ok in a real quadratic field k = k(W ), with indefinite
quadratic form QW given by the norm form QW (·) = Qa(·) = Nk/Q(·)/Na. Unlike in the CM setup above
with the negative definite subspaces constructed from the positive definite subspaces attached to imaginary
quadratic fields, these quadratic spaces (LW , QW ) = (a, Qa) are coherent in that they correspond globally
to integral ideals in some real quadratic number field k = k(W ). This has the following consequences for the
corresponding Eisenstein series ELW (τ, s) = ELW (τ, s; 0).

Proposition 5.4. Suppose (LW , QW ) = (a, Qa) for a ⊂ Ok a nonzero integral ideal of a real quadratic field

k = k(W ) of discriminant dk and even quadratic Dirichlet character ηk(·) =
(
dk
·
)
, with Qa(·) = Nk/Q(·)/Na

the corresponding indefinite norm form. Let ELW (τ, s) = ELW (τ ; s; 0) denote the corresponding Eisenstein
series of weight l = 0 defined in (38) and (40) above. Writing

Λ(s, ηk) = |dk|
s
2 ΓR(s+ 1)L(s, ηk), ΓR(s) := π−

s
2 Γ(s)

to denote the completed Dirichlet L-function L(s, ηk) of the character ηk, the completed Eisenstein series

E?LW (τ, s) := Λ(s+ 1, ηk)ELW (τ, s) = Λ(s+ 1, ηk)ELW (τ, 0; 0)

satisfies the even, symmetric functional equation

E?LW (τ, s) = E?LW (τ,−s).

Proof. See [54, Proposition 4.10], this can be deduced as a direct consequence of the Langlands functional
equation for the Eisenstein series on the right-hand side of (38) corresponding to the coherent quadratic
space (LW , QW ) = (a, Qa) of signature (1, 1). �

Fixing such a coherent choice of Lorentzian quadratic space (LW , QW ) henceforth, we consider the images
of the Eisenstein series ELW (τ, s; l) under the Maass raising and lowering operators (16). Here, we see by
inspection of the series expansion on the right-hand side of (40) that

LlELW (τ, s; l) =
1

2
(s+ 1− l) · ELW (τ, s; l − 2)

RlELW (τ, s; l) =
1

2
(s+ 1 + l) · ELW (τ, s; l + 2),

and in particular

L2ELW (τ, s; 2) =
1

2
· (s− 1) · ELW (τ, s; 0).(41)
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Now, the Eisenstein series ELW (τ, s; 0) on the right-hand side of (41) is holomorphic at s = s0(W ) = 0, and
so we can evaluate this relation at s = 0 to obtain the identity

L2ELW (τ, 0; 2) = −1

2
· ELW (τ, 0; 0).

On the other hand, we can differentiate each side of (41) with respect to s to obtain the relation

L2E
′
LW (τ, s; 2) =

1

2
· (s− 1) · E′LW (τ, s; 0) +

1

2
· ELW (τ, s; 0),

then evaluate this latter relation at s = 0 to obtain the identity

L2E
′
LW (τ, 0; 2) =

1

2
· ELW (τ, 0; 0)− 1

2
· E′LW (τ, 0; 0),

equivalently

2L2E
′
LW (τ, 0; 2) = ELW (τ, 0; 0)− E′LW (τ, 0; 0).(42)

We now use the even functional equation of E?LW (τ, s) (Proposition 5.4) to deduce that E′LW (τ, 0; 0) = 0.

Corollary 5.5. We have E′LW (τ, 0; 0) = 0, and hence via (41) the relation −2L2E
′
LW

(τ, 0; 2) = −ELW (τ, 0; 0).
Expressed in terms of differential forms according to Lemma 5.2, we obtain the relation

−2L2E
′
LW (τ, 0; 2)dµ(τ) = 2∂

(
E′LW (τ, 0; 2)dτ

)
= −ELW (τ, 0; 0),

equivalently

ELW (τ, 0; 0)dµ(τ) = −2∂
(
E′LW (τ, 0; 2)dτ

)
.(43)

Proof. See [54, Proposition 4.12]. We know by the Siegel-Weil formula that ELW (τ, s; 0) is analytic at s = 0.
Hence, ELW (τ, s; 0) and all of its derivatives with respect to s are analytic at s = 0. In particular, both
values ELW (τ, 0; 0) and E′LW (τ, 0; 0) are defined (finite), and we can expand EL2(τ, s; 0) into its Taylor series
expansion around s = 0. Now, we know by Proposition 5.4 that the completed Eisenstein series E?LW (τ, s; 0)
satisfies the even, symmetric functional equation E?LW (τ, s; 0) = E?LW (τ,−s; 0). Comparing the Taylor series
expansions around s = 0 as we may, we then derive for any s ∈ C with 0 ≤ <(s) < 1 the relation

E?LW (τ, 0; 0) + E?′LW (τ, 0; 0)s+O(s2) = E?LW (τ, 0; 0)− E?′LW (τ, 0; 0)s+O(s2),

equivalently

E?′LW (τ, 0; 0)s+O(s2) = −E?′LW (τ, 0; 0)s+O(s2).(44)

Taking the limit as <(s)→ 0 of (44), we see that E?′LW (τ, 0; 0) must vanish, and hence E′LW (τ, 0; 0) = 0. �

Remark 5.6. Observe that we could also have considered the Lorentzian lattice (LW ,−QW ) of signature
(1, 1), denoted by −LW , together with the corresponding incoherent Eisenstein series E−LW (τ, s; 0). Writing
k = k(W ) again to denote the real quadratic field attached to the genuine space (LW , QW ) = (a, Qa),

with ηk(·) =
(
dk
·
)

its character, a minor variation of the argument for [13, Proposition 2.5] shows that the
completed Eisenstein series E?−LW (τ, s) := Λ(s + 1, ηk)E−LW (τ, s; 0) satisfies an odd, symmetric functional
equation

E?−LW (τ, s) = −E?−LW (τ,−s),

and hence that E?−LW (τ, s) vanishes at the central point s = 0. In particular, E−LW (τ, 0; 0) = 0. Deriving
the corresponding identities (41) and (41) in the same way for the incoherent Eisenstein series E−LW (τ, s; 0),
the vanishing E−LW (τ, 0; 0) = 0 at the central point implies the corresponding functional identity

2L2E
′
−LW (τ, 0; 2) = −E′−LW (τ, 0; 0).(45)

While this latter identity (45) describes the true analogue of the CM setup for the incoherent Eisenstein
series E−LW (τ, s; 0), it is unfortunately not useful for the derivation of integral presentations as we describe
below (cf. [13, Theorem 4.7]), in particular as it is the vanishing central value E−LW (τ, 0; 0) = 0 which
appears in the corresponding average over theta series θ−LW (τ, z, h) according to Siegel-Weil (Theorem 5.1).
It could be of independent interest to investigate vanishing averages of regularized theta integrals of this
type.
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Let us now consider the Fourier series expansion of the Eisenstein series ELW (τ, s; 2),

ELW (τ, s; 2) =
∑

µ∈L∨W /LW

∑
m∈Q

ALW (s, µ,m, v)e(mτ)1µ.

Following [40, Theorem 2.12], we write the Laurent series expansions around s = 0 of the coefficients as

ALW (s, µ,m, v) = aLW (µ,m, v) + bLW (µ,m, v)s+O(s2),

and deduce that the derivative Eisenstein series E′LW (τ, 0; 2) at s = 0 has the Fourier series expansion

E′LW (τ, 0; 2) =
∑

µ∈L∨W /LW

∑
m∈Q

bLW (µ,m, v)e(mτ)1µ.

Viewing this derivative Eisenstein series as a harmonic weak Maass form

E′LW (τ, 0; 2) = E′ +
LW

(τ, 0; 2) + E′−LW (τ, 0; 2) ∈ H2(ω∨LW )

of weight 2 and representation ω∨LW , we consider the principal/holomorphic part ELW (τ) := E′ +
LW

(τ, 0; 2).
Using the argument of [40, Theorem 2.12] again, we can compute the coefficients in its Fourier series expansion

ELW (τ) = E′ +
LW

(τ, 0; 2) =
∑

µ∈L∨W /LW

∑
m∈Q

κLW (µ,m)e(mτ)1µ(46)

as the convergent limits

κLW (µ,m) =

{
limv→∞ bLW (µ,m, v) if µ 6= 0 or m 6= 0

limv→∞ bLW (0, 0, v)− log(v) if µ = 0 and m = 0.

5.2. Summation formulae. Fix f ∈ H1−n2 (ωL). Write l = 1− n
2 for simplicity.

5.2.1. Decompositions of theta series. We first justify how to decompose the Siegel theta series θL(τ, z, h)
for later calculation. Let Lj for j = 1, 2 be any pair of even lattices, with corresponding Weil representations

ωLj : S̃L2(Z) −→ C[L∨j /Lj ].

The Weil representation of the direct sum L1 ⊕ L2 is given by the tensor product ωL1
⊗ ωL2

. Given

f(τ) =
∑

µ∈L∨1 /L1

fµ(τ)1µ ∈ Hl1(ωL1)

and

g(τ) =
∑

ν∈L∨2 /L2

gν(τ)1ν ∈ Hl2(ωL2
)

harmonic weak Maass forms of weights lj and representations ωLj , the corresponding tensor product

f(τ)⊗ g(τ) =
∑

µ∈L∨1 /L1

ν∈L∨2 /L2

fµ(τ)gν(τ)1µ+ν ∈ Hl1+l2(ωL1⊕L2) = Hl1+l2(ωL1 ⊗ ωL2)

determines a harmonic weak Maass form of weight l1 + l2 and representation ωL1⊕L2
= ωL1

⊗ ωL2
.

Suppose now that M ⊂ L is any sublattice of finite index. Observe that we have inclusions

M ⊂ L ⊂ L∨ ⊂M∨ =⇒ L/M ⊂ L∨/M ⊂M∨/M,

and hence an inclusion of spaces Hl(ωL) ⊂ Hl(ωM ) for any weight l ∈ 1
2Z. Consider the natural map

L∨/M −→ L∨/L, µ 7−→ µ.
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Lemma 5.7. Let M ⊂ L be any sublattice of finite index. We have natural restriction and trace maps

resL/M : Hl(ωL) −→ Hl(ωM ), f(τ) =
∑

µ∈L∨/L

fµ(τ)1µ 7−→ fM (τ) =
∑

µ∈M∨/M

fM,µ(τ)1µ

and

trL/M : Hl(ωM ) −→ Hl(ωL), g(τ) =
∑

µ∈M∨/M

gµ(τ)1µ 7−→ gL(τ) =
∑

µ∈L∨/L

gLµ (τ)1µ

such that for any pair of vector-valued forms f ∈ Hl(ωL) and g ∈ Hl(ωM ), we have

〈〈f(τ), gL(τ)〉〉 = 〈〈fM (τ), g(τ)〉〉.

Explicitly, the restriction map is given for any µ ∈M∨/M and f ∈ Hl(ωL) by

fM,µ(τ) =

{
fµ(τ) if µ ∈ L∨/M
0 if µ /∈ L∨/M

The trace map is given for any µ ∈ L∨/L with fixed preimage µ ∈ L∨/M and g ∈ Hl(ωM ) by

gLµ (τ) =
∑

ν∈L/M

gν+µ(τ).

Proof. See [13, Lemma 3.1]. �

As explained in [13, Remark 3.2], we have for the Siegel theta series we consider the relation

θL = (θM )L.(47)

We shall use this relation (73) for the finite-index subgroups M = L0 ⊕ L⊥0 ⊂ L and M = LW ⊕ L⊥W ⊂ L.
In particular, we obtain from (73) the relations

θL0⊕L⊥0 = θL0
⊗ θL⊥0 =⇒ θL = (θL0⊕L⊥0 )L

θLW⊕L⊥W = θLW ⊗ θL⊥W =⇒ θL = (θLW⊕L⊥W )L

which via Lemma (5.7) imply the corresponding relations

(48)
〈〈f, θL〉〉 = 〈〈f, (θL0⊕L⊥0 )L〉〉 = 〈〈fL0⊕L⊥0 , θL0⊕L⊥0 〉〉 = 〈〈fL0⊕L⊥0 , θL0 ⊗ θL⊥0 〉〉

〈〈f, θL〉〉 = 〈〈f, (θLW⊕L⊥W )L〉〉 = 〈〈fLW⊕L⊥W , θLW⊕L⊥W 〉〉 = 〈〈fLW⊕L⊥W , θLW ⊗ θL⊥W 〉〉.

We shall take these relations (48) for granted in what follows, and drop various subscripts and bars from the
notations for simpler reading. That is, we shall simply write 〈〈f, θL0 ⊗ θL⊥0 〉〉 = 〈〈f, θLW ⊗ θL⊥W 〉〉 to denote

the right-hand side(s) 〈〈fL0⊕L⊥0 , θL0
⊗ θL⊥0 〉〉 = 〈〈fLW⊕L⊥W , θLW ⊗ θL⊥W 〉〉 of (48) from now on.

5.2.2. Preliminary calculations. We first relate our sums to the integrals appearing in the Siegel-Weil formula
(Theorem 5.1), (32) and (39). Recall we consider the CM cycle Z(V0) on XK with complex points as described
in (6), as well as the geodesic set G(W ) with complex points as described in (7). Let us write

T0 = T (V0) := GSpin(V0) ∼= Resk(V0)/Q Gm [k(V0) : Q] = 2 imaginary quadratic

TW = T (W ) := GSpin(W ) ∼= Resk(W )/Q Gm [k(W ) : Q] = 2 real quadratic

for the corresponding maximal tori in GSpin(V ) and quadratic number fields attached to these spaces.
Let us again write U to denote either of these subspaces V0,W ⊂ V , with TU = GSpin(U) = Resk(U)/Q Gm

for k(U) the corresponding quadratic field. We have in each case a short exact sequence of algebraic groups

1 −→ Gm −→ GSpin(U) −→ SO(U) −→ 1,(49)

which after taking adelic points modulo rational points recovers the Hilbert exact sequence for k = k(U),

1 −→ Q×\A× −→ k×\A×k −→ k1\A1
k −→ 1.

Recall that we fix the Haar measure on SO(U)(A) so that vol(SO(U)(R)) = 1 and

vol(SO(U)(Q)\SO(U)(Af )) = 2.
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We fix the standard Haar measure on A× with vol(Z×p ) = 1 for each prime p so that vol(Ẑ) = 1, as well as

vol(Q×\A×) = 2, and vol(A×f /Q
×) = 1

2 . This determines a measure on TU (A) ∼= A×k(U) via (49), with

vol(k×\A×k,f ) = vol(Q×\A×f ) · vol(k1\A1
k,f ) =

1

2
· vol (SO(U)(Q)\SO(U)(Af )) = 1

and

vol(k×\A×k ) = vol(Q×\A×) · vol(k1\A1
k) = 2 · vol (SO(U)(Q)\ SO(U)(Af )) = 2.

Hence, we derive the following result for future use.

Lemma 5.8. We have vol(TU (Q)\TU (Af )) = 1 for either choice of quadratic space U = V0,W . Writing
k = k(U) for either choice of quadratic field, let wk = #µ(k) denote the number of roots of unity in k. Hence,
by Dirichlet’s unit theorem, we know that #Ok = wk when k = k(U) = k(V0) is an imaginary quadratic field.
When k = k(U) = k(W ) is a real quadratic field, we know that O×k = 〈εk〉 × µ(k) for εk the fundamental

unit, so the solution εk = 1
2 (t+ u

√
dk) with u minimal to Pell’s equation t2 − dku2 = 4. We have that

vol(Ô×k ) =
wk
hk
,

and that

vol(k×∞Ô×k ) =

{
2wk
hk

if k is imaginary quadratic
2wk ln(εk)

hk
if k is real quadratic.

Proof. Cf. [13, Lemma 6.3]. The first claim follows from the discussion above. Now, observe that

1 =

∫
k×\A×k,f

d×x =

∫
k×\A×k,f/Ô

×
k

∫
O×k \Ô

×
k

d×x =
hk
wk
· vol(Ô×k ).

More generally, we have that

2 =

∫
k×\A×k

d×x =

∫
k×\A×k /k

×
∞Ô×k

∫
O×k \k

×
∞Ô×k

d×x =

{
hk
wk
· vol(k×∞Ô×k ) if k is imaginary quadratic
hk

wk ln(εk) · vol(k×∞Ô×k ) if k is real quadratic.

�

Let us now consider the sums we wish to compute, which we now denote by

(50)

Φ(f, Z(V0)) :=
∑

(z0,h)∈Z(V0)(C)

Φ(f, z0, h)

Φ(f,G(W )) :=
∑

(zW ,h)∈G(W )(C)

Φ(f, zW , h).

Note that we have two orientations z±0 ∈ D(V0) and z±W ∈ D(W ) to consider in each case, but that we drop
this from the notation henceforth for simplicity.

Lemma 5.9. We have the following expressions for the sums (50) in terms of integrals over the corresponding
adelic quotients of orthogonal groups SO(V0) and SO(W ).

(i) If V0 is a rational quadratic space of signature (0, 2), then we have

Φ(f, Z(V0)) =
1

vol(K0)

∫
h∈SO(V0)(Q)\ SO(V0)(Af )

Φ(f, z0, h)dh

=
deg(Z(V0))

2

∫
h∈SO(V0)(Q)\ SO(V0)(Af )

Φ(f, z0, h)dh,

where

deg(Z(V0)) =
4

vol(K0)
.
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(ii) If W is a rational quadratic space of signature (1, 1), then we have

Φ(f,G(W )) =
2

vol(KW )

∫
(zW ,h)∈SO(W )(Q)\ SO(W )(A)

Φ(f, zW , h)dh.

Proof. See [47, Lemma 2.13]. Write U = V0,W ⊂ V for either of the quadratic subspaces we consider, with
corresponding torus TU = GSpin(U) ∼= Resk(U)/Q Gm, quadratic field k(U), and compact open subgroup
KU = TU (Af ) ∩KL. Via the exact sequence (49), we have an identification of spaces

SO(U)(Q)\SO(U)(A) = GSpin(U)(Q)\GSpin(U)(A)/A× ∼= k(U)×\A×k(U)/A
×

and

SO(U)(Q)\SO(U)(Af ) = GSpin(U)(Q)\GSpin(U)(Af )/A×f
∼= k(U)×\A×f,k(U)/A

×
f .

Both spaces are compact, and modding out by the compact open subgroup KU ⊂ TU (Af ) gives finite
quotients

SO(U)(Q)\ SO(U)(A)/KU = GSpin(U)(Q)\GSpin(U)(A)/A×KU
∼= k(U)×\A×k(U)/A

×KU

and

SO(U)(Q)\ SO(U)(Af )/KU = GSpin(U)(Q)\GSpin(U)(Af )/A×f KU
∼= k(U)×\A×f,k(U)/A

×
f KU .

Given B any function of h ∈ TU (Af ) which depends only on the image of h ∈ SO(U)(Af ) and is both
left-TU (Q)-invariant and right KU -invariant, the argument of [47, Lemma 2.13] shows that∫

SO(U)(Q)\ SO(U)(Af )

B(h)dh = vol(KU )
∑

h∈TU (Q)\TU (Af )/KU

B(h).

We apply this to the function B(h) = Φ(f, z0, h) to obtain the relation

Φ(f, Z(V0)) =
1

vol(K0)

∫
h∈SO(V0)(Q)\ SO(V0)(Af )

Φ(f, z0, h)dh,

and to the constant function B(h) = 1 to obtain the relation

deg(Z(V0)) =
∑

z∈supp(Z(V0))

1 =
1

vol(K0)

∫
h∈SO(V0)(Q)\ SO(V0)(Af )

dh =
2

vol(K0)
.

For the function B(h) = Φ(f, zW , h), we also obtain∫
(zW ,h)∈SO(W )(Q)\ SO(W )(A)

Φ(f, zW , h)dh = vol(KW ) · Φ(f,G(W )).

�

We now give the following more convenient expression for Φ(f, z, h).

Proposition 5.10 (Kudla). We have the following expressions for the regularized theta integral Φ(z, h) as
limits of truncated sums of integrals. Here, we take for granted the relation of scalar products (48).

(i) In the CM case with negative definite lattice L0 ⊂ L, we have for any (z0, h) ∈ D(V0)× T0(Af ) that

Φ(f, z0, h) = lim
T→∞

[∫
FT
〈〈f(τ), θL⊥0 (τ)⊗ θL0(τ, z0, h)〉〉dµ(τ)−A0 log(T )

]
,

where

A0 = CT〈〈f+(τ), θL⊥0 (τ)⊗ 10+L0
〉〉.
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Here, we write θL⊥0 (τ) = θL⊥0 (τ, 1, 1), and note that the underlying theta series θL⊥0 (τ, z0, h) for the

positive definite lattice L⊥0 of signature (n, 0) is holomorphic in the variable τ ∈ H.

(ii) In the case with the signature (1, 1) lattice LW ⊂ L, we have for any (zW , h) ∈ D(W )×T0(Af ) that

Φ(f, zW , h) = lim
T→∞

[∫
FT
〈〈f(τ), θL⊥W (τ)⊗ θLW (τ, zW , h)〉〉dµ(τ)−A0 log(T )

]
,

where

A0 = CT〈〈f+(τ), θ+
L⊥W

(τ)⊗ 10+LW 〉〉.

Here, we write θL⊥W (τ) = θL⊥W (τ, 1, 1), and note that the underlying theta series θL⊥W (τ, zW , h) for

the Lorenztian lattice L⊥W of signature (n− 1, 1) is nonholomorphic in the variable τ ∈ H. We write
θ+
L⊥W

(τ, zW , h) to denote its holomorphic/principal part.

Proof. See [40, Proposition 2.5], with [13, Lemma 4.5] and [54, Lemma 4.18]. Let LU denote either of the
lattices L0, LW ⊂ L, with M = LU ⊕ L⊥U ⊂ L the corresponding finite index lattice for (48) above, which
again we express simply as 〈〈f, θL〉〉 = 〈〈f, θL⊥U ⊗θLU 〉〉. Hence, for any zU ∈ D(U) and h ∈ TU (Af ), we have

Φ(f, zU , h) =

∫ ?

F
〈〈f(τ), θL(τ, zU , h)〉〉dµ(τ) =

∫ ?

F
〈〈f(τ), θL⊥U (τ, 1, 1)⊗ θLU (τ, zU , h)〉〉dµ(τ).

Write θL⊥U (τ) = θL⊥U (τ, 1, 1). Splitting the regularized integral on the right-hand side into parts according to

the decomposition f(τ) = f+(τ) + f−(τ), we obtain

Φ(f, zU , h)

=

∫ ?

F
〈〈f+(τ), θL⊥U (τ)⊗ θLU (τ, zU , h)〉〉dµ(τ) + lim

T→∞

∫
FT
〈〈f−(τ), θL⊥U (τ)⊗ θLU (τ, zU , h)〉〉dµ(τ),

where the second integral is absolutely convergent. Let us now decompose θL⊥U (τ) = θ+
L⊥U

(τ) + θ−
L⊥U

(τ) in the

same way, noting that we do not need to do this when U = V0 has signature (0, 2) so that the complement
L∨U is positive definite and consequently the theta series θL⊥U (τ) is holomorphic. We then get∫ ?

F
〈〈f+(τ), θL⊥U (τ)⊗ θLU (τ, zU , h)〉〉dµ(τ)

=

∫ ?

F
〈〈f+(τ), θ+

L⊥U
(τ)⊗ θLU (τ, zU , h)〉〉dµ(τ) + lim

T→∞

∫
FT
〈〈f+(τ), θ−

L⊥U
(τ)⊗ θLU (τ, zU , h)〉〉dµ(τ),

where the second integral is again absolutely convergent. We then use [40, Proposition 2.5] to evaluate the
first integral on the right-hand side of the latter identity as∫ ?

F
〈〈f+(τ), θ+

L⊥U
(τ)⊗ θLU (τ, zU , h)〉〉dµ(τ) = lim

T→∞

[∫
FT
〈〈f+(τ), θ+

L⊥U
(τ)⊗ θLU (τ, zU , h)〉〉dµ(τ)−A0 log T

]
,

where

A0 = CT〈〈f+(τ), θ+
L⊥U

(τ)⊗ 10+LU 〉〉.

