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Abstract. We formulate and prove a conjecture in the style of Mazur-Greenberg for the nonvanishing of
central values of Rankin-Selberg L-functions attached to elliptic curves in abelian extensions of imaginary
quadratic fields. This in particular generalizes the theorem of Rohrlich on L-functions of elliptic curves
in cyclotomic towers to the setting of abelian extensions of imaginary quadratic fields, corresponding to
families of degree-four L-functions given by GL(2)×GL(2) Rankin-Selberg L-functions. It also generalizes
the theorems of Rohrlich, Greenberg, Vatsal, and Cornut for L-functions of elliptic curves in Z2

p-extensions
of imaginary quadratic fields.
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1. Introduction

We formulate and prove a conjecture in the style of Mazur-Greenberg for central values of Rankin-Selberg
L-functions in the non self-dual setting, motivated by applications to bounding Mordell-Weil ranks in the
setting of two-variable main conjectures of Iwasawa theory for elliptic curves without complex multiplication
(see e.g. [7], [28], [34], [46]). Such applications are explained in the sequel work [44], along with how stronger
results can be deduced from the existence of a suitable p-adic L-function (such as [19] and [34]) to generalize
the theorems of Greenberg [16], Rohrlich [38] [37], Vatsal [47] and Cornut [11]. The main purpose of this
work is to consider the problem from an analytic point of view, and to derive estimates which should be of
independent interest. In particular, we develop spectral decompositions of the shifted convolution sums in
ways that should be applicable to study average central values of arbitrary GL4-automorphic L-functions.
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That is, we develop spectral analogues of the shifted convolution problem to estimate the off-diagonal terms
appearing in first moments of a general class of Rankin-Selberg L-functions, together with averages over
primitive Dirichlet characters of these L-functions (see also remark (3) below). We expect that this double
averaging could be developed in the broader setup described in [43] to estimate central values of GL4-
automorphic L-functions in these families, possibly through development of similar summation methods for
Eisenstein series on GL4.

Let f be a holomorphic cuspidal eigenform of squarefree level N and trivial nebentype character1. We
shall assume that f is a newform of integral weight l ≥ 2, with Fourier series expansion at infinity

f(z) =
∑
n≥1

n
(l−1)

2 λ(n)e2πinz, z ∈ H

normalized so that λ(1) = 1. Let K be an imaginary quadratic field of discriminant D < 0 prime to N and
associated quadratic Dirichlet character η = ηD. Fix an odd prime p which is coprime to the product ND.
Let W be a finite order Hecke character of K of the form

W = ρχ ◦N,(1)
where ρ is a primitive ring class character of K of some p-power conductor, and χ ◦ N is induced via
composition with the norm N from a primitive Dirichlet character χ of p-power conductor. Note that
as functions on nonzero ideals a ⊂ OK , the ring class Hecke character ρ in this decomposition (1) can
be characterized by the condition ρ(a) = ρ(a), i.e. ring class characters are equivariant under complex
conjugation. Given such a Hecke character W of K as in (1), let us write c(W) = c(ρ)c(χ) ∈ Z to denote its
conductor. A classical construction due to Hecke (see e.g. [18] or [17, § I (5.2) and § IV]) associates to W
a holomorphic theta series Θ(W) of weight 1, level |D|c(W)2 and character ηW|Q = ηχ2. We consider the
Rankin-Selberg L-function L(s, f ×W) of f times Θ(W), whose completed L-function Λ(s, f ×W) satisfies
a functional equation of the form

Λ(s, f ×W) = ε(1/2, f ×W)Λ(1− s, f ×W).(2)

Here, ε(1/2, f × W) ∈ S1 is a complex number of modulus one known as the root number. If W = ρ is
a ring class character of K, then it is easy to see that the coefficients in the Dirichlet series expansion of
L(s, f × ρ) are real-valued, and hence that ε(1/2, f ×W) takes values in the set {±1}. In this setting, the
L-function L(s, f ×W) is said (for representation theoretic reasons) to be self-dual. Moreover, when W = ρ
is a ring class character, it is easy to see that the functional equation is symmetric, relating values of the
same L-function Λ(s, f × ρ) on either side (via equivariance of ρ under complex conjugation). In particular,
when W = ρ is a ring class character, if ε(1/2, f × ρ) equals −1 (as opposed to +1), then the central value
Λ(1/2, f × ρ) is forced to vanish by the functional equation. Let us for future reference distinguish this
particular case of forced vanishing from all others as follows:
Definition We refer to a pair (f,W) as exceptional if the Hecke character W = ρ is a ring class character
(including products of genus class group characters) and ε(1/2, f ×W) = −1, and as generic otherwise.
Remark This characterization of forced vanishing is stable in the following sense. As we explain below, it is
well-known that there exists an integer ν = ν(f,D, p) ∈ {0, 1} for which the root number ε(1/2, f×ρ) = (−1)ν
for all but finitely many ring class characters ρ of K of p-power conductor. Our generic case consists of the
setting where either (i) this ring class root number is parametrized by (−1)ν = 1 for ν = 0 in this way, or
more generally (ii) the Hecke characterW = ρχ◦N contains a nontrivial cyclotomic part χ◦N irrespective of
the characterization of ν, in particular so that there is no forced vanishing of central values via the functional
equation (2). We then study the values L(k)(1/2, f ×W) with k = 0 when (f,W) is generic in this sense.

We establish nonvanishing estimates for averages of central derivative values L′(1/2, f × ρ) in the excep-
tional setting on (f,W), and averages of central values L(1/2, f ×W) in the generic setting on (f,W). In
particular, we derive estimates in the latter setting for W = ρχ ◦N having both nontrivial ring class part ρ
and cyclotomic part χ ◦N. This fills a gap in the literature, and has various arithmetic applications such as
to bounding Mordell-Weil ranks via Iwasawa main conjectures, as we explain in the sequel note [44], which
can be viewed as an appendix to this paper. In particular, pairing together the analytic estimates shown in

1In fact, we can work with an arbitrary Hecke-Maass eigenform f of level prime to pD for most of our arguments, but restrict
to this setting (which is relevant to Shimura’s rationality theorems and Iwasawa theory) for simplicity.
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this paper with the investigation of the structure of some associated p-adic L-function in the sequel paper
[44], we prove this conjecture in many cases. Our results here also generalize the well-known theorems of
Cornut [11] and Vatsal [47] in the self-dual setting, as well as the theorems of Greenberg [16] and Rohrlich
[38], [37]. Note that the aforementioned proofs of Cornut and Vatsal rely on completely different methods,
starting with the special value formulae of Gross [16], Waldspuger [48], Gross-Zagier [17], Zhang [50], and
Yuan-Zhang-Zhang [49] which cannot be extended to the generic non self-dual setting (ii) we consider here.

The point of departure in the works of Greenberg [16], Rohrlich [38] [37] and Vatsal [47] for central values
is the following rationality theorem of Shimura [39, Theorem 4]. To recall this briefly, let F denote the Hecke
field of f , i.e. the finite extension of the rational number field Q obtained by adjoining the eigenvalues of
f . Hence, F is shown by Shimura to be a number field; in fact, F is totally real if f is not dihedral, and
otherwise imaginary quadratic. Fix a Hecke character W = ρχ ◦N as in (1) above, with ρ a primitive ring
class character of conductor pα, and χ a primitive Dirichlet character of conductor pβ , for some integers
α, β ≥ 0. Let F (W) denote the cyclotomic extension of F obtained by adjoining the values of W. Given
a complex embedding of F (W) fixing F , let Wσ denote the Hecke character defined on ideals a of K by
a 7→ W(a)σ. Let 〈f, f〉 denote the Petersson norm of f . Shimura [39, Theorem 4] shows that the values

L(1/2, f ×W) = L(1/2, f ×W)
8π2〈f, f〉

are algebraic, in fact that they lie in the number field F (W), and moreover that these values are Galois
conjugate in the sense that any automorphism σ of F (W) acts on the value L(1/2, f ×W) by the rule

L(1/2, f ×W)σ = L(1/2, fτ ×Wσ),
where τ denotes the restriction of σ to F . It follows L(1/2, f ×W) vanishes if any only if L(1/2, f ×Wσ)
vanishes for each automorphism σ of F (W) fixing F . A similar notion of Galois conjugacy can be established
in the exceptional setting via the formulae of Gross-Zagier [17] and more generally Zhang [50] or Yuan-Zhang-
Zhang [49] for the central derivative values L′(1/2, f × ρ) (cf. [37, p. 385]), at least assuming f has weight
l = 2. Thus, it can also be deduced in the exceptional setting on (f,W) that the value L′(1/2, f×ρ) vanishes
if any only if the value L′(1/2, f × ρσ) vanishes for each complex embedding σ of F (ρ) fixing F . Let us
therefore define k = k(f,W) ∈ {0, 1} by the condition

k = k(f,W) =
{

0 if the pair (f,W) is generic
1 if the pair (f,W) is exceptional, i.e. W = ρ ring class with ε(1/2, f × ρ) = −1.

We then define the associated k-th Galois average

G
(k)
[W] = 1

[F (W) : F ]
∑
σ

L(k)(1/2, f ×Wσ).(3)

Here, the sum runs over embeddings σ : F (W)→ C fixing F . As well, L(0)(1/2, f ×W) denotes the central
value L(1/2, f × W), and L(1)(1/2, f × W) the derivative value L′(1/2, f × W). We make the following
conjecture in the spirit of Mazur, Greenberg [16] and Coates-Fukaya-Kato-Sujatha [7] for these averages, of
which the theorems of Greenberg [16], Rohrlich [38], [37], Vatsal [47] and Cornut [11] would be special cases.

Conjecture 1.1. Let W = ρχ ◦N be a Hecke character of K of finite order as in (1) above. Let k = 1 if
the pair (f,W) is exceptional, or else k = 0 if the pair (f,W) is generic. If c(W) is sufficiently large, then
G

(k)
[W] 6= 0. Equivalently, for all but finitely many such W, the value L(k)(1/2, f ×W) does not vanish.

We prove this conjecture in many cases, starting with analytic estimates for the following coarser averages.
Fix a Hecke characterW = ρχ◦N of the form described in (1) above, with ρ a primitive ring class character
of conductor pα for some integer α ≥ 0, and χ a primitive even2 Dirichlet character of conductor pβ for some
integer β ≥ 0. Let #C?(α) denote the number of primitive ring class characters of conductor pα. Hence,
writing #C(α) to denote the number of ring class characters of K of conductor pα, and hence #C(α−1) the
number of ring class characters of conductor pα−1, we have that #C?(α) = #C(α)−#C(α− 1). Note that

2We average over even Dirichlet characters so that the archimedean component of the corresponding idele class character is
trivial, and so the archimedean components of the L-function do not depend on the choice of character. That is, we average
over a family of wide ray class characters of K, which is simpler for our approximate functional equation below.
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by Dedekind’s theorem (see e.g. [12, Theorem 7.24]), the cardinality #C(α) is given by an integer multiple
of the class number hK = #C(0) = # Pic(OK). To be more precise, we have Dedekind’s formula

#C(α) = hK · pα

[O×K : O×pα ]
·
(

1− η(p)
p

)
=


hKp

α

[O×
K

:O×
pα

] ·
(
p−1
p

)
if p splits in K

hKp
α

[O×
K

:O×
pα

] ·
(
p+1
p

)
if p is inert in K

hKp
α

[O×
K

:O×
pα

] if p ramifies in K.

(4)

Let ϕ?(pβ) the number of primitive Dirichlet characters χ mod pβ , so that ϕ?(pβ)/2 counts the number
of primitive even Dirichlet characters χ mod pβ . Writing k ∈ {0, 1} as above according as to whether
the pair (f,W) is generic or exceptional, we first consider the weighted average over primitive ring class
characters ρ of conductor pα and primitive even Dirichlet characters χ mod pβ of the corresponding L-values
L(k)(1/2, f × ρχ ◦N):

H(k)(α, β) = 1
#C?(α)

∑
ρ∈Pic(Opα )∨

primitive

2
ϕ?(pβ)

∑
χmod pβ

primitive,χ(−1)=1

L(k)(1/2, f × ρχ ◦N).

Here, Pic(Opα) denotes the class group of the order Opα = Z + pαOK of conductor pα in OK , so that the
character group of Pic(Opα)∨ of Pic(Opα) contains all of the ring class class characters ρ of conductor pα.

To describe the estimates we derive for these averages, we first need to recall the Dirichlet series expansion
of the symmetric square L-function L(s,Sym2 f) of f : Given s ∈ C (first with <(s) > 1), we can then define
L(s,Sym2 f) by the Dirichlet series expansion

L(s,Sym2 f) = ζ(N)(2s)
∑
n≥1

λ(n2)
ns

=
∑
m≥1

(m,N)=1

1
m2s

∑
n≥1

λ(n2)
ns

.(5)

In the non-self-dual setting with χ a primitive even Dirichlet character χ mod pβ for some β ≥ 1, we also
consider the twisted symmetric square L-functions L(s,Sym2 f ⊗ χ) defined for <(s) ≥ 1 by

L(s,Sym2 f ⊗ χ) = L(Np)(2s, ηχ2)
∑
n≥1

λ(n2)χ(n2)
ns

=
∑
m≥1

(m,pN)=1

ηχ2(m)
m2s

∑
n≥1

λ(n2)χ(n2)
ns

.

We refer to [21, §5], [8], and [15] for background on these L-functions. Let γ = limx→∞

(∑
x≤n

1
n − log x

)
denote the Euler-Mascheroni constant. Hence, γ ≈ 0.577 appears as the constant term in the Laurent series
expansion of ζ(s) around s = 1. Given an integer M ≥ 1 and an L-function L(s), we also write L(M)(s)
to denote the L-function determined by L(s) after removal of the Euler factors at primes dividing M . Let
w = wK denote the number of roots of unity in K. Let us also use the word “constant” to mean any nonzero
complex number that does not depend on any of the parameters f, p,D, α ≥ 0, β ≥ 0 unless stated otherwise,
using the corresponding subscripts in the big O notation. We give these constants as precisely as possible
throughout to spell out all dependencies. While these constants often depend on the eigenform f , the prime
p, or the fundamental discriminant D, they are typically independent of the ring class exponent α ≥ 1 or
the cyclotomic exponent β ≥ 1. We first prove the following main result.

Theorem 1.2. Let f be a Hecke eigenform of even weight l ≥ 2, squarefree level N and trivial character.
If the cyclotomic exponent β = 0 is trivial, then assume that f is not dihedral, in other words not given by a
theta series corresponding to some Hecke character of a quadratic field. Fix K an imaginary quadratic field of
discriminant D < 0 and quadratic Dirichlet character η = ηD. Let p ≥ 3 be prime number, and assume that
(p,ND) = (N,D) = 1. We prove the following estimates in either case on the generic root number k ∈ {0, 1}:
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(i) (Theorem 3.4 (i)). If k = 0 and α ≥ 0 is any integer, then we have for any ε > 0 the estimate

H(0)(α, 0) =
(

1− 2 · #C(α− 1)
#C?(α)

)
· 4
w
· L(1, η) · L

(pα)(1,Sym2 f)
ζ(Npα)(2)

+Of,ε

(
|D|− 1

8 +εp−
α
2

)
+Of,ε

(
(|D|p2α)− 1

16 +ε
)
.

In particular, if α is sufficiently large, then the average H(0)(α, 0) does not vanish.

(ii) (Theorem 3.4 (ii)). If k = 1 and α ≥ 0 is any integer, then we have for any ε > 0 the estimate

H(1)(α, 0) =
(

1− 2 · #C(α− 1)
#C?(α)

)
× 4
w
· L(1, η) · L

(pα)(1,Sym2 f)
ζ(Npα)(2)

·
[
log
(
N |D|p2α)+ L′

L
(1, η) + L(pα)′

L(pα) (1,Sym2 f)− 2(γ + log(2π))− ζ(Npα)′

ζ(Npα) (2)
]

+Of,ε

(
|D|− 1

8 +εp−
α
2

)
+Of,ε((|D|p2α)− 1

16 +ε).

In particular, if α (or pα|D|) is sufficiently large, then the average H(1)(α, 0) does not vanish.

(iii) (Theorem 4.6). Fix an integer β ≥ 1. We have for each integer α ≥ 1 the estimate

H(0)(α, β) =
(

1− 2 · #C(α− 1)
#C?(α)

)
× 2
w

∑
χ mod pβ

primitiveχ(−1)=1

(
L(1, ηχ2) · L(1,Sym2 f ⊗ χ)

L(N)(2, χ)
+ ηχ2(−N)τ(ηχ2)4

|D|2p2β · L(1, ηχ2) · L(1,Sym2 f ⊗ χ)
L(N)(2, χ)

)

+Of,ε

((
|D|pβ

) 3
16 +ε (|D|p2 max(α,β)

)− 1
4
)

+Of,β,ε

((
|D|p2α)− 1

4 +δ0
)
.

In particular, if α� β is sufficiently large, then the average H(0)(α, β) converges to the constant(
1− 2 · #C(α− 1)

#C?(α)

)
× 2
w

∑
χ mod pβ

primitiveχ(−1)=1

(
L(1, ηχ2) · L(1,Sym2 f ⊗ χ)

L(N)(2, χ)
+ ηχ2(−N)τ(ηχ2)4

|D|2p2β · L(1, ηχ2) · L(1,Sym2 f ⊗ χ)
L(N)(2, χ)

)
.

We also show in the proof of Theorem 4.6 that this constant cannot vanish, using the nonvanishing
of each of the values L(1, ηχ2)L(1,Sym2 f ⊗ χ) to derive an argument by contradiction.

Some remarks. Let us make the following immediate comments; we give a high-level sketch of the proofs
(and explain the provenance of the exponents) in this final subsection of this introduction.

(1) We assume for simplicity that f is non-dihedral when β = 0, since otherwise there would be a more
complicated main term in our self-dual estimates (i) and (ii) coming from the residual spectrum
of the space of L2-automorphic forms on the metaplectic cover of GL2(A) (see [42, Theorem 1]).
As well, there would be a similar residual contribution in the error term of (iii). These residual
contributions however present only technical complications to our main argument. In principle, a
similar set of nonvanishing estimates can be established in the dihedral setting, consistent with the
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nonvanishing theorems of Rohrlich [37] and Greenberg [16]. We leave this for a subsequent work.

(2) It is easy to deduce from Theorem 1.2 that H(k)(α, 0) 6= 0 for sufficiently large ring class exponent
α � 1, and in the case of k = 1 also for sufficiently large absolute discriminant |D| � 1 (cf. [40]).
Here, we use the well-known nonvanishing of L(1,Sym2 f). In fact, these values are in fact bounded
below by 1 via the theorem of Goldfeld-Hoffstein-Lieman [15], cf. [8, Lemma 4.2]. Moreover, since η
is an odd Dirichlet character, we could also use Colmez [10, Proposition 5] to derive the lower bound

1
2 log(N |D|p2 max(α,β)) + L′

L
(1, η)� 1

2 log
(
N |D|2p2 max(α,β)

)
� log pα +Of,D(1).

We refer to Lemma 3.2 for more on the nonvanishing and bounds for the residual terms appearing
in Theorem 1.2 (i) and (ii), as well as the more general residual terms Lk,f,γA(1) defined below.

(3) In the more general setting of H(0)(α, β) in (iii), we proceed in the same way as for the self-dual
case (see Theorem 3.3 and Theorem 4.6), and note that a finer result can be derived without taking
the average over Dirichlet characters (as detailed in the second sequel work [45]). In any case, we
only derive nonvanishing estimates this way for a fixed cyclotomic exponent β (or character), with
sufficiently large ring class exponent α� β.

Using variations of the ideas appearing in Theorems 3.4 and 4.6, we obtain the following refinement for
the Galois averages G(k)

[W] of Conjecture 1.1. Let us for any integer α ≥ 0 write C(α) = Pic(Opα) to denote
the class group of the order Opα , with C(α)∨ its character group, and #C(α) its cardinality. Recall that for
α ≥ 1, a ring class character ρ of C(α) is said to be primitive if it does not factor through C(α−1), and that
we write #C?(α) = #C(α)−#C(α−1) to denote the number of such characters. Writing x = ordp(#C(α))
for the exponent of p in #C(α), we consider subaverages over primitive ring class characters of conductor
pα and exact order px. To fix ideas, recall that by Dedekind’s formula (4), the cardinality #C(α) is given
by a precise integer multiple of the class number hK of K. This formula (4) gives us the relation

x = ordp (#C(α)) = α+ ordp

(
hK

[O×K : O×pα ]
·
(

1− η(p)
p

))
.

From this, we can write α = x+ δ, where

δ = − ordp

(
hK

[O×K : O×pα ]
·
(

1− η(p)
p

))
is an integer depending on p. If the exponent of the ring class conductor α ≥ 0 is sufficiently large so that
x = ordp(#C(α)) ≥ 1, (for instance if α ≥ 1), then we consider averages over ring class characters of exact
order px. Writing #C(α, y) for each integer 0 ≤ y ≤ x to denote the index #C(α, y) = [C(α) : C(α)py ], with

#C?(α, x) = #C(α, x)−#C(α, x− 1) = [C(α) : C(α)p
x

]− [C(α) : C(α)p
x−1

]

the difference, we consider the corresponding averages over primitive ring class character of exact order px,

G(k)(α;x) = 1
#C?(α, x)

∑
ρ∈Pic(Opα )∨

ρp
x=1

ρp
y 6=1 ∀0≤y≤x−1

L(k)(1/2, f × ρ)

in the self-dual setting with β = 0, and more generally the double average

G(0)(α, β;x) = 1
#C?(α, x)

∑
ρ∈Pic(Opα )∨

ρp
x=1

ρp
y 6=1 ∀0≤y≤x−1

2
ϕ?(pβ)

∑
χ mod pβ

χ(−1)=1,primitive

L(k)(1/2, f × ρχ ◦N)

in the generic, non-self-dual setting with β ≥ 2.
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Given a class A ∈ C(α), let qA(x, y) = γAx
2 + δAxy+ εAy

2 be any3 binary quadratic form class represen-
tative in the corresponding class group Q(α) ∼= C(α) of binary quadratic forms of discriminant Dp2α. Let us
for each divisor q | γA write f (q) to denote the shift of f defined on z = x+ iy ∈ H by f (q)(z) = f(q−1z). We
then write λ(q) to denote its corresponding shift of the Fourier coefficient by q. We consider the corresponding
congruence symmetric square Dirichlet series Lq(s,Sym2 f (q)) defined for <(s) > 1 by the expansion

Lq(s,Sym2 f (q)) = ζ(N)
q (2s)

∑
n≥1

n≡0 mod q

λ(q)(n2)
ns

=
∑
m≥1

(m,N)=1

1
m2s

∑
n≥1

m2n≡0 mod q

λ(n2q−1)
ns

,

and similarly

L(pα)
q (s,Sym2 f (q)) = ζ(Npα)

q (2s)
∑
n≥1

(n,pα)=1
n≡0 mod q

λ(q)(n2)
ns

=
∑
m≥1

m2≡0 mod q

1
m2s

∑
n≥1

(n,pα)=1
n≡0 mod q

λ(n2q−1)
ns

.

These congruence series appear in the corresponding residual terms Lk,f,γA(1) for the self-dual setting,

L0,f,γA(1) := 4
w
·
∑
q|γA

µ(q) · λ
(q)(γA)

γ
1
2
A

· L(1, η) · L
(pα)
q (1,Sym2 f (q))

ζ
(Npα)
q (2)

and
L1,f,γA(1)

:= 4
w
· L(1, η) · L

(pα)(1,Sym2 f)
ζ(Npα)(2)

·
[(
N |D|p2α)+ L′

L
(1, η) + L(pα)′

L(pα) (1,Sym2 f)− 2(γ + log(2π))− ζ(Npα)′

ζ(Npα) (2)
]
.

We give estimates for both residual terms Lk,f,γA(1) in Lemma 3.2 below. To describe these briefly, let us
first recall following [8, §4], [20], and [15] that there exists a constant C = C(A2) > 0 depending on the size
of the largest known zero-free region [1−A2/ log(N), 1] of the symmetric square L-function L(s,Sym2 f) for
which we have the lower bound

L(1,Sym2 f) = (4π)l

Γ(l) ·
〈f, f〉

Vol(Γ0(N)\H) � log(N)−C .

Putting this together with upper bounds that can be derived using the automorphy of L(s,Sym2 f) as in [8,
(1.3), Lemma 4.1], we then have

log(N)−C � L(1,Sym2 f)� log(N)3.

Let us also define the constant

Kf,γA(1) =
∑
q|γA

q≥1,squarefree

µ(q)
q

λ
(
γA
q

)
γ

1
2
A

∑
r|q

µ(r)
r
λ
(q
r

)
· · ·
∑
d|r′′
d=1

µ(d)
d

λ

(
r′′

d

)
.

Here, the iterated sum over divisors d | r′′ | · · · | r | q terminates with d = 1, and Kf,1(1) = 1 when
γA = 1. Note that for the principal class A = 1, taking qA(x, y) = q1(x, y) to be the reduced quadratic form
representative with leading coefficient γA = 1, this is simply Kf,γA(1) = 1. Writing εp(1)−1 to denote the
Euler factor at p of L(1,Sym2 f)

ζ(2) so that

εp(1) =

(
1− λ(p2)

p + λ(p2)
p2 − 1

p3

)
(1− 1

p2 )
> 0,(6)

and writing

κD,N (1) =
(

48 · hK
πw2

√
|D|

)
·
∏
l|N

1
(1− 1

l2 )
= 4
w
·
∏
l|N

1
(1− 1

l2 )
· L(1, η)
ζ(N)(2)

= 4
w
· L(1, η)
ζ(N)(2)

> 0(7)

3In the first part of the body of the text, we shall take qA(x, y) to be the reduced binary quadratic form representative for
simplicity. This choice is not necessary, however.
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to denote the number obtained from Dirichlet’s class number formula L(1, η) = 2πhK
w
√
|D|

and Euler’s formula

ζ(2) = π2

6 , we can show that for each α ≥ 1 we have the estimates

log(N)−C · κD,N (1) · εp(1) · Kf,γA(1)� L0,f,γA(1)� log(N)3 · κD,N (1) · εp(1) · Kf,γA(1)

for the residual terms corresponding to ring class averages of central values. The same estimates hold with
the inverse Euler factors εp(1) removed if α = 0. We also obtain the bounds

log
(
|D| 32 p2α

γA

)
· κD,N (1) · Kf,γA(1)�f,p,γA L1,f,γA(1)�p,D,f,γA,ε · log

(
p2α

γA

)
·Nε · |D|ε · κD,N (1) · Kf,γA(1)

for the residual terms corresponding to the central derivative values. In particular, we have the lower bound

L1,f,γA(1)�f,p,γA log
(
|D| 32 p2α

γ
1
2
A

)
· Kf,γA(1).

We refer to Lemma 3.2 for details.
We also consider the following residual terms for β ≥ 1, given in terms of the corresponding congruence

symmetric square L-values defined for each divisor q | γA by

Lq(s,Sym2 f (q) ⊗ χ) = L(Np)
q (2s, ηχ2)

∑
n≥1

n≡0 mod q

λχ(n2q−1)
ns

=
∑
m≥1

(m,Npα)=1

ηχ2(m)
m2s

∑
n≥1

m2n≡0 mod q

λ(n2q−1)χ(n2q−1)
ns

(8)

That is, we consider the residual terms defined by
(9)

L
(β)
f,γA

(1) = 2
w

∑
q|γA

µ(q) · λ
(q)(γA)

γ
1
2
A

· 2
ϕ?(pβ)

∑
χ mod pβ

χ(−1)=1,primitive

L(1, ηχ2) · Lq(1,Sym2 f (q) ⊗ χ)
L

(Npα)
q (2, χ)

+ 2
w

∑
q|γA

µ(q) · λ
(q)(γA)

γ
1
2
A

· 2
ϕ?(pβ)

∑
χ mod pβ

χ(−1)=1,primitive

ηχ2(−N)χ(γA)τ(ηχ2)4

|D|2p2β · L(1, ηχ2) · Lq(1,Sym2 f (q) ⊗ χ)
L

(Npα)
q (2, χ)

,

or equivalently
(10)

L
(β)
f,γA

(1) = 2
w

∑
q|γA

µ(q) · λ
(q)(γA)

γ
1
2
A

∑
m≥1

η(m)
m


∑
a≥1

a≡0 mod q
m2γAa2≡±1 mod pβ

λ(q)(a2)
a

− 1
ϕ(p)

∑
a≥1,a≡0 mod q

m2γAa2≡±1 mod pβ−1

m2γAa2 6≡±1 mod pβ

λ(q)(a2)
a


+ 2
w

∑
q|γA

µ(q) · λ
(q)(γA)

γ
1
2
A

∑
m≥1

η(m)
m

∑
a≥1

a≡0 mod q

λ(q)(a2)
a

Kl4(±(m2γAa
2N

2
D

8) 1
2 , pβ).

Theorem 1.3. (Theorem 5.2) Keep the setup of Theorem 1.2. We derive the following estimates for the
subaverages G(k)(α;x) and G(0)(α, β;x).

(i) If k = 0, then we have for any ε > 0 the estimate

G(0)(α;x) =
∑

A∈C(α)px

(
L0,f,γA(1) +Of,p,ε

(
γA(|D|p2α) 7

16 +ε|εA|−
1
2

))
− #C(α, x− 1)

#C?(α, x)
∑

A∈C(α)px−1

A/∈C(α)px

(
L0,f,γA(1) +Of,p,ε

(
γA(|D|p2α) 7

16 +ε|εA|−
1
2

))
.
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(ii) If k = 1, then we have for any ε > 0 the estimate

G(1)(α;x) =
∑

A∈C(α)px

(
L1,f,γA(1) +Of,p,ε

(
γA(|D|p2α) 7

16 +ε|εA|−
1
2

))
− #C(α, x− 1)

#C?(α, x)
∑

A∈C(α)px−1

A/∈C(α)px

(
L1,f,γA(1) +Of,p,ε

(
γA(|D|p2α) 7

16 +ε|εA|−
1
2

))
.