Putting the pieces back together, we get the stated formulae. �

Corollary 5.11. We have the following preliminary expressions for the sums (50).

(i) In the CM case with the negative definite lattice L0 ⊂ L of signature (0, 2), we have

Φ(f, Z(V0)) = lim
T→∞

[
2

vol(K0)

∫
FT
〈〈f(τ), θL⊥0 (τ)⊗ EL0

(τ, 0,−1)〉〉dµ(τ)−A0 log(T )

]
.

(ii) In the geodesic case with the Lorenzian lattice LW ⊂ L of signature (1, 1), we have

Φ(f,G(W )) = lim
T→∞

[
2

vol(KW )

∫
FT
〈〈f(τ), θL⊥W (τ)⊗ ELW (τ, 0; 0)〉〉dµ(τ)−A0 log(T )

]
.
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Proof. We start with the expressions of Lemma 5.9, evaluating the regularized theta integrals according to
Proposition 5.10. Switching the order of summation and applying the Siegel-Weil formula (Theorem 5.1), so
(32) for (i) and (39) for (ii), we obtain the stated formulae. �

5.2.3. Summation along CM cycles. We now evaluate Φ(f, Z(V0)). Let g(τ) = gf (τ) := ξl(f) = ξ1−n2 (f)(τ)
be the holomorphic modular form of weight 2 − l = 1 + n

2 obtained by applying the antilinear differential
operator ξl to the initial harmonic weak Maass form f ∈ Hl(ωL). We consider the Rankin-Selberg L-function

L(s, g × θL⊥0 ) := 〈g(τ), θL⊥0 (τ)⊗ EL0(τ, s; 1)〉,

as well as its completion

L?(s, g × θL⊥0 ) := Λ(s+ 1, ηk)〈g(τ), θL⊥0 (τ)⊗ EL0
(τ, s; 1)〉 = 〈g(τ), E?L0

(τ, s)〉.

Here, we write k = k(V0) for the imaginary quadratic field attached to the (incoherent) quadratic space

(V0, Q0) = (a,−Qa), with discriminant dk and character ηk(·) =
(
dk
·
)
, and EL0(s, τ ; 1) for the corresponding

(incoherent) Eisenstein series with completion E?L0
(s, τ) := Λ(s+ 1, ηk)EL0

(s, τ ; 1) = −E?L0
(−s, τ). Writing

g(τ) =
∑

µ∈L∨/L

∑
m∈Q
m>0

cg(µ,m)e(mτ)1µ

and

θL⊥0 (τ) =
∑

µ∈(L⊥0 )∨/L⊥0

∑
m∈Q
m>0

cθ
L⊥0

(µ,m)e(mτ)1µ =
∑

µ∈(L⊥0 )∨/L⊥0

∑
m∈Q
m>0

rL⊥0 (µ,m)e(mτ)1µ

for the Fourier series expansions of the holomorphic forms g(τ) ∈ S2−l(ωL) and θL⊥0 (τ) ∈ Hn
2

(ω∨L0
), the

L-function L(s, g × θL⊥0 ) = 〈g, θL⊥0 ⊗ EL0
(·, s; 1)〉 has for <(s)� 1 the Dirichlet series expansion

L(s, g × θL⊥0 ) = (4π)−( s+n2 )Γ

(
s+ n

2

) ∑
µ∈(L⊥0 )∨/L⊥0

∑
m≥1

cg(µ,m)rL⊥0 (µ,m)m−( s+n2 ).(51)

Theorem 5.12 (Bruinier-Yang). We have that

Φ(f, Z(V0)) = − 4

vol(K0)

(
CT〈〈f+(τ), θL⊥0 (τ)⊗ EL0

(τ)〉〉+ L′(0, g × θL⊥0 )
)

= −deg(Z(V0))
(

CT〈〈f+(τ), θL⊥0 (τ)⊗ EL0
(τ)〉〉+ L′(0, g × θL⊥0 )

)
.

Proof. See [13, Theorem 4.7]. As there seems to be at least one sign error in their formula6, we supply a
detailed proof. We know from Corollary 5.11 that we have

Φ(f, Z(V0)) = lim
T→∞

[
2

vol(K0)
· IT (f)−A0 log(T )

]
,

where

IT (f) =

∫
FT

〈〈f(τ), θL⊥0 (τ)⊗ EL0
(τ, 0;−1)〉〉dµ(τ)

and

A0 = CT〈〈f+(τ), θ+
L⊥0

(τ)⊗ 10+L0
〉〉.

6See also [1, Theorem 5.7.1], where the same sign error for the contribution of L′(0, ξ1−n/2(f)× θL⊥0 ) in [13, Theorem 4.7]

is acknowledged. That is, the integral in the last line of [13, p. 654] should be evaluated using the differential forms identity

∂(fτ) = −v2−lξl(f)dµ(τ) = −Llfdµ(τ), and the substitution made implicity for the first identity in [13, p. 655] misses the
sign change. Moreover, the application of Stokes’ theorem for the remaining integral does not involve a change of sign after
identifying the boundary ∂FT with the interval [iT, 1 + iT ].
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To evaluate the integral IT (f), we first use the identity (36) and the relation d = ∂ + ∂ to compute

IT (f) = −2

∫
FT

〈〈f(τ), θL∨0 ⊗ ∂E
′
L0

(τ, 0; 1)〉〉dτ = −2

∫
FT

〈〈∂f(τ), θL∨0 ⊗ E
′
L0

(τ, 0; 1)〉〉dτ

= −2

∫
FT

d〈〈f(τ), θL∨0 ⊗ E
′
L0

(τ, 0; 1)〉〉dτ + 2

∫
FT

〈〈∂f(τ), θL∨0 ⊗ E
′
L0

(τ, 0; 1)〉〉dτ,

which after using Lemma 5.2 to compute the second integral in the latter expression becomes

IT (f) = −2

∫
FT

d〈〈f(τ), θL∨0 ⊗ E
′
L0

(τ, 0; 1)〉〉dτ − 2

∫
FT

〈〈ξl(f)(τ), θL∨0 ⊗ E
′
L0

(τ, 0; 1)〉〉v2−ldµ(τ),

and which after using Stokes’ theorem to evaluate the first integral becomes

IT (f) = −2

∫
∂FT

〈〈f(τ), θL∨0 ⊗ E
′
L0

(τ, 0; 1)〉〉dτ − 2

∫
FT

〈〈ξl(f)(τ), θL∨0 ⊗ E
′
L0

(τ, 0; 1)〉〉v2−ldµ(τ)

= −2

1+iT∫
τ=iT

〈〈f(τ), θL∨0 ⊗ E
′
L0

(τ, 0; 1)〉〉dτ − 2

∫
FT

〈〈ξ1−n2 (f)(τ), θL∨0 ⊗ E
′
L0

(τ, 0; 1)〉〉v1+n
2 dµ(τ).

Inserting this back into the initial formula, we obtain

Φ(f, Z(V )0) = − 4

vol(K0)
· 〈g(τ), θL⊥0 (τ)⊗ E′L0

(τ, 0; 1)〉

− lim
T→∞

 4

vol(K0)

1+iT∫
τ=iT

〈〈f(τ), θL∨0 ⊗ E
′
L0

(τ, 0; 1)〉〉dτ −A0 log(T )

 .
To evaluate the limiting term in this latter expression, we first split the integral into parts according to

the decomposition f(τ) = f+(τ) + f−(τ) of f(τ) into principal/holomorphic and nonholomorphic parts as

lim
T→∞

1+iT∫
τ=iT

〈〈f(τ), θL∨0 (τ)⊗ E′L0
(τ, 0; 1)〉〉dτ

= lim
T→∞

1+iT∫
τ=iT

〈〈f+(τ), θL∨0 (τ)⊗ E′L0
(τ, 0; 1)〉〉dτ + lim

T→∞

1+iT∫
τ=iT

〈〈f−(τ), θL∨0 (τ)⊗ E′L0
(τ, 0; 1)〉〉dτ.

We argue that the second integral on the right of this latter expression vanishes (cf. [22, Theorem 3.5]). To
be more precise, let us write the Fourier series expansion as

〈〈f−(τ), θL∨0 (τ)⊗ E′L0
(τ, 0; 1)〉〉 =

∑
m∈Z

a(m, iv)e(mτ), τ = u+ iv ∈ H.

Using the orthogonality of additive characters, we find that∫ 1+iT

τ=iT

〈〈f−(τ), θL∨0 (τ)⊗ E′L0
(τ, 0; 1)〉〉dτ =

∫ 1

0

〈〈f−(u+ iT ), θL∨0 (u+ iT )⊗ E′L0
(u+ iT, 0; 1)〉〉du

=
∑
m∈Z

a(m, iT )

∫ 1

0

e(mu)du = a(0, iT ).

Here,

a(0, iT ) =
∑

µ∈L∨/L

∑
m∈Q
m>0

c−f (µ,−m)Wl(−2πmv)cF (µ,m, v)
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denotes the constant coefficient of the scalar-valued form 〈〈f−(τ), θL⊥0 (τ)⊗ E′L0
(τ, 0; 1)〉〉, and we write

F (τ) := θL⊥0 (τ)⊗ E′L0
(τ, 0; 1) =

∑
µ∈(L⊥0 ⊕L0)∨/(L⊥0 ⊕L0)

∑
m∈Q

cF (µ,m, v)e(mτ)1µ.

Recall that the Whittaker coefficients Wl(y) :=
∫∞
−2y

e−tt−ldt = Γ(1 − l, 2|y|) decay rapidly for y → −∞.

Using this together with standard bounds for the Fourier coefficients of f−(τ) and F (τ), we deduce that for
some integer M > 0 and constant C > 0 we have for each integer m ≥M the bounds

c−f (µ,−m)Wl(−2πmv)cF (µ,m, v) = O(e−mCv).

Hence, via geometric series, we derive the bound

a(0, iT ) = O

(
e−CT

(1− e−CT )

)
.

It is then apparent that

lim
T→∞

a(0, iT ) = lim
T→∞

∫ 1+iT

τ=iT

〈〈f−(τ), θL∨0 (τ)⊗ E′L0
(τ, 0; 1)〉〉dτ = 0.

Thus, it remains to evaluate the streamlined expression

lim
T→∞

 4

vol(K0)

1+iT∫
τ=iT

〈〈f+(τ), θL∨0 ⊗ E
′
L0

(τ, 0; 1)〉〉dτ −A0 log(T )

 .
Here, we first use the calculation of coefficients (37) to see that

lim
T→∞

 1+iT∫
τ=iT

〈〈f+(τ), θL∨0 ⊗ E
′
L0

(τ, 0; 1)〉〉dτ −A0 log(T )


= lim
T→∞

∫ 1+iT

τ=iT

〈〈f+(τ), θL⊥0 (τ)⊗
∑

µ∈L∨0 /L0

∑
m∈Q

(bL0
(µ,m, v)− δµ,0δm,0 log(v)) e(mτ)1µ〉〉dτ

= CT〈〈f+(τ), θL⊥0 (τ)⊗ EL0(τ)〉〉.

To compute the remaining integral

lim
T→∞

(
4

vol(K0)
− 1

) 1+iT∫
τ=iT

〈〈f+(τ), θL∨0 ⊗ E
′
L0

(τ, 0; 1)〉〉dτ,

we decompose the Eisenstein series E′L0
(τ) ∈ H1(ωL0

) into principal/holomorphic nonholomorphic parts

E′L0
(τ) = E′+L0

(τ) + E′−L0
(τ) to get the corresponding decomposition of integrals. Again, we argue that the

contributions from the nonholomorphic parts vanish. To be more precise, we claim here that

lim
T→∞

1+iT∫
τ=iT

〈〈f+(τ), θL∨0 ⊗ E
′−
L0

(τ, 0; 1)〉〉dτ = 0.
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To see this, we again open up Fourier series expansions and use the orthogonality of characters to find that

lim
T→∞

1+iT∫
τ=iT

〈〈f+(τ), θL∨0 (τ)⊗ E′−L0
(τ, 0; 1)〉〉dτ

= lim
T→∞

1∫
0

〈〈f+(u+ iT ), θL∨0 (u+ iT )⊗ E′−L0
(u+ iT, 0; 1)〉〉dτ

= lim
T→∞

∑
µ∈(L⊥0 +L0)∨/(L⊥0 +L0)

∑
m∈Q
m>0

c+f (µ,m)cθ
L⊥0
⊗E′−L0

(−µ,−m)W1(−2πmT )

= lim
T→∞

∑
µ∈(L⊥0 +L0)∨/(L⊥0 +L0)

∑
m∈Q
m>0

c+f (µ,m)
∑

µ1∈(L⊥0 )∨/L⊥0
µ2∈L∨0 /L0

µ1+µ2≡−µ mod (L⊥0 +L0)

∑
m1∈Q≥0
m2∈Q<0

m1+m2=−m

cθ
L⊥0

(µ1,m1)c−E′L0

(µ2,m2)W1(−2πm2T ).

Again, we use the rapid decay of the Whittaker function W1(y) :=
∫∞
−2y

e−tt−1dt = Γ(−1, 2|y|) with y → −∞
to see that each inner sum tends to zero with T →∞. In this way, we derive the stated formula

Φ(f, Z(V0)) = − 4

vol(K0)

(
CT〈〈f+(τ), θL⊥0 (τ)⊗ EL0

(τ)〉〉+ L′(0, g × θL⊥0 )
)
.

�

5.2.4. Summation along geodesic sets. We now evaluate Φ(f,G(W )). Again, we consider g(τ) = ξ1−n2 (f)(τ)
the holomorphic modular form of weight 2− l = 1 + n

2 obtained by applying ξl to f ∈ Hl(ωL). We consider
the Rankin-Selberg L-function

L(s, g × θL⊥W ) := 〈g(τ), θL⊥W (τ)⊗ ELW (τ, s; 2)〉,

as well as its completion

L?(s, g × θL⊥W ) := Λ(s+ 1, ηk)〈g(τ), θL⊥W (τ)⊗ ELW (τ, s; 2)〉 = 〈g(τ), E?LW (τ, s; 2)〉.

Here, we write k = k(W ) for the real quadratic field attached to the quadratic space (W,QW ) = (a, Qa), with

discriminant dk and character ηk(·) =
(
dk
·
)
, and ELW (s, τ ; 2) for the corresponding (coherent) Eisenstein

series of weight l = 2 with completion E?LW (s, τ ; 2) := Λ(s+ 1, ηk)ELW (s, τ ; 2). Notice that by Corollary 5.5,

the image under the Maass weight lowering operator L2 of the first derivative E?′LW (τ, s; 2) = d
dsE

?
LW

(τ, s; 2)
of this Eisenstein series E?LW (τ, s; 2) at the central point s = 0 satisfies the functional identity

L2E
?′
LW (τ, 0; 2) = E?LW (τ, 0; 0).

Here, E?LW (τ, s; 0) := Λ(s + 1, ηk)ELW (τ, s; 0) is the coherent Eisenstein series associated to the quadratic
space (a, Qa) satisfying the even, symmetric Langlands functional equation E?LW (τ, s; 0) = E?LW (τ,−s; 0).

Remark 5.13. Notice that while the latter Eisenstein series ELW (τ, s; 0) of weight 0 (at s = 0) appears in
the Siegel-Weil formula (39) for the average over theta series θLW (τ, s, h), it is rather the Eisenstein series
ELW (τ, s; 2) of weight 2 that appears in integral presentation for the Rankin-Selberg L-function L(s, g×θL⊥W ).

To describe the Dirichlet series expansion of L(s, g× θL⊥W ), let us write the Fourier series expansion of the

holomorphic/principal part θ+
L⊥W

(τ) of the theta series θL⊥W (τ) = θ+
L⊥W

(τ) + θ−
L⊥W

(τ) ∈ Hn−1
2

(ω∨
L⊥W

) as

θ+
L⊥W

(τ) =
∑

µ∈(L⊥W )∨/L⊥W

∑
m∈Q
m�−∞

c+θ
L⊥
W

(µ,m)e(mτ)1µ

with positive coefficients denoted by rL⊥W (µ,m) := c+θ
L⊥
W

(µ,m) for m > 0. We then have the expansion

L(s, g × θL⊥W ) = (4π)−( s+n2 )Γ

(
s+ n

2

) ∑
µ∈(L⊥W )∨/L⊥W

∑
m≥1

cg(µ,m)rL⊥W (µ,m)m−( s+n2 ).(52)
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Theorem 5.14. We have that

Φ(f,G(W )) = − 4

vol(KW )

(
CT〈〈f+(τ), θ+

L⊥W
(τ)⊗ ELW (τ)〉〉+ L′(0, g × θL⊥W )

)
.

Proof. See [54, Theorem 4.16]. A minor generalization of the same argument works here, or that of Theorem
5.12 using the identity of differential forms (43) in lieu of (36). To be sure, we know from Corollary 5.11 that

Φ(f,G(W )) = lim
T→∞

[
2

vol(KW )
· IT (f)−A0 log(T )

]
,

where

IT (f) =

∫
FT

〈〈f(τ), θL⊥W (τ)⊗ ELW (τ, 0; 0)〉〉dµ(τ)

and

A0 = CT〈〈f+(τ), θ+
L⊥W

(τ)⊗ 10+LW 〉〉.

To evaluate the integral IT (f), we first use the identity (43) and the relation d = ∂ + ∂ to compute

IT (f) = −2

∫
FT

〈〈f(τ), θL∨W ⊗ ∂E
′
LW (τ, 0; 2)〉〉dτ

= −2

∫
FT

d〈〈f(τ), θL∨W ⊗ E
′
LW (τ, 0; 2)〉〉dτ + 2

∫
FT

〈〈∂f(τ), θL∨W ⊗ E
′
LW (τ, 0; 2)〉〉dτ,

which after using Lemma 5.2 to compute the second integral in the latter expression becomes

IT (f) = −2

∫
FT

d〈〈f(τ), θL∨W ⊗ E
′
LW (τ, 0; 2)〉〉dτ − 2

∫
FT

〈〈ξl(f)(τ), θL∨W ⊗ E
′
LW (τ, 0; 2)〉〉v2−ldµ(τ),

and which after using Stokes’ theorem to evaluate the first integral becomes

IT (f) = −2

1+iT∫
τ=iT

〈〈f(τ), θL∨W ⊗ E
′
LW (τ, 0; 2)〉〉dτ − 2

∫
FT

〈〈ξ1−n2 (f)(τ), θL∨W ⊗ E
′
LW (τ, 0; 2)〉〉v1+n

2 dµ(τ).

Inserting this back into the initial formula, we obtain the preliminary formula

Φ(f,G(W )) = − 4

vol(KW )
· 〈g(τ), θL⊥W (τ)⊗ E′LW (τ, 0; 2)〉

− lim
T→∞

 4

vol(KW )

1+iT∫
τ=iT

〈〈f(τ), θL∨W ⊗ E
′
LW (τ, 0; 2)〉〉dτ −A0 log(T )

 .
As in the proof of Theorem 5.12, we argue that the limiting constant coefficient integral depends only on
the holomorphic parts. The only difference is that the theta series θLW (τ) is not holomorphic. Hence, we
decompose it into holomorphic/principal and nonholomorphic parts θLW (τ) = θ+

LW
(τ)+θ−LW (τ). That is, we

split the constant coefficient term in this preliminary expression into three parts

lim
T→∞

∫ iT+1

τ=iT

〈〈f(τ), θL⊥W (τ)⊗ E′LW (τ, 0; 2)〉〉dτ

= lim
T→∞

∫ iT+1

τ=iT

〈〈f+(τ), θ+
L⊥W

(τ)⊗ E′LW (τ, 0; 2)〉〉dτ

+ lim
T→∞

∫ iT+1

τ=iT

〈〈f+(τ), θ−
L⊥W

(τ)⊗ E′LW (τ, 0; 2)〉〉dτ

+ lim
T→∞

∫ iT+1

τ=iT

〈〈f−(τ), θL⊥W (τ)⊗ E′LW (τ, 0; 2)〉〉dτ.

45



We argue in the same way as for the proof of Theorem 5.12 that the third integral on the right-hand side
vanishes. The same argument also shows that the second integral in this expression vanishes. Hence, only
the first integral contributes. To evaluate its contribution to the initial expression

lim
T→∞

 4

vol(KW )

1+iT∫
τ=iT

〈〈f+(τ), θ+
L∨W
⊗ E′LW (τ, 0; 2)〉〉dτ −A0 log(T )

 ,
we again use the calculations of (46) to find that

lim
T→∞

 1+iT∫
τ=iT

〈〈f+(τ), θL∨W ⊗ E
′
LW (τ, 0; 2)〉〉dτ −A0 log(T )


= lim
T→∞

∫ 1+iT

τ=iT

〈〈f+(τ), θL⊥W (τ)⊗
∑

µ∈L∨W /LW

∑
m∈Q

(bLW (µ,m, v)− δµ,0δm,0 log(v)) e(mτ)1µ〉〉dτ

= CT〈〈f+(τ), θL⊥W (τ)⊗ ELW (τ)〉〉,

and argue the same way via the rapid decay of the Whittaker functions W2(y) that

lim
T→∞

1+iT∫
τ=iT

〈〈f+(τ), θL∨W ⊗ E
′−
LW

(τ, 0; 2)〉〉dτ = 0.

In this way, we see that

− lim
T→∞

 4

vol(KW )

1+iT∫
τ=iT

〈〈f(τ), θL∨W ⊗ E
′
LW (τ, 0; 2)〉〉dτ −A0 log(T )


= − 4

vol(KW )
· CT〈〈f+(τ), θ+

L⊥W
(τ)⊗ ELW (τ)〉〉.

The stated formula now follows from the preliminary formula. �

6. Integral presentations of Rankin-Selberg L-functions

We now explain how to identify the Rankin-Selberg L-functions L?(s, ξ1−n/2(f) × θL⊥U ) appearing in

Theorems 5.12 and 5.14 with standard Rankin-Selberg L-functions for GL2(A)×GL2(A).
Let k be any (real or imaginary) quadratic field of discriminant dk and corresponding Dirichlet character

ηk(·) =
(
dk
·
)
. We consider the ideal class group7 C(Ok) of k. Recall that we fix an integer ideal representative

a ⊂ Ok for each class A = [a] ∈ C(Ok), and write Qa(z) = Nk/Q(z)/Na for the corresponding norm form.
Again, each space (a, Qa) has signature (2, 0) when k is an imaginary quadratic field, and signature (1, 1)
when k is a real quadratic field. We consider for each class A ∈ C(Ok) the rational quadratic space (VA, QA)
of signature (2, 2) given by VA = aQ ⊕ aQ and quadratic form QA(z) = QA(z1, z2) = Qa(z1) − Qa(z2). We
fix a level N prime to dk, and consider the lattice LA ⊂ VA whose adelization corresponds to the compact
open subgroup KA of GSpin(VA)(Af ) ∼= GL2(Af )2 given by K0(N)2, as in Proposition 2.4. Hence, the
corresponding spin Shimura variety XKA can be identified with Y0(N)× Y0(N). In this setting, we explain
two ways to associate with a cuspidal newform φ ∈ Sl(Γ0(N)) a vector-valued cusp form gφ = gφ,A ∈ Sl(ωLA).
As we explain below, we can use the Doi-Naganuma lift (see e.g. [7, §3.1], [61]) to show the existence of such
a form. We can also use the theorem of Strömberg [51, Theorem 5.4] – see also Scheithauer [47, Theorem
3.1], Zhang [60, Theorem 4.15], and Bruinier-Bundschuh [8] – to construct such a form more explicity. We
then show that we have identifications of completed Rankin-Selberg L-functions

L?(2s− s, gφ,A × θA) = Λ(s− 1/2, φ× θA),(53)

7More generally, we could consider the ring class group C(O) of any order O ⊂ Ok for all of the analytic/archimedean
discussion here. However, since the discussion of integral models and arithmetic heights in [1] is so far only understood for the

maximal order Ok, we stick to this case for simplicity.
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where θA denotes the Hecke theta series associated to the class A ∈ C(Ok), and hence that∑
A∈C(Ok)

χ(A)L?(2s− s, gφ,A × θA) =
∑

A∈C(Ok)

χ(A)Λ(s− 1/2, φ× θA) = Λ(s− 1/2, π × θ(χ)).(54)

We then use this to reinterpret the calculations of Theorems 5.12 and 5.14 in terms of Λ(s, φ× θ(χ)).

6.1. Equivalences of L-functions. We now show the identifications (53) and (54).

6.1.1. Hecke theta series associated to class group characters of quadratic fields. Given a quadratic field k
as above and a class group character χ : C(Ok) −→ C×, we consider the corresponding Hecke theta series

θ(χ)(τ) =
∑

A∈C(Ok)

χ(A)θA(τ).

Here, each θA(τ) denotes the theta series associated to the class A ∈ C(Ok) and quadratic space (a, Qa).
Hence, when k is an imaginary quadratic field, this theta series has the explicit expansion

θA(τ) =
1

wk

∑
λ∈a

e (Qa(λ)τ) =
∑

m∈Z≥0

rA(m)e(mτ),

where wk = #µ(k)/2 denotes half the number of roots of unity in k, and rA(m) the counting function

rA(m) =
1

wk
·# {λ ∈ a : Qa(λ) = m} .

A classical theorem of Hecke shows that this theta series θA ∈M1(Γ0(|dk|), ηk) is a modular form of weight
1 = (2−0)/2, level Γ0(|dk|), and character ηk. Hence, θ(χ) ∈M1(Γ0(|dk|), ηk) when k is imaginary quadratic.
When k is a real quadratic field, the unit group O×k ∼= Z × µ(k) = 〈εk〉 × µ(k) is no longer torsion, and we

must fix a fundamental domain a? for the action of O×k /µ(k) = 〈εk〉 on the lattice a ⊂ k∞ ∼= R2. We can
then describe the corresponding theta series via the explicit expansion

θA(τ) =
1

wk

∑
λ∈a?

e (Qa(λ)τ) =
∑

m∈Z≥0

rA(m)e(mτ),

where wk = #µ(k)/2 again denotes half the number of roots of unity in k, and rA(m) the counting function

rA(m) =
1

wk
·# {λ ∈ a? : Qa(λ) = m} .

The theorem of Hecke shows that this θA ∈M0(Γ0(dk), ηk) is a modular form of weight 0 = (1− 1)/2, level
Γ0(|dk|), and character ηk. Hence, θ(χ) ∈M0(Γ0(dk), ηk) when k is real quadratic.

Let us henceforth fix such a Hecke theta series

θ(χ) ∈Ml(k)(Γ(|dk|), ηk), l(k) :=

{
1 if k is imaginary quadratic

0 if k is real quadratic
.

6.1.2. Rankin-Selberg L-functions. Let φ ∈ Sl(φ)(Γ0(N)) be a holomorphic cusp form of weight l(φ) on
Γ0(N). We write the Fourier series expansion as

φ(τ) =
∑
m≥1

cφ(m)e(mτ) =
∑
m≥1

aφ(m)m
l(φ)−1

2 e(mτ).

so that the finite part L(s, φ) of the standard L-function Λ(s, φ) = L∞(s, φ)L(s, φ) has Dirichlet series
expansion for <(s) > 1 given by L(s, f) =

∑
m≥1 aφ(m)m−s =

∑
m≥1 cφ(m)m−(s+1/2). Let us also write the

Fourier series expansion of the theta series θ(χ) ∈Ml(k)(Γ0(|dk|), ηk) as

θ(χ)(τ) =
∑
m≥1

cθ(χ)(m)e(mτ) =
∑
m≥1

aθ(χ)(m)m
l(k)−1

2 e(mτ).
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We look at the corresponding Rankin-Selberg L-functions

L(s, φ× θ(χ)) = L(2s, ηk)
∑
m≥1

cφ(m)cθ(χ)(m)m−(s+{ l(φ)+l(k)2 }−1)

= L(2s, ηk)
∑
m≥1

aφ(m)aθ(χ)(m)m−s.

That is, we consider the corresponding partial Rankin-Selberg L-functions, defined first for <(s) > 1 by

L(s, φ× θA) = L(2s, ηk)
∑
m≥1

cφ(m)rA(m)m−(s+{ l(φ)+l(k)2 }−1)

whose χ-twisted linear combinations give the χ-twisted Rankin-Selberg L-function

L(s, φ× θ(χ)) = L(2s, ηk)
∑

A∈C(Ok)

χ(A)
∑
m≥1

cφ(m)rA(m)m−(s+{ l(φ)+l(k)2 }−1).

We can also consider the quadratic twist φ⊗ ηk ∈ Sl(φ)(Γ0(d2
kN), ηk), with Fourier series expansion

φ⊗ ηk(τ) =
∑
m≥1

cφ(m)ηk(m)e(mτ) =
∑
m≥1

aχ(m)m
l(φ)−1

2 ηk(m)e(mτ).

Here, the corresponding partial Rankin-Selberg L-functions

L(s, φ⊗ ηk × θA) = 〈φ, θAEA(·, s; l(φ) + l(k))〉 = L(2s, η2
k)
∑
m≥1

cφ(m)ηk(m)rA(m)m−(s+{ l(φ)+l(k)2 }−1)

give rise to the corresponding χ-twisted Rankin-Selberg L-function

L(s, φ× θ(χ)) = Λ(2s, η2
k)

∑
A∈C(Ok)

χ(A)
∑
m≥1

cφ(m)ηk(m)rA(m)m−(s+{ l(φ)+l(k)2 }−1).

Note (cf. [25, §V.1]) that we have the integral presentation

Γ
(
s+

{
l(φ)+l(k)

2

}
− 1
)

(4π)s+{
l(φ)+l(k)

2 }−1

∑
m≥1

cφ(m)cθ(χ)(m)m−(s+{ l(φ)+l(k)2 }−1) = 〈φ, θAEA,ηk(·, s; l(φ) + l(k))〉(55)

for EA,ηk(τ, s; l(φ) − l(k)) ∈ Ml(φ)−l(k)(Γ0(lcm(dk, N)), ηk) some uniquely-determined Eisenstein series of
weight l(φ)− l(k), level Γ0(lcm(dk, N)), and character ηk. Similarly, we have the integral presentation

Γ
(
s+

{
l(φ)+l(k)

2

}
− 1
)

(4π)s+{
l(φ)+l(k)

2 }−1

∑
m≥1

cφ⊗ηk(m)cθ(χ)(m)m−(s+{ l(φ)+l(k)2 }−1) = 〈φ, θAEA(·, s; l(φ)− l(k))〉(56)

for EA(τ, s; l(φ)−l(k)) ∈Ml(φ)−l(k)(Γ0(d2
kN)) some Eisenstein series of weight l(φ)−l(k), level Γ0(d2

kN), and

trivial character η2
k = 1. The classical theory of Rankin-Selberg convolution shows that these Rankin-Selberg

L-functions have analytic continuations given by a functional equation inherited from the Eisenstein series
appearing in these integral presentations (55) and (56). Here, we have the following more precise result.

Proposition 6.1. Let φ ∈ Sl(φ)(Γ0(N)) be a normalized newform. Assume that (N, dk) = 1 and that
l(φ) > l(k), where l(k) = {0, 1} denotes the weight of the Hecke theta series θ(χ) ∈Ml(k)(Γ0(|dk|), ηk). Put

L∞(s, φ× θ(χ)) = (2π)−2sΓ

(
s−

{
l(φ)− l(k)

2

})
Γ

(
s+

{
l(φ) + l(k)

2

}
− 1

)
.

Then, the completed L-function

Λ(s, φ× θ(χ)) := L∞(s, φ× θ(χ))L(s, φ× θ(χ))

satisfies the symmetric functional equation

Λ(s, φ× θ(χ)) = ηk(−N)|dkN |1−2sΛ(1− s, φ× θ(χ)).
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Proof. The proof is well-known for the more general setup of GL2(A)×GL2(A) Rankin-Selberg L-functions
given by Jacquet [30] and Jacquet-Langlands [31]. Here, we give the more explicit classical calculation of Li
[43, Theorem 2.2, Example 2]. �

Remark 6.2. Note that the class group characters χ are wide ray class characters, and hence the archimedean
factor L∞(s, φ×θ(χ)) does not depend on the choice of χ, although it does depend on the choice of quadratic
field k. This is also apparent by inspection of the formula for L∞(s, φ× θ(χ)) given in Proposition 6.1.

6.1.3. Quadratic basechange equivalences. Fix a cuspidal newform φ ∈ Sl(φ)(Γ0(N)) of weight l(φ) > l(k) on
Γ0(N) of trivial central character as in Proposition 6.1. Let π(φ) = ⊗vπ(φ)v denote the cuspidal automorphic
representation of GL2(A) determined by φ, with Λ(s, π(φ)) =

∏
v≤∞ L(s, π(φ)v) its standard L-function.

Note that this coincides with the corresponding completed L-function Λ(s, φ) = L∞(s, φ)L(s, φ) of φ. Let us
also write π(χ) to denote the automorphic representation of GL2(A) determined by the class group character
χ ∈ C(Ok)∨, determined by the corresponding theta series θ(χ) ∈Ml(k)(Γ0(dk), ηk). Hence, we consider the
corresponding Rankin-Selberg L-function

Λ(s, π(φ)× π(χ)) =
∏
v≤∞

L(s, π(φ)v × π(χ)v) = Λ(s, φ× θ(χ)) = L∞(s, φ× θ(χ))L(s, φ× θ(χ)).

Let us now consider the quadratic basechange lifting

Π(φ) = ⊗wΠ(φ)w = BCk/Q(π(φ))

of π(φ) to a cuspidal automorphic representation of GL2(Ak). Such a lifting exists by the theta lifting
construction of Shintani (c.f. [7, §2.7]), and more generally for any GL2(A)-automorphic representation by
Langlands [42], and for any GLn(A)-automorphic representation by Arthur-Clozel [2]. We refer to the article
[24] for more background on these quadratic basechange liftings and their L-functions. In brief, writing
Λ(s,Π(φ)) =

∏
w≤∞ L(s,Π(φ)w) to denote the corresponding completed standard L-function of Π(χ), we

have a equivalences of standard L-functions

Λ(s,Π(φ)) = Λ(s, π(φ))Λ(s, π(φ)⊗ ηk) = Λ(s, φ)Λ(s, φ⊗ ηk)(57)

and

Λ(s,Π(φ)⊗ χ) = Λ(s, π(φ)× π(χ)) = Λ(s, φ× θ(χ)).(58)

To be clear, the identity (58) relates the GL2(Ak)×GL1(Ak) automorphic L-function Λ(s,Π(φ)⊗χ) to the
GL2(A) × GL2(A) Rankin-Selberg L-function Λ(s, π(φ) × π(χ)) = Λ(s, φ × θ(χ)). Although we do not use
it, we can derive from these basechange equivalences of L-functions the following consequence.

Lemma 6.3. Let φ ∈ Sl(φ)(Γ0(N)) be any cuspidal form, with quadratic twist φ⊗ ηk ∈ Sl(φ)(Γ0(d2
kN), ηk).

We have an equivalence of Rankin-Selberg L-functions

Λ(s, φ⊗ ηk × θ(χ)) = Λ(s, φ× θ(χ)).

Proof. Replacing the cusp form φ with its quadratic twist φ⊗ηk ∈ Sl(φ)(Γ0(d2
kN), ηk) in the discussion above,

we consider the corresponding GL2(A)-automorphic representation π(φ⊗ ηk) ∼= π(φ)⊗ ηk and its quadratic
basechange lifting Π(φ⊗ ηk) to GL2(Ak). We have via (57) the equivalences of standard L-functions

Λ(s,Π(φ⊗ ηk)) = Λ(s, π(φ⊗ ηk))Λ(s, π(φ⊗ ηk)⊗ ηk) = Λ(s, π(φ)⊗ ηk)Λ(s, π(φ)) = Λ(s,Π).

Consequently, for any character χ of A×k /k
×, we have Λ(s,Π(φ⊗ηk)⊗χ) = Λ(s,Π(φ)⊗χ). We then obtain the

stated identification of Rankin-Selberg L-functions from the corresponding basechange equivalence (58). �

6.1.4. Vector-valued lifts of cuspidal eigenforms via the Doi-Naganuma lift. Let us return to the quadratic
spaces (LA, QA) of signature (2, 2) described in Proposition 2.1 and Corollary 2.3. Hence, we fix an integer
N ≥ 1 prime to the discriminant dk of the quadratic field k. We then consider the lattice

LA = LA(N) = N−1a⊕N−1a ⊂ VA

of level N and trivial discriminant d(LA) = 1 whose adelization LA ⊗ Ẑ is fixed under the conjugation
action of GSpin(VA)(Af ) ∼= GL2(A)2 by the compact open subgroup K0(N) ⊕K0(N). Here, we introduce
the Doi-Naganuma lift (see e.g. [7, §3.1]) to describe how to construct from the scalar-valued cusp form
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φ ∈ Sl(φ)(Γ0(N)) and the classical scalar-valued Siegel theta series ΘLA,l(φ)(τ, z) associated to (LA, QA) a
Hilbert modular form Fφ,LA(z) of parallel weight l(φ) on XA(C) ∼= Y0(N) × Y0(N). As we explain, this
construction allows us to find a unique vector-valued cusp form gφ = gφ,A ∈ Hl(φ)(ωLA) which lifts φ, and
consequently for which the corresponding Rankin-Selberg L-function L?(s, gφ × θL∨A,U ) describes the partial

completed Rankin-Selberg L-function Λ(s, φ× θA).
Let us first describe the Siegel theta series ΘLA,l(τ, z) of weight l ∈ Z associated to the signature (2, 2)

lattice LA ⊂ VA, as described in Corollary 2.3 above. We refer to [7, §2.6] for more background. Hence, this
lattice LA = LA(N) has level N and discriminant d(VA) = 1, so that the corresponding Dirichlet character

ηd(VA)(·) = (d(VA)
· ) can be identified with the trivial/principal character modulo N . Given z ∈ D(VA) and

λ ∈ VA(R), we have a unique decomposition λ = λz + λz⊥ , where λz and λz⊥ denote the corresponding
projections to z and z⊥. Let us write QA(λ)z := QA(λz) − QA(λz⊥) for the corresponding majorant. We
consider the Siegel theta function ΘLA,l : H ×D(VA) → C of weight l associated to the lattice LA, defined
on τ = u+ iv ∈ H and z ∈ D(VA) by the series

ΘLA,l(τ, z) = v
∑
λ∈L∨A

(λ, z)lA
(z, z)lA

· e (QA(λz)Nτ +QA(λz⊥)Nτ) .

This series converges normally, is nonholomorphic in both variables, and satisfies the transformation property

ΘLA,l(γz, z) = ηd(VA)(d)(cτ + d)lΘLA,l(τ, z) = (cτ + d)lΘLA,l(τ, z) ∀ γ =

(
a b
c d

)
∈ Γ0(N).

Theorem 6.4 (Doi-Naganuma). Let ΘLA,l(τ, z) denote the Siegel theta series of weight l associated to the

signature (2, 2) lattice LA ⊂ VA chosen according to Corollary 2.4, whose adelization LA ⊗ Ẑ is fixed by the

compact open subgroup subgroup K0(N) ⊕ K0(N) of GL2(Ẑ)2 ⊂ GL2(Af )2 ∼= GSpin(VA)(Af ). Hence, we
identify this function ΘLA,l(τ, ·) in the variable τ ∈ H as a nonholomorphic modular form of weight l, level
Γ0(N), and trivial character. Let ϕ ∈ Snew

l (Γ0(N)) be a cuspidal holomorphic newform of the same weight,
level, and character. Assume that ϕ lies in the corresponding Kohnen plus space

S+
l (Γ0(N)) = {f ∈ Sl(Γ0(N)) : cf (n) = −1 =⇒ cf (n) = 0} ⊂ Snew

l (Γ0(N)),

and hence that ϕ is invariant under the Fricke involution WN , equivalently that the corresponding standard
L-function Λ(s, ϕ) = L∞(s, ϕ)L(s, ϕ) has odd, symmetric functional equation Λ(s, ϕ) = −Λ(1− s, ϕ). Then,
the theta lift defined on z ∈ D(VA) = D±(VA) ∼= H2 by the convergent integral

Fϕ,LA(z) =

∫
F

ϕ(τ)ΘLA,l(τ, z)v
l dudv

v2

determines a cuspidal eigenform of parallel weight l on the Hilbert modular surface X0(N) ×X0(N). Here
again, we write F to denote the standard fundamental domain for the action of SL2(Z) on H.

Proof. This is a special case of the Doi-Naganuma lifting for the setup we consider above for Proposition
2.3, leading to the identifications (8) and (9) with Remark 2.4. See [7, §3.1], and more generally the relevant
discussions in Doi-Naganuma [20], Naganuma [44], van der Geer [53, §4], and Zagier [61] for more background.

�

Let us now return to the setup of Theorems 5.12 and 5.14 above with vector-valued forms for LA ⊂ VA.
We now write θLA,l(τ, z) = θLA,l(τ, z) to denote the Siegel theta function θLA,l : H × D(VA) −→ S∨LA of
weight l constructed from the Weil representation ωLA : SL2(Z)→ S∨LA in the same way as (13) above. To be
more precise, we make the following modification to the choice of Gaussian archimedean Schwartz function
Φ∞(x, z) := exp(−(x, x)A,z) for z ∈ D(VA) ∼= H2 and x ∈ VA(R) in (12). Let Pl(x, z) be a weight l harmonic
polynomial, so that ωLA(kθ)Pl(x, z) = eilθPl(x, z) for all kθ ∈ SO2(R). We then define the corresponding

function Φ
(l)
∞ (x, z) = Pl(x, z)Φ∞(x, z). Hence, in the variable x ∈ V (R), we obtain an archimedean local

Schwartz function Φ∞(x, ·) ∈ S(V (R)) which transforms with weight l under the action of the maximal
compact subgroup SO2(R) ⊂ SL2(R). Using the same conventions and notations as above with the Iwasawa

50



decomposition, we then define the corresponding theta series

θLA,l(τ, z) = θLA,l(τ, z, 1) =
∑

µ∈L∨A/LA

ϑLA(gτ , 1; Φ(l)
∞ (·, z0)⊗ 1µ)1µ

from the theta kernel

ϑLA(g, h; Φ) =
∑

x∈VA(Q)

(ωLA(g, h)Φ) (x).

Here again, we fix a basepoint z0 ∈ D(VA) = D±(VA) ∼= H2, and we write g ∈ SL2(A), h ∈ GSpin(VA)(A),
and Φ = ⊗vΦv ∈ S(VA(A)) to denote generic elements. We also write θLA,l(τ, z) to denote the theta series
obtained from the conjugate Weil representation ωLA .

Corollary 6.5. Fix a holomorphic cuspidal newform φ ∈ Sl(Γ0(N)). Assume φ lies in the Kohnen plus
space S+

l (Γ0(N)) ⊂ Sl(Γ0(N)), hence that φ is invariant under the Fricke involution WN , equivalently that
φ equivalently that the corresponding standard L-function Λ(s, φ) = L∞(s, φ)L(s, φ) has odd, symmetric
functional equation Λ(s, φ) = −Λ(1− s, φ). There exists a unique gφ = gφ,A ∈ Hl(ωLA) for which

〈〈gφ(τ), θLA,l(τ, z)〉〉 = ΘLA,l(τ, z)φ⊗ ηk(τ),(59)

so that the Doi-Naganuma lifting Fφ,LA(z) can be characterized equivalently as the theta integral

Fφ,LA(z) =

∫
F

〈〈gφ(τ), θLA,l(τ, z)〉〉vl
dudv

v2
.

Remark 6.6. The lifting gφ ∈ Hl(ωLA) of φ ∈ Sl(Γ0((N)) can be described explicitly in special cases by
Zhang [60, Theorem 4.15] and Scheithauer [46, Theorem 3.1]. In the special case of prime discriminant p,
Bruinier-Bundschuh [8, Theorem 5] shows that the plus space S+

l (Γ0(p),
(
p
·
)
) ⊂ Sl(Γ0(p),

(
p
·
)
) is isomorphic

to the corresponding space of holomorphic vector-valued cusp forms Sl(ωL) for any even lattice L with
discriminant group L∨/L ∼= Fp. More generally, the theorem of Strömberg8 [51, Theorems 5.2 and 5.4] allow
us to construct such a lift of any modular form φ ∈ Ml(Γ0(M(L)), η|d(L)|) of level M(L) equal to that of

the lattice L and quadratic character η|d(L)|(·) = ( |d(L)|
· ) with d = d(L) the discrimnant of the lattice to a

vector-valued form gφ ∈Ml(ωL) via the expansion

gφ(τ) =
∑

M∈Γ0(M(L))\ SL2(Z)

ωL(M)−110φ|lM(τ).

6.1.5. Equivalences of Rankin-Selberg L-functions. We now return to Theorems 5.12 and 5.14 for the special
case of the quadratic space (VA, QA) of signature (2, 2) with lattice LA corresponding to the congruence
subgroup K0(N) ⊂ GL2(Af ), as described in Corollary 2.4.

Proposition 6.7. Fix a holomorphic cuspidal newform φ ∈ Snew
2 (Γ0(N)) of weight 2, level Γ0(N), and trivial

character. Let gφ,A ∈ S2(ωLA) denote the lifting of φ to a vector-valued cusp form of weight 2 and conju-
gate Weil representation ωLA . We have the following identifications of completed Rankin-Selberg L-functions.

(i) If k is the imaginary quadratic field associated to the negative definite subspace VA,0 ⊂ VA with
LA,0 = LA ∩ VA,0, then we have the identifications of completed Rankin-Selberg L-functions

L?(2s− 2, gφ,A × θL⊥A,0) = Λ(s− 1/2, φ× θA)

for each class A ∈ C(Ok), and for each class group character χ ∈ C(Ok)∨ the identification∑
A∈C(Ok)

χ(A)L?(2s− 2, gφ,A × θL⊥A,0) = Λ(s− 1/2, φ× θ(χ)).

8taking the isotropic subgroup S0 = {0} ⊂ L∨/L
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(ii) If k is the real quadratic field associated to the Lorentzian subspace WA ⊂ VA with LA,W ∩WA ∩LA,
then we have the identifications of completed Rankin-Selberg L-functions

L?(2s− 2, gφ,A × θL⊥A,W ) = Λ(s− 1/2, φ× θA)

for each class A ∈ C(Ok), and for each class group character χ ∈ C(Ok)∨ that∑
A∈C(Ok)

χ(A)L?(2s− 2, gφ,A × θL⊥A,W ) = Λ(s− 1/2, φ× θ(χ)).

Proof. Cf. [54, Corollary 4.18]. Fix any class A ∈ C(Ok). If k is imaginary quadratic as for (i), we write the
Fourier series expansions of the corresponding holomorphic vector-valued forms as

gφ,A(τ) =
∑

µ∈L∨A/LA

∑
m>0

cφ,A(µ,m)e(mτ)1µ ∈ S2(ωLA)

and

θL⊥A,0(τ) =
∑

µ∈(L⊥A,0)∨/L⊥A,0

∑
m≥0

rL⊥A,0(µ,m)e(mτ)1µ ∈M0(ωL⊥A,0),

and consider the Dirichlet series of the corresponding Rankin-Selberg L-function for <(s)� 1,

L(s, gφ,A × θL⊥A,0) =
Γ
(
s+2

2

)
(4π)

s+2
2

∑
µ∈(L⊥A,0)∨/L⊥A,0

∑
m≥1

cgφ,A(µ,m)rL⊥A,0(µ,m)

m
s+2
2

.

Here, we can identify the discriminant group as

(L⊥A,0)∨/L⊥A,0
∼= d−1

k N−1a/N−1a ∼= d−1
k Ok/Ok,

and the counting functions appearing in the Fourier series expansion of the theta series as

rL⊥A,0(µ,m) =
1

wk
·#
{
λ ∈ µ+ L⊥A,0 : QA|L⊥A,0(λ) = m

}
=

1

wk
·#
{
λ ∈ µ+N−1a : Qa(λ) = m

}
.

It is easy to see from this that we have the identification9 of counting functions∑
µ∈(L⊥A,0)∨/L⊥A,0

rL⊥A,0(µ,m) =
1

wk
·#
{
λ ∈ N−1a : Qa(λ) = m

}
= rA(m).