(iii) Fix an integer β ≥ 2. We have for each anticyclotomic exponent α ≥ 1 the estimate

G(0)(α, β;x)

=
∑

A∈C(α)px
L

(β)
f,A(1) +Of,β,ε

(
γA · (|D|p2 max(α,β)) 1

4 +ε · (|D|p2α)δ0−
θ0
2 +ε · |εA|−

1
2−δ0+ θ0

2 +ε
)

− #C(α, x− 1)
#C?(α, x)

∑
A∈C(α)px−1

A 6∈C(α)px

L
(β)
f,A(1) + +Of,β,ε

(
γA · (|D|p2 max(α,β)) 1

4 +ε · (|D|p2α)δ0−
θ0
2 +ε · |εA|−

1
2−δ0+ θ0

2 +ε
)
.

We discuss the asymptotic behaviour of these averages, particularly the residual terms, in Corollary 5.3.
Roughly speaking, if we know that each class A ∈ C(α)px , C(α)px−1\C(α)px has a binary quadratic form
representative qA(x, y) = γAx

2+δAxy+εAy2 with a large last coefficient |εA| relative to the leading coefficient
γA, then we can deduce that the corresponding averages converge in the limit with α to the sums over residual
terms Lk,f,γA(1) and L

(β)
f,γA

(1). This condition on the coefficients seems to define the limits of the current
technology on spectral decompositions of shifted convolution sums that we use here. Although it remains
unclear whether this condition on the coefficients can be met for the classes A ∈ C(α)px−1\C(α)px , we do
show that the sums over residues converge to nonzero constants in Corollary 5.3.

Taken together with the sequel work [44], our estimates for Theorem 1.2 go some way towards proving
Conjecture 1.1. This combined approach allows us to deduce the nonvanishing of the Galois averages de-
scribed in Theorem 5.2 for α� 1 sufficiently large as well. In particular, we obtain the following application
via Shimura’s rationality theorem [39] in the case of central values corresponding to k = 0 here, together
with the central derivative value formulae of Gross-Zagier [17], Zhang [50], and Yuan-Zhang-Zhang [49] in
the case of central derivative values corresponding to our case of k = 1.

Theorem 1.4. Let us retain the setup of Theorem 1.2 above. Let α� 1 be a sufficiently large integer, and
write x = ordp(#C(α)) again to denote the exponent of p in the cardinality of the class group of the order Opα .

(i) For each sufficiently large integer α � 1, there exists a primitive ring class character ρ of conductor pα

for which the corresponding Galois averages G(k)
[ρ] (for either k = 0, 1) do not vanish (cf. [47], [11], [37]).

(ii) Fix a cyclotomic exponent β ≥ 1. For each sufficiently large anticyclotomic exponent α� β, there exists
a primitive ring class character ρ of conductor pα and a primitive even Dirichlet character χ mod pβ for
which the corresponding Galois average G(0)

[ρχ◦N] does not vanish. Hence by Shimura’s rationality theorem,
for each primitive Dirichlet character χ mod pβ, and for each primitive ring class character ρ of conductor
pα the central value L(1/2, f × ρχ ◦N) does not vanish (cf. [38]).

Proof. We deduce the result from Theorem 1.2. For (i), the claim follows from Theorem 1.2 (i) for k = 0
and (ii) for k = 1. This is because for each fixed α� 1, we show that L(1/2, f × ρ) 6= 0 for some primitive
ring class character ρ of conductor pα. We can then use Shimura’s algebraicity theorem, in the style of the
arguments of Rohrlich [38], [37], to deduce that each summand in the average G(k)

[ρ] cannot vanish. For (ii),
we argue in the same way using Theorem 1.2 (iii). This result shows that for each sufficiently large ring class
exponent α � β there exist both a primitive ring class character ρ of conductor pα and a primitive even
Dirichlet character χ mod pβ for which the central value L(1/2, f×ρχ◦N) does not vanish. Using Shimura’s
algebraicity theorem again, we deduce that the corresponding Galois average G(0)

[ρχ◦N] cannot vanish. We
9



show the following stronger result in the proof of Theorem 4.6 (and more generally in [45]): For each primitive
even Dirichlet character χ mod pβ , there exists for each α� β a primitive ring class character ρ of conductor
pα for which the corresponding central value L(1/2, f×ρχ◦N) does not vanish, and hence for which G(0)

[ρχ◦N]
does not vanish. �

As well, the approach with spectral decompositions of shifted convolution sums can be developed to
estimate averages over ring class characters of Rankin-Selberg L-functions associated to cuspidal automorphic
representations of GL2 over a totally real number field, and this is taken up in the sequel [45]. Finally, we
also explain the applications of these estimates to Iwasawa main conjectures and Mordell-Weil ranks in the
sequel note [44], which can be viewed as an appendix to this work.

1.1. Outline of proof. We now give a high-level sketch of the proof of Theorem 1.2 for the expert reader.
Fix an integer α ≥ 0. Let us also fix a class A ∈ Pic(Opα). Given an integer n ≥ 1, let rA(n) denote
the corresponding counting function for the number of proper ideals in A of norm n. Note that for any
quadratic form class representative qA(x, y) = γAx

2 + δAxy + εAy
2 corresponding to A, we can parametrize

this function (non-uniquely) as

rA(n) = 1
w
·# {a, b ∈ Z : qA(a, b) = n} ,

where w = wk denotes the number of automorphs of qA(x, y). We shall also consider the corresponding
binary theta series θqA defined on z ∈ H by

θqA(z) =
∑
n≥0

rA(n)e(nz) = 1
w

∑
a,b∈Z

e(qA(a, b)z).

We know classically that this theta series determines a holomorphic modular form of weight 1, level |D|p2α,
and character η = ηD. Moreover, the sum over classes A ∈ Pic(Opα) gives the inverse Mellin transform of
the Dedekind zeta function of the ring class field K[pα] of conductor pα over K. In particular, the level of
θqA is the absolute discriminant |disc(Opα)| = |D|p2α of the Z-order Opα = Z + pαOK . We consider the
following sums associated to such a class A ∈ Pic(Opα), for any choice of real parameter Z > 0. In the
self-dual cases of Theorem 1.2 (i) and (ii), with A corresponding to the principal class of conductor pα, it
will suffice for any Z > 0 to estimate the more general sums

H
(k)
A (α, 0) = H

(k)
A,1(α, 0;Z) +H

(k)
A,2(α, 0;Z)

with

H
(k)
A,1(α, 0;Z) =

∑
m≥1

η(m)
m

∑
n≥1

(n,pα)=1

λ(n)rA(n)
n

1
2

Vk+1
(
m2nZ

)
and

H
(k)
A,2(α, 0;Z) =

∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1

λ(n)rA(n)
n

1
2

Vk+1

(
m2n

ZN2|D|2p4α

)
.

In the generic case of Theorem 1.2 (iii) with β ≥ 2, it will suffice for any Z > 0 to estimate the sums

H
(0)
A (α, β) = H

(0)
A,1(α, β;Z) +H

(0)
A,2(α, β;Z)

with

H
(k)
A,1(α, β;Z) =

∑
m≥1

η(m)
m

∑
n≥1,(n,p)=1

m2n≡±1 mod pβ

λ(n)rA(n)
n

1
2

Vk+1
(
Zm2n

)

− 1
ϕ(p)

∑
m≥1

η(m)
m

∑
n≥1,(n,p)=1

m2n≡±1 mod pβ−1

m2n 6≡±1 mod pβ

λ(n)rA(n)
n

1
2

Vk+1
(
Zm2n

)
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and
H

(k)
A,2(α, β;Z)

= (−1)k+1η(N)
(|D|pβ) 1

2

p

ϕ(p)
∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1

λ(n)rA(n)
n

1
2

Vk+1

(
m2n

ZN2|D|2p4 max(α,β)

)
Kl4(±(m2nN

2
D

8) 1
2 , pβ).

Here, the cutoff functions Vk+1(y) defined on y ∈ R>0 come from our choice of approximate functional
equation (Lemma 2.2), and are smooth and rapidly decaying. As well, Kl4(c, pβ) denotes the standard
hyper-Kloosterman sum of dimension 4 and modulus pβ evaluated at a coprime residue class c mod pβ , with
Kl4(±c, pβ) = Kl4(c, pβ) + Kl4(−c, pβ) (see (22) and (23) below). Given a coprime residue class c mod pβ ,
we also write c mod pβ to denote the inverse class, and c 1

2 a square root of c mod pβ when such a root exists.
Let us for each class A ∈ Pic(Opα) take qA(x, y) = γAx

2 + δAxy + εAy
2 to be the unique reduced4 positive

definite quadratic form representing the class. Hence, γA ≥ 1 is a positive integer, |δA| ≤ γA ≤ εA, and
δ2
A − 4γAεA = Dp2α. Let us then for each divisor q | γA write f (q) to denote the eigenform defined on
z = x + iy ∈ H by f (q)(z) = f(q−1z), with λ(q) its corresponding Hecke eigenvalues. We can then consider
the corresponding partial symmetric square L-function L(s,Sym2 f (q)), defined first for <(s) > 1 by the
Dirichlet series expansion

L(s,Sym2 f (q)) = ζ(N)(2s)
∑
n≥1

λ(q)(n2)n−s =
∑
m≥1

(m,N=1)

m−2s
∑
n≥1

λ(n2q−1)n−s.

Again, we also define the congruence series

Lq(s,Sym2 f (q)) = ζ(N)
q (2s)

∑
n≥1

n≡0 mod q

λ(q)(n2)n−s =
∑
m≥1

(m,N)=1

m−2s
∑
n≥1

m2n≡0 mod q

λ(n2q−1)n−s.

We use the same notations as above to denote sums over integers coprime to a given integer M , and write
µ to denote the Möbius function. In the self-dual cases of Theorem 1.2 (i) and (ii) with β = 0, we develop
a relatively standard approach to estimating the sums H(k)

A,j(α, 0;Z) for a balanced choice of parameter
Z = (N |D|p2α)−1, i.e. so that each sum has a length equal to the square root of the conductor. This gives
us the simpler expression

H
(k)
A (α, 0) = 2

∑
m≥1

η(m)
m

∑
n≥1

λ(n)rA(n)
n

1
2

Vk+1

(
m2n

N |D|p2α

)

= 2
∑
m≥1

η(m)
m

1
w

∑
a,b∈Z

λ(γAa2 + δAab+ εAb
2)

(γAa2 + δAab+ εAb2) 1
2
Vk+1

(
m2(γAa2 + δAab+ εAb

2)
N |D|p2α

)
.

In this approach, the contributions from b = 0 terms are estimated separately, and by a contour argument
(Lemma 3.1) approximated in terms of the residual sums Lk,f,γA(1) defined above by

Lk,f,γA(1) +Oε

(
|D| 3

16 +ε(|D|p2αγ−1
A )− 1

8

)
+O

(
(|D|p2α)− 1

8

)
.

Here, we can assume without loss of generality that γA < |D|p2α, since otherwise the contributions can
be estimated trivially. Now, each remaining contribution from b 6= 0 in the region of moderate decay for
Vk+1 can then be bounded using a standard application of the shifted convolution problem. To be more
precise, using a standard dyadic subdivision argument to reduce to the setting where Vk+1 is a smooth
and compactly supported function (cf. [4, §5.1], [3, §2.9] or [42, §1.2]), assuming that δA = 0, and writing
DA = (p2αD−δ2

A)/4 = −γAεA for simplicity, each a-sum corresponding to each remaining b 6= 0 contribution
can be described essentially as the Fourier coefficient at b2DA of some genuine automorphic form Φ on the
two-fold metaplectic cover of GL2(A) corresponding to a modular form of half-integral weight. Although
this automorphic form Φ is not K-finite, it has convergent Sobolev norm, and we may therefore decompose

4As noted above, this choice is arbitrary. In the proof of Corollary 5.3, we make a distinct choice for the binary quadratic
form representative for each class A ∈ C(α)px .
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it spectrally to derive our stated bounds. To be more precise, we obtain for any ε > 0 via [42, Theorem 1]
the organic estimate

4
w

∑
m≥1

η(m)
m

∑
b≥1

mb≤
(
N|D|p2α
DA

) 1
2

λ(a2 − b2DA)
(a2 − b2DA) 1

2
Vk+1

(
m2(a2 − b2DA)

N |D|p2α

)
�f,k,ε

(
|D|p2α) 1

4 +δ0+ε (|D|p2α)− 1
2 ,

where 0 < δ0 < 1/4 denotes the exponent in the best approximation for the size of Fourier coefficients of
half-integral weight forms, which by the theorem of Kohnen-Zagier [25] is equivalent to the best exponent
approximation towards the generalized Lindelöf hypothesis for GL2(A)-automorphic forms in the level aspect
(with δ0 = 0 conjectured in either interpretation). Hence, the admissible exponent of δ0 = 3/16 shown by
the theorem of Blomer-Harcos [2] gives us the effective upper bound

Of,k,ε

(
(|D|p2α)− 1

16 +ε
)
.

This bound depends on the level of f and the choice of cutoff function Vk+1. In fact, for the general case on
the quadratic form representative, we prove a stronger version of this bound by generalizing the theorem of
Blomer [1] to this setting, using decompositions into Poincaré series to derive a distinct integral presentation
for each of the shifted convolution sums with direct appear to the metaplectic theta series. We refer to
Theorem 3.3, where we take for granted the general key bound (50) for Fourier coefficients of metaplectic
forms shown in [42], deriving exact integral presentations for our sums to reduce to this estimate. Let us
also remark that most of the proof of Theorem 1.2 works more generally for any Maass form.

A similar approach can be taken in the non self-dual case after deriving an explicit balanced approximate
functional equation formula for the average. The leading sum is estimated in the same way, with the b = 0
contributions giving a twisted linear combination of symmetric square L-functions at s = 1, and the b 6= 0
terms estimated by a distinct application of the spectral decompositions of shifted convolution sums. Here,
more care needs to be taken to ensure the nonvanishing of the residual term, and our estimates need to be
interpreted as requiring the cyclotomic exponent β to be fixed, with ring class exponent α � β sufficiently
large. A similar analysis applies to the twisted sum, which after unraveling is seen by inspection to correspond
to the “contragredient” for the leading sum. Finally, although we do not develop the idea here, this approach
does not require taking an average over primitive even Dirichlet characters χ mod pβ . Indeed, we could fix a
nontrivial nebentype or central character χ associated to the underlying eigenform fχ, take an average over
primitive ring class twists, then proceed in the same way as outlined above. Again, taking care with the
residual terms coming from the b = 0 contributions, a similar estimate can be established in this way with
χ mod pβ fixed and α� β varying. We refer to the more general sequel work [45] for more details.
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Djordje Milicevic, Philippe Michel, Paul Nelson, David Rohrlich, Peter Sarnak, and Nicolas Templier for
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and Nike Vatsal for encouragement, as well as to John Coates and Barry Mazur for their interest. Finally, I
should like to thank the anonymous referees for helpful constructive criticism (and pointing out of gaps) in
previous versions of this work, as well as to apologize for the long delay in its completion.

Notations. Throughout, we fix an imaginary quadratic field K of discriminant D < 0 and ring of integers
OK . Given an integer α ≥ 0, we write Opα = Z + pαOK to denote the Z-order of conductor pα in K, with
Pic(Opα) its corresponding class group. We write ρ to denote a ring class character of K of some prime-power
conductor pα for any integer α ≥ 0. Hence ρ can be viewed as a character of Pic(Opα). We write∑

ρ∈Pic(Opα )∨

primitive

to denote the sum over all such primitive ring class characters ρ of Pic(Opα). Hence, such characters factor
through Pic(Opα) but not Pic(Opα−1) in the even that α ≥ 1. We shall take for granted the well-known
classical fact that ring class characters of K correspond to wide ray class characters of K, or equivalently
to idele class characters of K having trivial archimedean component. On the cyclotomic side, we write χ to

12



denote a primitive Dirichlet character of conductor pβ for β ≥ 1 an integer, with ϕ?(pβ) the number of such
characters (hence ϕ?(pβ) = (p− 1)2pβ−2 if β ≥ 2). We also write∑

χ mod pβ
primitive,χ(−1)=1

to denote the sum over primitive even Dirichlet characters χmod pβ . Let us remark that we must in fact take
such a subaverage here, as the primitive even Dirichlet characters correspond to the wide ray class characters
or idele class characters of Q having trivial archimedean component. In particular, the corresponding
archimedean local factors of the completed L-functions Λ(s, f × ρχ ◦ N) we consider below then do not
depend on the choice of Dirichlet character χ (or ring class character ρ). This is an important simplifying
assumption for our approximate functional equation arguments throughout.

2. Some background

We now give some background on the Rankin-Selberg L-functions L(s, f ×W) = L(s, f × θ(W)). Fix a
prime p which is coprime to the product DN , and let W = ρχ ◦N denote a Hecke character of the form
described above, with ρ a ring class character of K of conductor pα for some integer α ≥ 0, and χ a primitive
even Dirichlet character of conductor pβ for some integer β ≥ 0. Note that ρ denotes a class group character
if α = 0, and β = 0 in our notations means that there is no Dirichlet character. A classical construction due
to Hecke (again see [18], cf. [17, (5.2)]) associates to any such characterW a theta series θ(W) of weight one,
level |D|p2 max(α,β), and nebentype character W|×Q = ηχ2, and we shall henceforth take this for granted.

2.1. Dirichlet series expansions. We consider the Rankin-Selberg L-function L(s, f×W) of f times θ(W)
in the setup described above, which for <(s) > 1 has the Dirichlet series expansion

L(s, f ×W) = L(2s, ηχ2)
∑

a⊆OK

W(a)λ(Na)Na−s.(11)

Here, the sum runs over nonzero integral ideals a ⊂ OK , with the convention that W(a) = 0 for ideals a
which are not coprime to the conductor c(W), and L(s, ηχ2) denotes the Dirichlet L-function of ηχ2. Since
ρ is a ring class character of conductor pα, we can identify ρ as a character of the class group Pic(Opα) of
the Z-order Opα = Z + pαOK of conductor pα in K.

Given an integer n ≥ 1 and a class A ∈ Pic(Opα), let rA(n) denote the number of ideals of norm n in
A. Expanding out the second sum in (11) with respect to these counting functions, we have the well-known
equivalent Dirichlet series expansion over integers

L(s, f ×W) =
∑
m≥1

ηχ2(m)
m2s

∑
n≥1

(∑
A

ρ(A)rA(n)
)
λ(n)χ(n)

ns
,(12)

where the third sum runs over all classes A ∈ Pic(Opα) of the order Opα . Note that to justify the equivalence
of (11) and (12) properly, one can compare Euler factors in each of the corresponding completed L-functions
(the former coming from an L-function of degree 2 over K, and the latter an L-function of degree 4 over Q).

2.1.1. Counting functions and binary quadratic forms. Let us now consider the counting functions rA(n) for
class A ∈ Pic(Opα) with α ≥ 0, and in particular the following (non-unique) parametrizations we shall use.
Fixing a quadratic form class representative qA(x, y) = γAx

2 + δAxy + εAy
2, and noting that the proper

integral ideal with Z-basis given by [γA, (−δA +
√
Dp2α)/2] is a representative for the corresponding class

A ∈ Pic(Opα) (see [12, Theorem 7.7]), the counting function rA(n) can be parametrized as

rA(n) = 1
w
·# {a, b ∈ Z : qA(a, b) = n} .(13)

Here again, w denotes the number of automorphs of qA(x, y), which is the same as the number of roots of unity
in K. We shall often take qA(x, y) to be the unique reduced class representative, so with |δA| ≤ γA ≤ εA, and
with δA ≥ 0 if either |δA| = γA or γA = εA. Let us also note that in the special case where A ∈ Pic(Opα) is the
principal class, we then know that γA = 1. In any case, we have the relation δ2

A−4γAεA = disc(Opα) = Dp2α.
13



We shall write r1(n) to denote the counting function corresponding the principal class 1 ∈ Pic(Opα),
taking for granted that the choice of integer exponent α ≥ 0 will be clear from the context. Hence, this
counting function can be parametrized via the quadratic form q1 associated to the principal class in Opα as

r(n) = 1
w
·#
{

(a, b) ∈ Z2 : q1(a, b) = n
}
.

Here again, w denotes the number of automorphs of q1, equivalently the number of roots of unity in K. To be
more explicit, writing ∆ = Dp2α = disc(Opα) for to denote the discriminant, the reduced binary quadratic
form q1(x, y) associated to the principal class in Pic(Opα) is given by

q1(x, y) =
{
x2 − ∆

4 y
2 if ∆ ≡ 0 mod 4

x2 + xy +
( 1−∆

4
)
y2 if ∆ ≡ 1 mod 4.

Note as well that each of these functions can be used to parametrize the corresponding theta series θA,
e.g. defined with respect to any fixed Opα -ideal representative a of A−1 ∈ Pic(Opα) on z ∈ H by

θqA(z) =
∑
n≥0

rA(n)e(nz) = 1
w

∑
λ∈a

e

(
N(λ)
Na

z

)
, e(z) = exp(2πiz).

Again, this parametrization of the theta series is not unique, and the definition on the right hand side is
independent of the choice of Opα -ideal representative [a] = A−1 ∈ Pic(Opα). The definition can also be given
equivalently in terms of any representative qA(x, y) of the class of positive definite binary quadratic forms
of discriminant disc(Opα) = p2αD as

θqA(z) =
∑
n≥0

rA(n)e(nz) = 1
w

∑
a,b∈Z

e (qA(a, b)z) .

In any case, θA determines a modular form of weight one, level |D|p2α, and character η. Hence, the level
of θA is equal to the absolute value of the discriminant disc(Opα) = p2αD of the order Opα = Z + pαOK .
Let us also write θA = θqA in the event that we parametrize this theta series in terms of our fixed quadratic
form representative qA(x, y) = γAx

2 + δAxy + εAy
2 for the class A ∈ Pic(Opα).

2.2. Functional equations. We shall take for granted the following important result throughout.

Theorem 2.1. Fix f a normalized newform of weight 2, level N , and trivial character. Fix K an imaginary
quadratic field of discriminant −D prime to N and character η = ηD. Fix a prime p coprime to ND with
integers α, β ≥ 0. Let W = ρχ◦N be a Hecke character of K of the form described above, with ρ a primitive
ring class character of conductor pα, and χ a primitive even Dirichlet character of conductor pβ. Writing
ΓR(s) := π−

s
2 Γ
(
s
2
)

and ΓC(s) = ΓR(s)ΓR(s+ 1) = 2(2π)−sΓ(s), let us define the archimedean local factor

L∞(s) = (2π)−2sΓ
(
s− 1− l

2

)
Γ
(
s+ 1 + l

2

)
=
(

1
2 · ΓC

(
s+ l − 1

2

))2
=
(

1
2 · ΓR

(
s+ l − 1

2

)
ΓR

(
s+ l + 1

2

))2
.

The Rankin-Selberg L-function L(s, f×W) = L(s, f×θ(W)) of f times the theta series θ(W) ∈M1(|D|p2 max(α,β), ηχ2)
has an analytic continuation to C, and its completed L-function

Λ(s, f ×W) := (N |D|p2 max(α,β))sL∞(s)L(s, f ×W)

satisfies the functional equation

Λ(s, f ×W) = ε(1/2, f ×W)Λ(1− s, f ×W).

Here, the root number ε(1/2, f ×W) = ε(1/2, f × ρχ ◦N) ∈ S1 is given explicitly by the formula

ε(1/2, f ×W) = ηχ2(−N)
(
τ(ηχ2)2

|D|pβ

)2

,

14



where

τ(ηχ2) =
∑

xmod |D|pβ
ηχ2(x)e

(
x

|D|pβ

)
denotes the Gauss sum of the Dirichlet character ηχ2. Hence, we have for a given Hecke characterW = ρχ◦N
as above the explicit functional equation

L∞(s)L(s, f × ρχ ◦N) = ηχ2(−N) · τ(ηχ2)4

(|D|pβ)2 · (N |D|p
2 max(α,β))1−2sL∞(1− s)L(1− s, f × ρχ ◦N).(14)

Proof. The result is attributed to Rankin (and Selberg) and Shimura, but the exact form we use here has only
been established more recently thanks to the works of Jacquet-Langlands [23] and [22], and Li [27]. For the
description of the root number in particular, see [27, Theorem 2.2, and Example 2]. Here, we have used the
automorphic normalization, so that s = 1/2 is the point of symmetry for the functional equation, and that
f = f . We have also used that ηχ2 has conductor |D|pβ , that the Hecke L-function L(s,W) = L(s, θ(W))
has root number τ(ηχ2)2/(|D|pβ), and that ring class characters are equivariant under complex conjugation
(cf. the discussion in [37]). �

2.3. Approximate functional equations. Fix an index k ∈ {0, 1}, together with integers α, β ≥ 0. Let
W = ρχ◦N be any Hecke character of K of the form described above, with ρ a primitive ring class character
of conductor pα, and χ a primitive even Dirichlet character of conductor pβ . We now use the functional
equation described in Theorem 2.1 to give a contour integral description of the central (derivative) value
L(k)(1/2, f×W) = L(k)(1/2, f×ρχ◦N), i.e. outside of the range or absolute convergence for the corresponding
Dirichlet series. Recall that this Dirichlet series expansion of L(s, f ×W) = L(s, f × ρχ ◦N) is given for
<(s) > 1 by the formula (12) above.

Fix g ∈ C∞c (R>0) any smooth and compactly supported function on y ∈ R>0 whose Mellin transform
g(s) :=

∫∞
0 g(y)ys dyy satisfies the condition g∗(0) = 1. Let us for a given integer m ≥ 1 write Gm to denote

the meromorphic function defined on s ∈ C by Gm(s) = g∗(s)s−m. Hence, Gm(s) is holomorphic except at
s = 0, where it behaves like s−m. Note that this function is bounded in vertical strips. Let us also suppose
additionally that g∗(s) is even, so that Gm(−s) = (−1)mGm(s) for all s 6= 0. Write Vm ∈ C∞ to denote the
smooth and rapidly decaying function defined on y ∈ R>0 by

Vm(y) =
∫
<(s)=2

V̂m(s)y−s ds2πi ,(15)

where V̂m(s) denotes the function defined on s ∈ C− {0} by

V̂m(s) = L∞(s+ 1/2)
L∞(1/2) Gm(s).(16)

Again, L∞(s) denotes the archimedean component of the completed L-function Λ(s, f×W) = Λ(s, f×ρχ◦N)
defined in Theorem 2.1 above, and this component remains invariant as we vary over wide ray class characters
W of K (as considered here).

Lemma 2.2. Fix k ∈ {0, 1}, together with integers α, β ≥ 0. Fix W = ρχ ◦N any wide ray class Hecke
character of K as above, given by the product of a ring class character ρ of conductor pα with the composition
with the norm of a primitive even Dirichlet character χ mod pβ. Then, for any choice of real unbalancing
parameter Z > 0, the value L(k)(1/2, f ×W) = L(k)(1/2, f × ρχ ◦N) is given by the formula

L(1/2, f ×W) = L(1/2, f × ρχ ◦N)

=
∑
m≥1

ηχ2(m)
m

∑
n≥1

 ∑
A∈Pic(Opα )

ρ(A)rA(n)

 λ(n)χ(n)
n

1
2

Vk+1
(
m2nZ

)

+ (−1)k+1ε(1/2, f × ρχ ◦N)
∑
m≥1

ηχ2(m)
m

∑
n≥1

 ∑
A∈Pic(Opα )

ρ(A)rA(n)

 λ(n)χ(n)
n

1
2

Vk+1

(
m2n

ZN2|D|2p4 max(α,β)

)
.
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Note that in the exceptional case of k = 1, the root number is ε(1/2, f × ρ) = η(−N) = −η(N) with
η(N) = 1, the formula in our setup is never identically zero. Finally, we note again that this root number
ε(1/2, f ×W) = ε(1/2, f × ρχ ◦N) can be given explicitly according to Theorem 2.1 above.

Proof. The proof is standard, see e.g. [21, §5.2] or [40, §7.2]. Let m = k+1, and consider the contour integral∫
<(s)=2

Λ(s+ 1/2, f ×W)Gm(s)Z−s ds2πi .

Note that by Stirling’s formula, the completed L-function Λ(s, f ×W) decays rapidly as =(s) → ∞, so we
are justified in using Cauchy’s theorem to shift contours. Shifting the contour to <(s) = −2, we cross a pole
at s = 0 of residue

R := Ress=0
(
Λ(s+ 1/2, f ×W)Gm(s)Z−s

)
= Λ(1/2, f ×W) = (N |D|p2 max(α,β)) 1

2L∞(1/2)L(1/2, f ×W),

which gives us the identification∫
<(s)=2

Λ(s+ 1/2, f ×W)Gm(s)Z−s ds2πi = R+
∫
<(s)=−2

Λ(s+ 1/2, f ×W)Gm(s)Z−s ds2πi .(17)

Now, the integral on the right hand side of (17) is the same as∫
<(s)=2

Λ(−s+ 1/2, f ×W)Gm(−s)Zs ds2πi .

Applying the functional equation (2.1) to Λ(−s + 1/2, f × W) in this latter expression, and using that
Gm(−s) = (−1)mGm(s), we then obtain

−(−1)mε(1/2, f ×W)
∫
<(s)=2

Λ(s+ 1/2, f ×W)Gm(s)Zs ds2πi .

Expanding out the absolutely convergent Dirichlet series, it is easy to see that (17) is equivalent to

R = (N |D|p2 max(α,β)) 1
2L∞(1/2)

∑
m≥1

ηχ2(m)
m

∑
n≥1

 ∑
A∈Pic(Opα )

ρ(A)rA(n)

 λ(n)χ(n)
n

1
2

Vk+1
(
m2nZ

)

+(−1)mε(1/2, f × ρχ ◦N)
∑
m≥1

ηχ2(m)
m

∑
n≥1

 ∑
A∈Pic(Opα )

ρ(A)rA(n)

 λ(n)χ(n)
n

1
2

Vk+1

(
m2n

ZN2|D|2p4 max(α,β)

) .