Similarly, as a consequence of the relation

〈〈gφ,A(τ), θLA,2(τ, z)〉〉 = ΘLA,2(τ, z)φ(τ)

implied by (59), we deduce that we have the relation of Fourier coefficients∑
µ∈(L⊥A,0)∨/L⊥A,0

cφ,A(µ,m) = cφ(m),

and more generally, that we have an identification of scalar-valued forms

〈〈gφ,A(τ), θL⊥A,0(τ)⊗ ELA,0(τ, s; 1)〉〉 = φ(τ)θA(τ)EA(τ, s; 1),

where EA(τ, s; 1) denotes the Eisenstein series in the Rankin-Selberg integral presentation (56) corresponding
to ELA,0(τ, s; 1) ∈ H1(ωLA,0). This implies the corresponding identification of Rankin-Selberg products

L(s, gφ,A × θL⊥A,0) = 〈〈gφ,A(τ), θL⊥A,0(τ)⊗ ELA,0(τ, s; 1)〉 =

∫
F

〈〈gφ,A(τ), θL⊥A,0(τ)⊗ ELA,0(τ, s; 1)〉〉

=
Γ
(
s+2

2

)
(4π)

s+2
2

∑
µ∈(L⊥A,0)∨/L⊥A,0

∑
m≥1

cgφ,A(µ,m)rL⊥A,0(µ,m)

m
s+2
2

=
Γ
(
s+2

2

)
(4π)

s+2
2

∑
m≥1

cφ(m)rA(m)

m
s+2
2

=
Γ
(
s+2

2

)
(4π)

s+2
2

∑
m≥1

cφ(m)rA(m)

m
s+2
2

.

9More formally, we use that [N−1a] = [(N−1)a] = [a] ∈ C(Ok) = I(k)/P (k).
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We then deduce from (56) that Proposition 6.1 that we have the identification of completed L-functions

L?(2s− 2, gφ,A × θL⊥A,0) = Λ(s− 1/2, φ× θA)

and hence that∑
A∈C(Ok)

χ(A)L?(2s− 2, gφ,A × θL⊥A,0) =
∑

A∈C(Ok)

χ(A)Λ(s− 1/2, φ× θA) = Λ(s− 1/2, φ× θ(χ)).

If k is real quadratic as for (ii), we again first open up the Dirichlet series expansion (for <(s)� 1)

L(s, gφ,A × θL⊥A,W ) =
Γ
(
s+2

2

)
(4π)

s+2
2

∑
µ∈(L⊥A,W )∨/L⊥A,W

∑
m≥1

cgφ,A(µ,m)rL⊥A,W (µ,m)

m
s+2
2

.

Again, we can identify the discriminant group as

(L⊥A,W )∨/L⊥A,W
∼= d−1

k N−1a/N−1a ∼= d−1
k Ok/Ok,

and the counting functions appearing in the Fourier series expansion of the theta series θ+
L⊥A,W

(τ) as

rL⊥A,W (µ,m) =
1

wk
·#
{
λ ∈ µ+ L⊥A,W /〈εk〉 : QA|L⊥A,W (λ) = m

}
=

1

wk
·#
{
λ ∈ µ+N−1a? : Qa(λ) = m

}
so that ∑

µ∈(L⊥A,W )∨/L⊥A,W

rL⊥A,W (µ,m) =
1

wk
·#
{
λ ∈ N−1a? : Qa(λ) = m

}
= rA(m).

We obtain from the corresponding relation (59) the identification of Fourier coefficients∑
µ∈(L⊥A,W )∨/L⊥A,W

cφ,A(µ,m) = cφ(m),

and more generally the identification of scalar-valued forms

〈〈gφ,A(τ), θL⊥A,W (τ)⊗ ELA,W (τ, s; 2)〉〉 = φ(τ)θA(τ)EA(τ, s; 2),

where EA(τ, s; 2) denotes the Eisenstein series in the Rankin-Selberg integral presentation (56) corresponding
to ELA,W (τ, s; 2) ∈ H2(ωLA,W ). Taking Petersson inner products, we then obtain the same identifications

L(s, gφ,A × θL⊥A,W ) = 〈〈gφ,A(τ), θL⊥A,W (τ)⊗ ELA,W (τ, s; 2)〉 =

∫
F

〈〈gφ,A(τ), θL⊥A,W (τ)⊗ ELA,W (τ, s; 2)〉〉

=
Γ
(
s+2

2

)
(4π)

s+2
2

∑
µ∈(L⊥A,W )∨/L⊥A,W

∑
m≥1

cgφ,A(µ,m)rL⊥A,W (µ,m)

m
s+2
2

=
Γ
(
s+2

2

)
(4π)

s+2
2

∑
m≥1

cφ(m)rA(m)

m
s+2
2

=
Γ
(
s+2

2

)
(4π)

s+2
2

∑
m≥1

cφ(m)rA(m)

m
s+2
2

of the corresponding Rankin-Selberg inner products. We then deduce from (56) that Proposition 6.1 that we
have the identification of completed L-functions

L?(2s− 2, gφ,A × θL⊥A,W ) = Λ(s− 1/2, φ× θA)

and hence that∑
A∈C(Ok)

χ(A)L?(2s− 2, gφ,A × θL⊥A,W ) =
∑

A∈C(Ok)

χ(A)Λ(s− 1/2, φ× θA) = Λ(s− 1/2, φ× θ(χ)).

�
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6.2. Relations to sums of Green’s functions along anisotropic subspaces. Putting all of these
observations together, we derive the following consequences of Theorems 5.12 and 5.14.

Theorem 6.8. We retain the setup of Proposition 6.7. For each class A ∈ C(Ok), let f0,A ∈ H0(ωLA) be
any harmonic weak Maass form whose image under the antilinear differential operator ξ0 equals gφ,A, so

ξ0(f0,A)(τ) = gφ,A(τ).

We have the following integral presentations of completed Rankin-Selberg L-functions, given in terms of sums
over CM cycles or geodesic sets as in Theorems 5.12 and 5.14 above respectively.

(i) If k is imaginary quadratic and ηk(−N) = −ηk(N) = −1, then

Λ′(1/2, φ× θ(χ))

= −Λ(1, ηk)
∑

A∈C(Ok)

χ(A)

[(
vol(KA,0)

4

)
Φ(f0,A, Z(VA,0)) + CT〈〈f+

0,A(τ), θL⊥A,0(τ)⊗ ELA,0(τ)〉〉
]

= −Λ(1, ηk)
∑

A∈C(Ok)

χ(A)
[
deg(Z(VA,0))Φ(f0,A, Z(VA,0)) + CT〈〈f+

0,A(τ), θL⊥A,0(τ)⊗ ELA,0(τ)〉〉
]
.

(ii) If k is real quadratic and ηk(−N) = ηk(N) = −1, then

Λ′(1/2, φ× θ(χ))

= −Λ(1, ηk)
∑

A∈C(Ok)

χ(A)

[(
vol(KA,W )

4

)
Φ(f0,A, G(WA)) + CT〈〈f+

0,A(τ), θL⊥A,W (τ)⊗ ELA,W (τ)〉〉
]
.

Proof. For (i), we have for each class A ∈ C(Ok) the relation

Φ(f0,A, Z(VA,0)) = − 4

vol(KA,0)

(
CT〈〈f+

0,A(τ), θL⊥A,0(τ)⊗ ELA,0(τ)〉〉+ L′(0, gφ,A × θL⊥A,0)
)

and hence

−
(

vol(KA,0)

4

)
Φ(f0,A, Z(VA,0))− CT〈〈f+

0,A(τ), θL⊥A,0(τ)⊗ ELA,0(τ)〉〉 = L′(0, gφ,A × θL⊥A,0)(60)

by Theorem 5.12. Observe that since L?(s, gφ,A × θL⊥A,0) = −L?(s, gφ,A × θL⊥A,0) by the odd, symmetric

functional equation E?LA,0(τ, s; 1) = −E?LA,0(τ,−s; 1) described in Proposition 5.3, we have the vanishing of

the central value L?(0, gφ,A × θL⊥A,0) = L(0, gφ,A × θL⊥A,0) = 0, and hence that

Λ?′(0, gφ,A × θL⊥A,0) = Λ(1, ηk)L′(0, gφ,A × θL⊥A,0).(61)

Moreover, observe that by the equivalence of L-functions shown in Proposition 6.7 (i) with the functional
equation for Λ(s, φ × θ(χ)) described in Proposition 6.1, we are only in the non-degenerate situation when
ηk(−N) = −ηk(N) = −1. Hence, we can multiply each side of (60) to obtain the corresponding relation

(62)
− Λ(1, ηk)

[(
vol(KA,0)

4

)
Φ(f0,A, Z(VA,0)) + CT〈〈f+

0,A(τ), θL⊥A,0(τ)⊗ ELA,0(τ)〉〉
]

= L?′(0, gφ,A × θL⊥A,0).

Taking a twisted linear combination of the L-values on each side of (62) and using Proposition 6.7, we obtain

(63)

− Λ(1, ηk)
∑

A∈C(Ok)

χ(A)

[(
vol(KA,0)

4

)
Φ(f0,A, Z(VA,0)) + CT〈〈f+

0,A(τ), θL⊥A,0(τ)⊗ ELA,0(τ)〉〉
]

=
∑

A∈C(Ok)

χ(A)L?′(0, gφ,A × θL⊥A,0) = Λ′(1/2, φ× θ(χ)) = Λ′(1/2, φ× θ(χ)).

For (ii), we have for each class A ∈ C(Ok) the relation

Φ(f0,A, G(WA)) = − 4

vol(KA,W )

(
CT〈〈f+

0,A(τ), θ+
L⊥A,W

(τ)⊗ ELA,W (τ)〉〉+ L′(0, gφ,A × θL⊥A,W )
)
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and hence

−
(

vol(KA,W )

4

)
Φ(f0,A, G(WA)) + CT〈〈f+

0,A(τ), θ+
L⊥A,W

(τ)⊗ ELA,W (τ)〉〉 = L′(0, gφ,A × θL⊥A,W )(64)

by Theorem 5.14. Using the identification of completed L-functions of Proposition 6.7 (ii) with the functional
equation of Proposition 6.1, we see that L?(s, 0, gφ,A×θL⊥A,W ) satisfies an odd symmetric functional equation

when ηk(−N) = ηk(N) = −1, whence L?(0, gφ,A × θL⊥A,W ) = L(0, gφ,A × θL⊥A,W ) = 0, and

Λ?′(0, gφ,A × θL⊥A,W ) = Λ(1, ηk)L′(0, gφ,A × θL⊥A,W ).

Hence, we can multiply each side of (64) to obtain the corresponding relation

(65)
− Λ(1, ηk)

[(
vol(KA,W )

4

)
Φ(f0,A, G(WA)) + CT〈〈f+

0,A(τ), θL⊥A,W (τ)⊗ ELA,W (τ)〉〉
]

= L?′(0, gφ,A × θL⊥A,W ).

Taking a twisted linear combination of the L-values on each side of (65) and using Proposition 6.7, we obtain

(66)

− Λ(1, ηk)
∑

A∈C(Ok)

χ(A)

[(
vol(KA,W )

4

)
Φ(f0,A, G(WA)) + CT〈〈f+

0,A(τ), θL⊥A,W (τ)⊗ ELA,W (τ)〉〉
]

=
∑

A∈C(Ok)

χ(A)L?′(0, gφ,A × θL⊥A,W ) = Λ′(1/2, φ× θ(χ)) = Λ′(1/2, φ× θ(χ)).

�

Now, using the Dirichlet analytic class number formula

L(1, ηk) =


2πhk

wk
√
|dk|

if k is imaginary quadratic

2 ln(εk)hk√
dk

if k is real quadratic
(67)

to evaluate

Λ(1, ηk) = |dk|
1
2 ΓR(2)L(1, ηk) =

{
2πhk
wk

if k is imaginary quadratic

2 ln(εk)hk if k is real quadratic
,(68)

we can simplify the formulae of Theorem 6.8. Here, we observe that each of the compact open subgroups
KA,0 ⊂ TA,0(Af ) and KA,W ∈ TA,W (Af ) must be the maximal compact group O×k . We then calculate
vol(KA,0) = wk/hk and vol(KA,W ) = (wk ln(εk))/hk for each class A ∈ C(Ok) using Lemma 5.8 to obtain

Corollary 6.9. We have the following identities for the central derivative value Λ′(1/2, φ× θ(χ)).

(i) If k is imaginary quadratic and ηk(−N) = −ηk(N) = −1, then

Λ′(1/2, φ× θ(χ))

= −2πhk
wk

∑
A∈C(Ok)

χ(A)

[(
wk
4hk

)
Φ(f0,A, Z(VA,0)) + CT〈〈f+

0,A(τ), θL⊥A,0(τ)⊗ ELA,0(τ)〉〉
]
.

(ii) If k is real quadratic and ηk(−N) = ηk(N) = −1, then

Λ′(1/2, φ× θ(χ))

= −2 ln(εk)hk
∑

A∈C(Ok)

χ(A)

[(
wk ln(εk)

4hk

)
Φ(f0,A, G(WA)) + CT〈〈f+

0,A(τ), θL⊥A,W (τ)⊗ ELA,W (τ)〉〉
]
.

7. Arithmetic implications

We now explain how to compute the Faltings heights of arithmetic divisors Z(f) along zero cycles to
prove higher Gross-Zagier formulae. We also explain how to derive a new proof/variant of the theorem of
Gross-Zagier [25, §I. (6.3)] in terms of arithmetic Hirzebruch-Zagier divisors on the Hilbert modular surface
Y0(N)× Y0(N). We also explain some applications to the refined conjecture of Birch-Swinnerton-Dyer.
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7.1. Arithmetic heights and higher Gross-Zagier formulae. Let us first explain how to derive from
the theorems of Bruinier-Yang [13, Theorem 4.7] – as presented in Theorem 5.12 above – and Andreatta-
Goren-Howard-Madapusi Pera [1, Theorem A] the following “higher Gross-Zagier formula”, relating the
central derivative values L′(0, ξ1−n2 (f)× θL⊥0 ) of the Rankin-Selberg L-functions

L(s, ξ1−n2 (f)× θL⊥0 ) = 〈ξ1−n2 (f)(τ), θL⊥0 (τ)⊗ EL0
(τ, s; 1)〉, f ∈ H1− 1

2
(ωL)

to Faltings heights of arithmetic divisors Ẑ(f) = (Z(f),Φ(f, ·)) along the CM cycles Z(V0) on the spin
Shimura variety X = XK = XKL introduced in (4) and (6) above.

7.1.1. Extension to integral models. Let us henceforth fix the level structure K = KL ⊂ GSpin(V )(Af )
associated to a choice of lattice L ⊂ V in the quadratic space (V,Q), and simply write X = XK for the
corresponding spin Shimura variety. Hence, the orbifold X(C) = XK(C) describes the set of complex points
of a quasi-projective Shimura variety X over Q of dimension n. As explained in [1], X(C) can be viewed
as the space of complex points of an algebraic Mumford-Deligne stack X −→ Spec(Q). In general, apart
from some cases of small dimension (n ≤ 3), the Shimura variety X is not of PEL type, and hence does not
generally represent a moduli space of abelian variety with PEL structure. it is however of Hodge type, and
so the theorems of Kisin [36], Madapusi Pera [41], and Kim-Madapusi Pera [35] apply to show the existence
of a regular, flat integral model X −→ Spec(Z).

Recall from (5) that we have for each coset µ ∈ L∨/L and rational number m ∈ Q for which the quadric

Ωm(Q) = {x ∈ V : Q(x) = m}

is nonempty the special divisor Z(µ,m)→ X defined by the sum

Z(µ,m) =
∑

x∈(GSpin(V )(Q)∩K)\Ωm(Q)

1µ(x) pr(D(V )x).

As explained in [1], each of these special divisors admits an extension Z(µ,m) −→ X to the integral model.
Roughly speaking, this is obtained as follows through the Kuga-Satake abelian scheme A −→ X . That is, the
Shimura variety X = XK comes equipped with a family of Kuga-Satake abelian varieties Az −→ X indexed
by points z ∈ D(V ). To describe the construction of such an abelian variety Az −→ X, consider that we
have a natural functor

{algebraic representations of GSpin(V )} −→ {local systems of Q-vectorspaces on X(C)}
(GSpin(V )→ GL(W )) 7−→ (WBetti,Q → X(C))

where

WBetti,Q := GSpin(V )(Q)\ (W ×D(V ))×GSpin(Af )/K.

This allows us to associate to each algebraic representation GSpin(V )→ GL(W ) a pair (WdR,∇) consisting
of a locally free OX(C)-module WdR = WBetti,Q ⊗ OX(C) and a connection ∇ = 1 ⊗ d. Each such pair can

be viewed as a vector bundle WdR with integrable connection ∇ such that W∇=0
dR = WBetti,Q ⊗Q C and:

(i) For all z ∈ D(V ), the map hz : S −→ GSpin(V )(R) −→ GL(WR) induces a map S(C)→ GL(WC).

(ii) The fibre WdR,z at z ∈ D(V ) has a bigradation WdR,z =
⊕

p,qW
p,q
dR,z induced by the action of S(C).

(iii) The OX(C)-module WdR is endowed with a decreasing filtration FilJ(WdR) ⊆ WdR of submodules,

defined pointwise by FilJ(WdR,z) =
⊕

p≥JW
p,q
dR,z.

Here, have have natural identifications S(C) = C× ×C× and GL(WC) = GL(WQ ⊗C) Now, consider the
representation of the Clifford algebra C(V ) on GSpin(V ) induced by the inclusion

GSpin(V ) ⊂ C0(V )× := C0(V )\{0},
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with action given by left multiplication of C0(V )× on GSpin(V ). The corresponding vector bundle C(V )dR

gives rise to the following variation of Hodge structures: For each z ∈ D(V ), we have

C(V )dR,z = C(V )−1,0
z ⊕ C(V )0,−1

z .(69)

Note that having such a variation of Hodge structures (69) for each z ∈ D(V ) is equivalent to having a
complex structure on the Clifford algebra C(VR) = C(VQ ⊗R) for each z ∈ D(V ). In particular, we obtain
from this complex structure for each z ∈ D(V ) a corresponding abelian variety

Az = C(VR)/C(L)

of dimension 2n+1 known as the Kuga-Satake abelian variety associated to X = XKL at a point z ∈ D(V ).
As explained in [1], this construction extends10 to give an abelian scheme A → X .

Example 7.1. Suppose we consider a rational quadratic space (V0, Q0) of signature (0, 2) with maximal
lattice L0 ⊂ V0. In this case, the submodule C0(L0) ⊂ C0(V0) corresponds to an order O ⊂ Ok(V0) of the
imaginary quadratic field k(V0) associated to V0, as described above. Each point z ∈ D(V0) determines
a Kuga-Satake abelian surface Az = A+

z × A−z = C(V0(R))/C(L0), where A+
z is an elliptic curve with

complex multiplication by the order O ∼= C0(V0), and Az is the elliptic curve with CM by O given by
A−z = A+

z ⊗O L0 = A+
z ⊗C0(L0) L0.

Example 7.2. Consider the rational quadratic space (V,Q) of signature (1, 2) given by V = M tr=0
2 (Q)

and Q(·) = N det(·). As explained in [13, §7.3] and Appendix A below, we have an accidental isomorphism
GSpin(V ) ∼= GL2 of algebraic groups over Q. Let L ⊂ V denote the lattice

L =

{(
b −a/N
c −b

)
: a, b, c ∈ Z

}
with dual lattice

L∨ =

{(
b/2n −a/N
c −b/2N

)
: a, b, c ∈ Z

}
,

so that the discriminant group L∨/L can be identified as

Z/2NZ −→ L∨/L, r 7−→ µr :=

(
r/2N

−r/2N

)
.

Hence, L has level 4N , and the corresponding quadric

Ωµ,m(Q) := {x ∈ µ+ L : Q(x) = m}
is nonempty unless Q(µ) ≡ m mod 1. The corresponding compact open subgroup K = KL is given by

K =
∏
p<∞

Kp ⊂ GSpin(V )(Af ) ∼= GL2(Qp), Kp :=

{(
a b
c d

)
∈ GL2(Zp) : c ∈ NZp

}
.

In this setting, we have an isomorphism of Shimura varieties

Y0(N) := Γ0(N)\H ∼= XK(C), Γ0(N)z 7−→ GSpin(V )(Q)(z, 1)K.

In the other direction, using the moduli description of the noncompactified modular curve Y0(N), we have

XK(C) := GSpin(V )(Q)\D(V )×GSpin(V )(Af )/K ∼= Y0(N), z 7−→ (Ez → E′z)

for (Ez, E
′
z) a pair of elliptic curves with CM by some order O ⊂ Ok(V0) in the imaginary quadrtic field k(V0)

determined by a negative definite subspace V0 ⊂ V (given by a Heegner embedding). In this case, each point
z ∈ D(V ) = D±(V ) ∼= H has the corresponding Kuga-Satake abelian fourfold Az = C(V (R))/C(L) given by

Az = A+
z ×A−z , A+

z = A−z = Ez × E′z.
We shall return to this example in Appendix A below to explain how to recover the formula of Gross-Zagier
[25, Theorem I (6.3)] from [13, Theorem 4.7, Theorem 7.7] and [1, Theorem A].

10They also show that the associated vector bundle with connection (C(V )dR,∇) extends to the integral model X , with

vector bundle C(V )dR given by the relative de Rham cohomology H1
dR(A), connection ∇ given by the Gauss-Manin connection,

and filtration FilJ (C(V )dR,z) given by the Hodge filtration 0 −→ R!π∗(OA) −→ H1
dR(A) −→ π∗(Ω1

A) −→ 0.
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Now, the Kuga-Satake abelian scheme A −→ X comes equipped with an action of the Clifford algebra
C(L) = C0(L) ⊕ C1(L), and acquires from this a Z/2Z-grading A = A+ × A−. For each scheme S −→ X ,
we can associate to the pullback AS a distinguished Z-module of special endomorphisms

V (AS) ⊂ End(AS),

together with an associated quadratic form q : V (AS) −→ Z defined by x ◦ x = q(x) · id. More generally,
for each coset µ ∈ L∨/L, we can associate to the pullback AS a distinguished subset Vµ(AS) ⊂ V (AS)⊗Q
with the property that V0(AS) = V (AS).

As explained in [1], we can define from each of these subsets Vµ(AS) a divisor on X as follows: For each
coset µ ∈ L∨/L and rational number m ∈ Q, let

Z(µ,m) −→ X
denote the moduli stack that assigns to each X -scheme S −→ X the set

Z(µ,m)(S) := {x ∈ Vµ(AS) : q(x) = m} .
This morphism Z(µ,m) −→ X turns out to be finite and relatively representable, and to determine a Cartier
divisor on X . It agrees on the generic fibre with the special cycles (5) defined above, Z(µ,m)(C) = Z(µ,m).

Recall that we write T0 = GSpin(V0) = Resk(V0)/Q Gm to denote the torus corresponding to a rational
quadratic subspace (V0, Q0) of signature (0, 2) and associated imaginary quadratic field k(V0). We consider
the corresponding zero-dimensional Shimura variety Z(V0) −→ Spec(k(V0)) with complex points given by (6).

Note that we can identify the corresponding compact open subgroup K0 := K ∩ T0(Af ) with K0 = Ô×k(V0),

and that this acts trivially on the discriminant group L∨0 /L0. Hence, we can identify the complex points

Z(V0)(C) = k(V0)×\{z±V0
} ×A×k(V0),f/Ô

×
k(V0)

with two copies of the ideal class group C(Ok(V0)). Observe that by Lemma 5.8 (cf. [13, Lemma 6.3]) with
the Dirichlet analytic class number formula (67), we have that the degree degZ(V0) = 4/ vol(K0) of Z(V0)
as defined in Lemma 5.9 (i) is given by the relation

degZ(V0)

4
=

1

vol(K0)
=
hk(V0)

wk(V0)
=
|dk(V0)|

1
2

2π
· L(1, ηk(V0)).