Dividing out by (N |D|p2 max(α,β)) 1
2L∞(1/2) on each side, we then obtain the stated formula. �

It is also easy to see that the cutoff functions appearing in the formula (2.2) decay rapidly as follows:

Lemma 2.3. Let k ∈ {0, 1} be an integer. Then for each integer j ≥ 0, we have the estimates

V
(j)
k+1(y) =

{
F

(j)
k (y) +Oj(y

1
2−j) for 0 < y ≤ 1, where Fk(y) := (−1)k(log y)k

OC,j(y−C) for y ≥ 1, for any choice of constant C > 0.

Here, given a function F of y ∈ R>0 and an integer j ≥ 0, we write F (j)(y) to denote the j-th derivative.

Proof. The result follows from a standard contour argument; see [40, Lemma 7.1] or [21, Proposition 5.4].
To estimate the behaviour as y → 0 for the first estimate(s), we move the line of integration in (15) to the
left, crossing a pole at s = 0 of residue

Ress=0

(
V̂k+1(y)y−s

)
= lim
s→0

1
k!

dk

dsk
(
πL∞(s)y−s

)
.

Note that dk

dsk
y−s = (−1)ky−s(log y)k. Using Stirling’s formula to estimate the remaining integral, we derive

the stated bound(s). To estimate the behaviour of as y → ∞, we move the line of integration right to
<(s) = C to obtain the second estimate(s). �
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2.4. Derivation of formulae. Fix integers α, β ≥ 0. Let us now consider a (wide ray class) Hecke character
W = ρχ◦N of K of the form described in (1) above, with ρ a primitive ring class character of some conductor
pα, and χ a primitive even Dirichlet character of some conductor pβ . Note that if α = 0, then ρ denotes a
character of the ideal class group Pic(O0) = Pic(OK). Note as well that if β = 0, then our convention is
that the Hecke character W = ρ is a ring class character with no cyclotomic component. Now recall that for
either choice of index k ∈ {0, 1} parametrizing the generic root number, we define the corresponding average

H(k)(α, β) = 1
#C?(α)

∑
ρ∈Pic(Opα )∨

primitive

2
ϕ?(pβ)

∑
χmod pβ

primitive,χ(−1)=1

L(k)(1/2, f × ρχ ◦N),

where #C?(α) = #C(α)−#C(α− 1) is the number of primitive ring class characters of conductor pα, and

ϕ?(pβ) = pβ
∏
p||pβ

(
1− 2

p

) ∏
p2|pβ

(
1− 1

p

)2
,

the number of primitive Dirichlet characters χ mod pβ , i.e. where the factor of (1− 2/p) is omitted if β ≥ 2
(as we shall usually assume). We now use the formula of Lemma 2.2 to derive formulae for these averages in
Proposition 2.6. Given a primitive ring class character ρ of some conductor pα, we also compute the average

D(ρ, β) = 2
ϕ?(pβ)

∑
χ mod pβ

primitiveχ(−1)=1

L(1/2, f × ρχ ◦N)

in Proposition 2.7.

2.4.1. Calculations via orthogonality. We start with the average H(k)(α, β), which by Lemma 2.2 above can
be described for any choice of unbalancing parameter Z > 0 by the preliminary formula

1
#C?(α)

∑
ρ∈Pic(Opα )∨

primitive

2
ϕ?(pβ)

∑
χ mod pβ

primitive,χ(−1)=1

L(k)(1/2, f × ρχ ◦N) = H(k)
1 (α, β;Z) +H(k)

2 (α, β;Z),

where we define

H(k)
1 (α, β;Z) := 1

#C?(α)
∑

ρ∈Pic(Opα )∨

primitive

2
ϕ?(pβ)

∑
χ mod pβ

primitive,χ(−1)=1

×
∑
m≥1

ηχ2(m)
m

∑
n≥1

(n,pα)=1

 ∑
A∈Pic(Opα )

ρ(A)rA(n)

 λ(n)χ(n)
n

1
2

Vk+1
(
m2nZ

)
and

H(k)
2 (α, β;Z) := (−1)k+1 1

#C?(α)
∑

ρ∈Pic(Opα )∨

primitive

2
ϕ?(pβ)

∑
χ mod pβ

primitive,χ(−1)=1

× ε(1/2, f × ρχ ◦N)
∑
m≥1

ηχ2(m)
m

∑
n≥1

(n,pα)=1

 ∑
A∈Pic(Opα )

ρ(A)rA(n)

 λ(n)χ(n)
n

1
2

Vk+1

(
m2n

ZN2|D|2p4 max(α,β)

)
.

Let us first consider the average over primitive ring class characters ρ of conductor pα, this being equivalent
to the average over characters of Pic(Opα) which do not factor through the class group Pic(Opα−1). In the
special case where α = 0, we simply take the average over characters in the class group of the maximal order
OK , and all of the discussion about the differences arising from characters in Pic(Opα−1) can be disregarded.
In the general case, applying the inclusion-exclusion principle to the basic orthogonality relation∑

ρ∈Pic(Opα )∨
ρ(A) =

{
# Pic(Opα) if A = 1 ∈ Pic(Opα) is the principal class
0 otherwise,
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we obtain the following orthogonality relation for primitive ring class characters of conductor pα. Let us
write j : Pic(Opα)→ Pic(Opα−1) to denote the natural surjective morphism, with X(α) its kernel. Applying
inclusion exclusion (or Möbius inversion) then gives us the relation∑
ρ∈Pic(Opα )∨

primitive

ρ(A) =
∑

ρ∈Pic(Opα )∨
ρ(A)−

∑
ρ′∈Pic(Opα−1 )∨

ρ′(j(A))

=
{

#C(α) if A = 1 ∈ Pic(Opα) is principal
0 otherwise

−

{
#C(α− 1) if A ∈ X(α)
0 otherwise

=


#C(α)−#C(α− 1) if A = 1 ∈ Pic(Opα) is principal
−#C(α− 1) if A ∈ X(α) but A 6= 1 ∈ Pic(Opα) is not the principal class of conductor pα

0 otherwise
,

so that

1
#C?(α)

∑
ρ∈Pic(Opα )∨

primitive

ρ(A) =


1 if A = 1 ∈ Pic(Opα) is principal
−#C(α−1)

#C?(α) if A ∈ X(α) but A 6= 1 ∈ Pic(Opα)
0 otherwise

,(18)

Note that the sum or union over all classes A ∈ X(α) = ker(j : Pic(Opα) → Pic(Opα−1)) can be identified
with the principal class in Pic(Opα−1). Writing r?1 = r1,pα−1 to denote the counting function for the principal
class in Pic(Opα−1), i.e. so that r?1(n) for any integer n ≥ 1 denotes the number of ideals in the principal
class of Opα−1 of norm n, we deduce from (19) that we have the following relation for each integer n ≥ 1:

(19)

1
#C?(α)

∑
ρ∈Pic(Opα )∨

primitive

∑
A∈Pic(Opα )

ρ(A)rA(n) = 1
#C?(α)

∑
A∈Pic(Opα )

rA(n)
∑

ρ∈Pic(Opα )∨

primitive

ρ(A)

=
(

1− #C(α− 1)
#C?(α)

)
r1(n)−

(
#C(α− 1)

#C?(α)

)
r?1(n).

Here again, r1(n) = r1,pα(n) denotes the function counting the number of ideals in the principal class
1 ∈ Pic(Opα) having norm equal to n. Switching the order of summation and using the relation (19) to
evaluate the inner A-sums, we then have for each of j = 1, 2 the relation

H(k)
j (α, β;Z) =

(
1− #C(α− 1)

#C?(α)

)
H

(k)
j (α, β;Z)−

(
#C(α− 1)

#C?(α)

)
H

(k)
j,? (α, β;Z),

where we define5

H
(k)
1 (α, β;Z) = 2

ϕ?(pβ)
∑

χ mod pβ
primitive,χ(−1)=1

∑
m≥1

ηχ2(m)
m

∑
n≥1

(n,pα)=1

λ(n)χ(n)r1(n)
n

1
2

Vk+1
(
m2nZ

)
,

H
(k)
1,? (α, β;Z) = 2

ϕ?(pβ)
∑

χ mod pβ
primitive,χ(−1)=1

∑
m≥1

ηχ2(m)
m

∑
n≥1

(n,pα)=1

λ(n)χ(n)r?1(n)
n

1
2

Vk+1
(
m2nZ

)
,

H
(k)
2 (α, β;Z) = (−1)k+1 2

ϕ?(pβ)
∑

χ mod pβ
primitive,χ(−1)=1

ε(1/2, f × ρχ ◦N)
∑
m≥1

ηχ2(m)
m

×
∑
n≥1

(n,pα)=1

λ(n)χ(n)r1(n)
n

1
2

Vk+1

(
m2n

ZN2|D|2p4 max(α,β)

)
,

5Note that the unbalancing parameter Z > 0 can be chosen separately for each L-value in the average, and in particular
that we may make separate choices for the leading sums H(k)

j (α, β;Z) and the difference sums H(k)
j,? (α, β;Z).
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and

H
(k)
2,? (α, β;Z) = (−1)k+1 2

ϕ?(pβ)
∑

χ mod pβ
primitive,χ(−1)=1

ε(1/2, f × ρχ ◦N)
∑
m≥1

ηχ2(m)
m

×
∑
n≥1

(n,pα)=1

λ(n)χ(n)r?1(n)
n

1
2

Vk+1

(
m2n

ZN2|D|2p4 max(α−1,β)

)
.

Let us now consider the averages over primitive even Dirichlet characters χ mod pβ in these expressions.
Recall that, after using orthogonality with Möbius inversion, we have for any integer m ≥ 1 prime to p that

∑
χ mod pβ

χ(−1)=1,primitive

χ(m) =


1
2ϕ

?(pβ) if m ≡ ±1 mod pβ

− 1
2ϕ(pβ−1) if m ≡ ±1 mod pβ−1 but m 6≡ ±1 mod pβ

0 otherwise
(20)

if β ≥ 2, and

∑
χ mod p

χ(−1)=1,primitive

χ(m) =


0 if m ≡ 0 mod p
1
2ϕ(p)− 1 if m ≡ ±1 mod p
−1 otherwise

(21)

if β = 1. Using these relations, the first sum over primitive even Dirichlet characters χ mod pβ is given by

H
(k)
1 (α, β;Z) =

∑
m≥1

η(m)
m

∑
n≥1,(n,pα)=1
m2n≡±1 mod pβ

λ(n)r1(n)
n

1
2

Vk+1
(
m2nZ

)

− 1
ϕ(p)

∑
m≥1

η(m)
m

∑
n≥1,(n,pα)=1

m2n≡±1 mod pβ−1

m2n 6≡±1 mod pβ

λ(n)r1(n)
n

1
2

Vk+1
(
m2nZ

)

and

H
(k)
1,? (α, β;Z) =

∑
m≥1

η(m)
m

∑
n≥1,(n,pα)=1
m2n≡±1 mod pβ

λ(n)r?1(n)
n

1
2

Vk+1
(
m2nZ

)

− 1
ϕ(p)

∑
m≥1

η(m)
m

∑
n≥1,(n,pα)=1

m2n≡±1 mod pβ−1

m2n 6≡±1 mod pβ

λ(n)r?1(n)
n

1
2

Vk+1
(
m2nZ

)

if β ≥ 2, and by

H
(k)
1 (α, β;Z) =

∑
m≥1

η(m)
m

∑
n≥1,(n,pα)=1
m2n≡±1 mod pβ

λ(n)r1(n)
n

1
2

Vk+1
(
m2nZ

)

−
(

2
p− 3

)∑
m≥1

η(m)
m

∑
n≥1,(n,pα)=1
m2n 6≡±1 mod p

λ(n)r1(n)
n

1
2

Vk+1
(
m2nZ

)
and

H
(k)
1,? (α, β;Z) =

∑
m≥1

η(m)
m

∑
n≥1,(n,pα)=1
m2n≡±1 mod pβ

λ(n)r?1(n)
n

1
2

Vk+1
(
m2nZ

)

−
(

2
p− 3

)∑
m≥1

η(m)
m

∑
n≥1,(n,pα)=1
m2n 6≡±1 mod p

λ(n)r1(n)
n

1
2

Vk+1
(
m2nZ

)
if β = 1. To compute the twisted sums H(k)

2 (α, β;Z) and H(k)
2,? (α, β;Z) this way when β ≥ 1, we shall have to

compute the sum over root numbers ε(1/2, f×ρχ◦N), and hence a sum over fourth powers of the Gauss sums
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τ(ηχ2). We therefore first give the following more general calculation. Fix an integer n ≥ 2. Recall for for a
given integer β ≥ 1 and a coprime residue class c mod pβ , we define the n-dimensional hyper-Kloosterman
sum of modulus pβ evaluated at c by

Kln(c, pβ) =
∑

x1,...,xn mod pβ

x1···xn≡c mod pβ

e

(
x1 + . . .+ xn

pβ

)
.(22)

Here (as usual), we write e(x) = exp(2πix). Let us also introduce the convenient shorthand notation

Kln(±c, pβ) := Kln(c, pβ) + Kln(−c, pβ) =
∑

x1,...,xn mod pβ

x1···xn≡±c mod pβ

e

(
x1 + . . .+ xn

pβ

)
.(23)

Proposition 2.4. Assume (as we do throughout) that D is prime to p, so that ηχ2 has conductor |D|pβ.
Given a class c mod pβ, we write c to denote its multiplicative inverse modpβ, so that cc ≡ 1 mod pβ. We
write c 1

2 to denote a square root of c mod pβ in the event that such a class exists. In particular, for the sums
of hyper-Kloosterman sums defined in (23) above, we shall write

Kln(±c 1
2 , pβ) =

{
Kln(±c 1

2 , pβ) if c admits a square root c 1
2 mod pβ

0 otherwise.

(i) Fix an integer n ≥ 2. If β ≥ 2, then we have for each coprime residue class c mod pβ summation formula
2

ϕ?(pβ)
∑

χ mod pβ
χ(−1)=1,primitive

χ(c)τ(ηχ2)n = τ(η)n
(

p

ϕ(p)

)
Kln(±(cD2n) 1

2 , pβ).

(ii) If β ≥ 2, then the twisted sum H
(k)
2 (α, β;Z) is given by

H
(k)
2 (α, β;Z) = (−1)k+1 η(N)

|D|2p2β

∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1

λ(n)r1(n)
n

1
2

Vk+1

(
m2n

Z(N |D|p2 max(α,β))2

)

×
(

p

ϕ(p)

)
Kl4(±(m2nN

2
D

8) 1
2 , pβ)

and H(k)
2,? (α, β;Z) by

H
(k)
2,? (α, β;Z) = (−1)k+1 η(N)

|D|2p2β

∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1

λ(n)r?1(n)
n

1
2

Vk+1

(
m2n

Z(N |D|p2 max(α,β))2

)

×
(

p

ϕ(p)

)
Kl4(±(m2nN

2
D

8) 1
2 , pβ).

Proof. Let us start with (i). Consider the standard twisted multiplicativity relation

τ(ηχ2) = η(pβ)χ2(D)τ(η)τ(χ2).

Using this relation in our initial expression, we find that∑
χ mod pβ

primitive,χ(−1)=1

χ(c)τ(ηχ2)n = η(pβ)nτ(η)n
∑

χ mod pβ
primitive,χ(−1)=1

χ(cD2n)τ(χ2)n

= (η(pβ)τ(η))n
∑

χ mod pβ
primitive,χ(−1)=1

∑
x1,...,xn mod pβ

χ(x2
1 · · ·x2

ncD
2n)e

(
x1 + · · ·+ xn

pβ

)

= τ(η)n
∑

χ mod pβ
primitive,χ(−1)=1

∑
x1,...,xn mod pβ

χ(x2
1 · · ·x2

ncD
2n)e

(
x1 + · · ·+ xn

pβ

)
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since η(pβ)n = 1 (as β ≥ 2 and η is quadratic). To evaluate the inner double sum, we switch the order of
summation and use the orthogonality relation (20) to obtain∑

x1,...,xn mod pβ
e

(
x1 + · · ·+ xn

pβ

) ∑
χ mod pβ

primitive,χ(−1)=1

χ(x2
1 · · ·x2

ncD
2n)

= ϕ?(pβ)
2

∑
x1,...,xn mod pβ

x2
1···x

2
ncD

2n≡±1 mod pβ

e

(
x1 + · · ·+ xn

pβ

)
− ϕ(pβ−1)

2
∑

x1,...,xn mod pβ

x2
1···x

2
ncD

2n≡±1 mod pβ−1

x2
1···x

2
ncD

2n 6≡±1 mod pβ

e

(
x1 + · · ·+ xn

pβ

)
,

so that our initial expression is seen to be equivalent to

τ(η)n


∑

x1,···xn mod pβ

x1···xn≡±(cD2n)
1
2 mod pβ

e

(
x1 + · · ·+ xn

pβ

)
− ϕ(pβ−1)

2
∑

x1,···xn mod pβ

x1···xn≡±(cD2n)
1
2 mod pβ−1

x1···xn 6≡±(cD2n)
1
2 mod pβ

e

(
x1 + · · ·+ xn

pβ

)

.

(24)

Let us consider the second inner sum in this latter expression, which can be decomposed as∑
x1,...,xn mod pβ

x1···xn≡±(cD2n)
1
2 mod pβ−1

x1···xn 6≡±(cD2n)
1
2 mod pβ

e

(
x1 + · · ·+ xn

pβ

)

=
∑

x1,...,xn−1 mod pβ
e

(
x1 + · · ·+ xn−1

pβ

) ∑
xn mod pβ

xn≡±x1···xn−1(cD2n)
1
2 mod pβ−1

xn 6≡±x1···xn−1(cD2n)
1
2 mod pβ

e

(
xn
pβ

)
.

Observe that we can express each class xn mod pβ in the second sum as ±x1 · · ·xn−1(cD2n) 1
2 + lpβ−1 for

some integer 1 ≤ l ≤ p− 1, so that∑
xn mod pβ

xn≡±x1···xn−1(cD2n)
1
2 mod pβ−1

xn 6≡±x1···xn−1(cD2n)
1
2 mod pβ

e

(
xn
pβ

)

=
(
e

(
x1 · · ·xn−1(cD2n) 1

2

pβ

)
+ e

(
−x1 · · ·xn−1(cD2n) 1

2

pβ

))
p−1∑
l=1

e

(
lpβ−1

pβ

)

= −
(
e

(
x1 · · ·xn−1(cD2n) 1

2

pβ

)
+ e

(
−x1 · · ·xn−1(cD2n) 1

2

pβ

))
by the well-known identity

∑
1≤l≤p−1 e

(
l
p

)
= −1. Hence, we derive the relation

∑
x1,...,xn mod pβ

x1···xn≡±(cD2n)
1
2 mod pβ−1

x1···xn 6≡±(cD2n)
1
2 mod pβ

e

(
x1 + · · ·+ xn

pβ

)
=

∑
x1,...,xn−1 mod pβ

e

(
x1 + · · ·+ xn−1 ± x1 · · ·xn−1(cD2n) 1

2

pβ

)

= −
∑

x1,...,xn mod pβ

x1···xn≡±(cD2n)
1
2 mod pβ

e

(
x1 + · · ·+ xn

pβ

)
,
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from which it follows that (24) is equivalent to the expression

τ(η)n

ϕ?(pβ)
2

∑
x1,...,xn mod pβ

x1···xn≡±(cD2n)
1
2 mod pβ

e

(
x1 + · · ·+ xn

pβ

)
+ ϕ(pβ−1)

2
∑

x1,...,xn mod pβ

x1···xn≡±(cD2n)
1
2 mod pβ

e

(
x1 + · · ·+ xn

pβ

) .

Using that ϕ?(pβ) = ϕ(pβ)− ϕ(pβ−1), we then derive the identity∑
χ mod pβ

primitive,χ(−1)=1

χ(c)τ(ηχ2)n = τ(η)n
(
ϕ(pβ)

2

) ∑
x1,...,xn mod pβ

x1···xn≡±(cD2n)
1
2 mod pβ

e

(
x1 + · · ·+ xn

pβ

)
.

Dividing out by 2/ϕ?(pβ) on each side then gives the stated identity.
To show (ii), we start with the expansion

H
(k)
2 (α, β;Z) = (−1)k+1 2

ϕ?(pβ)
∑

χ mod pβ
primitive,χ(−1)=1

ε(1/2, f × ρχ ◦N)

×
∑
m≥1

ηχ2(m)
m

∑
n≥1

(n,pmax(α,β))=1

λ(n)χ(n)r1(n)
n

1
2

Vk+1

(
m2n

ZN2|D|2p4 max(α,β)

)
,

which after opening up the expression for the root number and switching the order of summation equals

= (−1)k+1

(|D|pβ)2

∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1

λ(n)r1(n)
n

1
2

Vk+1

(
m2n

ZN2|D|2p4 max(α,β)

)
2

ϕ?(pβ)
∑

χ mod pβ
primitive,χ(−1)=1

χ(m2nN2)τ(ηχ2)4.

Using (i) to evaluate the inner χ-sum for each pair of integers m,n via the identity
2

ϕ?(pβ)
∑

χ mod pβ
primitive,χ(−1)=1

τ(ηχ2)4χ(m2nN2) = τ(η)4
(

p

ϕ(p)

)
Kl4(±(m2nN

2) 1
2D

4
, pβ),

and using the elementary identity ϕ?(pβ) = (p− 1)2pβ−2 which holds for β ≥ 2, we then obtain

(−1)k+1
(

p

ϕ(p)

)
η(N)τ(η)4

(|D|pβ)2

∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1

λ(n)r1(n)
n

1
2

Vk+1

(
m2n

ZN2|D|2p4 max(α,β)

)
Kl4(±(m2nN

2
D

8) 1
2 , pβ).

The stated identity then follows after noting that (τ(η)|D|− 1
2 )4 = 1 as η is quadratic. The calculation for

the second twisted sum H
(k)
2,? (α, β;Z) works in the same way. �

Corollary 2.5. Assume again that the discriminant D is coprime to p so that ηχ2 has conductor |D|pβ.

(i) Fix an integer n ≥ 2. If β = 1, then we have for each coprime class c mod p the summation formula∑
χ mod pβ

primitive,χ(−1)=1

χ(c)τ(ηχ2)n = τ(η)n
((

p− 3
2

)
Kln(±(cD2n) 1

2 , p)− (−1)n
)
.

Again, c 1
2 denotes a square root of c mod pβ if it exists, otherwise there is no contribution to the sum.

(ii) If β = 1, then the sum H
(k)
2 (α, β;Z) is given by

H
(k)
2 (α, β;Z) = (−1)k+1 η(N)

|D|2p2β

∑
m≥1

η(m)
m

∑
n≥1,

(n,p)=1

λ(n)r1(n)
n

1
2

Vk+1

(
m2n

ZN2|D|2p4 max(α,β)

)

×
(
p− 3
p− 2

)(
Kl4(±(m2nN

2
D

8) 1
2 , p)−

(
2

p− 3

))
,
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and the sum H
(k)
2,? (α, β;Z) by

H
(k)
2,? (α, β;Z) = (−1)k+1 η(N)

|D|2p2β

∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1

λ(n)r?1(n)
n

1
2

Vk+1

(
m2n

ZN2|D|2p4 max(α,β)

)

×
(
p− 3
p− 2

)(
Kl4(±(m2nN

2
D

8) 1
2 , p)−

(
2

p− 3

))
.

Proof. The calculations are given by a minor variation of those for Proposition 2.4 above as follows. For (i),
we open up the sum over primitive even Dirichlet characters χ mod p,∑

χ mod p
primitive,χ(−1)

χ(c)τ(ηχ2)n = τ(η)n
∑

χ mod p
primitive,χ(−1)=1

χ(cD2n)
∑

x1,··· ,xn mod p
χ2(x1 · · ·xn)e

(
x1 + · · ·+ xn

p

)

=
∑

x1,··· ,xn mod p
e

(
x1 + · · ·+ xn

p

) ∑
χ mod p

primitive,χ(−1)=1

(x2
1 · · ·x2

ncD
2n).

Applying the relation (21) to the inner χ-sum in latter expression, we then obtain(
ϕ(p)

2 − 1
) ∑

x1,··· ,xn mod p
x2
1···x

2
ncD

2n≡±1 mod p

e

(
x1 + · · ·+ xn

p

)
−

∑
x1,··· ,xn mod p

x2
1···x

2
ncD

2n 6≡±1 mod p

e

(
x1 + · · ·+ xn

p

)
,

which gives the stated formula

τ(η)n

(ϕ(p)
2 − 1

) ∑
x1,··· ,xn mod p

x1···xn≡±(cD2n)
1
2 mod p

e

(
x1 + · · ·+ xn

p

)
−

∑
x1,··· ,xn mod p

x1···xn 6≡±(cD2n)
1
2 mod p

e

(
x1 + · · ·+ xn

p

)
= τ(η)n

((
ϕ(p)

2 − 1
)

Kln(±(cD2n) 1
2 , p)− (−1)n

)
.

To derive the stated formulae for (ii), we simply use this formula to compute of the corresponding χ-sums
in the previous discussion (in the proof of Proposition 2.4 (ii)), with all other steps being the same. �

Hence, we have derived the following explicit average formula.

Proposition 2.6. Fix integers α ≥ 0 and β ≥ 0. Let W = ρχ ◦N be a Hecke character of K as in (1)
above, with ρ a primitive ring class character of conductor pα, and χ a primitive even Dirichlet character of
conductor pβ. We have for either choice of k ∈ {0, 1} the following formula for the corresponding average

H(k)(α, β) = 1
#C?(α)

∑
ρ∈Pic(Opα )∨

primitive

2
ϕ?(pβ)

∑
χ mod pβ

primitive,χ(−1)=1

L(k)(1/2, f × ρχ ◦N).

Namely, we have for any choice of real (unbalancing) parameter Z > 0 the formula
(25)

H(k)(α, β) =
(

1− #C(α− 1)
#C?(α)

)(
H

(k)
1 (α, β;Z) +H

(k)
2 (α, β;Z)

)
−
(

#C(α− 1)
#C?(α)

)(
H

(k)
1,? (α, β;Z) +H

(k)
2,? (α, β;Z)

)
.

Here (as above),

H
(k)
1 (α, β;Z) =

∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1
m2n≡±1 mod pβ

λ(n)r1(n)
n

1
2

Vk+1
(
m2nZ

)

− 1
ϕ(p)

∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1
m2n≡±1 mod pβ−1

m2n 6≡±1 mod pβ

λ(n)r1(n)
n

1
2

Vk+1
(
m2nZ

)
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and

H
(k)
1,? (α, β;Z) =

∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1
m2n≡±1 mod pβ

λ(n)r?1(n)
n

1
2

Vk+1
(
m2nZ

)

− 1
ϕ(p)

∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1
m2n≡±1 mod pβ−1

m2n 6≡±1 mod pβ

λ(n)r?1(n)
n

1
2

Vk+1
(
m2nZ

)

if β ≥ 2, with

H
(k)
1 (α, β;Z) =

∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1
m2n≡±1 mod pβ

λ(n)r1(n)
n

1
2

Vk+1
(
m2nZ

)

−
(

2
p− 3

)∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1
m2n6≡±1 mod p

λ(n)r1(n)
n

1
2

Vk+1
(
m2nZ

)
and

H
(k)
1,? (α, β;Z) =

∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1
m2n≡±1 mod pβ

λ(n)r?1(n)
n

1
2

Vk+1
(
m2nZ

)

−
(

2
p− 3

)∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1
m2n 6≡±1 mod p

λ(n)r?1(n)
n

1
2

Vk+1
(
m2nZ

)
if β = 1. As well, the dual sums are given by

H
(k)
2 (α, β;Z) = (−1)k+1 η(N)

|D|2p2β

∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1

λ(n)r1(n)
n

1
2

Vk+1

(
m2n

Z(N |D|p2 max(α,β))2

)

×
(

p

ϕ(p)

)
Kl4(±(m2nN

2
D

8) 1
2 , pβ)

and

H
(k)
2,? (α, β;Z) = (−1)k+1 η(N)

|D|2p2β

∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1

λ(n)r?1(n)
n

1
2

Vk+1

(
m2n

Z(N |D|p2 max(α,β))2

)

×
(

p

ϕ(p)

)
Kl4(±(m2nN

2
D

8) 1
2 , pβ)

if β ≥ 2, with

H
(k)
2 (α, β;Z) = (−1)k+1 η(N)

|D|2p2β

∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1

λ(n)r1(n)
n

1
2

Vk+1

(
m2n

ZN2|D|2p4 max(α,β)

)

×
(
p− 3
p− 2

)(
Kl4(±(m2nN

2
D

8) 1
2 , p)−

(
2

p− 3

))
and

H
(k)
2,? (α, β;Z) = (−1)k+1 η(N)

|D|2p2β

∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1

λ(n)r?1(n)
n

1
2

Vk+1

(
m2n

ZN2|D|2p4 max(α,β)

)

×
(
p− 3
p− 2

)(
Kl4(±(m2nN

2
D

8) 1
2 , p)−

(
2

p− 3

))
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if β = 1. If β = 0, then the hyper-Kloosterman sums Kl4(±c, pβ) are trivial, and the corresponding dual
sums H(k)

2 (α, 0) and H2,?(α, 0) can be described equivalently by the formulae for the α ≥ 0, i.e. without any
congruences coming from orthogonality relations for the averages over primitive even Dirichlet characters.

Remark Note that the unbalancing parameters Z > 0 are chosen implicitly for each L(k)(1/2, f × ρχ ◦N)
in the average H(k)(α, β). In particular, separate choices can be made for the main sums Hj(α, β;Z) and
the difference sums Hj,?(α, β;Z), relative to the square root of the conductor for the underlying L-values.

An easy variation of the same calculations also gives the following explicit average formula.

Proposition 2.7. Fix integers α ≥ 0 and β ≥ 1. Fix a primitive ring class character ρ of conductor pα.
Given an integer n ≥ 1 prime to p, let us then write

cρ(n) =
∑

A∈Pic(Opα )

rA(n)ρ(A)

to denote the corresponding coefficient in the Dirichlet series expansion (12). The one-variable average

D(ρ, β) := 2
ϕ?(pβ)

∑
χ mod pβ

primitive,χ(−1)=1

L(1/2, f × ρχ ◦N)

over primitive even Dirichlet characters χ mod pβ is given for any choice of real parameter Z > 0 by
D(ρ, β) = D1(ρ, β;Z) +D2(ρ, β;Z).