Viewing Z(V0) −→ Spec(k(V0)) as the moduli space of elliptic curves with complex multiplication by Ok(V0),
we obtain a smooth integral model Z(V0) −→ Spec(Ok(V0)). As explained in [1], if the imaginary quadratic
field k = k(V0) has odd discriminant dk(V0), then the embedding of reductive groups T0 ⊂ GSpin(V ) induced
by the embedding of quadratic spaces V0 ⊂ V gives a finite, relatively representable, umramified morphism

Z(V0) −→ X .
This algebraic stack has its own Kuga-Satake abelian scheme A0 −→ Z(V0) equipped with an action of
the Clifford algebra C(L0) = C0(L0) ⊕ C1(L0) and hence a Z/2Z-grading A0

∼= A+
0 × A

−
0 . Here, A+

0

can be identified with the universal elliptic curve with CM by Ok(V0), with A0
∼= A+

0 ⊗Ok(V0)
C(L0) and

A−0 ∼= A
+
0 ⊗O(k(V0)) L0. Moreover, this Kuga-Satake abelian scheme A0 −→ Z(V0) is related to the Kuga-

Satake abelian scheme A −→ X by a C(L)-linear isomorphism

A|Z(V0)
∼= A0|Z(L0) ⊗C(L0) C(L).

7.1.2. Arithmetic degrees along CM cycles and central derivative Rankin-Selberg L-values. Recall we saw in
Theorem 5.12 above that we have for any harmonic weak Maass form f ∈ H1−n2 (ωL) the formula

Φ(f, Z(V0)) = −deg(Z(V0)) ·
(

CT〈〈f+(τ), θL⊥0 (τ)⊗ EL0(τ)〉〉+ L′(0, ξ1−n/2(f)× θL⊥0
)
.(70)

We can now describe this formula in terms of arithmetic heights, according to the calculations of [13, §5-6]
and more generally [1, Theorem A], which we now summarize. Recall that an arithmetic divisor x̂ = (x,Gx)
on the integral model X → Spec(Z) consists of a divisor x on X and a corresponding Green’s function Gx for
the the divisor x(C) induced by x on the complex variety X (C) = X(C). That is, the Gx is a smooth function
on X (C)\x(C) with a logarithmic singularity along x(C) which satisfies the Green’s current equation

ddc[Gx] + δx(C) = [Ωx]
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for some smooth (1, 1)-form Ωx on X (C). Let Ĉh
1
(X ) denote the first arithmetic Chow group of X , so the

free abelian group generated by arithmetic divisors on X modulo rational equivalence. Let

[·, ·] : Ĉh
1
(X )× Zn(X ) −→ R

denote the height pairing defined in Bost-Gillet-Soulé [4, § 2.3]. Given an arithmetic divisor x̂ ∈ Ĉh
1
(X ) and

an n-cycle y ∈ Zn(X ) intersecting properly, we know that this pairing is given by the Faltings height

[x̂, y] = [x̂, y]Fal = [x, y]fin + [x̂, y]∞ .

Here, the archimedean component is given by half the value of the Green function Gx along y(C),

[x̂, y]∞ =
1

2
·Gx (y(C)) .

The setup we consider above with regularized theta lifts Φ(f) = Φ(f, ·) is relevant here as it provides us

with a supply of such arithmetic divisors Ẑ(f) = (Z(f),Φ(f)) on the integral model X −→ Spec(Z). To
be more precise, each CM-cycle Z(V0) −→ XOk(V0)

associated to a rational quadratic subspace V0 ⊂ V of

signature (0, 2) provides us with a zero-cycle y ∈ Z0(X ) which intersects Ẑ(f) = (Z(f),Φ(f)) properly. In
particular, this allows us to reinterpret (70) in terms of the archimedean local height as
(71)[
Ẑ(f),Z(V0)

]
∞

=
1

2
· Φ(f, Y ) = −deg(Z(V0))

2
·
(

CT〈〈f+(τ), θL⊥0 (τ)⊗ EL0
(τ)〉〉+ L′(0, ξ1−n/2(f), θΛ)

)
.

Remark 7.3. When the Shimura variety X = XK is not compact, we can add suitable boundary components
C(f) to the divisor Z(f) as in (30) to get an arithmetic divisor

Ẑc(f) = (Zc(f),Φ) ∈ Ĉh
1
(X ?)

on the integral model X ? of the compactification X?. See [13, §5-7] for more details. When f ∈ H1−n/2(ωL)
is not cuspidal, we also have to work with generalized arithmetic Chow groups in the sense of [17].

Suppose now that f = f+ + f− ∈ H1−n/2(ωL) has integral holomorphic part f+, so that the Fourier

coefficients c+f (µ,m) are integers for all m ∈ Q and µ ∈ L∨/L. Then,

Z(f) =
∑

µ∈L∨/L

∑
m∈Q
m>0

c+f (µ,−m)Z(µ,m)

determines a divisor on X, with extension

Z(f) =
∑

µ∈L∨/L

∑
m∈Q
m>0

c+f (µ,−m)Z(µ,m)

to a Cartier divisor on the integral model X , and with corresponding arithmetic divisor

Ẑ(f) = (Z(f), GZ(f)) ∈ Ĉh
1
(X ).

If f ∈ ker(ξ1−n/2) ∼= M !
1−n/2(ωL) is weakly holomorphic, then we expect Ẑ(f) = (Z(f),Φ(f, ·)) to be

rationally equivalent to a torsion element, by the relation given by the Borcherds lift Ψ(f, ·) described in
(20) above (Theorem 4.1). If this rational equivalence to zero were known to be true, we would derive the
corresponding vanishing of the Faltings height the relation[

Ẑ(f),Z(V0)
]

= [Z(f),Z(V0)]fin +
1

2
· Φ(f, Z(V0)) = 0,(72)

from which it would follow that the nonarchimedean height pairing is given by the constant coefficient term

[Z(f),Z(V0)]fin = −deg(V0)

2
· CT〈〈f(τ), θL⊥0 (τ)⊗ EL0(τ)〉〉.(73)

Expanding out both sides of this relation (73) leads to the following expectation for the general case.
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Conjecture 7.4 (Bruinier-Yang). Let f = f+ + f− ∈ H1−n/2(ωL) be any weakly harmonic Maass form
whose holomorphic part has integral Fourier coefficients,

f+(τ) =
∑

µ∈L∨/L

∑
m∈Q
m�−∞

c+f (µ,m)e(mτ)1µ, c+f (µ,m) ∈ Z.

We have for each coset µ ∈ L∨/L and each positive rational m ∈ Q(µ) + Z that the nonarchimedean local
height [Z(µ,m),Y]fin is given by the (µ,m)-th Fourier coefficient of the modular form θL⊥0 (τ)⊗ EL0

(τ),

[Z(µ,m),Z(V0)]fin = −
∑

µ1∈(L⊥0 )∨/L⊥0 ,µ2∈L
∨
0 /L0

µ1+µ2≡µ mod L

∑
m1,m2∈Q≥0
m1+m2=m

rL⊥0 (µ1,m1)κL0
(µ2,m2).

Putting this into (70) (Theorem 5.12), taking the sum over m > 0, we obtain the arithmetic height formula[
Ẑ(f),Z(V0)

]
=
[
Ẑ(f),Z(V0)

]
Fal

= −deg(Z(V0))

2
·
(
c+f (0, 0) · κL0

(0, 0) + L′(0, ξ1−n/2(f), θL⊥0 )
)
.(74)

Theorem 7.5 (Bruinier-Yang, Andreatta-Goren-Howard-Madapusi Pera). Let (V0, Q0) = (aQ,−Qa(·)) be a
rational quadratic subspace of signature (0, 2) given by a fractional ideal aQ in an imaginary quadratic field
k(V0) of odd discrimant dk(V0) determined by a nonzero integral ideal a ⊂ Ok(V0). Let L0 = a denote the

corresponding lattice. Assume that the even part C0(L0) of the Clifford algebra C(L0) is identified with the
maximal order Ok(V0)

∼= C0(V0). Then, Conjecture 7.4 is true. In particular, the arithmetic height formula

(74) is true. Equivalently, writing T̂ ∈ Ĉh
1
(X ) to denote the metrized cotautological defined in [1, §5.3],[

Ẑ(f) : Z(V0)
]

+ c+f (0, 0) ·
[
T̂ : Z(f)

]
= − hk

wk
· L′(0, ξ1−n/2(f)× θL⊥0 ).

Proof. This follows from the combined results of [13, Theorem 1.2] and [1, Theorem A, Theorem 5.7.3]. �

Remark 7.6. Note that Conjecture 7.4 is not yet established in general; see [13, Conjectures 5.1 and 5.2].
That is, the conjecture is posed more generally for (V0, Q0) any negative definite quadratic subspace of
signature (0, 2). In particular, it should be possible to take (V0, Q0) = (a,−Qa(·)) with C+(L0) ∼= O any
(non-maximal) order O ⊂ Ok(V0), and without any condition on the partity of the discriminant dk(V0).

7.2. Gross-Zagier via special (Hirzebruch-Zagier) divisors on X0(N) × X0(N). We now return to
the quadratic spaces (VA, QA) of signature (2, 2) parametrizing XKA = Y0(N) × Y0(N). Here, we give a
geometric interpretation of the formulae of Theorem 6.8 and Corollary 6.9 above. In case (i) where k is
imaginary quadratic, this will give a new proof of the formula of Gross and Zagier [25, I Theorem (6.3)],
including a comparison of the arithmetic heights of Heegner divisorss on X0(N) and the corresponding
arithmetic heights of Hirzebruch-Zagier divisors on X0(N) ×X0(N). For the convenience of the reader, we
explain in Appendix A how the Gross-Zagier formula [25, Theorem I (6.3)] can be derived by a variation of
the proof of Bruinier-Yang [13, Theorem 7.7], developing Theorem 7.5 for the special case of signature (1, 2)
described in Example 7.2 above. Here, we give a distinct deduction of the formula via the Hilbert modular
surfaces Y0(N)× Y0(N) and X0(N)×X0(N).

For each class A ∈ C(Ok), recall that we fix a representative a ⊂ Ok, and consider the quadratic space
(VA, QA) of signature (2,2) defined by VA = aQ ⊕ aQ and quadratic form QA(z1, z2) = Qa(z1) − Qa(z2)
(for Qa(z) := Nk/Q(z)/Na the norm form), so that (VA,0, QA,0) = (a,−Qa) determines a rational quadratic

space of signature (0, 2). Recall that we have an accidental isomorphism GSpin(VA) ∼= GL2
2 of algebraic

groups over Q by Proposition 2.3, and that we take LA ⊂ VA to be the maximal lattice corresponding to the

compact open subgroup KA = KLA
∼= K0(N)2 ⊂ GL2(Ẑ)2 so that XA

∼= Y0(N)×Y0(N) as in Corollary 2.4.
Hence, we consider the corresponding integral model XA ∼= Y0(N) × Y0(N). Let us fix a compactification
X?
A
∼= X0(N)×X0(N) (see e.g. [7, §§1.2 and 2.4]), so that we can identify the corresponding integral model

X ?A with X0(N)×X0(N).

Remark 7.7. Note that we have the following moduli descriptions of these Hilbert modular surfaces and their
special divisors. Recall that the noncompactified modular curve Y0(N) has the following moduli description
(see e.g. [25]). For any scheme S over Q, Y0(N)(S) represents the isomorphism class of triples (E,E′, ϕ)
consisting of a pair of elliptic curves E/S, E′/S and an isogeny ϕ : E → E′ of degree N . Hence, ϕ is finite
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flat of degree N , and its kernel ker(ϕ) ∼= Z/NZ is a finite locally free group scheme over S. The compactified
modular curve X0(N)(S) represents triples (E,E′, ϕ) of generalized elliptic curves E/S, E′/S and a cyclic
isogeny ϕ : E → E′ of degree N . We use this to deduce that XA(S) = Y0(N)(S) × Y0(N)(S) represents
pairs of triples (E1, E

′
1, ϕ1), (E2, E

′
2, ϕ2). More precisely, Y0(N)(S)× Y0(N)(S) represents the moduli space

of triples A = (A, κA(ϕ), λA) made up of the abelian surface A = E1 × E2, the endomorphism κA(ϕ) of A
determined by the isogeny ϕ = ϕ1×ϕ2 : A→ A′ for A′ = E′1×E′2 and its dual ϕ∨ : A′ → A, and the product
principal polarization λA = λE1×λE2 . Similarly, X0(N)(S)×X0(N)(S) represents the moduli space of triples
A = (A, κA(ϕ), λA) made up of the abelian surface A = E1×E2 with E1/S, E2/S generalized elliptic curves,
special endomorphism κA(ϕ) ∈ End(A) determined by the isogeny ϕ : A→ A′ and its dual ϕ∨ : A′ → A, and
the product principal polarization λA. We can then describe the special arithmetic (Hirzebruch-Zagier) divisor
ZA(µ,m) in either of these spaces as the moduli of triples (A, κA(x), λA) = (E1×E2, κE1×E2

(x), λE1
×λE2

)
with endomorphism κA(x) of degree deg(κA(ϕ)) = m supported on µ + LA. We can also describe the CM
cycles Z(VA,0) – cf. [13, Proposition 7.2], and the descriptions of Heegner divisors in [25] and [26]. We can
identify the CM cycles Z(VA,0) with Heegner divisors corresponding in the moduli descriptions of Y0(N) and
X0(N) to a triple (E,E′, ϕ) consisting of elliptic curves E and E′ with complex multiplication by Ok and
a cyclic isogeny ϕ : E → E′ of degree N annihilated by a primitive ideal of the form n = [N, (r +

√
dk)/2].

We then deduce that the CM cycles Z(VA,0) we consider will correspond to triples A = (A, κA(ϕ), λA)
with A = E × E the self-product of the elliptic curve E with CM by Ok, and κA(ϕ) the endomorphism
corresponding to the cyclic isogeny ϕ : E → E′ and its dual ϕ∨ : E′ → E. We refer to the discussions in [53]
and [29] for a more general description of these moduli spaces of abelian surfaces with special endomorphisms.

As in Remark 7.3, we extend each arithmetic divisor

ẐA(f) = (ZA(f),Φ(f, ·)), ẐA(µ,m) = (ZA(µ,m),Φµ,m(·)) ∈ Ĉh
1

(Y0(N)× Y0(N))

to the compatification

ẐcA(f) := (ZcA(f),Φ(f, ·)), ẐcA(µ,m) := (ZcA(µ,m),Φµ,m(·)) ∈ Ĉh
1

(X0(N)×X0(N)) .(75)

We derive the following consequence of Theorem 7.5 in this setting, using Proposition 6.7 and Theorem 6.8.

Theorem 7.8. Let φ ∈ Snew
2 (Γ0(N)) be a cuspidal newform of level N and trivial character. Let k be

an imaginary quadratic field of odd discriminant dk and (odd) quadratic Dirichlet character ηk(·) = (dk· ).
Assume that (N, dk) = 1, and that ηk(−N) = −ηk(N) = −1. Let gφ,A ∈ S2(ωLA) denote the vector-valued
lift of φ described lift in Corollary 6.5. Let f0,A ∈ H0(ωLA) be a harmonic weak Maass form of weight zero
and representation for which

ξ0(f0,A)(τ) = gφ,A(τ) ∈ S2(ωLA),

where ξ0 : H0(ωLA) → S2(ωLA) denotes the antilinear differential operator defined in (17). Then, for any
class group character χ ∈ C(Ok)∨, we have the central derivative value formula

Λ′(1/2, φ× θ(χ)) = −2π
∑

A∈C(Ok)

χ(A)
[
ẐA(f0,A) : Z(VA,0)

]
for the completed Rankin-Selberg L-function Λ(s, φ × θ(χ)) of φ times the Hecke theta series θ(χ), where
each term on the right-hand side denotes the arithmetic height of the arithmetic special divisor

ẐA(f0,A) =
∑

µ∈L∨A/LA

∑
m∈Q
m>0

c+f0,A(µ,−m)ZA(µ,m)

on the integral model X = Y0(N)×Y0(N) of the Hilbert modular surface X = Y0(N)×Y0(N) evaluated along
the corresponding CM cycle Z(VA,0) ⊂ X = Y0(N)× Y0(N). Here, each ZA(µ,m) is the Hirzebruch-Zagier

divisor ẐA(µ,m) = (ZA(µ,m),ΦLAµ,m) on X = Y0(N)×Y0(N) described above. We can also extend arithmetic
divisors to the compactification X ? ∼= X0(N)×X0(N) as described in (75) to get the corresponding formula

Λ′(1/2, φ× θ(χ)) = −2π
∑

A∈C(Ok)

χ(A)
[
ẐcA(f0,A) : Z(VA,0)

]
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Proof. For each class A ∈ C(Ok), we have by Theorem 7.5 the arithmetic height formula[
ẐA(f0,A) : Z(VA,0)

]
= − hk

wk
· L′(0, ξ1−n/2(f0,A)× θL⊥A,0) = − hk

wk
· L′(0, gφ,A × θL⊥A,0).

Using the relation (61) from the proof of Theorem 6.8, we can extend this to the completed Rankin-Selberg
L-function L?(s, gφ,A × θL∨A,0) = Λ(1 + s, ηk)L(s, gφ,A × θL∨A,0) to get the corresponding formula

Λ(1, ηk)
[
ẐA(f0,A) : Z(VA,0)

]
= − hk

wk
· Λ(1, ηk)L′(0, gφ,A × θL⊥A,0) = − hk

wk
· L?′(0, gφ,A × θL⊥A,0),

which by Proposition 6.7 (i) is the same as

Λ(1, ηk)
[
ẐA(f0,A) : Z(VA,0)

]
= − hk

wk
· Λ′(1/2, φ× θA),

and which after evaluating Λ(1, ηk) via (68) then dividing each side by −hk/wk is the same as

−2π
[
ẐA(f0,A) : Z(VA,0)

]
= Λ′(1/2, φ× θA).

Taking the twisted sum Λ′(1/2, φ× θ(χ)) =
∑

A∈C(Ok)

χ(A)Λ′(1/2, φ× θA) then gives the stated formula. �

Corollary 7.9. Let E be an elliptic curve of level N defined over Q, parametized via modularity by a cuspidal
newform φ = φE ∈ S2(Γ0(N)), so that the Hasse-Weil L-function L(E, s) has an analytic continuation
Λ(E, s) = Λ(s− 1/2, φ) given by a shift of the standard L-function Λ(s, φ) = L∞(s, φ)L(s, φ) of φ. Let k be

an imaginary quadratic field of odd discriminant dk and (odd) quadratic Dirichlet character ηk(·) = (dk· ).
Assume that (N, dk) = 1, and that the “Heegner hypothesis” ηk(−N) = −ηk(N) = −1 holds. Then, for any
class group character χ ∈ C(Ok)×, we have the following central derivative value formula

Λ′(E/K,χ, 1) = −2π
∑

A∈C(Ok)

χ(A)
[
ẐA(f0,A) : Z(VA,0)

]
for the Hasse-Weil L-function Λ(E/K,χ, s) = Λ(s−1/2, φ×θ(χ)) of E over K twisted by χ in terms of arith-
metic divisors on the Hilbert modular surface Y0(N)×Y0(N) −→ Spec(Z). Extending to the compactification
X0(N)×X0(N) −→ Spec(Z), we also have the central derivative value formula

Λ′(E/K,χ, 1) = −2π
∑

A∈C(Ok)

χ(A)
[
ẐcA(f0,A) : Z(VA,0)

]
.

Note that by comparing with the formula of Gross-Zagier [25, Theorem I (6.3)], we also obtain a relation
of arithmetic heights on X0(N) and X0(N) × X0(N). We explain this in more detail in Appendix A below,
where we develop the discussion of [13, §7.3, Theorem 7.7] to prove the full version of [25, Theorem I (6.3)]
this way, i.e. via Theorem 7.5 applied to the setup described in Example 7.2.

7.3. Relations to Birch-Swinnerton-Dyer constants and periods. As explained in the introduction,
we have the following application to the refined conjecture of Birch and Swinnerton-Dyer.

Theorem 7.10. Let E/Q be an elliptic curve parametrized by a cuspidal newform φ ∈ Snew
2 (Γ0(N)). Let k

be a quadratic field of discriminant dk prime to N . Assume that E has semistable reduction, hence N square-
free. Assume that the completed L-function Λ(E/K, s) = Λ(E, s)Λ(E(dk), s) = Λ(s−1/2, φ)Λ(s−1/2, φ⊗ηk)
has order of vanishing ords=1 Λ(E/K, s) = 1, so that exactly one of the central values Λ(E, 1) = Λ(1/2, φ)
or Λ(E(dk), 1) = Λ(1/2, φ⊗ ηk) vanishes. Write [e, e] to denote either the regulator R(E/Q) or the regulator
R(E(dk)/Q) according to which factor vanishes. Let us also assume for each prime p ≥ 5 that

• The residual Galois representations E[p] and E(dk)[p] are irreducible.

• There exists a prime l | N distinct from p where E[p] is ramified, and a prime q | N distinct from p
where E(dk)[p] is ramified.
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Then, up to powers of 2 and 3, we have the following unconditional identifications for the constant(s)

κE(Q) · κE(dk)(Q)

=
#X(E/Q) ·#X(E(dk)/Q) · [e, e] · T (E/Q) · T (E(dk)Q) · Ω∞(E/Q) · Ω∞(E(dk)/Q)

#E(Q)2
tors ·#E(dk)(Q)2

tors

.

(i) If k is imaginary quadratic with ηk(−N) = −ηk(N) = −1, then

κE(Q) · κE(dk)(Q) ≈ Λ′(E/k, 1) = −π
2

∑
A∈C(Ok)

Φ(f0,A, Z(VA,0)) = −2π
∑

A∈C(Ok)

[
ẐcA(f0,A) : Z(VA,0)

]
.

(ii) If k is real quadratic with ηk(−N) = ηk(N) = −1, then

κE(Q) · κE(dk)(Q) ≈ Λ′(E/k, 1)

= −2 ln(εk)hk
∑

A∈C(Ok)

[(
wk ln(εk)

4hk

)
Φ(f0,A, G(WA)) + CT〈〈f+

0,A(τ), θL⊥A,W (τ)⊗ ELA,W (τ)〉〉
]
.

Here, in either case, we write ≈ to denote equality up to powers of 2 and 3.

Proof. Cf. [54, Theorem 5.1] for the case of k real quadratic. In either case, we use the product rule with the
Artin decomposition Λ(E/k, s) = Λ(E, s)Λ(E(dk), s) = Λ(E/Q, s)Λ(E(dk)/Q, s) to compute

Λ′(E/k, 1) = Λ′(E, 1)Λ(E(dk), 1) + Λ′(E(dk), 1)Λ(E, 1),

equivalently

Λ′(1/2,Π(π)) = Λ′(1/2, φ)Λ(1/2, φ⊗ ηk) + Λ′(1/2, φ⊗ ηk)Λ(1/2, φ),

where exactly one of the summands on the right-hand side vanishes. For the nonvanishing summand, we
can take for granted the refined conjecture of Birch and Swinnerton-Dyer up to powers of 2 and 3 using
the combinations of various theorems on the Iwasawa main conjectures and subsequent Euler characteristic
calculations; see [15] and [16] for details. In brief, we use the combined works of Kato [33], Kolyvagin
[37], Rohrlich [45], and Skinner-Urban [48] to establish the cyclotomic main conjectures11, followed by the
relevant Euler characteristic calculations of Burungale-Skinner-Tian [15], [16], and Castella [18] for the rank
zero factor, and those of Jetchev-Skinner-Wan [32], Skinner-Zhang [50], and Zhang [66] for the rank one
factor. This allows us to deduce that Λ′(E/k, 1) ≈ κE(Q) ·κE(dk)(Q). We then identify the central derivative
values according to Theorem 6.8 and Corollary 6.9, as well as Theorem 7.8 and Corollary 7.9 when k is
imaginary quadratic. �

Recall that a complex number α = σ + it is said to be a period if its real and imaginary parts σ and
it can be expressed as integrals of rational functions, over domains in Rn given by polynomial inequalities
with rational coefficients. We write P ⊂ C to denote the set of all such numbers. We refer to the paper of
Kontsevich-Zagier [38] for a definitive expository account of this countable subring P of C, which contains
the algebraic numbers Q and their logarithms log Q (for instance). This paper also describes the conjecture
of Birch-Swinnerton-Dyer from this perpective, including the conjecture [38, Question 4] that the central
derivative value Λ(rE(k))(E/k, 1) should lie in the ring of periods P. Assuming the finiteness of the Tate-
Shafarevich group, the argument of [38, §3.5] shows that the Birch-Swinnerton-Dyer constant κE(Q) ∈ P is
a period. The same argument works for the more general setting of number fields, to show that κE(k) ∈ P.

Corollary 7.11. Let us retain the setup of Theorem 7.10.

(i) If k is imaginary quadratic with ηk(−N) = −ηk(N) = −1, then the central derivative value

Λ′(E/k, 1) = −π
2

∑
A∈C(Ok)

Φ(f0,A, Z(VA,0)) = −2π
∑

A∈C(Ok)

[
ẐcA(f0,A) : Z(VA,0)

]
11We also consider the anticyclotomic main conjecture for the rank one factor, after passing to an imaginary quadratic field,

then descend back down to Q using various converse theorems and Euler characteristic calculations – see [15] and [16] for a

desciption of the state of the art.
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lies in the ring of periods P.

(ii) If k is real quadratic with ηk(−N) = ηk(N) = −1, then the central derivative value

Λ′(E/k, 1) = −2 ln(εk)hk
∑

A∈C(Ok)

[(
wk ln(εk)

4hk

)
Φ(f0,A, G(WA)) + CT〈〈f+

0,A(τ), θL⊥A,W (τ)⊗ ELA,W (τ)〉〉
]

lies in the ring of periods P.

Proof. We use the argument of [38, §3.5] to deduce that κE(k) ∈ P, up to powers of 2 and 3. That is, we take
for granted the conditions of Theorem 7.10 so that various theorems on Iwasawa main conjectures described
above allow us to bound the p-primary Tate-Shafarevich groups X(E/Q)[p∞] and X(E(dk)/Q)[p∞] for
primes p ≥ 5 through the corresponding bounds for the p-primary Selmer groups. The argument [38, § 3.5]
then shows that each of the corresponding Birch-Swinnerton-Dyer constants κE(Q) and κE(dk)(Q), up to
powers of 2 and 3, lies in the ring of periods P. �

Appendix A. Gross-Zagier via the signature (1,2) setting

We now explain how a variation of the argument of Bruinier-Yang [13, Theorem 7.7 and Corollary 7.8]
can be used to deduce the full Gross-Zagier formula [25, Theorem I (6.3)], for twists by class group charac-
ters. This generalizes [25, Theorem 7.7], which recovers the formula of [25, Theorem I(6.3)] for the case of
trivial/principal ring class character χ0 = 1 ∈ C(Ok)∨. Although perhaps well-known to experts, we include
details for lack of reference. We also do this to compare with the arithmetic Hirzebruch-Zagier divisors in
Theorem 7.8 and Corollary 7.9.

A.1. X0(N) as spin Shimura variety. See [12, §2.4] and [13, §7.3]. Fix an integer N ≥ 1. Let (V,Q) be
the rational quadratic space with underlying vector space

V = Mattr=0
2×2 (Q)

given by 2×2 matrices with rational coordinates and trace zero, and quadratic form given byQ(x) = N det(x).
The corresponding bilinear form is then given by (x, y) = −N tr(xy) for x, y ∈ V . This rational quadratic
space (V,Q) has signature (1, 2). The group GL2(Q) acts on the trace zero matrices V by conjugation
γ ·x = γxγ−1 for x ∈ V and γ ∈ GL2(Q). This action leaves the form Q invariant, and induces isomorphisms

GSpin(V ) ∼= GL2, Spin(V ) ∼= SL2

of algebraic groups over Q. The Grassmannian D(V ) = D±(V ) can be identified with H ∪ H via the map

z = x+ iy ∈ H 7−→ R<
(
z −z2

1 −z

)
+ R=

(
z −z2

1 −z

)
∈ D(V ).

Note that GSpin(V )(R) acts on D(V ) ∼= H∪H by fractional linear transformation. The congruence subgroup
Γ0(N) ⊂ SL2(Z) determines both a lattice L ⊂ V and a compact open subgroup K = KL =

∏
pKp of

GSpin(V )(Af ). To be more concrete, we take the lattice

L =

{(
b −a/N
c −b

)
: a, b, c ∈ Z

}
,(76)

with dual lattice

L∨ =

{(
b/2N −a/N
c −b/2N

)
: a, b, c ∈ Z

}
.

We have a natural identification of the corresponding discriminant group

(Z/NZ) ∼= L∨/L, r 7−→ µr :=

(
r/2N

−r/2N

)
.(77)
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The lattice L ⊂ V has level 4N , and the quadratic form on L∨/L can be identified with x 7→ −x2 on
Z/4NZ. The compact open subgroup K = KL ⊂ GSpin(V )(Af ) ∼= GL2(Af ) is given by K =

∏
pKp, with

each Kp ⊂ GSpin(V )(Zp) ∼= GL2(Zp) defined by

Kp =

{(
a b
c d

)
∈ GL2(Zp) : c ∈ NZp

}
.

In this way, we obtain the identification of Shimura curves

Y0(N) = Γ0(n)\H −→ XK(C) = GSpin(V )(Q)\D(V )×GSpin(V )(Af )/K, Γ0(N)z 7−→ GSpin(V )(Q)[z, 1]K.

(78)

A.2. Heegner divisors as special divisors.

A.2.1. Special divisors and CM cycles associated to the lattice L. We have the following correspondence
between the special divisors Z(µ,m) and Heegner divisors PD,r described12 in Gross-Kohnen-Zagier [26].
Given m ∈ Q>0 and a coset µ ∈ L∨/L such that Q(µ) ≡ m mod L, we again consider the quadric

Ωµ,m(Q) = {x ∈ µ+ L : Q(x) = m} .

Note that Ωµ,m(Q) = ∅ unless Q(µ) ≡ m mod L.
Let us for each m ∈ Q>0 and µ ∈ L∨/L with Q(µ) ≡ m mod L consider the fundamental discriminant

D = −4Nm ∈ Z.

Given an integer r ∈ Z with coset representative µ = µr under the natural bijection (77),

µ = µr =

(
r/2N

−r/2N

)
∈ Ωµ,r(Q),

we have that D ≡ r2 mod 4N . In this way, we produce a positive norm vector in the quadric

x = x(µ,m) = x(µr,−D/4N) =

(
r/2N 1/N

(D − r2)/4N −r/2N

)
∈ Ωµ,m(Q).(79)

Conversely, given integers D < 0 and r such that D ≡ r2 mod 4N , let m = −D/4N and µ = µr. Observe
that m ∈ Q(µ) + Z is positive. As in [13, §7.1], we take this identification for granted, and note that the
corresponding special divisor Z(µ,m) = Z(µr,−D/4N) defined in (5) above can be identified with a sum of
Heegner divisors PD,r + PD,−r defined in Gross-Kohnen-Zagier [26, IV.1(1)]. We remark that each of these
Heegner divisors PD,±r has degree equal to the Hurwitz class number H(D),

deg(PD,±r) = H(D) =
h(D)

2w(D)
.

Here, h(D) denotes the class number of the imaginary quadratic field Q(
√
D), equivalently the cardinality of

the class group of positive definite binary quadratic forms of discriminant D. We also write w(D) to denote

the number of roots of unity in Q(
√
D), equivalently the cardinality of the unit group of Q(

√
D). Hence, we

deduce that for a pair (µ,m) = (µr,−D/4N) corresponding to (D, r) in this way, we have the relation

degZ(µ,m) = degZ(µr,−D/4N) = deg(PD,±r) = H(D) =
h(D)

2w(D)
.

Fixing a positive norm vector x = x(µ,m) ∈ Ωµ,m(Q) as in (79) above, we consider the positive and
negative definite subspaces defined by

V+ := Qx, U := V ∩ x⊥

12To be more precise, let τ ∈ H be a root of the quadratic equation aτ2 + bτ + c = 0 for a, b, c ∈ Z, a > 0, a ≡ 0 mod N ,
b ≡ r mod 2N and D = b2 − 4ac. The image τa,b,c of such a root in X0(N) is rational over the Hilbert class field k[1] of

the imaginary quadratic field k of discriminant D, and the Galois group Gal(k[1]/k) ∼= C(Ok) permutes these images simply
transitively. We then define PD,r = wk

2

∑
[a,b,c]∈QD∼=C(Ok) τa,b,c as wk

2
times the sum of these hk points. In the moduli

description of X0(N), this point PD,r corresponds to a triple (E,E′, ϕ) of elliptic curves E and E′ with complex multiplication

by Ok and ϕ : E → E′ is an isogeny of kernel annihilated by the primitive ideal n = [N, (r +
√
D)/2] of norm N .
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of (V,Q) = (Mattr=0
2×2 (Q), N · det(·)), as well as the respective positive definite and negative definite lattices

P := L ∩ V+, N := L ∩ x⊥.

Notice that we can present the negative definite lattice N ⊂ L more explicitly as

N = Z

(
1 0
−r 1

)
⊕ Z

(
0 1/N

(r2 −D)/4N 0

)
,

and also that N has determinant −D. Writing t = gcd(r, 2N), the positive definite lattice P ⊂ L and its
dual lattice P∨ can be presented more explicitly as

P = Z

(
r 2

(D − r2)/2 −r

)
= Z

2N

t
x, (L⊥0 )∨ = P∨ = Z

t

D
x.

Let us now consider the ideal n = [N, (r+
√
D)/2] of Z[(D+

√
D)/2]. This ideal has norm N , and we can

associate with it the quadratic form given by the corresponding norm form

Qn(z) :=
zz

N
=

N(z)

Nn
.

As shown in [13, Lemma 7.1], if D is a fundamental discriminant of the imaginary quadratic field k = Q(
√
D),

we have an isomorphism of quadratic lattices

(n,−Qn) −→ (N ,−Qn), xN + y

(
r +
√
D

2

)
7−→

(
x −y/N

−rx− y(r2 −D)/4N

)
.

Both lattices are equivalent to the integral quadratic form defined by

[−N,−r,−(r2 −D)/4N ] = −Nx2 − rxy − (r2 −D)/4Ny2.

Now, recall that the spin group GSpin(U) = GSpin(U(x)) can be identified as the multiplicative group

TU = GSpin(U) ∼= k×, with KT = K ∩ T ∼= Ô×k maximal. According to [13, Proposition 7.2], if the
fundamental discriminant D is coprime to N , then we have an identification of zero cycles Z(U) = Z(m,µ).
More precisely, writing Fµ,m(τ) = FLµ,m(τ, 3/4) for the Hejhal Poincaré series of Definition 4.4 above, we
have the identifications of CM cycles

Z(U) = Z(U(x)) = Z(µ,m) = Z(Fµ,m) = Z(FLµ,m)

on Y0(N)(C) = XK(C) = ShK(GSpin(V ), D(V ))(C).

A.2.2. Ideal class representatives. Let k be any quadratic field (real or imaginary) of discriminant dk and
class group C(Ok). In the subsections of this appendix, we shall take k to be an imaginary quadratic field
of discriminant dk = D, though we consider the more general situation for future reference. Let Qdk denote
the class group of binary quadratic forms qa,b,c(x, y) = ax2 + bx + c of discriminant dk = b2 − 4a. Write
[a, b, c] = [qa,b,c] ∈ Qdk to denote the class represented by a binary quadratic form qa,b,c(x, y) of discriminant
dk = b2 − 4ac. A classical theorem shows that we have an isomorphism of class groups Qdk ∼= C(Ok). For
instance (see e.g. [19, Theorem 7.7]), we have the explicit isomorphism

ϕ : Qdk ∼= C(Ok), [a, b, c] 7−→ [a, (−b+
√
dk)/2].

Recall that for each class A ∈ C(Ok) we fix an integral ideal representative a ⊂ Ok of A. Let us then
consider the sublattice LA ⊂ L defined by

LA =


(
b −a/N
c −b

)
: a, b, c ∈ Z, N det

(
b −a/N
c −b

) ∣∣∣∣∣
LA,U

≡ −qa,b,c for ϕ([a, b, c]) = A

 ,(80)

with dual lattice

L∨A =


(
b/2N −a/N
c −b/2N

)
: a, b, c ∈ Z, N det

(
b −a/N
c −b

) ∣∣∣∣∣
LA,U

≡ −qa,b,c for ϕ([a, b, c]) = A

 .
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Again, we have a natural identification of the corresponding discriminant group

(Z/NZ) ∼= L∨A/LA, r 7−→ µr :=

(
r/2N

−r/2N

)
,

and the quadratic form on L∨A/LA can again be identified with x 7→ −x2 on Z/4NZ. The correspond-
ing compact open subgroup KA = KLA ⊂ GSpin(V )(Af ) ∼= GL2(Af ) is given by KA =

∏
pKA,p, with

each KA,p = Kp for Kp ⊂ GSpin(V )(Zp) ∼= GL2(Zp) as defined above. That is, we have identified the
corresponding compact open subgroups K = KA for each A ∈ C(Ok).

Let us now assume k is imaginary quadratic with discriminant dk = D. Adapting the discussion above,
we consider for each m ∈ Q>0 and µ ∈ L∨A/LA with Q(µ) ≡ m mod LA the corresponding quadric

ΩA,µ,m(Q) = {x ∈ µ+ LA : Q(x) = m} .
Here, we see that ΩA,µ,m(Q) is empty unless Q(µ) ≡ m mod LA. Given m ∈ Q>0, let µ ∈ L∨A/LA be such
that Q(µ) ≡ m mod 1. Hence, D = −4Nm ∈ Z is again a negative discriminant. If r ∈ Z with µ =r modLA,
then again D ≡ r2 mod N , and we have a positive norm vector

xA = xA(µ,m) = xA(µr,−D/4N) =

(
r/2N 1/N

(D − r2)/4N −r/2N

)
∈ ΩA,µ,m(Q).

Conversely, given D < 0 and r with D ≡ r2 mod 4N , put m = −D/4N and µ = µr. Then, m ∈ Q(µ) + Z is
positive. The corresponding special divisor

ZA(µ,m) = ZA(µr,−D/4N) = Γ0(N)
∖ ∐

x∈µ+LA
Q(x)=m

D(V )x = PAD,r + PAD,−r

corresponds to the Heegner divisor PAD,r + PAD,−r, where each point PD,±r ∈ X0(N)(k[1]) in the moduli

description is represented by a triple (E,E′, ϕ) with E(C) ∼= C/a and E′(C) ∼= C/n−1a and kernel ker(ϕ)
of the isogeny ϕ : E → E′ annihilated by the primitive ideal n (see e.g. [25, §II.1]). In this way, we see that
each class A ∈ C(Ok) has a representative special (Heegner) divisor ZA(µ,m) = PAD,r + PAD,−r, as well as a

representative positive norm vector xA = xA(µ,m) = xA(µr,−D/4N) ∈ ΩA,µ,m(Q). Let us henceforth fix
this set of representative special (Heegner) divisors and positive norm vectors

{ZA(µ,m) = ZA(µr,−D/4N)}A∈C(Ok) , {xA(µ,m) = xA(µr,−D/4N)}A∈C(Ok) ←→ A ∈ C(Ok).(81)

Fixing such a set of representatives (81), we consider the positive and negative definite subspaces

VA,+ = VA,+(xA) := QxA, UA = UA(xA) := V ∩ x⊥A
of (V,Q) = (Mattr=0

2×2 (Q), N · det(·)), with corresponding positive and negative definite lattices

PA = PA(xA) := LA ∩ VA,+, NA = NA(xA) = LA ∩ UA = LA ∩ x⊥A.
In what follows, we shall apply the results of Theorems 5.12 and 7.5 to these negative definite subspaces
VA,+ = NA ⊗Z Q ⊂ V for each class A ∈ C(Ok).

A.3. Cuspidal eigenforms from vector-valued Shimura lifts. We now describe the harmonic weak
Maass forms f ∈ H1−n/2(ωL) = H1/2(ωL) that appear. Let L ⊂ V be the lattice described in (76) corre-

sponding to the compact open subgroup K0(N) ⊂ GL2(Ẑ). Let S3/2(ωL) denote the space of holomorphic
cuspidal modular forms of weight 3/2 and representation ωL. A theorem of Eichler-Zagier [23, Theorem 5.1]
shows that we have the identification

S3/2(ωL) ∼= Jcusp
2,N(82)

with the space Jcusp
2,N of Jacobi cusp forms of weight 2 and index N . There is a theory of Hecke operators

and newforms for the space of Jacobi cusp forms Jcusp
2,N . We write Jnew,cusp

2,N ⊂ Jcusp
2,N to denote its subspace of

newforms, with Snew
3/2 (ωL) ⊂ S3/2(ωL) the induced subspace of vector-valued newforms.

To describe this in a more exact way, we again consider the space S2(Γ0(N)) of scalar-valued holomorphic
cusp forms of weight 2 on X0(N) with trivial nebentype character. Let S?2 (Γ0(N)) ⊂ S2(Γ0(N)) denote
the subspace of holomorphic cusp forms which are invariant under the Fricke involution WN . Note that a
cusp form φ ∈ S2(Γ0(N)) is invariant under the Fricke involution if and only if its corresponding standard
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L-function13 Λ(s, φ) = L∞(s, φ)L(s, φ) has an odd, symmetric functional equation Λ(s, φ) = −Λ(1 − s, φ).
Let Snew

2 (Γ0(N)) ⊂ S2(Γ0(N)) denote the subspace of newforms, and

Snew,?
2 (Γ0(N)) = S?2 (Γ0(N)) ∩ Snew

2 (Γ0(N)) ⊂ S2(Γ0(N))

the subspace of Fricke-invariant newforms. The theorem of Skoruppa-Zagier [49] shows that the Shimura
correspondence can be realized explicitly as an isomorphism of Jnew,cusp

2,N -Hecke modules

Snew,?
2 (Γ0(N)) ∼= Jnew,cusp

2,N .(83)

Explicitly, fix a positive rational m0 ∈ Q>0
and a coset µ0 ∈ L∨/L such that m0 ≡ Q(µ0) mod 1. Suppose

that D0 := −4Nm0 ∈ Z determines a fundamental discriminant, with x ∈ Ωµ0,m0
(Q) the corresponding

positive norm vector defined in (79), and U = U(x) = V ∩ x⊥ the corresponding negative definite space.
Consider the space S3/2(ωL) ⊂ M3/2(ωL) ⊂ M !

3/2(ωL) ⊂ H3/2(ωL) of holomorphic cuspidal forms of weight

3/2 and representation ωL. We have for each such pair (µ0,m0) a linear map

Sµ0,m0
: S3/2(ωL) −→ S2(Γ0(N)), g 7−→ Sm0,µ0

(g)

defined on Fourier series expansions

g(τ) =
∑

µ∈L∨/L

∑
m∈Q>0

cg(µ,m)e(mτ)1µ ∈ S3/2(ωL)

by the rule

Sµ0,m0(g)(τ) :=
∑
n≥1

∑
d|n

(
D0

d

)
cg

(
µ0 ·

n

d
,m0 ·

n2

d2

) e(nτ).

Here, we shall also write the Fourier series expansion of Sµ0,m0
(g)(τ) ∈ S2(Γ0(N)) with the simpler notations

Sµ0,m0
(g)(τ) =

∑
n≥1

cSµ0,m0 (g)(n)e(nτ), cSµ0,m0 (g)(n) :=
∑
d|n

(
D0

d

)
cg

(
µ0 ·

n

d
,m0 ·

n2

d2

)
,

as well as the normalized Fourier series expansion

Sµ0,m0
(g)(τ) =

∑
n≥1

n
1
2 aSµ0,m0 (g)(n)e(nτ), aSµ0,m0 (g)(n) = cSµ0,m0 (g)(n)n−

1
2 .

Hence, the standard L-function Λ(s,Sµ0,m0
(g), s) = L∞(s,Sµ0,m0

(g))L(s,Sµ0,m0
(g)) has Dirichlet series

expansion for <(s) > 1 given by

L(s,Sµ0,m0
(g)) =

∑
n≥1

aSµ0,m0
(g)(n)n−s =

∑
n≥1

cSµ0,m0
(g)(n)n−(s+ 1

2 ).

Writing ηD0
(·) =

(
D0

·
)

for the quadratic Dirichlet character of discriminant D0, this can also be written as

L(s− 1/2,Sµ0,m0
(g)) =

∑
n≥1

cSµ0,m0
(g)(n)n−s = L(s, ηD0

)
∑
n≥1

cg(µ0n,m0n
2)n−s.(84)

Each of the linear maps Sµ0,m0 : S3/2(ωL) −→ S2(Γ0(N)) is Hecke-equivariant, and some linear combination

of them supplies the isomorphism Snew
3/2 (ωL) ∼= Snew,?

2 (Γ0(N)) implicit in the combination of (83) and (82).

Observe from the Dirichlet series expansion of (84) that if g ∈ Snew
3/2 (ωL) is related via Shimura correspon-

dence to a scalar-valued cusp form φ = φg ∈ Snew,?
2 (Γ0(N)), then we have the relation of L-series

L(s,Sµ0,m0
(g)) = cg(µ0,m0) · L(s, φ),(85)

and hence the relation of central derivative values

L′(1/2,Sµ0,m0(g)) = cg(µ0,m0) · L′(1/2, φ).

13Which we normalize here to have central value at s = 1/2, as in the discussion above, but distinct from the classical
normalizations used by [13, §7.3], [26], and [25].
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Lemma A.1. Fix m0 ∈ Q>0 and µ0 ∈ L∨/L with m0 ≡ Q(µ0) mod 1. Consider a fundamental discriminant
D0 = −4Nm0 ∈ Z, with corresponding positive norm vector x0 ∈ Ωµ0,m0(Q) and negative definite space
U = U(x0) = V ∩x⊥0 as described above. Given any vector-valued cuspidal form g ∈ S3/2(ωL) whose (µ0,m0)
Fourier coefficient cg(µ0,m0) does not vanish, we have the identification of L-series

L(s, g, U) = (4πm0)−( s+1
2 )Γ

(
s+ 1

2

)
L(s+ 1/2,Sµ0,m0(g))

L(s+ 1, ηD0
)

.

In particular, if g ∈ S3/2(ωL) and φ ∈ Snew,?
2 (Γ0(N)) are linked by the Shimura correspondence (83) via

(85), then we have the relation of L-series

L(s, g, U) = (4πm0)−( s+1
2 )Γ

(
s+ 1

2

)
cg(µ0,m0) · L(s+ 1/2, φ)

L(s+ 1, ηD0
)

,

from which we can derive the identification of central derivative values

L′(0, g, U) =

√
N

4π

(
cg(µ0,m0)

degZ(µ0,m0)

)
· L′(1/2, φ).

Proof. See [13, Lemma 7.3] with [13, (4.24)], which we state here in the unitary normalization for the standard
L-function of φ ∈ Snew,?

2 (Γ0(N)). Since we obtain a slightly distinct identification for the central derivative
value (by a factor of 2−4), we provide details. To be clear, we have from definitions (first for <(s) > 1) that

L(s, g, U) = (4π)−( s+1
2 )Γ

(
s+ 1

2

)∑
m≥1

∑
µ∈P∨/P

rP(µ,m)cg(µ,m)m−( s+1
2 ).

Viewing g ∈ S3/2(ωL) as a form of weight 3/2 and representation ωP⊕N via [13, Lemma 3.1], we argue as in
[13, Lemma 7.3] that cg((λ), λ) = 0 for all λ ∈ P∨ unless λ ∈ P∨ ∩ L∨ = Zx to deduce that

L(s, g, U) = (4π)−( s+1
2 )Γ

(
s+ 1

2

) ∑
λ∈P∨

cg(λ,Q(λ))Q(λ)−( s+1
2 ).