Here, the leading sum is defined by

D1(ρ, β;Z) =
∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1
m2n≡±1 mod pβ

cρ(n)λ(n)
n

1
2

V1
(
m2nZ

)

− 1
ϕ(p)

∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1
m2n≡±1 mod pβ−1

m2n6≡±1 mod pβ

cρ(n)λ(n)
n

1
2

V1
(
m2nZ

)

if β ≥ 2, and

D1(ρ, β;Z) =
∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1
m2n≡±1 mod p

cρ(n)λ(n)
n

1
2

V1
(
m2nZ

)

− 2
p− 3

∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1
m2n6≡±1 mod p

r(n)λ(n)
n

1
2

V1
(
m2nZ

)

if β = 1; the second (twisted) sum is defined by

D2(ρ, β;Z) = η(−N)
|D|2p2β

∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1

cρ(n)λ(n)
n

1
2

V1

(
m2n

Z(N |D|p2 max(α,β))2

)

×
(

p

ϕ(p)

)
Kl4(±(m2nN

2
D

8) 1
2 , pβ)

if β ≥ 2, and by

D2(ρ, β;Z) = η(−N)
|D|2p2β

∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1

cρ(n)λ(n)
n

1
2

V1

(
m2n

Z(N |D|p2 max(α,β))2

)

×
(
p− 3
p− 2

)(
Kl4(±(m2nN

2
D

8) 1
2 , p)−

(
2

p− 3

))
if β = 1.
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Proof. The proof works in the same way as for Proposition 2.6, using the the approximate functional equation
(Lemma 2.2) with the orthogonality relations of (20) and (21), but without taking the average over all ring
class characters of conductor pα. �

3. Self-dual estimates

Let us first estimate the average H(k)(α, 0) for any α ≥ 0, taking the cyclotomic part to be trivial β = 0.
Hence, we average over primitive ring class characters of conductor of a given conductor pα. Note that we
could fix any integer β ≥ 1 here, and allow for α ≥ 0 to vary using the same method. We treat this simpler
setting to keep the exposition clear, leaving the more general setting for the sequel work [46].

3.1. Strategy. We see by inspection of (25) that it will suffice for any choice of Z > 0 to estimate the sum

H(k)(α, 0) := H
(k)
1 (α, 0;Z) +H

(k)
2 (α, 0;Z),

with

H
(k)
1 (α, 0;Z) =

∑
m≥1

η(m)
m

∑
n≥1

λ(n)r1(n)
n

1
2

Vk+1
(
m2nZ

)
and

H
(k)
2 (α, 0;Z) =

∑
m≥1

η(m)
m

∑
n≥1

λ(n)r1(n)
n

1
2

Vk+1

(
m2n

ZN2|D|2p4α

)
.

Here again, r1(n) denotes the function that counts the number of ideals of norm n in the principal class 1 ∈
Pic(Opα). We parametrize this counting function in terms of the reduced quadratic form class representative
q1(x, y) = γ1x

2 + δ1xy + ε1y
2 with γ1 = 1 as in (13) above. The difference sums H(k)

j,? (α, 0;Z) can be
estimated in the same way, and we omit explicit reference to them in some of the discussion that follows.
We can also consider for any class A ∈ Pic(Opα) the more general sums defined by

H
(k)
A,1(α, 0;Z) :=

∑
m≥1

η(m)
m

∑
n≥1

λ(n)rA(n)
n

1
2

Vk+1
(
m2nZ

)
and

H
(k)
A,2(α, 0;Z) :=

∑
m≥1

η(m)
m

∑
n≥1

λ(n)rA(n)
n

1
2

Vk+1

(
m2n

ZN2|D|2p4α

)
.

Here, we can take any binary quadratic form representative qA(x, y) = γAx
2 + δAxy + εAy

2 corresponding
to A to parametrize the counting function rA(n) in these expressions in terms of qA(x, y), as in (13) above.

To estimate these sums H(k)
A,j(α, 0;Z), we shall expand the counting functions accordingly. In all cases, we

first estimate the contributions from the b = 0 terms via a contour argument, these being the canonical residue
terms for each of our self-dual estimates. The remaining contributions from b 6= 0 terms can be identified
as Fourier coefficients of certain automorphic forms on GL2(A) or its metaplectic cover, then estimated via
spectral decompositions. Note that to derive nonvanishing estimates with this approach, we shall require the
best known approximations towards both the generalized Ramanujan conjecture for GL2(A)-automorphic
forms, as well as the generalized Lindelöf hypothesis for GL2(A)-automorphic forms in the level aspect. To
this end, we shall use the theorems of Kim-Sarnak [24] and Blomer-Harcos [2, Theorem 2] respectively.

3.2. Calculation of residues. Let Z = (N |D|p2α)−1 so that the the approximate function equation is
balanced. In particular, we then have H(k)

A,1(α, 0; (N |D|p2α)−1) = H
(k)
A,2(α, 0; (N |D|p2α)−1). Recall that since

the level N of f is assumed to be squarefree, we can define the symmetric square L-function L(s,Sym2 f)
of f by the Dirichlet series (5) above (first for <(s) > 1). Recall too that given an integer M ≥ 2, we write
L(M)(s,Sym2 f) to denote the L-function L(s,Sym2 f) with the Euler factors at primes dividing M removed.
Let us for each divisor q of the positive leading integer coefficient γA of qA(x, y) = γAx

2 + δAxy+ εAy
2 write

f (q) to denote the shift of f defined on z = x+ iy ∈ H by f (q)(z) = f(q−1z). We then write λ(q) to denote
26



its corresponding shift of the Hecke eigenvalue (or equivalently Fourier coefficient) by q.6 Again, we consider
the corresponding symmetric square Dirichlet series L(s,Sym2 f (q)), defined (first for <(s) > 1) by

L(s,Sym2 f (q)) = ζ(N)(2s)
∑
n≥1

λ(q)(n2)
ns

=
∑
m≥1

(m,N)=1

1
m2s

∑
n≥1

λ(n2q−1)
ns

.

We also consider the corresponding congruence series for each divisor q | γA defined (first for <(s) > 1) by

Lq(s,Sym2 f (q)) = ζ(N)
q (2s)

∑
n≥1

n≡0 mod q

λ(q)(n2)
ns

=
∑
m≥1

(m,N)=1

1
m2s

∑
n≥1

m2n≡0 mod q

λ(n2q−1)
ns

.

Lemma 3.1. Let α ≥ 0 be any exponent, and A ∈ Pic(Opα) any class with corresponding binary quadratic
form representative qA(x, y) = γAx

2 + δAxy + εAy
2. We have the following estimates for the corresponding

b = 0 contributions in sums

(26)

H
(k)
A (α, 0) = H

(k)
A,1(α, 0; (N |D|p2α)−1) +H

(k)
A,2(α, 0; (N |D|p2α)−1)

= 2
∑
m≥1

η(m)
m

∑
n≥1

λ(n)rA(n)
n

1
2

Vk+1

(
m2n

N |D|p2α

)

= 2
∑
m≥1

(m,N)=1

η(m)
m

∑
a,b∈Z

λ(γAa2 + δAab+ εAb
2)

(γAa2 + δAab+ εAb2) 1
2
Vk+1

(
m2(γAa2 + δAab+ εAb

2)
N |D|p2α

)
,

(i) If the pair (f, ρ) is generic (so k = 0), then the b = 0 terms in (26) are estimated for any ε > 0 by

4
w
·
∑
q|γA

µ(q) · λ
(q)(γA)

γ
1
2
A

· L(1, η) · L
(pα)
q (1,Sym2 f (q))

ζ
(Npα)
q (2)

+Of,ε

(
|D| 3

16 +ε
(

γA
|D|p2α

) 1
4
)
.

(ii) If the pair (f, ρ) is exceptional (so k = 1), then the b = 0 terms in (26) are estimated for any ε > 0 by

4
w
·
∑
q|γA

µ(q) · λ
(q)(γA)

γ
1
2
A

· L(1, η) · L
(pα)
q (1,Sym2 f (q))

ζ
(Npα)
q (2)

×

[
log
(
N |D|p2α

γA

)
+ L′

L
(1, η) + L

′(pα)
q

L
(pα)
q

(1,Sym2 f (q))− 2(γ + log(2π))− ζ
′(Npα)
q

ζ
(Npα)
q

(2)
]

+Of,ε

(
|D| 3

16 +ε
(

γA
|D|p2α

) 1
4
)
.

Proof. In either case on k ∈ {0, 1}, the contribution from the b = 0 terms is given by the expression

4
w

∑
m≥1

η(m)
m

∑
a≥1

(a2,pα)=1

λ(γAa2)
(γAa2) 1

2
Vk+1

(
m2γAa

2

N |D|p2α

)
,

which after using the Hecke relation

λ(γAa2) =
∑

q|gcd(γA,a)

µ(q)λ
(
γA
q

)
λ

(
a2

q

)
=

∑
q|gcd(γA,a)

µ(q)λ(q)(γA)λ(q)(a2),

6Note that in terms of the cuspidal automorphic representation π = ⊗vπv of GL2(A) generated by f , this corresponds to

taking the shift by right multiplication q of a new vector φ ∈ Vπ , φ ∈ Vπ , g ∈ GL2(A), φ(g) 7−→ φ

(
g

(
q−1

1

))
∈ Vπ .
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for each integer a in the sum is the same (after switching the order of summation) as

4
w

∑
m≥1

η(m)
m

∑
a≥1

(a,pα)=1

∑
q|gcd(γA,a)

µ(q) · λ
(q)(γA)

γ
1
2
A

· λ
(q)(a2)
(a2) 1

2
Vk+1

(
m2γAa

2

N |D|p2α

)

= 4
w

∑
q|γA

µ(q) · λ
(q)(γA)

γ
1
2
A

∑
m≥1

η(m)
m

∑
a≥1

(a,pα)=1
a≡0 mod q

λ(q)(a2)
a

Vk+1

(
m2γAa

2

N |D|p2α

)
,

and which after opening up the contour defining Vk+1(y) is seen to be given by

(27)

4
w

∑
q|γA

µ(q) · λ
(q)(γA)

γ
1
2
A

∫
<(s)=2

∑
m≥1

η(m)
m2s+1

∑
a≥1

(a,pα)=1
a≡0 mod q

λ(q)(a2)
a2s+1 · V̂k+1(s)

(
γA

N |D|p2α

)−s
ds

2πi

= 4
w

∑
q|γA

µ(q) · λ
(q)(γA)

γ
1
2
A

∫
<(s)=2

L(2s+ 1, η)L
(pα)
q (2s+ 1,Sym2 f (q))

ζ
(Npα)
q (4s+ 2)

V̂k+1(s)
(

γA
N |D|p2α

)−s
ds

2πi .

Now, recall that we define

V̂k+1(s) = L∞(s+ 1/2)
L∞(1/2) Gk+1(s),

where Gk+1(s) = g∗(s)s−(k+1) (with g∗(0) = 1). Let us write

Lf,γA(s) = 4
w
·
∑
q|γA

µ(q) · λ
(q)(γA)

γ
1
2
A

· L(s, η) · L
(pα)
q (s,Sym2 f (q))
ζ

(Npα)
q (2s)

.

Moving the line of integration leftward to <(s) = −1/4, we cross a pole at s = 0 of residue

Lk,f,γA(1) := Ress=0

(
Lf,γA(2s+ 1) · V̂k(s) ·

(
N |D|p2α

γA

)s)
= lim
s→0

dk

dsk

(
sk+1 · Lf,γA(2s+ 1) · V̂k(s) ·

(
N |D|p2α

γA

)s)
.

If k = 0, then we see immediately that we get the stated residual term

L0,f,γA(1) = Lf,γA(1) = 4
w
·
∑
q|γA

µ(q) · λ
(q)(γA)

γ
1
2
A

· L(1, η) · L
(pα)
q (1,Sym2 f (q))

ζ
(Npα)
q (2)

.

If k = 1, then we follow the approach of [40, Lemma 7.2], using that the function V̂2(s) behaves as

V̂2(s) = 1
s2 − 2 · γ + log 2π

s
+O (1) as s→ 0.(28)

To compute the corresponding residue L1,f,γA(1) using this approximation, let us first observe that

L1,f,γA(1) = 4
w
·
∑
q|γA

µ(q) · λ
(q)(γA)

γ
1
2
A

· Ress=0

(
L(2s+ 1, η) · L

(pα)
q (2s+ 1)

ζ
(Npα)
q (4s+ 2)

· V̂2(s) ·
(
N |D|p2α

γA

)s)
.

We also write

Lq(s) = L(s, η) · L
(pα)
q (s,Sym2 f (q))
ζ

(Npα)
q (2s)

,

so that

L1,f,γA(1) = 4
w
·
∑
q|γA

µ(q) · λ
(q)(γA)

γ
1
2
A

· Ress=0

(
Lq(2s+ 1) · V̂2(s) ·

(
N |D|p2α

γA

)s)
.
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We can then use the asymptotic (28) to compute each of the residues appearing in the inner sum as
(29)

Ress=0

(
Lq(2s+ 1) · V̂2(s) ·

(
N |D|p2α

γA

)s)
= Ress=0

(
1
s2 · Lq(2s+ 1) ·

(
N |D|p2α

γA

)s)
− 2(γ + log(2π)) · Ress=0

(
1
s
· Lq(2s+ 1) ·

(
N |D|p2α

γA

)s)
+O(1) · Ress=0

(
Lq(2s+ 1) ·

(
N |D|p2α

γA

)s)
= lim
s→0

d

ds

(
Lq(2s+ 1) ·

(
N |D|p2α

γA

)s)
− 2(γ + log(2π)) · lim

s→0

d

ds

(
s · Lq(2s+ 1) ·

(
N |D|p2α

γA

)s)
+O(1) · lim

s→0

d

ds

(
s2 · Lq(2s+ 1) ·

(
N |D|p2α

γA

)s)
= Lq(1) ·

(
log
(
N |D|p2α

γA

)
− 2(γ + log(2π))

)
+ L′q(1)

= L(1, η) · L
(pα)
q (1,Sym2 f (q))

ζ
(Npα)
q (2)

·

(
log
(
N |D|p2α

γA

)
− 2(γ + log(2π)) + L′

L
(1, η) + L

(pα)′
q

L
(pα)
q

(1,Sym2 f (q))− ζ
(Npα)′
q

ζ
(Npα)
q

(2)
)

so that we get the stated residual term

L1,f,γA(1) = 4
w
·
∑
q|γA

µ(q) · λ
(q)(γA)

γ
1
2
A

·
[
Lq(1) ·

(
log
(
N |D|p2α

γA

)
− 2(γ + log(2π))

)
+ L′q(1)

]

= 4
w
·
∑
q|γA

µ(q) · λ
(q)(γA)

γ
1
2
A

· L(1, η) · L
(pα)
q (1,Sym2 f (q))

ζ
(Npα)
q (2)

×

[
log
(
N |D|p2α

γA

)
+ L′

L
(1, η) + L

(pα)′
q

L
(pα)
q

(1,Sym2 f (q))− 2(γ + log(2π))− ζ
(Npα)′
q

ζ
(Npα)
q

(2)
]
.

The remaining integral in either case k = 0, 1 is bounded above by

Of

((
|D|p2αγ−1

A

)− 1
8
)

using the Stirling approximation formula to estimate V̂k+1(s) as =(s)→ ±∞, and the Burgess subconvexity
bound to estimate L(s, η) on the line <(s) = 1/2 as�ε |D|

3
16 +ε. The error terms in each case depend on the

best existing subconvexity estimates for the symmetric square L-functions L(s,Sym2 f) in the level aspect, or
more generally the best approximations towards the generalized Lindelöf hypothesis for GL3(A)-automorphic
L-functions in the level aspect; these quantities depend only on the level N of f . �

Lemma 3.2. We have the following estimates for the residual sums

L0,f,γA(1) = 4
w
·
∑
q|γA

µ(q) · λ
(q)(γA)

γ
1
2
A

· L(1, η) · L
(pα)
q (1,Sym2 f (q))

ζ
(Npα)
q (2)

and

L1,f,γA(1) = 4
w
·
∑
q|γA

µ(q) · λ
(q)(γA)

γ
1
2
A

· L(1, η) · L
(pα)
q (1,Sym2 f (q))

ζ
(Npα)
q (2)

×

[
log
(
N |D|p2α

γA

)
+ L′

L
(1, η) + L

(pα)′
q

L
(pα)
q

(1,Sym2 f (q))− 2(γ + log(2π))− ζ
(Npα)′
q

ζ
(Npα)
q

(2)
]

appearing in Lemma 3.1. Each of these residual terms Lk,f,γA(1) is nonvanishing. To be more precise, there
exists a constant C = C(A2) depending on the size of the known zero-free region [1 − A2/ log(N), 1] of the
symmetric square L-function L(s,Sym2 f) for which L(1,Sym2 f) � log(N)−C . Let εp(1) be the inverse of
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the Euler factor at p of L(1,Sym2 f)
ζ(N)(2) , as defined explicitly in (6) above. Let κD,N (1) = 4

w
L(1,η)
ζ(N)(2) denote the

quantity defined explicitly in (7) above. Let us also define the constant

Kf,γA(1) =
∑
q|γA

q≥1,squarefree

µ(q)
q

λ
(
γA
q

)
γ

1
2
A

∑
r|q

µ(r)
r
λ
(q
r

)
· · ·
∑
d|r′′
d=1

µ(d)
d

λ

(
r′′

d

)
.

Here, the iterated sum over divisors d | r′′ | · · · | r | q terminates with d = 1, and Kf,1(1) = 1 when γA = 1.

(i) For k = 0, we have the lower and upper bounds
log(N)−C · Kf,γA(1)�p,D L0,f,γA(1)�p,D log(N)3 · Kf,γA(1).

To be more precise, if α = 0, then we have the bounds
log(N)−C · κD,N (1) · Kf,γA(1)� L0,f,γA(1)�ε log(N)3 · κD,N (1) · Kf,γA(1).

If α ≥ 1, then we have the bounds
log(N)−C · εp(1) · κD,N (1) · Kf,γA(1)� L0,f,γA(1)�ε log(N)3 · εp(1) · κD,N (1) · Kf,γA(1).

Here, the implied constants do not depend on the coefficient γA. Nor do they depend on the ring
class exponent α. In particular, we have the lower bound L0,f,γA(1)�p,D,f Kf,γA(1).

(ii) For k = 1, we have the lower and upper bounds

L0,f,γA(1) · log
(
|D| 32 p2α

γA

)
�f,p,γA L1,f,γA(1)�p,D,f,γA,ε L0,f,γA(1) · log

(
p2α

γA

)
·Nε · |D|ε.

To be more precise, we have the bounds

log
(
|D| 32 p2α

γA

)
· κD,N (1) · Kf,γA(1)�f,p,γA L1,f,γA(1)�p,D,f,γA,ε · log

(
p2α

γA

)
·Nε · |D|ε · κD,N (1) · Kf,γA(1).

In particular, we have the lower bound L1,f,γA(1)�f,p,γA log(|D| 32 p2αγ
− 1

2
A ) · Kf,γA(1).

Proof. We consider the function defined on s ∈ C with <(s) ≥ 1 by

Lf,γA(s) = 4
w
·
∑
q|γA

µ(q) · L(s, η) · λ
(q)(γA)

γ
1
2
A

· L
(pα)
q (s,Sym2 f (q))
ζ

(Npα)
q (2s)

.

Again, we write

L(s,Sym2 f) = ζ(2s)
∑
a≥1

λ(a2)
as

=
∏
l<∞

L(s,Sym2 π(f)l)

for the Dirichlet series expansion of the symmetric square L-function of the self-dual GL2(A)-automorphic
representation π(f) associated to the eigenform f , with each L(s,Sym2 π(f)l) denoting the local Euler factor
at l. Hence if l does not divide the level N of f , we know that this Euler factor is given by

L(s,Sym2 π(f)l) =
(

1− λ(l2)
ls

+ λ(l2)
l2s
− 1
l3s

)−1

.

See [21, §5.12] for details. Let us henceforth assume without loss of generality that α ≥ 1, noting that we can
ignore the Euler factors at p in the special case of α = 0 corresponding to moments of class group characters.
We shall later remove the Euler factor εp(s)−1 at p of L(s,Sym2 f)/ζ(N)(2s). Hence, separating out the
q = 1 term in the α ≥ 1 case, we see that

Lf,γA(s) = 4
w
· L(s, η) · λ(γA)

γ
1
2
A

· L
(p)(s,Sym2 f)
ζ(Np)(2s)

+ 4
w
· L(s, η)

∑
q|γA
q>1

µ(q) · λ
(q)(γA)

γ
1
2
A

· L
(p)
q (s,Sym2 f (q))
ζ

(Np)
q (2s)
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Let us now examine the inner sum of this latter expression, which by definition equals

∑
q|γA
q>1

µ(q) · λ
(q)(γA)

γ
1
2
A

· L
(p)
q (s,Sym2 f (q))

ζ
(p)
q (2s)

=
∑
q|γA
q>1

µ(q) · λ
(q)(γA)

γ
1
2
A

∑
n≥1,(n,p)=1
n≡0 mod q

λ
(
n2

q

)
ns

=
∑
q|γA
q>1

µ(q) · λ
(q)(γA)

γ
1
2
A

· 1
qs

∑
j≥1

(jq,p)=1

λ(j2q)
js

.

We can apply the Hecke relation

λ(j2q) =
∑

r|gcd(j,q)

µ(r)λ
(
j2

r

)
λ
(q
r

)
to each term in the inner sum to get

(30)

1
qs

∑
j≥1

(j,p)=1

λ(j2q)
js

= 1
qs

∑
j≥1

(j,p)=1

∑
r|gcd(j,q)

µ(r)λ
(
j2

r

)
λ
(q
r

) 1
js

= 1
qs

∑
r|q

µ(r)λ
(q
r

) ∑
j≥1,(j,p)=1
j≡0 mod r

λ
(
j2

r

)
js

= 1
qs

∑
r|q

µ(r)
rs

λ
(q
r

) ∑
j≥1

(jr,p)=1

λ(j2r)
js

.

Observe that we may apply the same argument to evaluate the inner sum on the right-hand side of (30) as∑
j≥1

(jr,p)=1

λ(j2r)
js

=
∑
r′|r

µ(r′)
r′s

λ
( r
r′

) ∑
j≥1

(jr′,p)

λ(j2r′)
js

.(31)

We may then apply this procedure iteratively to the inner sum on the right-hand side of (31) to get

L
(p)
q (s,Sym2 f (q))
ζ

(Np)
q (2s)

= 1
qs

∑
j≥1

(jq,p)=1

λ(j2q)
qs

= 1
qs

∑
r|q

µ(r)
rs

λ
(q
r

) ∑
j≥1

(jr,p)=1

λ(j2r)
js

= 1
qs

∑
r|q

µ(r)
rs

λ
(q
r

)∑
r′|r

µ(r′)
r′s

λ
( r
r′

)
· · ·

∑
d|r′′

µ(d)
ds

λ

(
r′′

d

) ∑
j≥1

(j,p)=1

λ(j2d)
js

= 1
qs

∑
r|q

µ(r)
rs

λ
(q
r

)∑
r′|r

µ(r′)
r′s

λ
( r
r′

)
· · ·

∑
d=1

terminal divisor of r′′

λ (r′′)
∑
j≥1

(j,p)=1

λ(j2)
js

.

Here, the sum runs over sequences of divisors 1 | r′′ | · · · | r′ | r | q. Each sequence ends when we reach the
terminal divisor d = 1 of predecessor r′′ (say). We obtain from this the expression
(32)
L

(p)
q (s,Sym2 f (q))
ζ

(Np)
q (2s)

= 1
qs

∑
r|q

µ(r)
rs

λ
(q
r

)∑
r′|r

µ(r′)
r′s

λ
( r
r′

)
· · ·

∑
d=1

terminal divisor of r′′

λ (r′′) · L
(p)(s,Sym2 f)
ζ(Np)(2s)

.

Dividing out by the Euler factor εp(s)−1 at p, or rather multiplying by εp(s) to obtain the relation

L(p)(s,Sym2 f)
ζ(Np)(2s)

= εp(1) · L(s,Sym2 f)
ζ(N)(2s)

=

(
1− λ(p2)

ps + λ(p2)
p2s − 1

p3s

)
(

1− 1
p2s

) · L(s,Sym2 f)
ζ(N)(2s)

,
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we then derive the formula

(33)

Lf,γA(s) = 4
w
· L(s, η) · εp(s) ·

∑
q|γA
q≥1

µ(q)
qs
·
λ
(
γA
q

)
γ

1
2
A

·
∑
r|q

µ(r)
rs

λ
(q
r

)
· · · λ (r′′) · L(s,Sym2 f)

ζ(N)(2s)

= 4
w
· L(s, η) · εp(s) ·

L(s,Sym2 f)
ζ(N)(2s)

·
∑
q|γA
q≥1

µ(q)
qs
·
λ
(
γA
q

)
γ

1
2
A

·
∑
r|q

µ(r)
rs

λ
(q
r

)
· · · λ (r′′)

= 4
w
· L(s, η) · εp(s) ·

L(s,Sym2 f)
ζ(N)(2s)

· Kf,γA(s)

where

Kf,γA(s) =
∑
q|γA
q≥1

µ(q)
qs

λ
(
γA
q

)
γ

1
2
A

∑
r|q

µ(r)
rs

λ
(q
r

)
· · ·λ (r′′) .

Let us now return to the residual sums Lk,f,γA(1). In the special case of central values corresponding to
k = 0, we have that L0,f,γA(1) = Lf,γA(1) in the discussion above. Hence, using Euler’s formula ζ(2) = π2

6
and Dirichlet’s class number formula L(1, η) = hK2π

w
√
|D|

, we derive from (32) the formula
(34)

L0,f,γA(1) = 4
w
· L(1, η) · εp(1) · L(1,Sym2 f)

ζ(N)(2)
· Kf,γA(1)

= 48 · hK
πw2

√
|D|
·
∏
l|N

1(
1− 1

l2

) · εp(1) · L(1,Sym2 f) ·

∑
q|γA
q≥1

µ(q)
q

λ
(
γA
q

)
γ

1
2
A

∑
r|q

µ(r)
r
λ
(q
r

)
· · ·λ (r′′)


= κD,N (1) · εp(1) · L(1,Sym2 f) · Kf,γA(1).

Here, we use the simplifying notations (7) and (6) defined above. To derive bounds, let us first recall
that L(1,Sym2 f) 6= 0. This can be deduced from the prime number theorem for GL3(A)-automorphic
L-functions, the lower bound of Hoffstein-Lockhart [20] and Goldfeld-Hoffstein-Lieman [15], as well as by
comparison with the adjoint L-function (see e.g. [21, §5.12, (5.101)]) to deduce the relation

L(1,Sym2 f) = (4π)l

Γ(l) ·
〈f, f〉

Vol(Γ0(N)\H) > 0.

As explained in [8, Lemmas 4.1, 4.2] also have upper and lower bounds for this quantity. That is, there exists
a constant C = C(A2) depending on the size of the region [1−A2/ log(N), 1] on which we know L(s,Sym2 f)
does not vanish for which

log(N)−C � L(1,Sym2 f)� log(N)3.

Hence we have the bounds

log(N)−C · εp(1) · Kf,γA(1) · κD,N (1)� L0,f,γA(1)� log(N)3 · εp(1) · κD,N (1) · Kf,γA(1).

Note that the implied constants in these bounds do not depend on the coefficient γA.
In the case of central derivative values corresponding to k = 1, we see from Lemma 3.1 with (33) that

L1,f,γA(1) = Ress=0

(
Lf,γA(2s+ 1) · V̂2(s) ·

(
N |D|p2α

γA

)s)
= Ress=0

(
4
w
· L(2s+ 1, η) · εp(2s+ 1) · L(2s+ 1,Sym2 f)

ζ(N)(4s+ 2)
· Kf,γA(2s+ 1) · V̂2(s) ·

(
N |D|p2α

γA

)s)
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can be computed following the residue calculation (29) with (33) as
(35)

L1,f,γA(1) = Lf,γA(1)
(

log
(
N |D|p2α

γA

)
− 2(γ + log(2π))

)
+ L′f,γA(1)

= 4
w
· L(1, η) · εp(1) · L(1,Sym2 f)

ζ(N)(2)
· Kf,γA(1) ·

(
log
(
N |D|p2α

γA

)
− 2(γ + log(2π))

)
+ 4
w
· L(1, η) · εp(1) · L(1,Sym2 f)

ζ(N)(2)
· Kf,γA(1) ·

[
L′

L
(1, η) +

ε′p
εp

(1) + L′

L
(1,Sym2 f)− ζ(N)′

ζ(N) (2) +
K′f,γA
Kf,γA

(1)
]

= L0,f,γA(1) ·
(

log
(
N |D|p2α

γA

)
+ L′

L
(1, η) + L′

L
(1,Sym2 f)− 2(γ + log(2π))− ζ(N)′

ζ(N) (2) +
ε′p
εp

(1) +
K′f,γA
Kf,γA

(1)
)

To estimate this expression, we consider the various logarithmic derivative terms. Let us first consider
L′

L (1,Sym2 f). Here, we can use an approximate functional equation argument as in [41, Proposition 2.1] to
derive the following estimate. Let us write the gamma factor of the symmetric square L-function as

γ(s) := ΓR(s+ 1)ΓR(s+ l − 1)ΓR(s+ l), ΓR(s) := π−
s
2 Γ
(s

2

)
so that we have the functional equation

Λ(s) := Nsγ(s)L(s,Sym2 f) = Λ(1− s).(36)

Fix G(z) any even meromorphic function of z ∈ C having a single pole at z = 0 and Laurent series expansion
G(z) = 1

z2 +O(1), which is bounded in the strip −4 ≤ <(z) ≤ 4,=(z) ≥ 1. Consider the integral

I(s) :=
∫

<(s)=3

Λ(s+ z)G(z) dz2πi .

Shifting the line of integration to <(s) = −3, we cross a pole at z = 0 of residue

Λ′(1) = N · γ(1) · L(1,Sym2 f) ·
(

log(N) + γ′

γ
(1) + L′

L
(1,Sym2 f)

)
.

Applying the functional equation (36) to the remaining integral, we obtain the identity I(1) = Λ′(1) + I(0).
Note that opening up the Dirichlet series of L(s,Sym2 f), we have the expansion

I(s) = Ns
∑
m≥1

(m,N)=1

1
ms

∑
n≥1

λ(n2)
ns

∫
<(z)=3

γ(z + s)G(z)
(
m2n

N

)−z
dz

2πi .

Note as well that we can already derive from this discussion the crude estimate
L′

L
(1,Sym2 f) = (I(1)− I(0))

γ(1)L(1,Sym2 f)
− log(N)− γ′

γ
(1).

We can refine this estimate following the argument of [41, Proposition 2.1]. First, observe that we can write

I(s) = NI?f (s) +
∫

<(z)=3

Ns+zζ(N)(2s+ 2z)γ(s+ z)G(z) dz2πi ,

where

I?f (s) := 1
N

∑
m≥1

(m,N)=1

∑
n≥1

λ(n2)
(

N

m2n

)s
Js

(
m2n

N

)
, Js(y) :=

∫
<(z)=3

y−zγ(z + s)G(z) dz2πi .

Now for s = 0, we shift the contour I?f (0) to <(z) = ε, crossing a simple pole at z = 1/2 to obtain

I(0) = NI?f (0) +Oε(Nε).
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For s = 1, we shift the contour I?f (1) to <(z) = −1, crossing a simple pole at z = 0 to obtain the estimate

I(1) = NI?f (1) +
(
N − 1

N

)
· ζ(N)(2) · γ(1) ·

(
ζ(N)′

ζ(N) (2) + γ′

γ
(1) + N +N−1

N −N−1 log(N)
)

+O(1).

In this way, we derive the estimate

(37)

L′

L
(1,Sym2 f) =

(
I?f (1)− I?f (0)

)
γ(1)L(1,Sym2 f)

− log(N)− γ′

γ
(1)

+ ζ(2)
L(1,Sym2 f)

·
(
ζ(N)′

ζ(N) (2) + γ′

γ
(1) + log(N) +O

(
log(N)
N

))
.

To estimate the first term I?f (1) − I?f (0) in this expression, observe that the cutoff functions Js(y) decay
rapidly as y →∞. We can then bound the remaining truncated sums via the bounds of Molteni [31] for the
GL3(A)-automorphic L-function L(s,Sym2 f). That is, for any ε > 0 and any real number x ≥ 1, we have∑

1≤n≤x

|λ(n2)|
n

�ε (Nx)ε.

In this way, we deduce that for any ε > 0, we can estimate

I?f (1)− I?f (0) = N

N
· (N2)ε + 1

N
·N1+2ε = Oε(Nε).

We then use (37) to derive the crude estimate
L′

L
(1,Sym2 f)�ε log(N)CNε.(38)

Now, let us note that the quantity
L′

L
(1,Sym2 f)− 2(γ + log(2π))

is related to the self-intersection number 〈ωX0(N), ωX0(N)〉 of the relative dualizing sheaf ωX0(N) of X0(N),

〈ωX0(N), ωX0(N)〉 = 3
π

∑
f∈Snew

l
(Γ0(N))

L′

L
(1,Sym2 f)− 2(γ + log(2π)).

Here, the sum runs over a basis of newforms for Sl(Γ0(N)) and we have the lower bound on this self-
intersection number 〈ωX0(N), ωX0(N)〉 ≥ −g(X0(N)) by a theorem of Faltings. Writing 〈ωX0(N), ωX0(N)〉f to
denote the projection to the f -isotypical component, we deduce that the logarithmic derivative term

L′

L
(1,Sym2 f)− 2(γ + log(2π)) = π

3 · 〈ωX0(N), ωX0(N)〉f

will satisfy some lower bound determined by the relation with 〈ωX0(N), ωX0(N)〉, and in any case that this
logarithmic derivative term contributes a quantity which depends only on the eigenform f . Similarly, the
logarithmic derivative term − ζ

(N)′

ζ(N) (2) contributes a quantity which depends only on f , and ε′p
εp

(1) contributes
a quantity which depends only on f and p. Let us now consider the logarithmic derivative term L′

L (1, η),
which under the Riemann Hypothesis can be bounded as L′

L (1, η) = O(log log(|D|)). We know that

LD := 1
2 · log(|D|) + L′

L
(1, η)

can be bounded above by Siegel’s theorem, and below by Colmez [10, Proposition 5] to get
log |D| � LD �ε |D|ε.

We refer to [40, §1.8] for more details. We deduce from this that

log
(
N |D|p2α

γA

)
+ L′

L
(1, η) = log

(
N |D| 12 p2α

γA

)
+ LD � log

(
N |D| 32 p2α

γA

)
.(39)
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Putting the pieces together, we then deduce from the formula (35) and the lower bound (39) that we have
L1,f,γA(1)

= L0,f,γA(1) ·
(

log
(
N |D|p2α

γA

)
+ L′

L
(1, η) + L′

L
(1,Sym2 f)− 2(γ + log(2π))− ζ(N)′

ζ(N) (2) +
ε′p
εp

(1) +
K′f,γA
Kf,γA

(1)
)

= L0,f,γA(1) ·
(

log
(
N |D| 12 p2α

γA

)
+ LD + π

3 · 〈ωX0(N), ωX0(N)〉f −
ζ(N)′

ζ(N) (2) +
ε′p
εp

(1) +
K′f,γA
Kf,γA

(1)
)

�f,p,γA L0,f,γA(1) · log
(
|D| 32 p2α

γA

)
.

Hence, via our bounds for L0,f,γA(1), we can see that we have the more explicit lower bound

L1,f,γA(1)�f,p,γA log(N)−C · log
(
N |D| 32 p2α

γA

)
· εp(1) · κD,N (1) · Kf,γA(1)

�f,p log
(
|D| 32 p2α

γA

)
· κD,N (1) · Kf,γA(1).

We also derive from the formula (35) with our discussion above the upper bound

L1,f,γA �f,p,γA,ε L0,f,γA(1) · log
(
N |D| 12 p2α

γA

)
· |D|ε · log(N)C ·Nε

�f,p,γA,ε log(N)C+3Nε · log
(
N |D| 12 p2α

γA

)
· |D|ε · εp(1) · κD,N (1) · Kf,γA(1)

�f,p,γA,ε N
ε · log

(
p2α

γA

)
· |D|ε · κD,N (1) · Kf,γA(1).

�

3.3. Main estimates. Fix an integer α ≥ 0, and a class A ∈ Pic(Opα). Let us retain the setup of Lemma
3.1. and the corresponding parametrization of the counting function (i.e. (13)). Let Z > 0 be any real
parameter. Fixing such a parameter, we can then use the decay properties of the cutoff functions Vk+1
described in Lemma 2.3 above to reduce to estimating the truncated sums defined for any ε > 0 by

H
(k),†
A,1 (α, 0;Z) := 4

w

∑
m≥1

η(m)
m

∑
b≥1

m2b2≤
(

1
|εA|Z

)1+ε

∑
a∈Z

λ(qA(a, b))
(qA(a, b)) 1

2
Vk+1

(
m2qA(a, b)Z

)

and

H
(k),†
A,2 (α, 0;Z) := 4

w

∑
m≥1

η(m)
m

∑
b≥1

m2b2≤
(
ZN2|D|2p4α

|εA|

)1+ε

∑
a∈Z

λ(qA(a, b))
qA(a, b) 1

2
Vk+1

(
m2qA(a, b)
ZN2|D|2p4α

)

Note that we shall later often take Z = Y −1 with Y = (N |D|p2α) the square root of the conductor.

Theorem 3.3. Let f be any non-dihedral cuspidal modular form of arbitrary weight l, level N , and neben-
type character ξ, and whose Fourier coefficients we denote by λ(n) = λf (n). Fix an integer α ≥ 0 and
a class A ∈ Pic(Opα) with corresponding quadratic form representative qA(x, y) = γAxy + δAxy + εAy

2.
Let 0 ≤ δ0 < 1/4 denote the best known approximation to the generalized Lindelöf hypothesis for GL2(A)-
automorphic forms in the level aspect, i.e. with δ0 = 0 is conjectured, and δ0 = 3/16 known thanks to the
theorem of Blomer-Harcos [2]. Similarly, let 0 ≤ θ0 < 1/2 denote the best approximation the generalized
Ramanujan conjecture for GL2(A)-automorphic forms in the level aspect, i.e. with θ0 = 0 is conjectured,
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and θ0 = 7/64 known thanks to the theorem of Kim-Sarnak [24].

(i) Suppose γA = 1 and δA = 0, as is the case for the principal class A = 1 ∈ Pic(Opα) when D ≡ 0 mod 4
and we take qA(x, y) = q1(x, y) to be the reduced quadratic form representative. We have for any choices of
real parameters Y > 1 and ε > 0 the bounds

H
(k),†
A,1 (α, 0;Y −1)�f,k,ε Y

1
4 +δ0+ε · |εA|−

1
2

and

H
(k),†
A,2 (α, 0;Y −1)�f,k,ε

(
N2|D|2p4α

Y

) 1
4 +δ0+ε

· |εA|−
1
2 .

(ii) Suppose now that the form f is holomorphic. Then, without conditions on the reduced binary quadratic
form representative qA(x, y) = γAxy+ δAxy+ εAy

2, we have by a variation of the proof for (i) the following
improved bounds: For any Y > 1 and any ε > 0,

H
(k),†
A,1 (α, 0;Y −1)�f,k,ε γA · Y

1
4 +δ0 · |p2αD|δ0−

θ0
2 −ε · |εA|−

1
2−δ0+ θ0

2 +ε

and

H
(k),†
A,2 (α, 0;Y −1)�f,k,ε γA ·

(
N2|D|2p4α

Y

) 1
4 +δ0

· |p2αD|δ0−
θ0
2 −ε · |εA|−

1
2−δ0+ θ0

2 +ε.

Here, the bounds depend on the choice of form f (and hence the character ξ and level N), as well as the
choice of cutoff function Vk+1 (and hence also depend on the generic root number parametrized by k ∈ {0, 1}).

Proof. We divide the proof into a handful steps as follows.

(1) Setup of main estimates (i) and (ii). For (i), we use standard estimates for the shifted convolution
problem for GL2(A)-automorphic forms via spectral decompositions of automorphic forms on the two-fold
metaplectic cover G of GL2(A). Here, for each nonzero integer b, we shall explain for (i) how an adaptation
of the proof of Templier-Tsimerman [42, Theorem 1] gives us for any choices of real numbers Y > 1 and
ε > 0 the uniform bounds

∑
a∈Z

λ(a2 + εAb
2)

(a2 + εAb2) 1
2
Vk+1

(
a2 + εAb

2

Y

)
�f,k,ε Y

1
4 · |b2εA|δ0−

1
2 ·
(
|b2εA|
Y

) 1
2−

θ0
2 −ε

.(40)

For (ii), we explain how a stronger bound can be derived without restriction on the coefficients of the
quadratic form representative qA(x, y) = γAx

2 + δAxy + εAy
2 by a generalization of the theorem of Blomer

[1]. This will give us for any choices of Y > 1 and ε > 0 the uniform bound

∑
a∈Z

λ(qA(a, b))
qA(a, b) 1

2
Vk+1

(
qA(a, b)
Y

)
�f,k,ε γA · |b2 · p2αD|δ0− 1

2 ·
(
|b2 · p2αD|

Y

) 1
2−

θ0
2 −ε

.(41)

(2) Reduction to local sums via smooth partitions of unity and dyadic decompositions. To show (40) and (41),
we first explain a standard reduction via smooth partition of unitary and dyadic decomposition to “local”
sums over compactly supported weight functions. Here, we refer the reader to similar discussions or setups
in [42, p. 7], [4, § 5.1], [3, § 2.9], or [33, §2.1]. In this way, the estimates (40) and (41) can be reduced to their
local analogues, replacing the cutoff functions Vk+1 with some smooth and compactly supported function
W ∈ C∞(R>0) with the decay condition W (i) � 1 for all integers i ≥ 0. That is, it will suffice to show for
any such weight function W the respective bounds

∑
a∈Z

λ(a2 + εAb
2)

(a2 + εAb2) 1
2
W

(
a2 + εAb

2

Y

)
�f,ε Y

1
4 · |εAb2|δ0−

1
2 ·
(
|εA|b2

Y

) 1
2−

θ0
2 −ε

(42)
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and

∑
a∈Z

λ(γAa2 + δAab+ εAb
2)

(γAa2 + δAab+ εAb2) 1
2
W

(
γAa

2 + δAab+ εAb
2

Y

)
�f,ε γA · |b2 · p2αD|δ0− 1

2 ·
(
|b2 · p2αD|

Y

) 1
2−

θ0
2 −ε

.

(43)

To justify this reduction, consider the class C+(R>0) of functions U : R>0 → C which are supported on the
closed interval [1, 2] and satisfy W (i) � 1 for all i ≥ 0. A standard result in analysis shows there exists a
sequence {(U,R)} consisting of functions U ∈ C+(R>0) and ranges R ∈ R>0 such that∑

(U,R)

U
( r
R

)
= 1 for any r ∈ (0,∞).(44)

Moreover, for any integer l ∈ Z, at most finitely many of the pairs (U,R) (independent of the choice of l) in
this sequence have the property that R ∈ [2l, 2l+1]. Fixing such a partition of unity (44) once and for all,
the corresponding dyadic subdivision of any sum ∑

r≥1
A(r)

is then defined to be the subdivision ∑
r≥1

A(r) =
∑

(U,R)

∑
r≥1

A(r)U
( r
R

)
.

As explained in [33], we can moreover fix the weight function U ∈ C+(R>0) and obtain such a decomposition
(varying only over the ranges R ∈ R>0). Hence, rearranging and relabelling as necessary, this reduces to∑

r≥1
A(r) =

∑
l∈Z

∑
R∈{R}

R∩[2l,2l+1]6=∅

∑
r≥1

A(r)U
( r
R

)
.(45)

Now, we can apply such a decomposition (45) to our sums of the form∑
m,n≥1

ηξ2(m)
m

λ(n)r(n)
n

1
2

Vk+1

(
m2n

Y

)
as follows. Fixing a weight function U ∈ C+(R>0), the corresponding decomposition (45) takes the form∑

l∈Z

∑
R∈{R}

R∩[2l,2l+1] 6=∅

∑
m,n≥1

ηξ2(m)
m

λ(n)r(n)
n

1
2

Vk+1

(
m2n

Y

)
U

(
m2n

R

)
.(46)

Note that the second sum in this latter expression refers simply to the range R in the set of all ranges {R}
making up partition of unity which happens to be contained in the interval [2l, 2l+1]. This gives us for each
integer l ∈ Z a compactly supported function Vk+1,l(y) defined on y ∈ R>0 by

Vk+1,l(y) = Vk+1(y)
∑
R∈{R}

R∩[2l,2l+1]6=∅

U

(
yY

R

)
,

so that the dyadic subdivision (46) takes the simpler form∑
l∈Z

∑
m,n≥1

ηξ2(m)
m

λ(n)r(n)
n

1
2

Vk+1,l

(
m2n

Y

)
.(47)

In particular, since U is supported on [1, 2], it follows that each local weight function Vk+1,l(y) is supported
on 2l+1 ≤ yY ≤ 2l+2. Hence, the region of moderate decay y ≤ Y (equivalently yY ≤ Y 2) corresponding
to our global cutoff function Vk+1 in the truncated sum H

(k),†
A (α, 0;Y −1) can be reparametrized in terms of
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yY ≤ 2x for x = 2 log Y/ log 2. In particular, to estimate the truncated sum H
(k),†
A,j (α, 0;Y −1) for each of

j = 1, 2 as stated, it will do to estimate the sum over roughly log Y many local sums:

H
(k),†
A,j (α, 0;Y −1)�

∑
0≤l≤logY

H
(k),†
A,j,l (α, 0;Y −1);

H
(k),†
A,j,l (α, 0;Y −1) := 4

w

∑
m≥1

ηξ2(m)
m

∑
b≥1

mb≤
(

Y
|εA|

) 1
2

∑
a∈Z

λ(qA(a, b))
(qA(a, b)) 1

2
Vk+1,l

(
m2qA(a, b)

Y

)
.

The arguments used to prove [42, Theorem 1] and variations of those in [1, §4] apply directly to each
inner l-sum in the latter expression. To be more precise, for any smooth function W supported on [1/2, 1]
and any real number R ≥ 1, we have for (i) that∣∣∣∣∣∣∣

∑
m≥1

ηξ2(m)
m

∑
a,b∈Z

qA(a,b)6=0

λ(a2 + εAb
2)

(a2 + εAb2) 1
2
W

(
m2(a2 + εAb

2)
R

)∣∣∣∣∣∣∣
�
∑
m≥1

1
m

∑
b 6=0

∣∣∣∣∣∑
a∈Z

λ(a2 + εAb
2)

(a2 + εAb2) 1
2
W

(
m2(a2 + εAb

2)
R

)∣∣∣∣∣ ,
from which we derive from (42) the uniform bound

�ε

∑
b6=0

b≤
(

R
|εA|

) 1
2

R−
1
4 + θ0

2 +ε · |εAb2|δ0−
θ0
2

� |εA|δ0−
θ0
2 ·R− 1

4 + θ0
2 +ε ·

(
R

|εA|

) 1
2 +δ0− θ02 +ε

= R
1
4 +δ0+ε · |εA|−

1
2 .

Taking the sum over 1 ≤ R ≤ log Y then gives the bound for (i). Similarly for (ii), we have for any range
R ≥ 1 that ∣∣∣∣∣∣∣

∑
m≥1

ηξ2(m)
m

∑
a,b∈Z

qA(a,b)6=0

λ(γAa2 + δAab+ εAb
2)

(γAa2 + δAab+ εAb2) 1
2
W

(
m2(γAa2 + δAab+ εAb

2)
R

)∣∣∣∣∣∣∣
�
∑
m≥1

1
m

∑
b 6=0

∣∣∣∣∣∑
a∈Z

λ(γAa2 + δAab+ εAb
2)

(γAa2 + δAab+ εAb2) 1
2
W

(
m2(γAa2 + δAab+ εAb

2)
R

)∣∣∣∣∣ ,
from which we derive from (42) the uniform bound

�ε

∑
b 6=0

b≤
(

R
|εA|

) 1
2

γA ·R−
1
2 + θ0

2 +ε · |b2p2αD|δ0−
θ0
2 −ε

� γA ·R−
1
2 + θ0

2 +ε · |p2αD|δ0−
θ0
2 −ε

∑
b 6=0

b≤
(

R
|εA|

) 1
2

b2(δ0−
θ0
2 −ε)

� γA ·R−
1
2 + θ0

2 +ε · |p2αD|δ0−
θ0
2 −ε ·

(
R

|εA|

) 1
2 +δ0− θ02 −ε

= γA ·Rδ0 · |p2αD|δ0−
θ0
2 −ε · |εA|−

1
2−δ0+ θ0

2 +ε.

Taking the sum over 1 ≤ R ≤ log Y then gives the stated bound for (ii).
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(3) Bound for the local sums in (i) via spectral decompositions of shifted convolution sums. Let us now
explain how to derive the local bound (42) from the argument given in [42, Theorem 1, § 6], and then that of
(43) from a variation of the argument given in [1, §4]. Here, we first set up the problem adelically, then work
semi-classically (at the archimedean component). The first step is to relate the sums in question to certain
Fourier coefficients of automorphic forms on GL2(A) or its two-fold metaplectic cover G(A), so as to reduce
the problem to one of bounding Fourier coefficients (via spectral decomposition). Let ψ = ⊗vψv denote
the standard additive character on A/Q. The archimedean factor ψ∞ then coincides with the function
x 7→ e(x) = exp(2πix). Recall that a decomposable new vector φ = ⊗vφv ∈ Vπ can be viewed as a cuspidal
GL2(A)-automorphic form7. It has the following Fourier-Whittaker expansion: Given x ∈ A an adele, and
y = yfy∞ ∈ A× an idele split into finite component yf ∈ A×f times real component y∞ ∈ R×, and writing
|y| to denote the idele norm of y, we have

φ

((
y x

1

))
=
∑
r 6=0∈Z

λ(ryf )
|ryf |

1
2
Wφ(ry∞)ψ(rx).

Here, the archimedean Whittaker coefficient Wφ(y∞) is defined on y∞ ∈ Q×∞ ∼= R× by

Wφ(y∞) = Wφ

((
y∞

1

))
=
∫

A/Q
φ

((
y∞ x

1

))
ψ(−x)dx.

Note that by the surjectivity of the archimedean local Kirillov map Vπ∞
∼= W(π∞), φ∞ 7→ Wφ∞ , given

any smooth function of compact support W ∈ C∞c (R×), there exists a new vector φ = ⊗vφv ∈ Vπ with
Wφ∞ = W , that is, with Wφ(y) = W (y) as functions of y ∈ R× ∼= Q×∞. Let us also remark that this
discussion can be given equivalently in classical terms. That is, instead of choosing a suitable pure tensor
φ = ⊗vφv ∈ Vπ with specified archimedean component φ∞, we could instead construct a Maass form φ on
z = x + iy ∈ H with the same Fourier-Whittaker expansion as some convergent infinite linear combination
of some initial weight zero Maass form φ0 under weight raising operators, in the style of Motohashi [32]
(cf. [3]). We omit the details of this classical version for simplicity, but keep in mind that we can also think
of φ as a smooth Maass form which is not K-finite. Let us now consider the metaplectic theta series θQ
attached to the quadratic form Q(r) = r2, which in the classical setting corresponds to a modular form of
half-integral weight. Viewed as a genuine automorphic form on the two-fold metaplectic cover of GL2(R),
this theta series has the following expansion: For x ∈ R and y ∈ R×

θQ

((
y x

1

))
= |y| 14

∑
r∈Z

e (Q(r)(x+ iy)) ,

and its image θQ under the Hecke operator T−1 corresponding to the classical Hecke operator acting on
z ∈ H via z 7→ −z has the expansion

θQ

((
y x

1

))
= |y| 14

∑
r∈Z

e (Q(r)(−x+ iy)) .

Using the orthogonality of additive characters on the compact abelian group R/Z ∼= [0, 1], it is then easy to
derive for any φ ∈ Vπ (or Maass form φ with the same Fourier-Whittaker expansion) the relation

(48)

∫ 1

0
φθQ

((
y x

1

))
e
(
−b2εAx

)
dx =

∫ 1

0
φ

((
y x

1

))
θQ

((
y x

1

))
e
(
−b2εAx

)
dx

= |y| 14
∑

r1 6=0∈Z

λ(r1)
|r1|

1
2
Wφ(r1y)

∑
r2∈Z

e (iQ(r2)y)
∫ 1

0
e
(
r1x−Q(r2)x− b2εAx

)
dx

= |y| 14
∑
r∈Z

Q(r)+b2εA 6=0

λ(Q(r) + b2εA)
|Q(r) + b2εA|

1
2
Wφ

(
(Q(r) + b2εA)y

)
ψ(iyQ(r)).

7To be more precise, one can choose a decomposable vector φ = ⊗vφv ∈ Vπ whose nonarchimedean local components φv
are each essential Whittaker vectors. The corresponding decomposable vector φ is then known to be a new vector, in the sense
that its Fourier-Whittaker coefficients are related directly via Mellin transform to the L-function coefficients of π.
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Note that in the more general case with qA(x, y) having leading coefficient γA 6= 1 and middle coefficient
δA = 0, we may replace the metaplectic theta series θA with the scaled metaplectic series θγA,Q defined by

θγA,Q

((
y x

1

))
= |y| 14

∑
r∈Z

e (γAQ(r)(x+ iy)) ,

which has conductor of size roughly γA, to derive the more general integral presentation

(49)

∫ 1

0
φθγA,Q

((
y x

1

))
e
(
−b2εAx

)
dx

= |y| 14
∑
r∈Z

Q(r)+b2εA 6=0

λ(γAQ(r) + b2εA)
|γAQ(r) + b2εA|

1
2
Wφ

(
(γAQ(r) + b2εA)y

)
ψ(iyQ(r)).

The significance of the unipotent integral identities (48) and (49) is that they allow us to realize the shifted
convolution sums on the right-hand side as the Fourier-Whittaker coefficients at the nonzero integer b2εA of
the metapletic forms defined by φθQ and φθγA,Q respectively. In this way, the corresponding bounds (42)
and the special case of (43) with δA = 0 can be derived after taking the spectral decompositions of the forms

φθQ

(( 1
Y

1

))
and φθγA,Q

(( 1
Y

1

))
,

then passing to the respective unipotent integrals on the left-hand sides of (48) and (49) to derive bounds
from existing estimates for Fourier coefficients of half-integral weight forms and Whittaker functions near
zero, as derived in [42, § 4-6] (for instance). Note that the argument of [42, §6, Theorem 1] shows more
generally for Φ any genuine automorphic form on the two-fold metaplectic cover G(A) of GL2(A), with α
any nonzero integer and Y � |α| any real parameter, we have for any ε > 0 the uniform bound

(50)
WΦ

((
α
Y

1

))
:=
∫ 1

0
Φ
((

1 x
1

)( 1
Y

1

))
e(−αx)dx

�ε |α|δ0−
1
2 ·
(
|α|
Y

) 1
2−

θ0
2 −ε

for the Fourier-Whittaker coefficient of Φ at α. Again, such bounds are derived via the spectral decomposition
of Φ, after passing to unipotent integrals, then using a standard Sobolev norms argument to reduce to the
best existing approximations for Fourier coefficients of half-integral weight forms,8 together with bounds for
classical Whittaker functions Wp,ir(y) for y → 0 (as derived in [42, §7]). We then derive the stated bounds
from the integral presentations (48) and (49) described above with y = 1/Y , multipliying in the factor of
Y

1
4 from the metaplectic theta series. In this way, we can derive the bound (42) and hence (40) for (i).

(4) Bounds for local sums in (ii) via spectral decompositions of shifted convolution sums. We now consider
the following variation for (ii). Although not necessary for our main theorem with the principal class A = 1
when D ≡ 0 mod 4, we derive this so that we can give more general estimates which apply to any of the sums
H

(k)
A,j(α, β;Z) introduced above. To this end, we generalize the argument of Blomer [1, § 4] to derive a bound

for the local sum (43), and hence for the global sum (41). Here, we first argue that we can decompose our new
vector φ ∈ Vπ into a linear combination of Poincaré series. Decomposing into such a linear combination, we
then open up Fourier-Whittaker coefficients and apply Poisson summation to relate to linear combinations
of certain distinct genuine Poincaré series on the metaplectic cover G(A). As in the previous case (i), this
calculation will reduce us after spectral decomposition to existing bounds for half-integral weight forms and
Whittaker functions near zero.

Let us explain this reduction to metaplectic Poincaré series in several steps. We again fix a smooth
weight function W ∈ C∞c (R>0) supported on [1/2, 1] with W (i) � 1 for each i ≥ 0, and a real parameter
R ≥ 1. We also fix a nonzero integer 1 ≤ b ≤ (R/|εA|)

1
2 for our sum, and consider the corresponding

quadratic polynomial defined by fA,b(x) := qA(x, b) = γAx
2 + δAbx + εAb

2, which we write in simpler
notations as fA,b(x) = γAx

2 + δ′Ax + ε′A. Note that the discriminant of this quadratic polynomial is given

8which by theorems of Kohnen-Zagier and Waldspurger is equivalent to the best approximation towards the generalized
Lindelöf hypothesis for GL2(A)-automorphic forms
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by δ′2A − 4γAε′A = b2(δ2
A − 4γAεA) = b2∆. Note as well that if we choose a new vector φ = ⊗vφv ∈ Vπ whose

archimedean local component φ∞ satisfies the constraint that W∞(y) = W (y) as functions of y ∈ R× ∼= Q×∞,
as we may thanks to the surjectivity of the archimedean Kirillov map, then we have the natural presentation

(51)

∑
r∈Z

λ(fA,b(r))
|fA,b(r)|

1
2
W

(
fA,b(r)
R

)

=
∑
r∈Z

Wφ

((
fA,b(r)
R

1

))
=
∑
r∈Z

∫ 1

0
φ

((
1 x

1

)( 1
R

1

))
(−fA,b(r)x)dx.

Let us also explain for later how this choice of φ can be realized in a more explicit way via absolutely
convergent linear combinations of Maass weight-raising operators, in the style of the arguments of Motohashi
(see e.g. [32]). Recall that in the notations we define above, a cuspidal form ϕ on GL2(A) of weight k and
spectral parameter ν has the more explicit Fourier-Whittaker expansion

(52) ϕ

((
y x

1

))
=
∑
γ∈Q×

Wϕ

((
γy

1

))
e(γx) =

∑
γ∈Q×

λϕ(γyf )
|γyf |

1
2
·W sgn(k)

2 ,ν− 1
2

(4π|γ|y∞) · e(γx)

where each Wκ,µ denotes the classical Whittaker function defined as in [42, §7] (for instance). Hence, for
s ∈ C with <(s) > 1

2 ± ν, this Wκ,µ can be viewed as the function of y∞ ∈ Q×∞ ∼= R× defined implicitly by
the Mellin transform relation

∞∫
0

Wκ,µ(y∞)ys∞
dy∞
y∞

=
Γ
( 1

2 + s+ µ
)

Γ
( 1

2 + s− µ
)

Γ (1 + s− κ) .

Note that a suitable normalization of these classical Whittaker functions supplies an orthonormal basis of
the Hilbert space L2(R×); we refer to [3, (23)-(25)] or [6, § 4] for more details. Now, recall that we also have
the first Maass weight-raising operator Rk, defined on y∞ ∈ R× and x∞ ∈ R by

Rk = iy∞ ·
∂

∂x∞
+ y∞ ·

∂

∂y∞
+ k

2 .

It is well-known that this operator Rk raises the weight of a form ϕ of weight k by 2, so that the cusp form
defined by Rkϕ has weight k + 2. In fact, it is also well-known that for any γ ∈ Q×, we have

Rk

(
W k

2 ,µ
(4π|γ|y∞)e(γx∞)

)
= cκ,µ ·W k+2

2 ,µ(4π|γ|y∞) · e(γx∞),

where

cκ,µ :=
{
−1 if γ > 0
−
(
µ2 − (k+1

2 )
)2 if γ < 0.