On the other hand, we deduce from (84) that we have the relation

L(s+ 1/2,Sµ0,m0
(g)) = L(s+ 1, ηD0

)
∑
m≥1

cg(µ0m,m0m
2)m−(s+1)

= L(s+ 1, ηD0
)
∑
λ∈P∨

cg(µ0λ,m0Q(λ)) · (m0Q(λ))
−( s+1

2 )

= L(s+ 1, ηD0
) ·m−( s+1

2 )
0

∑
λ∈P∨

cg(λ,Q(λ))Q(λ)−( s+1
2 )

and hence ∑
λ∈P∨

cg(λ,Q(λ))Q(λ)−( s+1
2 ) = m

−( s+1
2 )

0 · L(s+ 1/2,Sµ0,m0
(g))

L(s+ 1, ηD0
)

,

so that

L(s, g, U) = (4πm0)−( s+1
2 )Γ

(
s+ 1

2

)
L(s+ 1/2,Sµ0,m0

(g))

L(s+ 1, ηD0
)

.

which by (85) gives the desired relation of L-series

L(s, g, U) = (4πm0)−( s+1
2 )Γ

(
s+ 1

2

)
cg(µ0,m0) · L(s+ 1/2, φ)

L(s+ 1, ηD0)
.

Using that L(1, φ) = 0 as φ is invariant under the Fricke involution, we deduce via the product rule that

L′(0, g, U) = (4πm0)−
1
2 Γ

(
1

2

)
cg(µ0,m0) · L′(1/2, φ)

L(1, ηD0
)

=
cg(µ0,m0) · L′(1/2, φ)

2
√
m0 · L(1, ηD0

)
.(86)
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Using the Dirichlet class number formula (67) for the imaginary quadratic field k = Q(
√
D0), we evaluate

L(1, ηD0) =
2πhk

wk
√
|D0|

=
4π√
|D0|

· hk
2wk

=
4π√
|D0|

·H(D0) =
2π√
Nm0

· degZ(µ0,m0).

Again, H(D0) = hk/2wk denotes the Hurwitz class number, and we have H(D0) = degZ(µ0,m0). Hence,

L′(0, g, U) =
cg(µ0,m0) · L′(1/2, φ)

2
√
m0 · L(1, ηD0

)
=

√
Nm0 · cg(µ0,m0) · L′(1/2, φ)

2
√
m0 · 2π · degZ(µ0,m0)

=
N

1
2

4π
· cg(µ0,m0) · L′(1/2, φ)

degZ(µ0,m0)
.

(87)

�

To relate this to the discussion of Theorems 5.12 and 7.5 above, we choose the harmonic weak Maass form
f = f+ + f− ∈ H1/2(ωL) according to the following result.

Lemma A.2. Fix any cuspidal form g ∈ Snew
3/2 (ωL), and let φ ∈ Snew,?

2 (Γ0(N)) denotes its image under

the Shimura correspondence via (83). There exists a harmonic weak Maass form f ∈ H1/2(ωL) with Fourier

coefficients c±f (m,µ) as above such that:

(i) We have the relation ξ1/2(f) = g/||g||2.

(ii) The Fourier coefficients c+f (µ,m) of the principal part Pf of f lie in the Hecke field Q(φ) obtained

by adjoining to Q the Fourier coefficients of the cuspidal newform φ ∈ Snew,?
2 (Γ0(N)).

(iii) The constant Fourier coefficient c+f (0, 0) of f vanishes.

Proof. See [13, Lemma 7.4] or [12, Lemma 7.3]. �

We also have the following result, to ensure the nonvanishing of coefficients cg(µ0,m0) in Lemma A.1.

Lemma A.3. Fix a newform

g(τ) =
∑

µ∈L∨/L

∑
m>0

cg(µ,m)e(mτ)1µ ∈ Snew
3/2 (ωL).

There exist infinitely many fundamental discriminants D < 0 such that

(i) Each prime divisor q | N splits in the imaginary quadratic extension Q(
√
D).

(ii) The coefficient cg(µ,m) does not vanish for m = − D
4N and any µ ∈ L∨/L for which m ≡ Q(µ) mod 1.

Proof. See [13, Lemma 7.5]. This is deduced from the nonvanishing theorem of Bump-Friedberg-Hoffstein
[14] together with the Waldspurger formula shown in [26, §II.4 Corollary 1] and [49]. �

A.4. Relation to heights. We now consider the moduli stack Y0(N) over Z of cyclic isogenies of degree
N of elliptic curves π : E −→ E′ for which ker(π) meets each irreducible component of each geometric fibre.
We also consider the moduli stack X0(N) over Z of cyclic isogenies of degree N of generalized elliptic curves
π : E −→ E′ for which ker(π) meets each irreducible component of each geometric fibre. Hence, we have the
relation X0(N)(C) = X0(N) = X?

K(C), and X0(N) is smooth over Z[1/N ], regular away from supersingular
points x in characteristic p for p | N any prime divisor.

Recall that each of the special divisors Z(µ,m) has an extension Z(µ,m) to the integral model X = Y0(N).
More precisely, we can view each Z(µ,m) as a Deligne-Mumford stack which assigns to a base scheme S
over Z a set of pairs (π : E −→ E′, ι) consisting of

• A cyclic isogeny π : E −→ E′ of elliptic curves E,E′ over S of degree N
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• An action ι : OQ(
√
D) ↪→ End(π) =

{
α ∈ End(E) : παπ−1 ∈ End(E′)

}
of OQ(

√
D) on π for which

ι(n) ker(π) = 0.

Again, we take n to be the ideal n = [N, (r +
√
d)/2] in k = Q(

√
D), with

D = −4Nm and µ = µr =

(
r

2N
− r

2N

)
.

Remark A.4. Although X0(N) is not regular, we may use intersection theory for the special divisors Z(µ,m)
and for cuspidal divisors on X0(N). To justify this, we consider the corresponding forgetful maps

Z(µ,m) −→ Y0(N), (π : E → E′, ι) 7−→ (π : E → E′),

each of which is finite étale, and generally 2 to 1. The image of each of these forgetful maps consists of the
flat closure of Z(µ,m) in X0(N), which does not intersect the boundary X0(N)\Y0(N), and which moreover
lies in the regular locus of X0(N).

Let us now fix a harmonic weak Maass form f(τ) = f+(τ) + f−(τ) ∈ H1/2(ωL) as in Lemma A.2 above.

Hence, the principal part Pf (τ) has Fourier coefficients contained in the Hecke field Q(φ), and c+f (0, 0) = 0.

Note that if φ(τ) ∈ Snew,?
2 (Γ0(N)) is the eigenform parametrizing a modular elliptic curve E over Q of

conductor N , then we can deduce that the Fourier coefficients of Pf (τ) are in fact rational integers. Now,
recall that we have associated to this harmonic weak Maass form f a divisor

Z(f) =
∑

µ∈L∨/L

∑
m∈Q
m>0

c+f (µ,−m)Z(µ,m) ∈ Div(Y0(N)),

and that the corresponding reguarized theta lift Φ(f ; ·) = Φ(f ; z, h) can be identified as the automorphic
Green’s function GZ(f)(·) = GZ(f)(z, h) with logarithmic singularity along this divisor Z(f). As explained
in [13, § 7.3], there exists a divisor C(f) on X0(N) supported on the cusps for which the divisor

Zc(f) := Z(f) + C(f)

has degree zero on X0(N). Moreover, the regularized theta lift Φ(f, ·) can be viewed as the automorphic
Green’s function GZc(f)(·) for this divisor Zc(f) on the compactification X0(N) = XK . We write

Zc(f) = Z(f) + C(f)

to denote its flat closure in X0(N), and consider the corresponding arithmetic divisor

Ẑc(f) = (Zc(f),Φ(f, ·)) = (Zc(f), GZc(f)(·)) ∈ Ĉh
1
(X0(N))Q(φ).

Given a rational number m ∈ Q>0 and a coset µ ∈ L∨/L, we consider this divisor on X0(N) given by

y(µ,m) := Z(µ,m)− deg(Z(µ,m))

2
((∞) + (0)) .

Note that this divisor y(µ,m) has degree zero, and is invariant under the Fricke involution. Let Y(µ,m)
denote its flat closure in X0(N). As explained in [13, § 7.3], for each prime p not dividing the discriminant
D = −4Nm, this latter divisor Y(µ,m) has zero intersection with each fibre component of X0(N) over Fp.
We also consider the divisor defined by

y(f) :=
∑

µ∈L∨/L

∑
m∈Q
m>0

c+f (µ,−m)y(µ,m) ∈ Div(X0(N)) = Div(X?
K),

and write Y(f) to denote its flat closure in X0(N).
Let J0(N) denote the Jacobian of X0(N), with J0(N)(F ) the F -rational points for some number field F .

Hence, elements of J0(N)(F ) correspond to divisor classes of degree zero on X0(N) which are rational over
F . Now, observe that y(f) is a divisor of degree zero on X0(N) which differs from the Zc(f) by a divisor
of degree zero supported at the cusps. We deduce from the Manin-Drinfeld theorem that y(f) and Zc(f)
represent the same point in J0(N)⊗Z Q. Keeping with the setup of Lemmas A.1, A.2, and A.3 above, let us
now consider the generating series

�(τ) =
∑

µ∈L∨/L

∑
m∈Q
m>0

y(µ,m)e(mτ)1µ.
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By the theorem14 of Gross-Kohnen-Zagier [26], this generating series �(τ) can be viewed as a modular form
taking values J0(N)(Q)⊗ZQ. Given a normalized newform φ ∈ Snew,?(Γ0(N)) as above, we can consider the

corresponding projection �φ(τ) of �(τ) to the φ-isotypical component. The coefficients of this projection

�φ(τ) consist of the projections yφ(µ,m) of each of the divisors y(µ,m) to the φ-isotypical component,

�φ(τ) =
∑

µ∈L∨/L

∑
m∈Q
m>0

yφ(µ,m)e(mτ)1µ.

Theorem A.5. Let us retain the setups of Lemmas A.1, A.2, and A.3 above, so that g = ξ1/2(f) ∈ S3/2(ωL)

is the vector-valued Shimura lift of the Fricke-invariant newform φ ∈ Snew,?
2 (Γ0(N)). We have the identity

�φ(τ) = g(τ)⊗ y(f) ∈ S3/2(ωL)⊗ J0(N)(Q).

In particular, the divisor y(f) factors through the φ-isotypical component of the Jacobian J0(N)(Q)⊗Z Q.

Proof. See [13, Theorem 7.6], which explains how to deduce this from [26] and [12, Theorem 7.7]. �

Theorem A.6. Let us retain the setups of Lemmas A.1, A.2, and A.3 above, so that g = ξ1/2(f) ∈ S3/2(ωL)

is the vector-valued Shimura lift of the Fricke-invariant newform φ ∈ Snew,?
2 (Γ0(N)). The Néron-Tate height

[y(f), y(f)]NT of the divisor y(f) is given by the preliminary Gross-Zagier formula

[y(f), y(f)]NT =

√
N

8π||g||2
· L′(1/2, φ).

Proof. See [13, Theorem 7.7]; we modify the proof via Lemma A.1 and Theorem 5.12 above as follows.
Observe that Theorem A.5 implies the identification of Fourier coefficient divisors cg(µ,m)y(f) = yφ(µ,m)
for each of the pairs (µ,m) we consider. Using this identification together with the Manin-Drinfeld theorem,
we deduce that

[y(f), y(f)]NT · cg(µ,m) =
[
y(f), yφ(µ,m)

]
NT

= [y(f), y(µ,m)]NT = [Zc(f), y(µ,m)]NT(88)

for each pair (µ,m) contributing to the principal part Pf (τ) of f ∈ H1/2(ωL).
Let us now fix two distinct pairs (µ0,m0) and (µ1,m1), and for simplicity write

d(µj ,mj) = degZ(µj ,mj) for j = 0, 1.

Define the constant

c = c(µ0, µ1,m0,m1) := d(µ1,m1)cg(µ0,m0)− d(µ0,m0)cg(µ1,m1).

Consider the divisor of degree zero on X0(N) defined by

Z = d(µ1,m1)y(µ0,m0)− d(µ0,m0)y(µ1,m1) = d(µ1,m1)Z(µ0,m0)− d(µ0,m0)Z(µ1,m1).

We also write Z to denote its flat closure in X0(N). Observe that Z is supported outside of the cusps of
X0(N). Let M denote the least common multiple of all the discriminants of the special divisors Z(µ,m) in
the support of Z(f). Assume that for each j = 0, 1 the discriminant Dj = −4Nmj is coprime to MN . This
ensures that the divisors Z and Zc(f) are coprime. It also allows ensures for each prime p that Z and Zc(f)
have zero intersection with each fibral component of X0(N) over Fp. Via (88), we compute

c · [y(f), y(f)]NT = [Zc(f), d(µ1,m1)Z(µ0,m0)− d(µ0,m0)Z(µ1,m1)]NT

= −d(µ1,m1)
[
Ẑc(f),Z(µ0,m0)

]
Fal

+ d(µ0,m0)
[
Ẑc(f),Z(µ1,m1)

]
Fal
.

Note that the cuspidal divisor C(f) does not intersect with any of the special divisors Z(µ,m). We now
apply the arithmetic height formula (74) shown15 in Theorem 7.5 for each of the negative definite spaces
Uj = V ∩ x(µj ,mj)

⊥ and lattices Nj = Uj ∩ L and Pj = N⊥j ⊂ L with Lemma A.1 (cf. [13, Lemma 7.3])

14This was reproven later by Borcherds using Borcherds products for weakly holomorphic forms in the space M !
1/2

(ωL).
15Here, we could also use the original argument of Bruinier-Yang [13, Theorem 7.7], replacing their substitution of the

formula [13, Theorem 4.7] with the slightly modified version we derive in Theorem 5.12 above to obtain the same result,

i.e. without any condition on the parity of the discriminant dk.
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and the identification of central derivative L-values (87) and Lemma A.2 (i) and (iii) for the cuspidal form
f ∈ H1/2(ωL) to each index j = 0, 1 to obtain the arithmetic height formulae[

Ẑc(f),Z(µj ,mj)
]

=
1

2
· Φ(f, Z(µj ,mj)) + [Z(f),Z(µj ,mj)]fin + [C(f),Z(µj ,mj)]fin

= −d(µj ,mj)

2

(
L′(0, ξ1/2(f), Uj) + c+f (0, 0) · κNj (0, 0)

)
+ [C(f),Z(µj ,mj)]fin

= −d(µj ,mj)

2
· L′(0, ξ1/2(f), Uj)

= −d(µj ,mj)

2||g||2
· N

1
2

4π
· cg(µj ,mj)L

′(1/2, φ)

degZ(µj ,mj)

= − N
1
2

8π||g||2
· cg(µj ,mj) · L′(1/2, φ)

so that

(89)

c · [y(f), y(f)]NT = −d(µ1,m1)
[
Ẑc(f),Z(µ0,m0)

]
Fal

+ d(µ0,m0)
[
Ẑc(f),Z(µ1,m1)

]
Fal

= d(µ1,m1) · N
1
2

8π|g||2
· cg(µ0,m0) · L′(1/2, φ)− d(µ0,m0) · N

1
2

8π||8||2
· cg(µ1,m1) · L′(1/2, φ).

Now, it is not hard to show that we can choose the pairs (µ0,m0) and (µ1,m1) in such a way that the
constant c = c(µ0, µ1,m0,m1) does not vanish. We can then deduce from the calculation (89) that

c · [y(f), y(f)]NT = c ·
√
N

8π||g||2
· L′(1/2, φ),

so that the claimed formula follows after dividing out by the nonzero constant c. �

Corollary A.7. For any coset µ ∈ L∨/L and positive integer m ∈ Q(µ) + Z, we have for D := −4Nm that[
yφ(µ,m), yφ(µ,m)

]
NT

=

√
|D|

8π2||φ||2
· L(1/2, φ⊗ ηD) · L′(1/2, φ).

Proof. Cf. [13, Corollary 7.8]. We deduce this from Theorem A.6 using the relation yφ(µ,m) = cg(µ,m) ·y(f)
with the Waldspurger-like formula theorem shown shown in Gross-Kohnen-Zagier [26, II, §4 Corollary 1]:

cjg (µ,m)2

〈jg, jg〉
=

√
|D|

2π
· L(1/2, φ⊗ ηD)

〈φ, φ〉
,

where jg ∈ Jnew,cusp
2,N denotes the Jacobi form corresponding to g. Using that the Petersson norm ||g|| is equal

to N
1
4 ||jg||, by Eichler-Zagier [23, Theorem 5.3], we derive from this the coefficient formula

cg(µ,m)2 = cjg (µ,m)2 =
||jg||2

2π||φ||2
· |D| 12 · L(1/2, φ⊗ ηD) =

||g||2

2πN
1
2 ||φ||2

· |D| 12 · L(1/2, φ⊗ ηD)(90)

to get [
yφ(µ,m), yφ(µ,m)

]
NT

= [cg(µ,m)y(f), cg(µ,m)y(f)]NT = cg(µ,m)2 · [y(f), y(f)]NT

=
|D| 12 ||g||2

2πN
1
2 ||φ||2

· L(1/2, φ⊗ ηD) · N
1
2

4π||g||2
· L′(1/2, φ) =

|D| 12
8π2||φ||2

· L(1/2, φ⊗ ηD) · L′(1/2, φ).

�

A.5. Class group twists. We now explain how to adapt Theorem A.6 and Corollary A.9 to derive the
full Gross-Zagier formula [25, I Theorem (6.3)], which applies to twists by any character χ of the ideal class

group C(Ok) for k = Q(
√
D) as we consider above. Note that this general form of the Gross-Zagier formula

is not derived in [13]. We take for granted all of the discussion above leading to Corollary A.9, and fix a
set of representatives as in (81) above. Hence, we choose for each class A a point xA ∈ ΩA,µ,m(Q) which
gives rise to a negative definite space UA = V ∩ x⊥A. Note that each space UA corresponds to a fractional
ideal representative of the class A of C(Ok). We also obtain a negative definite lattice NA = UA ∩LA and a
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positive definite lattice PA = N⊥A ⊂ LA. Recall that in (81), we also fix for each class A ∈ C(Ok) a divisor
ZA(µ,m) = ZA(µr,−D/4N) on XKA

∼= Y0(N). Fixing f ∈ H1/2(ωL) as in Lemma A.2, and taking the
restriction fA to the sublattice LA ⊂ L as in Lemma 5.7 and (48) we then define the corresponding divisor

ZA(fA) =
∑

µ∈L∨A/LA

∑
m∈Q
m>0

c+fA(µ,−m)ZA(µ,m) ∈ Div(Y0(N)).

There exists for each A ∈ C(Ok) a divisor CA(f) supported on the cusps X0(N)\Y0(N) for which the divisor
ZcA(f) = ZA(f) +CA(f) on X0(N) has degree zero. Again, the regularized theta lift Φ(fA, ·) determines the
automorphic Green’s function for this divisor ZcA(fA) ∈ Div(X0(N)). Writing

ZcA(fA) = ZA(fA) + CA(fA)

for the extension to the flat closure in X0(N) of this divisor ZcA(fA), we obtain an arithmetic divisor

ẐcA(fA) := (ZcA(fA),Φ(fA, ·)) = (ZcA(fA), GZcA(fA)(·)) ∈ Ĉh
1
(X0(N)).

We also consider for each class A ∈ C(Ok) the Fricke-invariant divisor of degree zero on X0(N) defined by

yA(µ,m) = ZA(µ,m)− degZA(µ,m))

2
((∞) + (0)) ,

with YA(µ,m) its flat closure in X0(N). We also consider

yA(fA) =
∑

µ∈L∨A/LA

∑
m∈Q
m>0

c+fA(µ,−m)yA(µ,m) ∈ Div(X0(N)),

with YA(f) its flat closure in X0(N).

A.5.1. Decompositions of basechange L-functions. For each class, a minor variation of the argument of
Lemma A.1 allows us to make the identification

L(s, g, UA) = (4πm)−( s+1
2 )Γ

(
s+ 1

2

)∑
m≥1

∑
µ∈P∨A/PA

rPA(µ,m)cgA(µ,m)m−( s+1
2 )

= (4π)−( s+1
2 )Γ

(
s+ 1

2

) ∑
λ∈P∨A

cgA(λ,Q(λ))Q(λ)−( s+1
2 )

= (4πm)−( s+1
2 )Γ

(
s+ 1

2

)
LA(s+ 1/2, φ)

L(s+ 1, ηD)
.

Here, we view g = gA ∈ S3/2(ωLA) as a form of weight 3/2 and representation ωPA⊕NA via Lemma 5.7 and
(48) (cf. [13, Lemma 3.1]), and we argue as in [13, Lemma 7.3] that cgA((λ), λ) = 0 for all λ ∈ P∨A unless
λ ∈ P∨A ∩ L∨A = ZxA. We then define LA(s, φ) by the corresponding relation

L(s,Sµ,m(gA)) = cgA(µ,m) · LA(s, φ).

Using the same argument as for (87), we compute

L′(0, gA, UA) = (4πm)−
1
2 Γ

(
1

2

)
L′A(1/2, φ)

L(1, ηD)
=

√
Nm

2
√
m

cgA(µ,m)L′A(1/2, φ)

2πH(D)
=
N

1
2

4π
· cgA(µ,m)L′A(1/2, φ)

degZA(µ,m)
,

which via Lemma A.2 (i) and (iii) is the same as

L′(0, gA, UA) =
N

1
2

4π||gA||2
· cgA(µ,m)L′A(1/2, φ)

degZA(µ,m)
.(91)

We can intepret LA(s, φ) as the partial/class basechange L-function of φ to k with our unitary normal-
izations for the standard L-function (cf. [25]), so that in this setup we have the identifications of L-functions

L(s, φ× θ(χ)) =
∑

A∈C(Ok)

χ(A)LA(s, φ)LA(s, φ⊗ ηk) =
∑

A∈C(Ok)

χ(A)L(s, φ× θA).
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To be clear, we define each LA(s, φ) according to the partition of the lattice L =
⊕

A∈C(Ok)∼=QD LA so that∑
A∈C(Ok)

LA(s, φ) = L(s, φ)

is the finite part L(s, φ) of the standard L-function Λ(s, φ) = L∞(s, φ)L(s, φ). We can then define LA(s, φ⊗η)
simply as the quadratic twist. Writing Π = BCk/Q(π(φ)) to denote the quadratic basechange lifting of the
cuspidal automorphic representation π(φ) of GL2(A) associated to φ to GL2(Ak),with standard L-function

Λ(s,Π) = L∞(s,Π)L(s,Π) = Λ(s, φ)Λ(s, φ⊗ ηk) = L∞(s, φ)L(s, π)L∞(s, φ⊗ ηk)L(s, φ⊗ ηk),

we have an identification of L-functions∑
A∈C(Ok)

LA(s, φ)LA(s, φ⊗ ηk) = L(s, φ)L(s, φ⊗ ηk) = L(s,Π).

Moreover, we have for any character χ ∈ C(Ok)∨ the equivalence of L-functions∑
A∈C(Ok)

χ(A)LA(s, φ)LA(s, φ⊗ ηk) = L(s,Π⊗ χ).

Note that we can justify this latter identification after opening up Dirichlet series expansions for <(s) > 1
to see that both sides describe the Dirichlet series expansion of the basechange L-function L(s,Π⊗ χ) over
nonzero ideals a ⊂ Ok corresponding to sums over partial basechange L-functions (first for <(s) > 1)

LA(s,Π⊗ χ) = χ(A)LA(s,Π) = χ(A)
∑

a⊂Ok\{0}
[a]=A∈C(Ok)

aφ(Na)

Nas
= χ(A)

∑
a⊂Ok\{0}

[a]=A∈C(Ok)

aΠ(a)

Nas

determined by sums over ideals a ∈ A in each ideal class A ∈ C(Ok). That is, we have for each class
A ∈ C(Ok) the identification of partial/class basechange L-functions (first for <(s) > 1)

LA(s, φ)LA(s, φ⊗ η) = LA(s,Π) =
∑

a⊂Ok\{0}
[a]=A∈C(Ok)

aφ(Na)

Nas
=

∑
a⊂Ok\{0}

[a]=A∈C(Ok)

aΠ(a)

Nas
.

Hence, we have the identifications of quadratic basechange and Rankin-Selberg L-functions∑
A∈C(Ok)

χ(A)LA(s, φ)LA(s, φ⊗ ηk)

= L(s,Π⊗ χ) :=
∑

A∈C(Ok)

LA(s,Π⊗ χ) =
∑

A∈C(Ok)

χ(A)LA(s,Π)

= L(s, φ× θ(χ)) :=
∑

A∈C(Ok)

χ(A)L(s, φ× θA).

Remark A.8. Note that this realization of the Rankin-Selberg L-function L(s, φ × θ(χ)) is distinct from
that considered in Gross-Zagier [25], where the corresponding LA(s, f) for A ∈ C(Ok) denotes to the partial
Rankin-Selberg L-function L(s−1/2, φ×θA) in our description above. In particular, the LA(s, φ) here forms
a summand of the GL2(A)-automorphic L-function L(s, φ) as described in Lemma A.1. In other words, we
are working with some explicit form of the basechange equivalence L(s,Π⊗χ) = L(s, φ×θ(χ)) in this setup.

A.5.2. Relation to arithmetic heights of Heegner divisors. We argue as in the proof of Theorem A.6 that
when D is prime to 2N , we have for each class A ∈ C(Ok) the corresponding arithmetic height formulae[

ẐcA(fA),ZA(µ,m)
]

Fal
= − N

1
2

8π||gA||2
· cA(µ,m) · L′A(1/2, φ)

and

[yA(fA), yA(fA)]NT =
N

1
2

8π||gA||
· L′A(1/2, φ).
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We then argue as in Corollary A.6 that we can use the Waldspurger-like formula (90) to derive the formula

(92)

[
yφA(µ,m), yφA(µ,m)

]
NT

= [cgA(µ,m)yA(fA), cA(µ,m)yA(fA)]NT = cgA(µ,m)2 · [yA(fA), yA(fA)]NT

=
|D| 12 ||gA||2

2πN
1
2 ||φ||2

· L(1/2, φ⊗ ηD) · N
1
2

4π||gA||2
· L′A(1/2, φ) =

|D| 12
8π2||φ||2

· L(1/2, φ⊗ ηD) · L′A(1/2, φ)

for the φ-isotypical components. Taking the χ-twisted linear combination for any χ ∈ C(Ok)∨, we obtain

(93)

1

hk
· ĥk(yφχ) =

[
yφχ, y

φ
χ

]
NT

:=
∑

A∈C(Ok)

χ(A)
[
yφA(µ,m), yφA(µ,m)

]
NT

=
|D| 12

8π2||φ||2
· L(1/2, φ⊗ ηD)

∑
A∈C(Ok)

χ(A)L′A(1/2, φ)

=
|D| 12

8π2||φ||2
· L′(1/2,Π⊗ χ) =

|D| 12
8π2||φ||2

· L′(1/2, φ× θ(χ)).

This is the same as the formula of Gross-Zagier [25, Theorem I (6.3)] when |D| > 4:

Theorem A.9 (Gross-Zagier). Assume the fundamental discriminant D is coprime to 2N , and that |D| > 4.
Let f ∈ H1/2(ωL) as described in Lemma A.2 with g/||g||2 = ξ1/2(f) ∈ S3/2(ωL) and φ ∈ Snew,?

2 (Γ0(N)) the

corresponding Shimura lift. For χ any character of the ideal class group C(Ok) of k = Q(
√
D), we have that

1

hk
· ĥk(yφχ) =

[
yφχ, y

φ
χ

]
NT

:=
∑

A∈C(Ok)

χ(A)
[
yφA(µ,m), yφA(µ,m)

]
NT

=
|D| 12

8π2||φ||2
· L′(1/2, φ× θ(χ)).

Proof. See [25, Theorem I (6.3)], as presented in Theorem 1.1, which gives a distinct proof, e.g. without using
the Shimura correspondence. This approach is also distinct from the re-proofs and generalizations established
by Zhang [64], [65], [62], [63] and Yuan-Zhang-Zhang [59] for Shimura curves over totally real fields. �

Phrasing the result in terms of completed L-functions

Λ′(1/2, φ× θ(χ)) = Λ(1, ηk)L′(1/2, φ× θ(χ)) =
2πhk
wk

· L′(1/2, φ× θ(χ))

and comparing with Theorem 7.8 and Corollary 7.9, we obtain the following relations.

Corollary A.10. We have the arithmetic height formula

2π · ĥk(yφχ) =
|D| 12

8π2||φ||2
· Λ′(1/2, φ× θ(χ)) = −2π

∑
A∈C(Ok)

χ(A)
[
Ẑc(f0,A) : Z(VA,0)

]
,

where the twisted sum of special arithmetic divisors on the right-hand side represents the arithmetic Hirzebruch-
Zagier divisors on X0(N)×X0(N) described in Remark 7.7, Theorem 7.8, and Corollary 7.9 above.

Appendix B. Relation to metaplectic Fourier coefficients

We now use the connection to the regularized theta lifts Φ(f1/2, z) = GZ(f1/2)(z) ∈ L2(X0(N)) of Theorem

A.9 and Φ(f0, z) = GZ(f0)(z) ∈ L2(X0(N) ×X0(N)) of Theorem 7.8 to relate the central derivative values
Λ′(1/2, φ× θ(χ)) to Fourier coefficients of half-integral weight forms; cf. the works [12], [34], and [11].

B.1. The setting of signature (1, 2) with Φ(f1/2, z) ∈ L1+ε(X0(N)). Let us first recall the harmonic
weak Maass form described in Lemma A.2, adapted to class group representatives as in Theorem A.9 above.
Hence, we retain all of the setup of the previous section, with (V,Q) = (Mattr=0

2×2 (Q), N det(·)), the lattice
L ⊂ V giving rise to the congruence subgroup Γ0(N) ⊆ SL2(Z), and the sublattices LA ⊂ V corresponding
to ideal classes A ∈ C(Ok) described in (80). To be clear, we fix a cuspidal newform φ ∈ Snew,?

2 (Γ0(N))
which is invariant under the Fricke involution wN .
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B.1.1. Quadratic sublattices. If k is an imaginary quadratic field of discriminant dk < 0, we fix a set of
lattice representatives as in (80) above, together with positive-norm vectors x ∈ ΩA,µ,m(Q) and Heegner
divisors ZA(µ,m) ∈ Y0(N) as in (81). If k is a real quadratic field of discriminant dk > 0, we fix for each
class A ∈ C(Ok) an integer ideal representative a ⊂ Ok. We then fix a Witt decomposition

VA = KA ⊕QeA,1 ⊕QeA,2,

so that the orthogonal complement WA = K⊥A ⊂ V of the Lorentzian subspace KA of signature (1, 0) is
isomorphic to the signature (1, 1) subspace determined by (aQ, Qa) = (aQ,Nk/Q(·)/Na). Here, we write
eA,j ∈ V to denote the corresponding nonzero isotropic basis vectors with (eA,j , eA,j) = 0 for j = 1, 2 and
(eA,1, eA,2) = 1. We then write LA,W = L ∩WA for the corresponding lattice as in the discussion above,
leading to Theorem 5.14 (for the case of n = 1). Note that (LA,W , Q|WA

) corresponds to the quadratic
lattice (a, Qa(·)). Note as well that this quadratic lattice LA,W is isomorphic to the sublattice LA ⊂ V
defined in (80) above. Hence, for either case on of the quadratic field k, we have for each class A ∈ C(Ok) a
corresponding sublattice LA ⊂ L corresponding to an integral ideal representative a ⊂ Ok.

B.1.2. Vector-valued Shimura lifts. Fix a quadratic field k, real or imaginary, with discriminant dk, and
character ηk(·) = (dk· ). For each ideal class A ∈ C(Ok), we let gA ∈ Snew

3/2 (ωLA) denote the holomorphic

vector-valued cusp form of weight 3/2 and (Weil) representation ωLA associated to φ by the Shimura corre-
spondence via the isomorphism (83). By Lemma A.2 (cf. [13, Lemma 7.4], [12, Lemma 7.3]), there exists for
each class A ∈ C(Ok) a harmonic weak Maass form f1/2,A ∈ H1/2(ωLA) such that

(i) We have the relation ξ1/2(f1/2,A) = gA/||gA||2.

(ii) The Fourier coefficients c+f1/2,A(µ,m) of the principal/holomorphic part f+
1/2,A lie in Q(φ).

(iii) The constant coefficient c+f1/2,A(0, 0) vanishes.

Proposition B.1. For each class A ∈ C(OK), consider the corresponding regularized theta lift

Φ(f1/2,A, z) = Φ(f1/2,A, z, 1) =

∫ ?

F
〈〈f1/2,A(τ), θLA(τ, z, 1)〉〉dµ(τ)

= CTs=0

 lim
T→∞

∫
FT

〈〈f1/2,A(τ), θLA(τ, z, 1)〉〉v−sdµ(τ)


as a function of the variable z ∈ D(V ) = D±(V ) ∼= H. The following assertions are true.

(i) Φ(f1/2,A, z) determines a (weight zero) modular function on X0(N) with Laplacian eigenvalue 0.

(ii) Φ(f1/2,A, z) is the automorphic Green’s function for the special divisor Zc(f1/2,A) on X0(N).

(iii) Φ(f1/2,A, z) ∈ L1+ε(X0(N)).

Proof. All three assertions follow from Theorem 4.2, using the identification XKA
∼= Y0(N) and extending

to the cusps, as well as that c+f1/2,A(0, 0) = 0. �

Remark B.2. Note that for A ∈ C(Ok) with k real quadratic, the Fourier series expansions of these modular
functions Φ(f1/2,A, z) can be calculated according to [12, Theorem 5.3, cf. (5.10)]. More precisely, let r ∈ Z

be any integer such that dk ≡ r2 mod 4N . Let us for each lattice LA as defined in (80) above fix a primitive
isotropic vector lA ∈ LA and l′A ∈ L∨A so that (lA, l

′
A) = 1. We then have the corresponding positive definite

subspace defined by KA = LA ∩ l⊥A ∩ l′A. We choose these vectors so that

KA = Z

(
1 0
0 −1

)
.
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Given a vector λ ∈ KA ⊗R, we write λ > 0 if it is a positive multiple of

(
1 0
0 −1

)
. We then have

Φ(f1/2,A, z) = −4
∑
λ∈KA
λ>0

∑
b mod dk

ηk(b)c+f1/2,A

(
dkλ

2

2
, rλ

)
log

∣∣∣∣1− e((λ, z) +
b

dk

)∣∣∣∣ .
B.1.3. Relation to metaplectic Fourier coefficients. If we knew the functions Φ(f1/2,A, z) ∈ L1+ε(X0(N))
were square integrable, then a straightforward generalization of the theorem of Katok-Sarnak [34] would
relate the sums over CM cycles and geodesic sets we compute in Theorems 5.12 and 5.14 for the case of n = 1
to twisted sums over the half-integal weight forms Fj related to Φ(f1/2,A, z) by the Shimura correspondence

Shim(Fj) = Φ(f1/2,A, ·) of the Fourier coefficients cFj (dk)cFj (1). On the other hand, we have the following
more precise result in this direction. To describe it, we first need to describe the following trace coefficients
trµ,m(Φ(f1/2,A)) for each case on the quadratic field k.

When dk < 0 so that k is imaginary quadratic, define for each m ∈ Q>0 and µ ∈ L∨A/LA the trace function

trµ,m
(
Φ(f1/2,A)

)
=

∑
x∈Γ0(N)\ΩA,µ,m(Q)

1

# StabΓ0(N)(x)
· Φ
(
f1/2,A, ι(D(V )x)

)
.

Here, we write ι to denote the identification ι : D(V ) ∼= H. We also write ι(D(V )x) to denote the image of
D(V )x in the modular curve X0(N), so that the special (Heegner) divisors ZA(µ,m) we consider above is

ZA(µ,m) =
∑

x∈Γ0(N)\ΩA,µ,m(Q)

ι(D(V )x).

When dk > 0 so that k is real quadratic, we fix a vector x ∈ V (Q) of positive length m ∈ Q, and consider
the corresponding geodesic in D(V ) ∼= H defined by γx = D(V )x. Here, we fix the following orientation:

x =

(
1 0
0 −1

)
=⇒ γx = ±(0, i∞) is the imaginary axis with the orientation ±.

The orientation-preserving action of SL2(R) then induces an orientation on each geodesic γx. We also define

dzx = ±dz/
√
mz for x = ±

√
m

N

(
1 0
0 −1

)
.

Let α(x) = StabΓ0(N)(x)\γx, as well as its image in X0(N). Note that when the stabilizer StabΓ0(N)(x) is
infinite, α(x) determines a closed geodesic in X0(N). We then define for each m ∈ Q>0 and µ ∈ L∨A/LA the
corresponding trace function

trµ,m
(
Φ(f1/2,A)

)
=

1

2π

∑
x∈Γ0(N)\ΩA,µ,m(Q)

∫
α(x)

Φ(f1/2,A, z)dzx.

Here, each α(x) is a closed geodesic, equivalently, x⊥ is nonsplit over Q, and we again write

ΩA,µ,m(Q) = {x ∈ µ+ LA : Q(x) = m}

for the corresponding quadric16.

Theorem B.3 (Bruinier-Funke-Imamoglu). Fix any class A ∈ C(Ok). The generating series defined by

I1/2,µ(Φ(f1/2,A, ·), τ)

= −2
√
v trµ,0(Φ(f1/2,A)) +

∑
m<0

trµ,m(Φ(f1/2,A))
erf(2

√
π|m|v)

2
√
|m|

e(mτ) +
∑
m>0

trµ,m(Φ(f1/2,A))e(mτ)

16In the remaining case where α(x) is an infinite geodesic, equivalently when StabΓ0(N)(x) is trivial and the complement

x⊥ ⊂ V determines an isotropic quadratic space – which only happens if Q(x) ∈ N(Q×)2 – then the trace is defined according
to the regularization procedure described in [11, §3.3], and the corresponding complementary trace in [11, §3.3.2]. However,
as the orthogonal complement x⊥ ⊂ V always determines an anisotropic subspace (WA, Q|WA ) ∼= (aQ, Qa) in the setup we

consider above, we do not need to consider these variations of the trace here.

78



determines the µ part of a harmonic weak Maass form in H1/2(ωLA),

I1/2(Φ(f1/2,A), τ) =
∑

µ∈L∨A/LA

I1/2,µ(Φ(f1/2,A), τ) ∈ H1/2(ωLA).

Proof. This is special case of [11, Theorem 4.1] detailed for the setup we consider above. �

Now, we identify these traces with the CM cycles Z(UA) = Z(LA,0) and geodesic sets G(WA) described
for Theorems 5.12 and 5.14 above (for the special case of n = 1).

Proposition B.4. Let k be any quadratic field of discriminant dk prime to the level N . We have the follow-
ing identifications of the traces defined above in terms of the sums (50) of the regularized theta lift Φ(f1/2,A, z)
along the CM cycles Z(UA) defined in (6) and the geodesic sets G(WA) defined in (7).

(i) If A ∈ C(Ok) for k an imaginary quadratic field of discriminant dk < 0, then for each positive norm
vector x ∈ ΩA,µ,m(Q) with orthogonal complement UA = UA(x) := x⊥ ⊂ V , we have that

trµ,m(Φ(f1/2,A)) = Φ(f1/2,A, Z(UA)).

(ii) If A ∈ C(Ok) for k a real quadratic field of discriminant dk > 0, then for each positive norm vector
x ∈ ΩA,µ,m(Q) ⊂ KA with orthogonal complement WA = WA(x) := x⊥ ⊂ V , we have that

trµ,m(Φ(f1/2,A)) = Φ(f1/2,A, G(WA)).

Proof. Cf. [13, Proposition 7.2]. We use that ΩA,µ,m(Af ) = KAx = KLAx in either case. Hence for (i), we
see from the corresponding definition (5) of ZA(µ,m) that ZA(µ,m) = Z(UA). The result then follows from
the definitions. Similarly, for (ii), we see from the corresponding definition (7) of the geodesic G(WA) with
the natural identification D(V )x ∼= D(WA) that the identification follows from the definitions. �

Putting these results together with Theorem 5.12, Theorem 5.14, and Lemma A.2 (cf. [13, Lemma 7.4]),
we obtain the following.

Theorem B.5. We have via Theorem 5.12 and Theorem 5.14 for the quadratic space (V,Q) of signature
(1, 2) described above the following identification of central derivative values of L-functions as Fourier coef-
ficients of half-integral weight forms.

(i) Let k be an imaginary quadratic field of discriminant D = dk < 0. Assume as in Lemma A.1 that
m = −D/4N for D = −4Nm with D ≡ r2 mod 4N , and take µ = µr. Then, for χ and character of
the ideal class group C(Ok), we have the relation∑

A∈C(Ok)

χ(A) · cgA(µ,m) · trµ,m
(
Φ(fA,1/2)

)
= − |D| 12

16π2||φ||2
· L′(1/2, φ× θ(χ)).

(ii) Let k be a real quadratic field of discriminant dk > 0, and x ∈ ΩA,µ,m(Q) ⊂ KA a positive norm
vector with orthogonal complement WA = WA(x) := x⊥ ⊂ V as in Proposition B.4 (ii). We have for
each class A ∈ C(Ok) the relation

trµ,m(Φ(f1/2,A)) = − 4hk
wk ln(εk)

· L′(0, gA × θL⊥A,W ).

Proof. For (i), we combine Proposition B.4, Theorem 5.12, Lemma A.1 (cf. (91)) and Lemma A.2 to find

(94)

trµ,m(Φ(f1/2,A)) = Φ(f1/2,A, Z(UA)) = −deg(Z(UA))

2
· L′(0, ξ1/2(f1/2,A)× θL⊥A )

= −deg(Z(UA))

2
· N

1
2

4π||gA||2
· cgA(µ,m)L′A(1/2, φ)

degZA(µ,m)

= −N
1
2 · cgA(µ,m)

8π||gA||2
· L′A(1/2, φ).
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A variation of the formula (90) implied by [26, §II.4, Corollary 1] gives us the corresponding relation

cgA(µ,m)2 =
||gA||2|D|

1
2

2πN
1
2 ||φ||2

· LA(1/2, φ⊗ ηD).(95)

Multiplying both sides of (94) by the Fourier coefficient cgA(µ,m) and applying (95), we find that

cgA(µ,m) · trµ,m
(
Φ(fA,1/2)

)
= −N

1
2 · cgA(µ,m)

8π||gA||2
· L′A(1/2, φ)

= − |D| 12
16π2||φ||2

· LA(1/2, φ⊗ ηD) · L′A(1/2, φ).

Taking the twisted linear combination for any class group character χ ∈ C(Ok)∨, we then find that∑
A∈C(Ok)

χ(A) · cgA(µ,m) · trµ,m
(
Φ(fA,1/2)

)
= − |D| 12

16π2||φ||2
∑

A∈C(Ok)

χ(A)LA(1/2, φ⊗ ηD)L′A(1/2, φ)

= − |D| 12
16π2||φ||2

· L′(1/2, φ× θ(χ)).

For (ii), we put together Proposition B.4, Theorem 5.14, and Lemma 5.8 to get the relation

trµ,m(Φ(f1/2,A)) = Φ(f1/2,A, G(WA)) = − 4

vol(KWA
)
· L′(0, ξ1/2(f1/2,A)× θL⊥A )

= − 4hk
wk ln(εk)

· L′(0, gA × θL⊥A,W ).

�

Remark B.6. In the situation of Theorem B.5 (ii), we expect there to be an analogue of the adjoint map of
[26, §II.4] to give a precise relation between the L-function of the vector-valued Shimura lift L(s, gA) and the
standard L-function L(s, φ), and from this an analogue of [26, §II.4, Corollary 1] to derive a precise relation
between the squares of the Fourier coefficients cgA(µ,m)2 and the twisted central values L(1/2, φ⊗ ηD). Of
course, some relation between these values is known fairly generally by the works of Waldspurger [56], [55]
and Kohnen-Zagier [38]. We hope to make this more explicit this in a subsequent work, and in this way
perhaps to resolve the conjecture implied by Bruinier-Ono [12, Theorem 1.1 (2)] in this way.

B.2. The setting of signature (2, 2) with Φ(f0, z) ∈ L1+ε(X0(N)×X0(N)). We now return to the setup
of Theorem 7.8 and Corollary 7.9. Hence, for k a real or imaginary quadratic field of discriminant dk prime
to N and quadratic Dirichlet character ηk(·) = (dk· ), we fix for each ideal class A ∈ C(Ok) an integer ideal
representative a ⊂ Ok with norm form Qa(·) = Nk/Q(·)/Na. We then consider the quadratic space (VA, QA)

of signature (2, 2) defined by (VA, QA) = (aQ ⊕ aQ, Qa − Qa). We fix LA = N−1a + N−1a ⊂ VA to be
the lattice whose adelization corresponds to the compact open subgroup KA = KLA = K0(N)⊕K0(N), as
described in Corollary 2.4. We fix a cuspidal newform φ ∈ Snew

2 (Γ0(N)). We then argue following Corollary
6.5 that there exists a vector-valued form gφ,A ∈ S2(ωLA) lifting φ. For each ideal class A ∈ C(Ok), we then
take f0,A ∈ H0(ωLA) to be any cuspidal harmonic weak Maass form of weight zero and representation ωLA
whose image under the differential operator ξ1/2 equals gφ,A.

Proposition B.7. For each class A ∈ C(OK), consider the corresponding regularized theta lift

Φ(f0,A, z) = Φ(f0,A, z, 1) =

∫ ?

F
〈〈f0,A(τ), θLA(τ, z, 1)〉〉dµ(τ)

= CTs=0

 lim
T→∞

∫
FT

〈〈f0,A(τ), θLA(τ, z, 1)〉〉v−sdµ(τ)


as a function of the variable z ∈ D(VA) = D±(VA) ∼= H2. The following assertions are true.
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(i) Φ(f0,A, z) determines a (parallel weight 0) modular function on X0(N)2 with Laplacian eigenvalue 0.

(ii) Φ(f0,A, z) is the automorphic Green’s function for the special divisor Zc(f0,A) on X0(N)2.

(iii) Φ(f0,A, z) ∈ L1+ε(X0(N)2).

Proof. Again, all three assertions follow from Theorem 4.2, using the identification XKA
∼= Y0(N)2 and

extending to the cusps, as well as that c+f0,A(0, 0) = 0. �

Again, we note that if these regularized theta lifts Φ(f0,A, z) ∈ L1+ε(X0(N)2) were known to be square
integrable, then a straightforward generalization of the main theorem of Katok-Sarnak [34] would allow us
to relate the twisted linear combinations of Theorem 6.8 and Corollary 6.9 to twisted linear combinations of
metaplectic Hilbert modular forms (on X0(4N)2) of parallel weight 1/2. Here, we expect there to be some
version of Theorem B.3 that generalizes the theorems of Waldspurger [56] and Gross-Kohnen-Zagier [26,
§II.4, Corollary 1] relating central values of quadratic twists of GL2(A)-automorphic L-functions to Fourier
coefficients of half-integral weight forms to central derivative values.

Conjecture B.8. Retain the setups of Theorem 5.12 and 5.14, with k the corresponding quadratic field.
Through the connection to the sums Φ(f0,A, VA,0) and Φ(f0,A, G(WA)) of the automorphic Green’s functions
Φ(f0,A) along CM cycles VA,0 ⊂ VA or geodesic sets respectively via Theorem 6.8 and Corollary 6.9, we have
for any class group character χ ∈ C(Ok) a relation between the central derivative value L′(1/2, φ × θ(χ))
and a twisted linear combination of Fourier coefficients of some Hilbert modular form of parallel weight 3/2
on the Hilbert modular surface X0(4N) ×X0(4N), as well as a relation to a twisted linear combintation of
Fourier coefficient of a harmonic weak Maass form of parallel weight 1/2 and representations ωLA .

That is, we expect to have an analogue of the main theorem of Bruinier-Funke-Imamoglu [11] for this setup
of type with rational quadratic spaces (VA, QA) of signature (2, 2), linking to Fourier coefficients of harmonic
weak Hilbert Maass forms of parallel weight 1/2. We also expect to have an analogue of the theorems of
Waldspurger [56], [55], Kohnen-Zagier [38], and Gross-Kohnen-Zagier [26, § II.4, Corollary 1] to express the
central derivative values L′(1/2, φ × θ(χ)) – at least for the principal class group character χ = χ0 where
L′(1/2, φ× θ(χ0)) = L′(1/2, φ)L(1/2, φ⊗ ηk) – relating to squares of Fourier coefficients of Hilbert modular
forms of parallel weight 3/2. Although we do not pursue the idea here, we use this method of proof of the
Gross-Zagier formula via regularized theta lifts to illustrate the natural connection for some future work.
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