Observe that this operator Rk does not affect the finite Fourier-Whittaker coefficient of the cuspidal form
ϕ. In particular, for ϕ as defined in (52), the image Rkϕ has the Fourier-Whittaker expansion

Rkϕ

((
y x

1

))
=
∑
γ∈Q×

λϕ(γyf )
|γyf |

1
2
·
(
c sgn(k)+2

2 ,ν− 1
2
·W sgn(k)+2

2 ,ν− 1
2

(4π|γ|y∞)
)
· e(γx).

Note that if ϕ = f̃ is the lift to GL2(A) of a holomorphic cusp form f of weight k, then we have that
W k

2 ,
k−1

2
(y∞) = y

k
2∞e−

y∞
2 (see e.g. [42, §3]). Let us now consider the operator Rk defined for a sequence of

complex coefficients {Kk+2j}j≥0 by

Rk = Rk({Kk+2j}i) =
∑
j≥0

Kk+2j ·Rk+2j .

Applying this operator Rk to our fixed cusp form ϕ of weight k as above gives us some non-K-finite cuspidal
form with the explicit Fourier-Whittaker expansion

Rkϕ
((

y x
1

))
=
∑
γ∈Q×

λϕ(γyf )
|γyf |

1
2
·

∑
j≥0

Kk+2j ·Rk+2jW sgn(k)
2 ,ν

(4π|γ|y∞)

 · e(γx).
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In particular, our choice of pure tensor φ = ⊗vφv with specified archimedean component φ∞ above can be
realized explicitly as such a form φ = Rkϕ, where the condition on the corresponding archimedean local
Whittaker function Wφ∞ with respect to the chosen weight function W is equivalent to the condition that

(53)
Wφ(y∞) := Wφ

((
y∞

1

))
= W (y∞) = Rk

(
W sgn(k)

2 ,ν− 1
2
(4πy∞)

)
=
∑
j≥0

Kk+2j ·Rk+2j

(
W sgn(k)

2 ,ν
(4πy∞)

)

as functions of y∞ ∈ Q×∞ ∼= R×. In particular, we deduce from the decay conditions imposed on our chosen
weight function W that the expansion on the right hand side of (53) is absolutely convergent.

Taking for granted this more explicit setup, let us now explain how to reduce the estimate for this sum (51)
to a special case of the argument for (i). Following [1, §4], we first explain how decompose this chosen vector
φ into a linear combination of Poincaré series, then open up the coefficients and apply Poisson summation to
identify a sum of (parts of) Fourier-Whittaker coefficients at b2∆ of some Poincaré series on the metaplectic
cover G(A). To make this precise, and to avoid any direct use of Kuznetsov formulae, let us first include
a few words about generalized Poincaré series and their Fourier expansions following [9, Proposition 2.5]
and [35]. Let us for simplicity write G to denote either GL2 or its two-fold metaplectic cover G, with the
context making the choice of G clear. We fix a congruence subgroup Γ ∈ GL2(A), and write Γ∞ to denote
the stabilizer of the cusp at infinity. Given ξ = ⊗vξv an idele class character, and γ ∈ Γ a matrix, we define
ξ(γ) in the usual way via evaluation at the lower left entry. Let us also fix a theta multiplier ν : GL2 → C
(see [35, (3), (4)] and [14, § 2]). Writing N2 ⊂ G again to denote the unipotent subgroup of upper triangular
matrices, and taking ψ = ⊗vψv to be any nontrivial additive character of A/Q, we consider the space
S (N2(A)\G(A);ψ) of decomposable Schwartz functions ϕ = ⊗vϕv : G(A) → C which are smooth and
compactly supported, as well as compact and rapidly decreasing modulo N2(R) (see [9, §2]), and whose left
action by N2(A) is given through the chosen additive character ψ, i.e. ϕ(ng) = ψ(n)ϕ(g) for all n ∈ N2(A)
and g ∈ G(A). Given such a function ϕ, we can then consider the corresponding Poincaré series on g ∈ G(A)
given by

Pϕ,ξ,ν(g) =
∑

γ∈Γ∞\Γ

ξ(γ) · ν(γ) · ϕ(γg),

dropping the subscripts ξ and ν when the respective idele class character or theta multiplier is trivial. Let
us now write ψ = ⊗vψv to denote the standard additive character, whose real component ψ∞ is given on
x ∈ Q∞ ∼= R by the familiar additive character ψ∞(x) = e(x) := exp(2πix). In the event that G = GL2
and hence the multiplier ν is trivial, and we take a Schwartz function ϕ ∈ S(N2(A)\GL2(A);ψ1) which
transforms under the additive character defined on x ∈ A by ψ1(x) = ψ∞(lx) = e(lx) for some integer l ∈ Z,
we shall write the corresponding Poincaré series Pϕ,ξ,ν = Pϕ,ξ,1 simply as Pl.

We argue as follows that we can decompose our smooth new vector φ ∈ Vπ into a linear combination

φ =
∑
l 6=0

cl(φ) · Pl(54)

for some complex numbers cl(φ) ∈ C×. To be more precise, we shall later assume following (53) above that

φ = Rlf̃ = Rl({Kl+2j}j)f̃(55)

for f̃ the lift to GL2(A) of a holomorphic cusp form f of weight k. However, we can decompose any
pure tensor φ = ⊗vφv into a linear combination of Poincaré series as follows. To be more precise, we can
give a generalization of the argument for the classical case (see e.g. [21, Lemma 14.3 and Corollary 14.4]).
Taking for granted all of the notations defined above, we first observe that each Petersson inner product
〈φ, Pl〉 = 〈φ, Pϕ,ξ,1〉 recovers the Fourier-Whittaker coefficient at l of φ. To see this, we use the automorphy
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of φ and collapse the summation after expanding the definition of Pl(g) to compute

〈φ, Pl〉 =
∫

Z2(A) GL2(Q)\GL2(A)

φ(g)Pl(g)dg =
∫

Z2(A) GL2(Q)\GL2(A)

φ(g)
∑

γ∈Γ∞\Γ

ξ(γ)ϕ(γg)dg

=
∫

Z2(A) GL2(Q)\GL2(A)

∑
γ∈Γ∞\Γ

(γg)ϕ(γg)dg =
∫
Z2(A) GL2(Q)\GL2(A)

φ(g)ϕ(g)dg,

which after passing to the standard fundamental domain is the same as

〈φ, Pl〉 =
∫

R>0

∫ 1

0
φ

((
y x

1

))
ϕ

((
y −x

1

))
dxdy

y2 ,

and which after opening up the Fourier-Whittaker expansion of φ and using the unipotent transformation
property of the chosen Schwartz function ϕ is the same as

(56)

〈φ, Pl〉 =
∫

R>0

ϕ

((
y

1

)) ∑
γ∈Q×

Wφ

((
γy

1

))∫ 1

0
e(γx− lx)dxdy

y2

=
∫

R>0

ϕ

((
y

1

))
Wφ

((
ly

1

))
dy

y2 = ρφ(l)
|l| 12

∫
R>0

ϕ

((
y

1

))
Wφ(ly)dy

y2 .

Again, we use the orthogonality of additive characters on the compact abelian group [0, 1] ∼= R/Z, and
factorize the Whittaker coefficient of φ into nonarchimedean and archimedean components. Using this
identity (56), we deduce that φ can be expressed as a linear combination of such Poincaré series {Pl}l as
claimed for (54). That is, we deduce that the closure of the span of 〈Pl〉l equals the cuspidal spectrum
L2

cusp(GL2(Q)\GL2(A), ξ). Suppose now that we assume φ = Rkf̃ is constructed from the lift to GL2(A)
of a holomorphic cusp form f of weight k as above. Then, a better-known classical argument such as that
used in [1] implies that such a f̃ can be decomposed into a finite linear combination of Poincaré series,

f̃ =
∑
m

cl(f̃) · Pm.(57)

Suppose now that we apply the operator Rk for which φ = Rkf̃ to this expansion. Since the decomposition
(57) of f̃ into Poincaré series is finite, and the sum defining Rkf̃ absolutely convergent, we see that

φ = Rkf̃ = Rk

(∑
m

cm(f̃) · Pm

)
=
∑
j≥0

Kk+2j ·Rk+2j

(∑
m

cm(f̃) · Pm

)

=
∑
m

cm(f̃)

∑
j≥0

Kk+2j ·Rk+2j · Pm

 =
∑
m

cm(f̃) · RjPm

with Fourier series expansion

φ

((
y x

1

))
=
∑
m

cm(f̃) · RkPm
((

y x
1

))
=
∑
m

cm(f̃) · Rk
∑
γ∈Q

WPm

((
y

1

))
e(γx)

=
∑
m

cm(f̃) · Rk
∑
γ∈Q

ρPm(γyf )
|γyf |

1
2
·WPm(γy∞) · e(γx)

=
∑
m

cm(f̃) ·
∑
γ∈Q

ρPm(γyf )
|γyf |

1
2
· (RkWPm(γy∞)) · e(γx).
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Hence, writing Pm(φ) to denote the Poincaré series constructed from Pm by taking the archimedean Whit-
taker coefficient to be WPm(φ)(y∞) = RkWPm(y∞) (again as functions of y∞ ∈ Q×∞ ∼= R×), we can take our
decomposition of the chosen pure tensor φ = Rkf̃ into Poincaré series to be the corresponding finite sum

φ =
∑
l

cl(φ) · Pl(φ) =
∑
m

cm(f̃) · RkPm.(58)

That is, since we now assume that φ = f̃ arises from the lift of a holomorphic eigenform f of some weight
k, we can also deduce as in the argument of Blomer [1] that the sum over Poincaré series is finite, and in
particular ignore the contributions of the coefficients cl(φ) in our subsequent calculations. Hence, we now
use this decomposition (58) of φ to derive bounds via the following argument, writing Pl = Pl(φ) to simplify
notations, and treating these non-K-finite Poincaré series abstractly as we may. Here, we follow the general
derivation of Fourier-Whittaker expansions given above, again writing ϕ to denote the underlying section
in the space of Schwarz functions – taking for granted the context will distinguish this from the discussion
of cuspidal forms above. Taking unipotent integrals in the expansion (58), we obtain the corresponding
expansion of Fourier-Whittaker coefficients

WPl

((
fA,b(r)
R

1

))
:=
∫

A/Q
Pl

((
1 x

1

)( 1
R

1

))
e(−fA,b(r)x)dx

=
∫ 1

0
Pl

((
1 x

1

)( 1
R

1

))
e(−fA,b(r)x)dx

for each integer r 6= 0. It follows that we have the corresponding decomposition of the sum (51) as∑
r∈Z

Wφ

((
fA,b(r)
R

1

))
=
∑
l 6=0

cl(φ) ·
∑
r∈Z

WPl

((
fA,b(r)
R

1

))
.(59)

Now, to bound this latter expression in (51), we must first consider the following general result about Fourier-
Whittaker coefficients of Poincaré series (see e.g. [9, Proposition 2.5]). To describe this, we first set up some
extra notations following [9]. Hence, let us write

Ω(Γ) =
{
c ∈ R× : N2(R) · w · c ·N2(R) ∩ Γ 6= ∅

}
, w :=

(
−1

1

)
, c :=

(
c

1

)
.

Given c ∈ Ω(Γ), we then consider the congruence subgroup Γc ⊂ Γ defined by Γc = N2(R) ·w · c ·N2(R)∩Γ.
We also write the Bruhat decomposition of any matrix γ ∈ Γc as γ = n1(γ) ·w ·c ·n2(γ). To be more explicit,
using the elementary matrix decomposition(

a b
c d

)
=
(

1 ac−1

1

)(
−1

1

)(
c

c−1(ad− bc)

)(
1 dc−1

1

)
we have that

n1(γ) =
(

1 ac−1

1

)
, n2(γ) =

(
1 dc−1

1

)
for γ =

(
a b
c d

)
∈ Γc.

Now, we have the following general description of Fourier-Whittaker coefficients of Poincaré series Pϕ,ξ,ν as
defined above on g ∈ G(A), i.e. with ϕ ∈ S(N2(A)\G(A);ψ1) for ψ1 some fixed additive character of A/Q.
Let ψ2 be any additive character of A/Q. Then, the corresponding Fourier-Whittaker coefficient

WPϕ,ξ,ν ,ψ2(g) :=
∫

A/Q
Pϕ,ξ,ν

((
1 x

1

)
g

)
ψ2(−x)dx =

∫ 1

0
Pϕ,ξ,ν

((
1 x

1

)
g

)
ψ2(−x)dx

is given by the formula

(60)

WPϕ,ξ,ν ,ψ2(g) =
∫

A/Q
ϕ(g)ψ1(x)ψ2(−x)dx

+
∑

c∈Ω(Γ)

 ∑
γ∈Γ∞\Γc/Γ∞

ξ(γ) · ν(γ) · ψ1(n1(γ)) · ψ2(n2(γ))

∫
A/Q

ϕ

(
w · c ·

(
1 x

1

)
· g
)
ψ2(−x)dx.
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Indeed, this identity (60) can be checked easily after opening the expansion of the Poincaré series and using
the Bruhat decomposition Γ = Γ∞ ∪

⋃
c∈Ω(Γ) Γc as in the proof of [9, Proposition 2.5]; we omit details for

brevity. In particular, if for nonzero integers r and l we take the additive characters defined on x ∈ A/Q by
ψ1(x) = ψ∞(lx) = e(lx) and ψ2(x) = ψ∞(rx) = e(rx), then we obtain

(61) WPϕ,ξ,ν ,ψ2(g) = ϕ(g) ·
∫

A/Q
e(lx− rx)dx+

∑
c∈Ω(Γ)

KlΓ,ξ,ν(l,m; c) · Fϕ,r,c(g),

where KlΓ,ξ,ν(l, r; c) denotes the Kloosterman sum defined by

KlΓ,ξ,ν(l, r; c) =
∑

γ∈Γ∞\Γc/Γ∞

ξ(γ) · ν(γ) · ψ1(n1(γ)) · ψ2(n2(γ))

=
∑

γ=

(
a b
c d

)
∈Γ∞\Γc/Γ∞

ξ(d) · ν(γ) · e
(
al

c

)
e

(
dr

c

)

and Fϕ,r,c(g) the intertwining integral defined by

Fϕ,r,c(g) =
∫

R
ϕ

(
w · c ·

(
1 x

1

)
· g
)
e(−rx)dx.

Using this description of the Fourier coefficients of each Pl in the decomposition (59), we then derive
(62)∑
l 6=0

cl(φ)
∑
r∈Z

WPl

((
fA,b(r)
R

1

))

=
∑
l 6=0

cl(φ)
∑
r∈Z

ϕ(( 1
R

1

))∫ 1

0
e(lx− fA,b(r)x)dx+

∑
c∈Ω(Γ)

KlΓ,ξ,1(l, fA,b(r); c) · Fϕ,fA,b(r),c
(( 1

R
1

)) .

Now, observe that the first summand in this latter expression in negligible, and vanishes unless l = fA,b(r).
In particular, it is enough to estimate the second term∑

l 6=0
cl(φ)

∑
r∈Z

∑
c∈Ω(Γ)

KlΓ,ξ,1(l, fA,b(r); c) · Fϕ,fA,b(r),c
(( 1

R
1

))

=
∑
l 6=0

cl(φ)
∑

c∈Ω(Γ)

∑
γ=

(
a b
c d

)
∈Γ∞\Γc/Γ∞

ξ(d)e
(
al

c

)∑
r∈Z

e

(
dfA,b(r)

c

)
Fϕ,fA,b(r),c

(( 1
R

1

))

as R→∞, which after partitioning the r-sum into congruence classes u mod c is the same as
(63)∑
l 6=0

cl(φ)
∑

c∈Ω(Γ)

∑
γ=

(
a b
c d

)
∈Γ∞\Γc/Γ∞

ξ(d)e
(
al

c

) ∑
u mod c

∑
r∈Z

r≡u mod c

e

(
dfA,b(r)

c

)
Fϕ,fA,b(r),c

(( 1
R

1

))
.

We now apply the Poisson summation formula (cf. [1, Lemma 1], [21, (4.25)]), i.e.∑
r∈Z

r≡u mod c

e

(
dfA,b(r)

c

)
· Fϕ,fA,b(r),c

(( 1
R

1

))
= 1
|c|
∑
h∈Z

F̂
ϕ,
fA,b(h)

c ,c

(( 1
R

1

))
e

(
dfA,b(u) + hu

c

)
,

with Fourier transform

F̂
ϕ,
fA,b(h)

c ,c

(( 1
R

1

))
=
∫

R
F
ϕ,
fA,b(t)

c ,c

(( 1
R

1

))
e (−ht) dt

=
∫ ∞
−∞

∫ ∞
−∞

ϕ

(
w · c ·

(
1 x

1

)
·
( 1

R
1

))
e

(
fA,b(t)
c
· x
)
dxe(−ht)dt,
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to each class u mod c (i.e. where the R variable is constant) to obtain from (63) the expression
(64)∑
l 6=0

cl(φ)
∑

c∈Ω(Γ)

1
|c|

∑
γ=

(
a b
c d

)
∈Γ∞\Γc/Γ∞

ξ(d)e
(
al

c

) ∑
u mod c

∑
h∈Z

F̂
ϕ,
fA,b(h)

c ,c

(( 1
R

1

))
e

(
dfA,b(u) + hu

c

)

=
∑
l 6=0

cl(φ)
∑

c∈Ω(Γ)

1
|c|

∑
γ=

(
a b
c d

)
∈Γ∞\Γc/Γ∞

ξ(d)e
(
al

c

)∑
h∈Z

F̂
ϕ,
fA,b(h)

c ,c

(( 1
R

1

)) ∑
u mod c

e

(
dfA,b(u) + hu

c

)
.

Let us now consider the inner quadratic Gauss sum in this latter expression (64),∑
u mod c

e

(
dfA,b(u) + hu

c

)
=

∑
u mod c

e

(
d(γAu2 + δ′Au+ ε′A) + hu

c

)
= e

(
dε′A
c

) ∑
u mod c

e

(
dγAu

2 + (dδ′A + h)u
c

)
.

Here, we can evaluate the inner Gauss sum via Poisson summation as in [29, Theorem 9.15] and quadratic
reciprocity as in [1, Lemma 7] (for instance). That is, let us for positive integers r, c > 0 with at least one
being even (rc ≡ 0 mod 2) and another integer s ∈ Z consider the quadratic Gauss sum defined by

T (r, s; c) :=
∑

u mod c
e

(
ru2 + su

2c

)
.

Completing the square via the elementary calculation
r

2c

(
x2 + s

r

)
= r

2c

(
x+ s

2r

)2
− s2

8c ,

we get

T (r, s; c) = e

(
−s

2

8c

) ∑
u mod c

e

(
r

2c

(
u+ s

2r

)2
)

= e

(
−s

2

8c

) ∑
u mod c

e

(
ru2

2c

)
= e

(
−s

2

8c

)
T (r, 0; c).

On the other hand, we know by the Poisson summation calculation derived in [29, Theorem 9.15] that

T (r, 0; c) = e

(
1
8

)
·
( c
r

) 1
2 · T (c, 0; r),

and hence

T (r, s; c) = e

(
1
8

)
·
( c
r

) 1
2 · e

(
−s

2

8c

)
· T (c, 0; r).(65)

Applying this formula (65) to evaluate our inner quadratic Gauss sum

T (2dγA, 2(dδ′A + h); c) =
∑

u mod c
e

(
dγAu

2 + (dδ′A + h)u
c

)
,

we then get

T (2dγA, 2(dδ′A + h); c) = e

(
− (dδ′A + h)2/4

c

)
· e
(

1
8

)
·
(

c

2dγA

) 1
2

· T (c, 0; 2dγA).(66)

Now, we can evaluate T (c, 0; 2dγA) via the quadratic reciprocity law. Given an integer q, define

εq =
{

1 if q ≡ 1 mod 4
i if q ≡ 3 mod 4.

By quadratic reciprocity, we have that

T (c, 0, 2dγA) =
2dγA∑
u=1

e

(
c/4 · u2

2dγA

)
=
{

0 if 2dγA ≡ 2 mod 4 or (c/4, 2dγA) 6= 1
(1 + i) · ε−1

c/4 ·
(

2dγA
c/4

)
if 2dγA ≡ 0 mod 4
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and hence

T (c, 0, 2dγA) =
{

0 if 2dγA ≡ 2 mod 4 or (c/4, 2dγA) 6= 1
(1− i) · ε−1

c/4 ·
(

2dγA
c/4

)
if 2dγA ≡ 0 mod 4.

Thus, we can evaluate (66) more explicitly as

T (2dγA, 2(dδ′A + h); c)

= e

(
− (dδ′A + h)2/4

c

)
· e
(

1
8

)
·
(

c

2dγA

) 1
2

·

{
0 if 2dγA ≡ 2 mod 4 or (c/4, 2dγA) 6= 1
(1− i) · ε−1

c/4 ·
(

2dγA
c/4

)
if 2dγA ≡ 0 mod 4.

In this way, we can evaluate the inner quadratic Gauss sum in the previous expression (64) as
(67)∑
u mod c

e

(
dfA,b(u) + hu

c

)
= e

(
dε′A
c

) ∑
u mod c

e

(
dγAu

2 + (dδ′A + h)u
c

)

= e

(
dε′A
c

)
· e
(
−(dδ′A + h)2/4

c

)
· e
(

1
8

)
·
(

c

2dγA

) 1
2

·

{
0 if 2dγA ≡ 2 mod 4 or (c/4, 2dγA) 6= 1
(1− i) · ε−1

c/4 ·
(

2dγA
c/4

)
if 2dγA ≡ 0 mod 4.

.

Substituting back into (64) and switching the order of summation, we obtain the expression

e

(
1
8

)
·
∑
l 6=0

cl(φ)
∑

c∈Ω(Γ)

(1− i)
|c| 12

∑
γ=

(
a b
c d

)
∈Γ∞\Γc/Γ∞

2dγA≡0 mod 4

ξ(d) · e
(
al

c

)
e

(
dε′A
c

)
· ε−1
c/4 · (2dγA)− 1

2 ·
(

2dγA
c/4

)

×
∑
h∈Z

2|cν (dδ′
A

+h)

F̂
ϕ,
fA,b(h)

c ,c

(( 1
R

1

))
e

(
−(dδ′A + h)2/4

c

)
.

Note that we can write the latter exponential term more explicitly as

e

(
−(dδ′A + h)2/4

c

)
= e

(
−d2δ′2A/4

c

)
e

(
−dδ′Ah/2

c

)
e

(
−h2/4
c

)
,

which after using that ad ≡ 1 mod c leads us to the simpler expression

(68)

e

(
1
8

)
·
∑
l 6=0

cl(φ)
∑

c∈Ω(Γ)

(1− i)
|c| 12

×
∑

γ=

(
a b
c d

)
∈Γ∞\Γc/Γ∞

2dγA≡0 mod 4

ξ(d) · e
(
al

c

)
· ε−1
c/4 · (2dγA)− 1

2 ·
(

2dγA
c/4

)
· e
(
d(ε′A − aδ′A/4)

c

)

×
∑
h∈Z

F̂
ϕ,
fA(h)
c ,c

(( 1
R

1

))
e

(
−h2/4− dδ′Ah/2

c

)
,
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which after opening up the Fourier transform and switching the order of summation is the same as

(69)

e

(
1
8

)
·
∑
l 6=0

cl(φ)
∑

c∈Ω(Γ)

(1− i)
|c| 12

×
∑

γ=

(
a b
c d

)
∈Γ∞\Γc/Γ∞

2dγA≡0 mod 4

ξ(d) · e
(
al

c

)
· ε−1
c/4 · (2dγA)− 1

2 ·
(

2dγA
c/4

)
· e
(
d(ε′A − aδ′A/4)

c

)

×
∑
h∈Z

e

(
−h2/4− δ′Ah/2

c

)∫
x∈R

ϕ

(
w · c ·

(
1 x

1

)
·
( 1

R
1

))∫
t∈R

e

(
−fA,b(t)x− hct

c

)
dtdx.

Now, for each x 6= 0, we can evaluate the inner integral

∫
R
e

(
−fA,b(t)x− hct

c

)
dt =

∫ ∞
−∞

e

(
−
(γAx

c

)
t2 −

(
δ′Ax+ hc

c

)
t−
(
ε′A
c

))
dt

=
∫ ∞
−∞

e
−2πi

(
( γAxc )t2+

(
δ′
A
x−hc
c

)
t+
(
ε′
A
c

))
dt

as

∫ ∞
−∞

e
−2πi

(
( γAxc )t2+

(
δ′
A
x+hc
c

)
t+
(
ε′
A
c

))
dt =

√
c

2iγAx
· e
(

(δ′2A − 4γAε′A)
4γAc

· x
)
· e
(

2δ′Ahc
4γAc

)
· e
(
h2c2

4γAxc

)

via the integral formula

∫ ∞
−∞

e−(A(x)t2+B(x)t+C(x))dt =
√

π

A(x) · e
B(x)2−4A(x)C(x)

4A(x)

with

A(x) = 2πi
(γAx

c

)
, B(x) = 2πi

(
δ′Ax+ hc

c

)
, C(x) = 2πi

(
ε′Ax

c

)
.

In this way, we argue that for some related Schwartz function ϕ′ ∈ S(N2(A)\G(A);ψ′′) modulo N2(R) with
ψ′′(x) = ψ′(x/4γAc), we can reduce to estimating the simpler sum

(70)

e

(
1
8

)
·
∑
l 6=0

cl(φ)
∑

c∈Ω(Γ)

(1− i)
|c| 12

×
∑

γ=

(
a b
c d

)
∈Γ∞\Γc/Γ∞

2dγA≡0 mod 4

ξ(d) · e
(
al

c

)
· ε−1
c/4 · (2dγA)− 1

2 ·
(

2dγA
c/4

)
· e
(
d(ε′A − aδ′A/4)

c

)

×Fϕ′,−∆,4γAc

(( 1
R

1

))
.
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To be clear, we argue that we can approximate the expression (69) in terms of the nonzero contributions
x 6= 0 in the integral, which after evaluating and switching the order of summation of the h-sum equals

e

(
1
8

)
·
∑
l 6=0

cl(φ)
∑

c∈Ω(Γ)

(1− i)
|c| 12

×
∑

γ=

(
a b
c d

)
∈Γ∞\Γc/Γ∞

2dγA≡0 mod 4

ξ(d) · e
(
al

c

)
· ε−1
c/4 · (2dγA)− 1

2 ·
(

2dγA
c/4

)
· e
(
d(ε′A − aδ′A/4)

c

)

×
∫
x∈R
x 6=0

ϕ

(
w · c ·

(
1 x

1

)
·
( 1

R
1

))

×

{√
c

2iγAx
∑
h∈Z

e

(
−h2/4− δ′Ah/2

c

)
e

(
2δ′Ahc
4γAc

)
e

(
h2c2

4γAxc

)}
e

(
(δ′2A − 4γAε′A)

4γAc
x

)
dx.

We then argue that the inner h-sum in this latter expression can be approximated as a Gaussian integral,
and hence as a constant. Now, using the description of the theta multiplier ν for half-integral weight forms
given in [14], and making a change of variables c→ c′′ = 4γAc, we then argue in the style of [1, §4] that the
sum (70) can be approximated by the even simpler expression

(71)

e

(
1
8

)∑
l 6=0

cl(φ)
∑

c∈Ω(Γ)

(1− i)
|c| 12

×
∑

γ=

(
a′′ b′′

c′′ d′′

)
∈Γ∞\Γc′′/Γ∞

ξ(d′′)
(
d′′

c′′

)
ε−1
d′′ e

(
a′′l

c′′

)
e

(
−d
′′b2∆
c′′

)
Fϕ′,−b2∆,c′′

(( 1
R

1

))
.

Now, we observe from the description of Fourier-Whittaker coefficients of Poincaré series above that each
inner sum over c ∈ Ω(Γ) in (71) can be described in terms of the Fourier-Whittaker coefficient at b2∆ of
some genuine metaplectic Poincaré series Pl = Pϕ′,ξ,ν of half-integral weight. In particular, to estimate the
shifted convolution sum (41), it is enough to estimate the sum of Whittaker coefficients∑

l 6=0
cl(φ) ·WPl

((
− b

2∆
R

1

))
,

i.e. where the coefficients on the right-hand side are defined by the usual unipotent integrals

WPl

((
− b

2∆
R

1

))
= WPl

((
− b

2∆
R

1

)
, 1
)

:=
∫

A/Q
Pl
((

1 x
1

)( 1
R

1

)
, 1
)
e(−∆x)dx =

∫ 1

0
Pl
((

1 x
1

)( 1
R

1

)
, 1
)
e(−∆x)dx

This latter sum can be approximated via the general bound (50) the same way as for (42) via spectral
decompositions of genuine metaplectic forms as given e.g. in [42, §6], generalizing the proof given in the
classical setting (with γA = 1) in [1, §4]. That is, we find by using the same argument – multiplying in the
factor Y 1

4 to compensate for the fact that the Fourier coefficients of the half-integral weight Poincaré series
in this latter decomposition are necessarily proportional to Y − 1

4 – that we have for each ε > 0 the bound∑
r∈Z

λ(fA,b(r))
|fA,b(r)|

1
2
W

(
|fA,b(r)|

R

)
�

∣∣∣∣∣∣
∑
l 6=0

cl(φ) ·WPl
((
−∆b

R
1

))∣∣∣∣∣∣�π,ε Y
1
4 · |∆b|δ0−

1
2 ·
(
|∆b|
R

) 1
2−

θ0
2 −ε

.

Here again, we write ∆b = b2∆ for the discriminant of fA,b to simplify notations. In this way, we justify the
bounds (43) and (41), and hence the second claim (ii). �

Putting together the bounds of Theorem 3.3 (i) and (ii) with Lemma 3.1, we obtain the following estimates.
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Theorem 3.4. Let α ≥ 0 be any integer. Let A be any class in Pic(Opα), with corresponding binary quadratic
form representative qA(x, y) = γAx

2 + δAxy + εAy
2. We have the following estimates for the balanced sums

H
(k)
A (α, 0) = 4

w

∑
m≥1

η(m)
m

∑
a,b∈Z

λ(γAa2 + δAab+ εAb
2)

(γAa2 + δAab+ εAb2) 1
2
Vk+1

(
m2(γAa2 + δAab+ εAb

2)
N |D|p2α

)
.

Let us again consider the nonvanishing residual terms Lk,f,γA(1) defined in Lemma 3.2 and Lemma 3.1
above. We have in either case on the generic root number k = 0, 1 the estimate

H
(k)
A (α, 0) = Lk,f,γA(1) +Of,p,ε

(
|D| 3

16 +ε
(

γA
|D|p2α

) 1
4
)

+Of,k,p,ε

(
γA · (|D|p2α) 7

16 +ε|εA|−
1
2

)
.

Proof. The result is a direct consequence of Lemma 3.1 with Theorem 3.3 (ii). A similar albeit weaker bound
can be derived using Theorem 3.3 (i) in the special case where γA = 1 and δA = 0 (via a simpler proof). �

Remark Observe that if γA is sufficiently small relative to εA and hence the discriminant δ2
A−4γAεA = p2αD,

then H(k)(α, 0) converges to the nonvanishing residual term Lk,f,γA(1) with α � 1. Note that for the
principal class 1 ∈ Pic(Opα), we have γ1 = 1 for q1(x, y) = γ1x

2 + δ1xy + ε1y
2 the reduced representative,

and so we can always derive this nonvanishing consequence. Hence, we take q1(x, y) to be the reduced
representative for the principal class A = 1 ∈ Pic(Opα) for each α ≥ 0 to deduce Theorem 1.2 (i) and (ii).

4. Non self-dual estimates

Fix integers α ≥ 0 and β ≥ 4, as well as a primitive ring class character ρ of K of conductor pα. We now
estimate the averages H(0)(α, β) of Proposition 2.6, as well as the averages D(ρ, β) of Proposition 2.7. Let
us first work in some more generality than required for these estimates, fixing a class A ∈ Pic(Opα), with
rA(n) its corresponding counting function parametrized as above via the corresponding reduced quadratic
form representative qA. We consider for any choice of unbalancing parameter Z > 0 the corresponding sums

H
(0)
A (α, β) = H

(0)
A,1(α, β;Z) +H

(0)
A,2(α, β;Z),

where the first sum is defined by

We also consider the sums in the average formula of Proposition 2.7, which recall is given by

D(ρ, β) = D1(ρ, β;Z) +D2(ρ, β;Z).

for any choice of real parameter Z > 0, where

D1(ρ, β;Z) =
∑
m≥1

η(m)
m

∑
n≥1

m2n≡±1 mod pβ

cρ(n)λ(n)
n

1
2

V1
(
m2nZ

)
− 1
ϕ(p)

∑
m≥1

η(m)
m

∑
n≥1

m2n≡±1 mod pβ−1

m2n6≡±1 mod pβ

cρ(n)λ(n)
n

1
2

V1
(
m2nZ

)

and

D2(ρ, β;Z)

= η(−N)
|D|2p2β

(
p

ϕ(p)

)∑
m≥1

η(m)
m

∑
n≥1

cρ(n)λ(n)
n

1
2

V1

(
m2n

ZN2|D|2p4 max(α,β)

)
Kl4(±(m2nN

2
D

8) 1
2 , pβ).
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4.1. Strategy. We first describe some background for the twisted sums, including how to evaluate the
hyper-Kloosterman Kl4(±c, pβ), together with presentations in terms of Weyl sums. We also present some
preliminary (“trivial”) estimates for the leading sums to illustrate the context. Finally, taking the balanced
approximate functional equation formula corresponding to the parameter Z = Y −1 = (N |D|p2 max(α,β))− 1

2 ,
we explain how to derive nonvanishing estimates in a style similar to the self-dual case (with β = 0) above.
That is, we shall open up the counting functions rA(n) according to the parametrization given in terms of
the reduced quadratic form representative qA(x, y) for the class A. We then derive separate estimates for
the b = 0 and b 6= 0 terms in the style of the arguments above. Although we require some more argument to
show that the b = 0 terms in this estimate is nonvanishing for β � α sufficiently large (and A = 1 principal),
the estimates for the b 6= 0 terms are estimated by a variation of the same argument given above.

4.2. The twisted sums. Recall that for any integer n ≥ 2, we introduce the hyper-Kloosterman sum
Kln(c, pβ) in (22) above, as well as the shorthand notation Kln(±c, pβ) = Kln(c, pβ) + Kln(−c, pβ) in (23).
If β ≥ 4 and p does not divide the dimension n, then these sums can be evaluated explicitly as follows.

Proposition 4.1 (“Salié”). Fix n ≥ 2 an integer, and p a prime which does not divide n. Assume that
β ≥ 4, and without loss of generality that β is even, say β = 2b for some integer b ≥ 2. Then, for any
coprime residue class c mod pβ, we have the formula

Kln(c, pβ) = (pβ)
(n−1)

2
∑

wmod pb
wn≡c mod pb

e

(
(n− 1)w + cw

pβ

)
.

Here, the sum runs over n-th roots of c mod pb (if these exist).

Proof. The result, attributed to Salié, is considered to be classical. However, the main written reference
seems to be [5, Theorem C.1, Lemma C.2], where there is a minor error with the formulation of the final
statement (which needs to be given in terms of liftings of the roots r1/n). We therefore indicate a proof of
the stated formula for the convenience of the reader. Let us lighten notation by writing x = (x1, . . . , xn−1)
to denote the 3-tuple of classes modp2b. We then write h = hc denote the function defined on x by

h(x) = x1 + · · ·+ xn−1 + cx1 · · ·xn−1,

and∇h(x) the column vector determined by∇h(x) = 1−cx2 = (1−c(x1 · · ·xn−1)x1, . . . , 1−c(x1 · · ·xn−1)xn−1).
It is easy to show (cf. [5, Lemme C4]) that we have the expansion h(x) = h(y) +pb∇h(y) · z, where · denotes
the dot product. Substituting this expansion into the definition of Kln(c, pβ) then gives the relation

Kln(c, pβ) =
∑

x mod p2b
(x,p2b)=1

e

(
h(x)
p2b

)
=

∑
y mod pb
(y,pb)=1

∑
z mod pb

e

(
h(y) + pb∇h(y) · z

p2b

)

=
∑

y mod p2b
(y,p2b)=1

e

(
h(y)
p2b

) ∑
z mod pb

e

(
∇h(y) · z

pb

)
.

Since the inner sum runs over all (n − 1)-tuples of classes z mod pb, we can use orthogonality of additive
characters to evaluate the inner sum, and hence to obtain the relation

Kln(c, p2b) = p(n−1)b
∑

y mod p2b
(y,p2b)=1

∇h(y)≡0 mod pb

e

(
h(y)
p2b

)
.

Now, it is easy to see that the solutions to the congruence ∇h(y) ≡ 0 mod pb take the form of invertible
classes y mod pb for which yyj ≡ c mod pb for each of j = 1, . . . , n− 1. This proves the stated formula. �

Corollary 4.2. Fix an integer α ≥ 0, together with a class A ∈ Pic(Opα). Fix a primitive ring class
character ρ of K of conductor pα. Assume p > 2 (and that p hence does not divide the dimension n = 4),
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and that β ≥ 4 is even, say β = 2b for b ≥ 2. Then, we have for any Z > 0 the equivalent expressions

H
(0)
A,2(α, β;Z) = η(−N)

|D|2p β2

(
p

ϕ(p)

)∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1

rA(n)λ(n)
n

1
2

V1

(
m2n

ZN2|D|2p4 max(α,β)

)

×
∑

w mod pb

w4≡±(m2nN2
D

8)
1
2 mod pb

e

(
3w + (m2nN

2
D

8) 1
2w

pβ

)

and

D2(ρ, β;Z) = η(−N)
|D|2p β2

(
p

ϕ(p)

)∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1

cρ(n)λ(n)
n

1
2

V1

(
m2n

ZN2|D|2p4 max(α,β)

)

×
∑

w mod pb

w4≡±(m2nN2
D

8)
1
2 mod pb

e

(
3w + (m2nN

2
D

8) 1
2w

pβ

)
.

4.2.1. Weyl sums and preliminary estimates. Corollary 4.2 allows us to express the twisted sumsH(0)
2,A(α, β;Z)

and D2(ρ, β;Z) in terms of Weyl sums of p-adic phase as follows, from which it is easy to derive a preliminary
(trivial) estimate. We include this description for illustration only, as it might be of independent interest,
but note that it does not play a role in our subsequent proofs. Let us retain all of the setup of Corollary 4.2,
and simplify notations by writing e(±x) = e(x) + e(−x) = exp(2πix) + exp(−2πix).

Proposition 4.3. Fix any integer 1 ≤ s ≤ β. Given a class u mod ps, let (up )8 denote the octic residue
symbol. Given an integer m ≥ 1, let µm denote the coprime residue class µm ≡ m2N

2
D

8 mod ps. Let us
also write Fu,m,s(t) denote the polynomial in t defined by

Fu,m,s(t) = 1
pβ

bβ/sc∑
j=0

( 1
8
j

)[
3ξu,m(uµm)j + ξu,m(uµm)j

]
psjtj

 ,

where ( 1
n

j

)
=

1
n ( 1

n − 1) · · · ( 1
n − j + 1)

j!
for each integer n ≥ 2, with ξu,m some fixed eight root of the class (mND)uµm mod pβ, and bβ/sc denotes
the largest positive integer j < β/s. We then have for any choice of Z > 0 the equivalent expressions

H
(0)
A,2(α, β;Z)

= η(−N)
|D|2p β2

p

ϕ(p)
∑

1≤u≤ps
(u
p

)8=1

∑
m≥1

η(m)
m

∑
t≥0

λ(uµm + pst)rA(uµm + pst)
(uµm + pst) 1

2
V1

(
m2(uµm + pst)

ZN2|D|2p4 max(α,β)

)
e (±Fu,m,s(t))

and
D2(ρ, β;Z)

= η(−N)
|D|2p β2

p

ϕ(p)
∑

1≤u≤ps
(u
p

)8=1

∑
m≥1

η(m)
m

∑
t≥0

λ(uµm + pst)cρ(uµm + pst)
(uµm + pst) 1

2
V1

(
m2(uµm + pst)

ZN2|D|2p4 max(α,β)

)
e (±Fu,m,s(t)) .

Proof. We divide mn-sums of into congruence classes modulo ps to obtain

H
(0)
A,2(α, β;Z)

= η(−N)
|D|2p β2

p

ϕ(p)
∑

1≤u≤ps
(u
p

)8=1

∑
m,n≥1
(n,p)=1

u≡m2nN2
D

8 mod ps

η(m)λ(n)rA(n)
mn

1
2

V1

(
m2n

ZN2|D|2p4 max(α,β)

) ∑
w mod pb

w8≡u mod pb

e

(
3w ± uw

pβ

)
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and

D2(ρ, β;Z)

= η(−N)
|D|2p β2

p

ϕ(p)
∑

1≤u≤ps
(u
p

)8=1

∑
m,n≥1
(n,p)=1

u≡m2nN2
D

8 mod ps

η(m)λ(n)cρ(n)
mn

1
2

V1

(
m2n

ZN2|D|2p4 max(α,β)

) ∑
w mod pb

w8≡u mod pb

e

(
3w ± uw

pβ

)
,

where the condition (up )8 = 1 in the u-sum comes from the w-sum via Hensel’s lemma. Note that here, each
of the w-sums consists one a single pair of eighth roots w mod pb. To give a more explicit description of the
eighth roots w8 ≡ ±u mod pb appearing in these expressions, fix a class u mod ps for which (up )8 = 1, and
consider the corresponding inner mn-sum. Let µm ≡ m2N

2
D

8 mod ps. Hence nµm ≡ m2N
2
D

8
n mod ps,

from which it follows that nµm ≡ u mod ps. Hence, we can expand each integer n ≥ 1 in the second sum
in terms of the congruence condition u ≡ nµm mod ps as n = uµm + pst, with t ≥ 0 varying over positive
integers. This in turn gives us the expansion

w8 ≡ ±m2N
2
D

8(uµm + pst) ≡ ±(mND4)2(uµm + pst) ≡ ±(mND4)2uµm(1 + κpst) mod pβ ,

where κ = uµm denotes the multiplicative inverse of uµm mod pβ . Now, Hensel’s lemma ensures that we can
find an integer ξ = ξu,m such that ξ8 ≡ (mND4)uµm mod pβ . (In fact, there exist Op(1) many such roots,
and we choose one implicitly). Hence, we can express the roots appearing in the corresponding w-sum as

w8 ≡ ±ξ8(1 + κpst) mod pβ ,(72)

so that w ≡ ξu(1 + κpst) 1
8 and w4 ≡ ξ4

u(1 + κpst) 1
2 . Now, to give an even more explicit description of these

classes w and w4, we can use the classical fact that for any x ∈ pZp, the power series∑
j≥0

( 1
n

j

)
xj ∈ Zp[[x]]

converges in the p-adic norm to the n-th root (1 + x) 1
n for any integer n ≥ 2 (see e.g. [36, p. 173]) to obtain

(1 + κpst) 1
n =

∑
j≥0

( 1
n

j

)
κjpsjtj ,

so that

w ≡ ξu
∑
j≥0

( 1
8
j

)
κjpsjtj mod pβ .

Hence, we derive the more explicit presentation

3w + uw = 3ξ(1 + κpst) 1
8 + uξ(1 + κpst) 1

8 =
∑
j≥0

( 1
8
j

)
[3κj + uκj ]psjtj .(73)

Writing Φu,m,s(t) to denote the polynomial in Q[t] obtained by reducing (73) modulo pβ , we can then write
our expression in the obvious way in terms of the Weyl polynomial Fu,m,s(t) := p−βΦu,m,s(t). This gives
the stated expressions for the exponential sums described at the start of the proof. �

Corollary 4.4. Assume β ≥ 4. We have for any choices of Z > 0 and ε > 0 the upper bounds

H
(0)
2,A(α, β;Z) = Of,D,p,ε

((
Zp4 max(α,β)

) 1
2 +ε
)

and

D2(ρ, β;Z) = Of,D,p,ρ,ε

((
Zp4 max(α,β)

) 1
2 +ε
)
.
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Proof. Taking s = b = β
2 in Proposition 4.3 above, we have the identities

H
(0)
A,2(α, β;Z)

= η(−N)
|D|2pb

p

ϕ(p)
∑

1≤u≤pb
(u
p

)8=1

∑
m≥1

η(m)
m

∑
t≥0

λ(uµm + pbt)rA(uµm + pbt)
(uµm + pbt) 1

2
V1

(
m2(uµm + pbt)

ZN2|D|2p4 max(α,β)

)
e (±Fu,m,b(t))

and

D2(ρ, β;Z)

= η(−N)
|D|2pb

p

ϕ(p)
∑

1≤u≤pb
(u
p

)8=1

∑
m≥1

η(m)
m

∑
t≥0

λ(uµm + pbt)cρ(uµm + pbt)
(uµm + pbt) 1

2
V1

(
m2(uµm + pbt)

ZN2|D|2p4 max(α,β)

)
e (±Fu,m,b(t)) .

Let us now put T = ZN2|D|2p4 max(α,β)p−
β
2 . Observe that by the rapid decay of the cutoff function V1, it

will suffice to estimate the truncated sums defined by

H
(0),†
A,2 (α, β;Z)

= η(−N)
|D|2pb

p

ϕ(p)
∑

1≤u≤pb
(u
p

)8=1

∑
m≥1

η(m)
m

∑
t≥0

m2t≤T

λ(uµm + pbt)rA(uµm + pbt)
(uµm + pbt) 1

2
V1

(
m2(uµm + pbt)

ZN2|D|2p4 max(α,β)

)
e (±Fu,m,b(t))

and

D†2(ρ, β;Z)

= η(−N)
|D|2pb

p

ϕ(p)
∑

1≤u≤pb
(u
p

)8=1

∑
m≥1

η(m)
m

∑
t≥0

m2t≤T

λ(uµm + pbt)cρ(uµm + pbt)
(uµm + pbt) 1

2
V1

(
m2(uµm + pbt)

ZN2|D|2p4 max(α,β)

)
e (±Fu,m,b(t)) .

Recall that this function V1(y) on is defined on y ∈ R>0 by the contour integral

V1(y) =
∫
<(s)=2

L∞(s+ 1/2)
L∞(s)

g∗(s)
s

y−s
ds

2πi ,

where the shifted local archimedean L-function L∞(s+ 1/2) has poles at s = −1 and s = −2. To estimate
the behaviour as y → 0, we can therefore shift the contour leftward to <(s) = −B for some 0 < B < 1,
crossing only a simple pole at s = 0 to derive V1(y) = 1 +OB(yB) as y → 0. Applying this estimate directly
to the first truncated sum H

(0),†
A,2 (α, β;Z), we find

H
(0),†
A,2 (α, β;Z) = η(−N)

|D|2p β2
p

ϕ(p)
∑

1≤u≤p
β
2

(u
p

)8=1

∑
m≥1

η(m)
m

∑
t≥0

m2t≤T

λ(uµm + p
β
2 t)rA(uµm + p

β
2 t)

(uµm + p
β
2 t) 1

2
e
(
Fu,m, β2

(t)
)

+OD,p,ε

∑
m≥1

1
m

∑
t≥0

m2t>T

(uµm + p
β
2 t)ε− 1

2

(
m2(uµm + p

β
2 t)

ZN2|D|2p4 max(α,β)

)B
for any ε > 0 and 0 < B < 1. It is easy to see that the error term here is bounded above as

�f,D,p,ε (Zp4 max(α,β))−B(p
β
2 )ε− 1

2 +B
∑
m≥1

m−1+2B
∑
t≥0

m2t>T

tε−
1
2 +B � (ZN2|D|2p4 max(α,β)) 1

2 +ε,
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so that

H
(0),†
A,2 (α, β;Z) = η(−N)

|D|2p β2
p

ϕ(p)
∑

1≤u≤p
β
2

(u
p

)8=1

∑
m≥1

η(m)
m

∑
t≥0

m2t≤T

λ(uµm + p
β
2 t)rA(uµm + p

β
2 t)

(uµm + p
β
2 t) 1

2
e
(
Fu,m, β2

(t)
)

+Of,D,p,ε

(
(Zp4 max(α,β)) 1

2 +ε
)
.

The residual term in this latter estimate is also seen easily to be bounded above by

η(−N)
|D|2p β2

p

ϕ(p)
∑

1≤u≤p
β
2

(u
p

)8=1

∑
m≥1

η(m)
m

∑
t≥0

m2t≤T

λ(uµm + p
β
2 t)rA(uµm + p

β
2 t)

(uµm + p
β
2 t) 1

2
e
(
Fu,m, β2

(t)
)

�f,D,p,ε (p
β
2 )ε− 1

2 (log T )T 1
2 +ε � (Zp4 max(α,β)) 1

2 +ε.

Hence we derive the estimate H(0),†
A,2 (α, β;Z) �f,D,p,ε (Zp4 max(α,β)) 1

2 +ε, from which the claim follows. Re-
placing rA by cρ, a completely analogous argument works to bound the twisted sum D2(ρ, β;Z). �

4.3. The leading sums. Let us again fix an integer α ≥ 1, together with a class A ∈ Pic(Opα). Let us also
fix a primitive ring class character ρ of conductor pα. We now consider the leading sums H(0)

A,1(α, β;Z) and
D1(ρ, β;Z) above. Here we shall consider standard arguments leading to trivial preliminary estimates for
these sums for varying choice of Z > 0. Let us first describe the trivial estimate.

4.3.1. Preliminary estimates. Recall that the function V1(y) is defined on y ∈ R>0 by the contour integral

V1(y) =
∫
<(s)=2

V̂1(s)y−s ds2πi =
∫
<(s)=2

L∞(s+ 1/2)
L∞(s)

g∗(s)
s

y−s
ds

2πi ,

where the shifted archimedean local L-function L∞(s+1/2) = ΓR(s+1)ΓR(s+3/2) has poles at s = −1 and
s = −2. Shifting the contour to the left, we then have the estimate V1(y) = 1 +OB(yB) for any 0 < B < 1
as y → 0. Shifting to the left, we have that V1(y) = OC(y−C) for any C > 0 as y →∞.

Lemma 4.5 (Trivial estimate). Let Z be any choice of real parameter so that 1 < 1/Z < pβ−1. We have
for any choices of constants 0 < B < 1/2, C > 1/2, and ε > 0 the estimate

H
(0)
A,1(α, β;Z) = 1 +OB

(
ZB
)

+OC,ε

(
Z−C(pβ)−( 1

2 +C)+ε
)
.

In particular, taking Z = p−γ for 0 < γ < β − 1 with B = 1/4 and C = 1/2 + ε gives us the estimate

H
(0)
A,1(α, β; p−γ) = 1 +O(p−

γ
4 ) +Oε

(
(pγ) 1

2 +ε(pβ)−1+ε
)
.

Both assertions remain true after replacing H(0)
A,1(α, β;Z) by the sum D1(ρ, β;Z).

Proof. Cf. [43, Lemma 5.2]. Put Z = Y −1. Expanding out the definition, we have that

H
(0)
A,1(α, β;Y −1) =

∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1
m2n≡±1 mod pβ

λ(n)rA(n)
n

1
2

V1

(
m2n

Y

)

− 1
ϕ(p)

∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1
m2n≡±1 mod pβ−1

m2n 6≡±1 mod pβ

λ(n)rA(n)
n

1
2

V1

(
m2n

Y

)
.

Observe that the contribution of m = n = 1 in the first sum can be estimated for any 0 < B < 1/2 as

V1

(
1
Y

)
=
∫
<(s)=2

G1(s)L∞(1/2 + s)
L∞(s) Y s

ds

2πi = 1 +OB(Y −B) ∀ 0 < B < 1/2.
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To deal with the remaining contributions, let us first recall that V1(y) = OC(y−C) for any choice of constant
C > 0 when y > 1. Recall as well that we have by Deligne’s theorem the bound λ(n) �ε n

ε for any ε > 0,
and the classical bound rA(n)�ε n

ε, for any ε > 0. The point is that we choose Y > 1 in such a way that
all additional terms m2n/Y > 1 lie in the region of rapid decay for the cutoff function V1(y), so that each of
the corresponding coefficients is bounded as

η(m)
m

λ(n)rA(n)
n

1
2

V1

(
m2n

Y

)
�C,ε

nε

mn
1
2

(
m2n

Y

)−C
= OC,ε

(
Y C(m2n)− 1

2−C+ε
)
.

Writingm2 to denote the least integer representative of the classm2 mod pβ−1 (so thatm2m2 ≡ 1 mod pβ−1),
we expand the second sum as

1
ϕ(p)

∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1
m2n≡±1 mod pβ−1

m2n6≡±1 mod pβ

λ(n)rA(n)
n

1
2

V1

(
m2n

Y

)

= 1
ϕ(p)

∑
m≥1

η(m)
m

p−1∑
l=1

λ(m2 + lpβ−1)rA(m2 + lpβ−1)
(m2 + lpβ−1) 1

2
V1

(
m2(m2 + lpβ−1)

Y

)

+ 1
ϕ(p)

∑
m≥1

η(m)
m

p−1∑
l=1

λ(−m2 + lpβ−1)rA(−m2 + lpβ−1)
(−m2 + lpβ−1) 1

2
V1

(
m2(−m2 + lpβ−1)

Y

)
That is, the congruence condition in the second sum can be parametrized simply by ±m2 + lpβ−1 for integers
1 ≤ l ≤ p− 1. Since we assume that 1 < Y < pβ−1, each term in the latter expression is bounded above by

η(m)
m

λ(±m2 + lpβ−1)rA(±m2 + lpβ−1)
(±m2 + lpβ−1) 1

2
V1

(
m2(±m2 + lpβ−1)

Y

)
�C,ε (m2(±m2 + lpβ−1))ε− 1

2−CY C ,

so that the second sum is bounded above by

1
ϕ(p)

∑
m≥1

η(m)
m

p−1∑
l=1

λ(±m2 + lpβ−1)rA(±m2 + lpβ−1)
(±m2 + lpβ−1) 1

2
V1

(
m2(±m2 + lpβ−1)

Y

)

�C,ε
1

ϕ(p)
∑
m≥1

p∑
l=1

Y C(m2(±m2 + lpβ−1))ε− 1
2−C = OC,ε

(
Y C(pβ)−( 1

2 +C)+ε
)
.

We use a similar argument to bound the remaining terms in the first sum. That is, writing m2 now to denote
the least integer representative of the class m2 mod pβ (so that m2m2 ≡ 1 mod pβ), we expand out as∑

m≥1

η(m)
m

∑
n≥1

(n,p)=1
m2n≡±1 mod pβ

λ(n)rA(n)
n

1
2

V1

(
m2n

Y

)

=
∑
m≥1

η(m)
m

∑
t≥0

λ(m2 + tpβ)rA(m2 + tpβ)
(m2 + tpβ) 1

2
V1

(
m2(m2 + tpβ)

Y

)

+
∑
m≥1

η(m)
m

∑
t≥0

λ(−m2 + tpβ)rA(−m2 + tpβ)
(−m2 + tpβ) 1

2
V1

(
m2(−m2 + tpβ)

Y

)
It is easy to see from the argument for the second sum that the t ≥ 1 contributions are bounded above by∑

m≥1

η(m)
m

∑
t≥1

λ(±m2 + tpβ)rA(m2 + tpβ)
(±m2 + tpβ) 1

2
V1

(
m2(±m2 + tpβ)

Y

)
�C,ε Y

C
∑
m,t≥1

(m2(±m2 + tpβ))−( 1
2 +C)+ε = OC,ε

(
Y C(pβ)−( 1

2 +C)+ε
)
.
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Here, we assume that C > 1/2 so that the t-sum converges. We can then treat this sum as a constant.
Finally, we consider the contributions from t = 0 which do not arise from the leading term m = n = 1, so
corresponding to m = 1 and t = 0 in our congruence expansion above. That is, it remains to consider

∑
m≥2

η(m)
m

λ(m2)rA(m2)
(m2) 1

2
V1

(
m2m2

Y

)
+
∑
m≥2

η(m)
m

λ(−m2)rA(−m2)
(−m2) 1

2
V1

(
m2(−m)2

Y

)
.

Since m ≥ 2, the congruence condition m2m2 ≡ 1 mod pβ implies that m2m2 = 1 + upβ for some integer
u ≥ 1, and the condition m2(−m2) ≡ 1 mod pβ ≡ 1 mod pβ implies that m2(−m2) = 1 + u′pβ for some
integer u′ ≥ 1. The hypothesis that 1 < Y < pβ−1 implies that each of the terms in this latter expression lies
in the region of rapid decay for V1(y), and can be bounded in the same way as described above. Replacing the
coefficients rA with the (averaged) coefficients c(ρ), we derive the same estimate for the sum D1(ρ, β). �

4.4. Main estimate. Let us now return to the averages

H(0)(α, β) = 1
#C?(α)

∑
ρ∈Pic(Oαp )∨

primitive

2
ϕ?(pβ)

∑
χ mod pβ

χ(−1)=1 primitive

L(1/2, f × ρχ ◦N)

described in Proposition 2.6 above. In particular, taking the unbalancing parameter Z = Y −1 = D|N |p2 max(α,β),
and working only with the principal class A = 1 ∈ Pic(Opα) (hence dropping the class from the notation)
we have the explicit expression

H(0)(α, β) =
(

1− #C(α− 1)
#C?(α)

)
·
(
H

(0)
1 (α, β;Y −1) +H

(0)
2 (α, β;Y −1)

)
−
(

#C(α− 1)
#C?(α)

)
·
(
H

(0)
1,?(α, β;Y −1) +H

(0)
2,?(α, β;Y −1)

)
.

Theorem 4.6. Fix an integer β ≥ 2. We have for any anticyclotomic exponent α ≥ 1 the estimate

H(0)(α, β) =
(

1− 2 · #C(α− 1)
#C?(α)

)
1
w

∑
m≥1

η(m)
m


∑
a6=0∈Z
(a,p)=1

m2a2≡±1 mod pβ

λ(a2)
a
− 1
ϕ(p)

∑
a6=0∈Z
(a,p)=1

m2a2≡±1 mod pβ−1

m2a2 6≡±1 mod pβ

λ(a2)
a


+
(

1− 2 · #C(α− 1)
#C?(α)

)
η(−N)
|D|2p2β

1
w

∑
m≥1

η(m)
m

 ∑
a6=0∈Z
(a,p)=1

λ(a2)
a
·
(

p

ϕ(p)

)
Kl4(±(m2a2N

2
D

8) 1
2 , pβ)


+Of,ε

((
|D|pβ

) 3
16 +ε (|D|p2 max(α,β)

)− 1
4
)

+Of,β,ε

((
|D|p2α)− 1

4 +δ0
)
,

or equivalently
(74)

H(0)(α, β) =
(

1− 2 · #C(α− 1)
#C?(α)

)
× 2
w

∑
χ mod pβ

primitiveχ(−1)=1

(
L(1, ηχ2) · L(1,Sym2 f ⊗ χ)

L(Np)(2, χ)
+ ηχ2(−N)τ(ηχ2)4

|D|2p2β · L(1, ηχ2) · L(1,Sym2 f ⊗ χ)
L(Np)(2, χ)

)

+Of,ε

((
|D|pβ

) 3
16 +ε (|D|p2 max(α,β)

)− 1
4
)

+Of,β,ε

((
|D|p2α)− 1

4 +δ0
)
.
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In particular, we can deduce that for α� β sufficiently large, the average converges to the constant term
(75)(

1− 2 · #C(α− 1)
#C?(α)

)
× 2
w

∑
χ mod pβ

primitiveχ(−1)=1

(
L(1, ηχ2) · L(1,Sym2 f ⊗ χ)

L(Np)(2, χ)
+ ηχ2(−N)τ(ηχ2)4

|D|2p2β · L(1, ηχ2) · L(1,Sym2 f ⊗ χ)
L(Np)(2, χ)

)
.

Using the nonvanishing of each L(1,Sym2 f ⊗ χ), we can also show that this term (75) does not vanish.

Proof. We see from the explicit formulae of Proposition 2.6 that it is enough to estimate the main sum

H
(0)
1 (α, β;Y ) +H

(0)
2 (α, β;Y −1) = H

(0)
1,1(α, β; (N |D|p2 max(α,β))−1) +H

(0)
1,2(α, β; (N |D|p2 max(α,β))−1).

Here, for reduced form representative q1(x, y) = x2 + δ1xy + ε1y
2 as described above (with ε1 ≈ Dp2α)

H
(0)
1,1(α, β; (N |D|p2 max(α,β))−1) = 1

w

∑
m≥1

η(m)
m

∑
a,b∈Z

q1(a,b)6=0,(q1(a,b),p)=1
m2q1(a,b)≡±1 mod pβ

λ(q1(a, b))
q1(a, b) 1

2
V1

(
m2q1(a, b)

N |D|p2 max(α,β)

)

− 1
w

1
ϕ(p)

∑
m≥1

η(m)
m

∑
a,b∈Z

q1(a,b)6=0,(q1(a,b),p)=1
m2q1(a,b)≡±1 mod pβ−1

m2q1(a,b)6≡±1 mod pβ

λ(q1(a, b))
q1(a, b) 1

2
V1

(
m2q1(a, b)

N |D|p2 max(α,β)

)

and

H
(0)
1,2(α, β; (N |D|p2 max(α,β))−1)

= η(−N)
|D|2p2β

(
p

ϕ(p)

)
1
w

∑
m≥1

η(m)
m

∑
a,b∈Z

q1(a,b)6=0
(q1(a,b),p)=1

λ(q1(a, b))
q1(a, b) 1

2
V1

(
m2q1(a, b)

N |D|p2 max(α,β)

)
Kl4(±(m2q1(a, b)N2

D
8) 1

2 , pβ).
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Let us first estimate the b = 0 terms, following a minor variation of the argument of Lemma 3.1 above.
In this way, we find that the b = 0 terms in the leading sum are estimated as
(76)
H

(0)
1,1(α, β; (N |D|p2 max(α,β))−1)|b=0

= 1
w

∑
m≥1

η(m)
m


∑
a 6=0∈Z

(a2,pα)=1
m2a2≡±1 mod pβ

λ(a2)
a

V1

(
m2a2

N |D|p2 max(α,β)

)
− 1
ϕ(p)

∑
a 6=0∈Z

(a2,pα)=1
m2a2≡±1 mod pβ−1

m2a2 6≡±1 mod pβ

λ(a2)
a

V1

(
m2a2

N |D|p2 max(α,β)

)


= 2
w

2
ϕ?(pβ)

∑
χ mod pβ

primitiveχ(−1)=1

∑
m≥1

η(m)χ2(m)
m

∑
a≥1

(a,pα)=1

λ(a2)χ(a2)
a

V1

(
m2a2

N |D|p2 max(α,β)

)

= 2
w

∑
χ mod pβ

primitiveχ(−1)=1

∫
<(s)=2

L(1 + 2s, ηχ2) · L(1 + 2s,Sym2 f ⊗ χ)
L(Np)(2(1 + 2s), χ)

V̂1(s)
(

1
N |D|p2 max(α,β)

)−s
ds

2πi

= 2
w

∑
χ mod pβ

primitiveχ(−1)=1

L(1, ηχ2) · L(1,Sym2 f ⊗ χ)
L(Np)(2, χ)

+Of,ε

(
(|D|pβ) 3

16 +ε
(
|D|p2 max(α,β)

)− 1
4
)

= 1
w

∑
m≥1

η(m)
m


∑
a 6=0∈Z
(a,p)=1

m2a2≡±1 mod pβ

λ(a2)
a
− 1
ϕ(p)

∑
a 6=0∈Z
(a,p)=1

m2a2≡±1 mod pβ−1

m2a2 6≡±1 mod pβ

λ(a2)
a

+Of,ε

(
(|D|pβ) 3

16 +ε
(
|D|p2 max(α,β)

)− 1
4
)
.

Similarly, using the calculations of Lemma 3.1 with those of Proposition 2.6, as well as the relation

2
ϕ?(pβ)

∑
χ mod pβ

χ(−1)=1 primitive

χ(m2a2N2)τ(ηχ2)4 =
(

p

ϕ(p)

)
Kl4(±(m2a2N

2
D

8) 1
2 , pβ)

implied by Proposition 2.4, we find the that the b = 0 terms in the twisted sum can be estimated as

(77)

H
(0)
1,2(α, β; (N |D|p2 max(α,β))−1)|b=0

= η(−N)
|D|2p2β

(
p

ϕ(p)

)
1
w

∑
m≥1

η(m)
m

∑
a6=0∈Z
(a,p)=1

λ(a2)
a

V1

(
m2a2

N |D|p2 max(α,β)

)
Kl4(±(m2a2N

2
D

8) 1
2 , pβ)

= η(−N)
|D|2p2β

(
p

ϕ(p)

)
1
w

∫
<(s)=2

∑
m≥1

η(m)
m1+2s

∑
a 6=0∈Z
(a,p)=1

λ(a2)
a1+2s

(
1

N |D|p2 max(α,β)

)
V̂1(s) ds2πi

= η(−N)
|D|2p2β

(
p

ϕ(p)

)
1
w

∑
m≥1

η(m)
m

∑
a6=0∈Z
(a,p)=1

λ(a2)
a
·Kl4(±(m2a2N

2
D

8) 1
2 , pβ)

+Of,ε

(
p−

β
2 |D|−2 · |D| 3

16 +ε
(
|D|p2 max(α,β)

)− 1
4
)

= 2
w
· 2
ϕ?(pβ)

∑
χ mod pβ

χ(−1)=1 primitive

ηχ2(−N)τ(ηχ2)4

|D|2p2β · L(1, ηχ2) · L(1,Sym2 f ⊗ χ)
L(Np)(2, χ)

+Of,ε

(
(|D|pβ) 3

16 +ε
(
|D|p2 max(α,β)

)− 1
4
)
.
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Here, we use different applications of the argument of Lemma 3.1 in the last step according to whether we
unwind the expression to get a twisting linear combination of L-values (which gives a worse error term).

Let us now consider the b 6= 0 contributions. For the leading sum, we deduce from Theorem 3.3 that
(78)
H

(0)
1,1(α, β; (N |D|p2 max(α,β))−1)|b6=0

= 1
w

∑
m≥1

η(m)
m

∑
a,b∈Z

q1(a,b),b 6=0,(a2,pα)=1
m2q1(a,b)≡±1 mod pβ

λ(q1(a, b))
q1(a, b) 1

2
V1

(
m2q1(a, b)

N |D|p2 max(α,β)

)

− 1
w

1
ϕ(p)

∑
m≥1

η(m)
m

∑
a,b∈Z

q1(a,b),b 6=0,(a2,pα)=1
m2q1(a,b)≡±1 mod pβ−1

m2q1(a,b)6≡±1 mod pβ

λ(q1(a, b))
q1(a, b) 1

2
V1

(
m2q1(a, b)

N |D|p2 max(α,β)

)

= 2
w

∑
χ mod pβ

χ(−1)=1 primitive

∑
m≥1

ηχ2(m)
m

∑
a,b∈Z

q1(a,b),b 6=0,(a2,pα)=1

λ(q1(a, b))χ2(q1(a, b))
q1(a, b) 1

2
V1

(
m2q1(a, b)

N |D|p2 max(α,β)

)

�f,β,ε

(
|D|p2 max(α,β)

) 1
4 +δ0

·
(
|D|p2α)δ0− θ02 −ε · |ε1|− 1

2−δ0+ θ0
2 +ε = Of,β,ε

((
|D|p2 max(α,β)

) 1
4 +δ0

·
(
|D|p2α)− 1

2

)
.

Note that from this point, we shall take the cyclotomic estimate β ≥ 2 to be fixed, and let α � β become
large for our estimates. Similarly, for the twisted sum (estimating the root number contributions trivially),
we deduce from Theorem 3.3 that
(79)
H

(0)
1,2(α, β; (N |D|p2 max(α,β))−1)|b6=0

= η(−N)
|D|2p2β

(
p

ϕ(p)

)
1
w

∑
m≥1

η(m)
m

∑
a,b∈Z

q1(a,b),b 6=0
(q1(a,b),pα)=1

λ(q1(a, b))
q1(a, b) 1

2
V1

(
m2q1(a, b)

N |D|p2 max(α,β)

)
Kl4(±(m2q1(a, b)N2

D
8) 1

2 , pβ)

= 1
w
· 2
ϕ?(pβ)

∑
χ mod pβ

χ(−1)=1 primitive

ηχ2(N)τ(ηχ2)4

|D|2p2β ·
∑
m≥1

ηχ2(m)
m

∑
a,b∈Z
b6=0

(q1(a,b),pα)=1

λ(q1(a, b))χ(q1(a, b))
q1(a, b) 1

2
V1

(
m2q1(a, b)

N |D|p2 max(α,β)

)

�f,β,ε

(
|D|p2 max(α,β)

) 1
4 +δ0

·
(
|D|p2α)δ0− θ02 −ε · |ε1|− 1

2−δ0+ θ0
2 +ε = Of,β,ε

((
|D|p2 max(α,β)

) 1
4 +δ0

·
(
|D|p2α)− 1

2

)
.

Again, we note that the cyclotomic exponent β ≥ 2 is fixed, and we take the anticyclotomic exponent α� β
to be sufficiently large. Hence, putting pieces together, we derive the stated estimate.

To deduce the nonvanishing for β ≥ 2 fixed and α � β sufficiently large, we now argue as follows. We
start with the estimate (74). Fixing β ≥ 2, the error terms tend to zero as α � β tends to infinity. Hence,
the average converges to the constant term (75). We now argue that this constant term (75) does not vanish.
Let us for each primitive even Dirichlet character χ mod pβ in the sum defining (75) write the corresponding
product of L-values as

Lχ(1) = L(1, ηχ2) · L(1,Sym2 f ⊗ χ)
L(Np)(2, χ)

, Lχ(1) = L(1, ηχ2) · L(1,Sym2 f ⊗ χ)
L(Np)(2, χ)

.

Let us also write

ε(χ) = ηχ2(−N)τ(ηχ2)4

|D|2p2β = ε(1/2, f × ρχ ◦N) ∈ S1

to denote the root number of the underlying Rankin-Selberg L-function L(s, f × ρχ ◦N). We claim that

Lχ(1) + ε(χ) · Lχ(1) 6= 0(80)
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for any primitive Dirichlet character χ mod pβ . To see why, assume otherwise that the sum (80) vanishes.
Since each L-value Lχ(1) is known to be nonvanishing9, we can then deduce that Lχ(1)/Lχ(1) = −ε(χ).
On the other hand, it is apparent that the root number ε(χ) determines an algebraic number, and hence
admits a natural action by the absolute Galois group. In particular, we obtain for each σ ∈ Aut(Q/Q) the
relation Lχσ (1)/Lχσ (1) = −ε(χσ). To examine the consequences of this, let us first describe this Galois orbit
of characters more precisely. We first express the chosen primitive character χ in terms of the exponential
function, fixing an integer 1 ≤ a < pβ corresponding to the class in (Z/pβZ)×\(Z/pβ−1Z)× for which χ is
given by the rule sending an integer n ∈ Z to the root of unity e(an/pβ). That is, the primitive character
χ mod pβ is given by the rule

n 7−→ χ(n) = e

(
an

pβ

)
= exp

(
2πi · an

pβ

)
.

Let us also write Q(χ) = Q(ζpβ ) to denote the cyclotomic field of degree ϕ(pβ) obtained by adjoining the
values of χ to Q, equivalently by adjoining any primitive pβ-th root of unity ζpβ to Q. Note that for each
σ ∈ Gal(Q(χ)/Q), the character χσ is given by the rule n 7→ χ(n)σ on n ∈ Z. Fixing any isomorphism

Gal(Q(χ)/Q) ∼= (Z/pβZ)×, σ 7−→ bσ,

and identifying each class bσ ∈ (Z/pβZ)× with its corresponding integer representative 1 ≤ bσ < pβ , we can
then describe the Galois orbit G(χ) of the primitive character χ mod pβ more explicitly as

G(χ) := {χσ : σ ∈ Gal(Q(χ)/Q)} =
{
n 7→ e

(
abσn

pβ

)
: bσ ∈ (Z/pβZ)×

}
.(81)

Notice that while this set G(χ) does not contain the principal character χ0 = 1 mod pβ , it does contain the
unique inverse (χσ)−1 = χσ ∈ G(χ) of each character χσ ∈ G(χ). Let us now return to the implications
of Lχ(1) + ε(χ)Lχ(1) = 0, which as we argued above would imply that Lχσ (1)/Lχσ (1) = −ε(χσ) for each
χσ ∈ G(χ). Taking the product over Galois conjugate characters would then give us the relation

(82)
∏

σ∈Gal(Q(χ)/Q)

−ε(χσ) = −
∏

σ∈Gal(Q(χ)/Q)

ε(χσ) =
∏

σ∈Gal(Q(χ)/Q)

Lχσ (1)
Lχσ (1) .

Observe that we have ε(χσ)ε(χσ) = ε(χσ)ε(χσ) = |ε(χσ)|2 = 1 for each automorphism σ ∈ Gal(Q(χ)/Q).
Hence, pairing together each χσ ∈ G(χ) with its inverse χσ ∈ G(χ), we see that the left-hand side of (82)
must equal −1. On the other hand, we see from the description of the Galois orbit (81) that∏

σ∈Gal(Q(χ)/Q)

Lχσ (1) =
∏

σ∈Gal(Q(χ)/Q)

Lχσ (1),

and hence that the right-hand side of (82) must equal 1. In other words, (82) is equivalent to −1 = 1, which
gives us a contradiction. Hence, we deduce that for χ mod pβ any primitive Dirichlet character,

Lχ(1) + ε(χ)Lχ(1) 6= 0.

To see why the sum over all primitive even Dirichlet characters χ mod pβ of the nonvanishing sums of
L-values Lχ(1) + ε(χ)Lχ(1) does not vanish, let us suppose otherwise that it does. This would imply that∑

χ mod pβ
χ(−1)=1,primitive

Lχ(1) = −
∑

χ mod pβ
χ(−1)=1,primitive

ε(χ) · Lχ(1) =
∑

χ mod pβ
χ(−1)=1,primitive

−ε(χ) · Lχ(1).(83)

Exponentiating each side of (83), we obtain∏
χ mod pβ

χ(−1)=1, primitive

exp (Lχ(1)) =
∏

χ mod pβ
χ(−1)=1, primitive

exp (−ε(χ) · Lχ(1)) .(84)

9For instance, by the prime number theorem for GL3(A)-automorphic L-functions. See also [8, Lemma 4.2], and the
discussion of Lemma 3.2 above, both of which apply to this setting to give L(1, Sym2 f ⊗ χ) 6= 1 for any Dirichlet character χ.

61



Comparing products in (84), we then deduce that for each primitive even Dirichlet character χ mod pβ on
the left-hand side, there exists a unique primitive even Dirichlet character χ′ mod pβ for which

exp (Lχ(1)) = exp (−ε(χ′) · Lχ′(1)) ⇐⇒ Lχ(1) = −ε(χ′) · Lχ′(1).

Here, we take the logarithm to deduce the second identification, which is the same as

−ε(χ′) = Lχ(1)
Lχ′(1) .(85)

Again, we use that the negative root number −ε(χ′) on the left-hand side of (85) is an algebraic number.
Hence, we can apply any automorphism σ ∈ Gal(Q(χ)/Q) to (85) to get the corresponding identity

−ε(χ′σ) = Lχσ (1)
Lχ′σ (1) .

Taking the product over all of the automorphisms σ ∈ Gal(Q(χ)/Q), we then obtain the identity

−
∏

σ∈Gal(Q(χ)/Q)

ε(χ′σ) =
∏

σ∈Gal(Q(χ)/Q)

Lχσ (1)
Lχ′σ (1) .(86)

Pairing together each character with its inverse for the root number term, we argue again that∏
σ∈Gal(Q(χ)/Q)

ε(χ′σ) =
∏

σ∈Gal(Q(χ)/Q)

Lχσ (1)
Lχ′σ (1) =

∏
σ∈Gal(Q(χ)/Q)

Lχσ (1)
Lχσ (1) = 1

to deduce that the identity (86) is equivalent to −1 = 1. This gives us a contradiction. Hence, the sum∑
χ mod pβ

χ(−1)=1,primitive

Lχ(1) + ε(χ)Lχ(1)

does not vanish. This implies that the sum defining the constant term (75)(
1− 2 · #C(α− 1)

#C?(α)

)
· 2
w

∑
χ mod pβ

χ(−1)=1,primitive

Lχ(1) + ε(χ)Lχ(1)

=
(

1− 2 · #C(α− 1)
#C?(α)

)
× 2
w

∑
χ mod pβ

primitiveχ(−1)=1

(
L(1, ηχ2) · L(1,Sym2 f ⊗ χ)

L(Np)(2, χ)
+ ηχ2(−N)τ(ηχ2)4

|D|2p2β · L(1, ηχ2) · L(1,Sym2 f ⊗ χ)
L(Np)(2, χ)

)

does not vanish, as claimed. �

Remark Notice that we show a stronger statement in the proof given above. Namely, without taking an
average over primitive even Dirichlet characters χ mod pβ , we can still prove a nonvanishing estimate for
fixed primitive even Dirichlet character χ mod pβ , then consider the average over twists by primitive ring
class characters ρ of conductor pα. In this way, we obtain a simpler nonvanishing estimate for α � β is
sufficiently large. This approach is developed in greater generality in the sequel [45].

5. Galois conjugate ring class characters

We now derive the following refinement of Theorems 3.4 and Theorem 4.6 for Galois conjugate ring class
characters, or more simply ring class characters of a given exact order, analogous to the underlying averages
considered in the works of Rohrlich [37], [38] Vatsal [47] and Cornut [11].

Fix an integer α ≥ 0. Again, we write C(α) = Pic(Opα) for simplicity to denote the class group of
Opα = Z + pαOK . We then define x = ordp(#C(α)). Hence, px divides the order of the group C(α). Recall
that an element A ∈ C(α) is said to have exponent px if Apx is the identity, equivalently if Apx = 1 ∈ C(α)

62



is the principal class. The characters of exponent or exact order px of C(α) are precisely those which are
trivial on the subgroup of px-th powers in C(α),

C(α)p
x

=
{
gp
x

: g ∈ C(α)
}
.

Equivalently, writing C(α)∨ to denote the character group of C(α), the characters ρ ∈ C(α)∨ of exact order
px are those for which ρp

x = 1, where 1 denotes the trivial character of C(α). It is classical (see [21, §3.1])
that such characters detect px-th powers via the orthogonality relation∑

ρ∈C(α)∨

ρp
x≡1

ρ(A) =
{

[C(α) : C(α)px ] if A ∈ C(α)px

0 if A /∈ C(α)px .

Let us now fix α ≥ 1, which is sufficiently large so that x = ordp(#C(α)) ≥ 1. We consider primitive
ring class characters ρ of conductor of exact order px and conductor pα. Since the ring class characters
of exact order px are necessarily primitive (as they cannot factor through C(α − 1)), it is easy to see via
inclusion-exclusion that we have the corresponding orthogonality relation

(87)

∑
ρ∈C(α)∨

ρp
x=1

ρp
y 6=1∀0≤y≤x−1

ρ(A) =
∑

ρ∈C(α)∨

ρp
x=1

ρ(A)−
∑

ρ′∈C(α)∨

(ρ′)px−1=1

ρ′(A)

=
{

[C(α) : C(α)px ] if A ∈ C(α)px

0 if A /∈ C(α)px
−

{
[C(α) : C(α)px−1 ] if A ∈ C(α)px−1

0 if A /∈ C(α)px−1

=


[C(α) : C(α)px ]− [C(α) : C(α)px−1 ] if A ∈ C(α)px

−[C(α) : C(α)px−1 ] if A ∈ C(α)px−1\C(α)px

0 otherwise.

Hence, writing R(α)px = [C(α) : C(α)px ]− [C(α) : C(α)px−1 ], we now define in either case k ∈ {0, 1} on the
generic root number the corresponding average over ring class characters ρ ∈ Pic(Opα) of exact order px:

G(k)(α;x) = 1
R(α)px

∑
ρ∈C(α)∨

ρp
x=1

ρp
y 6=1∀0≤y≤x−1

L(k)(1/2, f × ρ).(88)

Given an integer β ≥ 2, we also define (for k = 0) the corresponding double average over primitive even
Dirichlet characters modpβ (of exact order pβ) of the central values L(1/2, f × ρχ ◦N),

G(0)(α, β;x) = 1
R(α)px

∑
ρ∈C(α)∨

ρp
x=1

ρp
y 6=1∀0≤y≤x−1

2
ϕ?(pβ)

∑
χ mod pβ

χ(−1)=1,primitive

L(1/2, f × ρχ ◦N).(89)

We retain all of the notations and conventions of Proposition 2.6, Theorem 3.3, and Lemma 4.5. Let us for
each integer 0 ≤ y ≤ x write #C(α, y) for simplicity to denote the index #C(α, y) = [C(α) : C(α)py ], with
#C?(α, x) = #C(α, x)−#C(α, x− 1) = [C(α) : C(α)px ]− [C(α) : C(α)px−1 ].

Lemma 5.1. Fix a sufficiently large anticyclotomic exponent α � 1 so that x = ordp(#C(α)) ≥ 1. Let us
also fix a cyclotomic exponent β ≥ 2 as above. We have the following formulae for the averages G(k)(α;x)
and G(0)(α, β;x), given in terms of the Dirichlet series expansion (12):

(i) We have for any choice of real parameter Z > 0 the self-dual average formula

G(k)(α;x)

=
∑

A∈C(α)px

(
H

(k)
A,1(α, 0;Z) +H

(k)
A,2(α, 0;Z)

)
− #C(α, x− 1)

#C?(α, x)
∑

A∈C(α)px−1

A/∈C(α)px

(
H

(k)
A,1(α, 0;Z) +H

(k)
A,2(α, 0;Z)

)
,
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where (as above)

H
(k)
A,1(α, 0;Z) =

∑
m≥1

η(m)
m

∑
n≥1

(n,pα)=1

λ(n)rA(n)
n

1
2

Vk+1
(
m2nZ

)
and

H
(k)
A,2(α, 0;Z) =

∑
m≥1

η(m)
m

∑
n≥1

(n,pα)=1

λ(n)rA(n)
n

1
2

Vk+1

(
m2n

ZN2|D|2p4α

)
.

(ii) If β ≥ 2, then we have for any choice of real parameter Z > 0 the non-self-dual average formula

G(0)(α, β;x)

=
∑

A∈C(α)px

(
H

(0)
A,1(α, β;Z) +H

(0)
A,2(α, β;Z)

)
− #C(α, x− 1)

#C?(α, x)
∑

A∈C(α)px−1

A/∈C(α)px

(
H

(0)
A,1(α, β;Z) +H

(0)
A,2(α, β;Z)

)
,

where (as above)

H
(k)
A,1(α, β;Z) =

∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1
m2n≡±1 mod pβ

λ(n)rA(n)
n

1
2

Vk+1
(
Zm2n

)

− 1
ϕ(p)

∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1
m2n≡±1 mod pβ−1

m2n 6≡±1 mod pβ

λ(n)rA(n)
n

1
2

Vk+1
(
Zm2n

)

and

H
(k)
A,2(α, β;Z)

= (−1)k+1η(N)
(|D|pβ) 1

2

p

ϕ(p)
∑
m≥1

η(m)
m

∑
n≥1

(n,p)=1

λ(n)rA(n)
n

1
2

Vk+1

(
m2n

ZN2|D|2p4 max(α,β)

)
Kl4(±(m2nN

2
D

8) 1
2 , pβ).

Again, we write rA(n) to denote the number of ideals in the class A ∈ C(α) = Pic(Opα) of norm equal to
n, and also Kl4(±c, pβ) = Kl4(c, pβ) + Kl4(−c, pβ) the sum of hyper-Kloosterman sums of dimension n = 4
and modulus pβ evaluated at a coprime residue class c mod pβ.

Proof. Both formulae follow from a variation of the proof of Proposition 2.6, using (87) in place of (19). �

Note that we can deduce an estimate for the ring class Galois averages G(k)(α;x) from Theorem 3.4, and
for the double Galois averages G(0)(α, β;x) by a minor technical variation of the calculations used to show
Theorem 4.6. This allows us to derive the following estimates.

Theorem 5.2. We have the following estimates for the Galois averages introduced above.

(i) We have for either case on the generic root number k ∈ {0, 1} the following estimate for the corresponding
ring class Galois average G(k)(α, 0;x): In the setup of Theorem 3.4 above, with qA(x, y) = γAx

2+δAxy+εAy2

any choice of binary quadratic form representative for each class A ∈ C(α), we have for any ε > 0 that

G(k)(α;x) =
∑

A∈C(α)px

(
Lk,f,γA(1) +Of,k,p,ε

(
γA(|D|p2α) 7

16 +ε|εA|−
1
2

))
− #C(α, x− 1)

#C?(α, x)
∑

A∈C(α)px−1

A/∈C(α)px

(
Lk,f,γA(1) +Of,k,p,ε

(
γA(|D|p2α) 7

16 +ε|εA|−
1
2

))
.
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(ii) Fix an integer β ≥ 2, and retain all of the setup of Lemma 3.1, Theorem 3.3, and Theorem 4.6. We have
for each ring class exponent α ≥ 1 and class A ∈ C(α) corresponding to any choice of binary quadratic form
representative qA(x, y) = γAx

2 + δAxy+ εAy
2 the following more general estimate for the corresponding sum

H
(0)
A (α, β) = H

(0)
A,1(α, β; (N |D|p2 max(α,β))−1) +H

(0)
A,2(α, β; (N |D|p2 max(α,β))−1).

That is, we have for each class A ∈ C(α) the more general estimate

HA(α, β) = L
(β)
f,γA

(1) +Of,ε

(
(|D|pβ) 3

16 +ε
(

γA
|D|p2 max(α,β)

) 1
4
)

+Of,β,ε

(
γA · (|D|p2 max(α,β)) 1

4 +ε · (|D|p2α)δ0−
θ0
2 +ε · |εA|−

1
2−δ0+ θ0

2 +ε
)
,

where each L
(β)
f,γA

(1) denotes the residual sum defined in (9) and (10) above. Hence, after direct substitution,
we derive the corresponding estimate for the Galois average

G(0)(α, β;x) =
∑

A∈C(α)px
L

(β)
f,γA

(1)− #C(α, x− 1)
#C?(α, x)

∑
A∈C(α)px−1

A 6∈C(α)px

L
(β)
f,γA

(1).

Proof. The estimate for (i) is a direct consequence of Theorem 3.4 above with Lemma 5.1 (i). Taking balanced
parameter Z = Y −1 = N |D|p2 max(α,β), the estimate for (ii) is deduced by a minor technical variation of
Theorem 4.6, using the Hecke relation as in Lemma 3.1 to describe the Fourier coefficients when γA > 1 for
the b = 0 contributions, and using the estimates of Theorem 3.3 (i) and (ii) for the b 6= 0 contributions. �

Finally, let us say something about the asymptotic behaviour of the residual terms in these averages.

Corollary 5.3. If for each of the classes A ∈ C(α)px , C(α)px−1\C(α)px contributing to the averages
G(k)(α;x) and G(0)(α, β) we can choose a binary quadratic form representative qA(x, y) = γAx

2+δAxy+εAy2

with last coefficient |εA| large relative to the leading coefficient γA, then the averages converge to the sums
of the corresponding residues. That is,

(i) If |εA| � |γA|2 for each A ∈ C(α)px , C(α)px−1\C(α)px , then we have

(90)
lim
α→∞

G(k)(α;x) =
∑

A∈C(α)px
Lk,f,γA(1)− #C(α, x− 1)

#C?(α, x)
∑

A∈C(α)px−1

A/∈C(α)px

Lk,f,γA(1).

(ii) If |εA| � |γA|2 for each A ∈ C(α)px , C(α)px−1\C(α)px , then for any fixed β ≥ 2 we have

(91)
lim
α→∞

G(0)(α, β) =
∑

A∈C(α)px
L

(β)
f,γA

(1)− #C(α, x− 1)
#C?(α, x)

∑
A∈C(α)px−1

A/∈C(α)px

L
(β)
f,γA

(1).

In any case, the quantities on the right-hand sides of (90) and (91) converge to nonzero quantities.

Proof. We first argue that for α� 1 sufficiently large, the leading coefficients γA of any choice of system of
binary quadratic form representatives qA(x, y) = γAx

2 + δAxy+ εAy
2 for the non-principal classes A ∈ C(α)

must carry some dependence on the conductor Dpα of the order Opα = Z + pαOK , and specifically on the
exponent α. Indeed, we deduce this from the constraint

δ2
A − 4γAεA = Dp2α =⇒ γA = (δ2

A −Dp2α)
4εA

(92)

on the coefficients of each of these quadratic forms qA(x, y) of discriminant Dp2α. Here, we use Dedekind’s
formula (4) to ensure the existence of sufficiently many classes. Let us also consider the indices C(α, x− 1)
and C?(α, x). Let C(α)[p] ⊂ C(α) denote the subgroup of elements of order p, so the elements A ∈ C(α) with
order pk for some 0 ≤ k ≤ x. Let C(α)′ = C(α)/C(α)[p] denote the subgroup of elements A ∈ C(α) of orders
prime to p. Given any A ∈ C(α)[p] of order pk say, we see that Apx = (Apk)px−k = 1px−k = 1. It is then easy
to see that we can identify the subgroup of px-th powers C(α)px with the quotient C(α)/C(α)[p] = C(α)′,
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and hence calculate the index [C(α) : C(α)px ] as #C(α)/#C(α)px = #C(α)/#C(α)′ = px. Similarly,
we can identify the subgroup C(α)px−1 with the subgroup C(α)′ of elements of orders prime to p along
with the subgroup C(α)[px] ⊂ C(α)[p] of elements of exact order px. That is, for A ∈ C(α)[p] of order
pk with 0 ≤ k ≤ x − 1, we have that Apx−1 = (Apk)px−1−k = (1)px−1−k = 1. Hence, we can identify
C(α)px−1 ∼= C(α)/(C(α)[p]/C(α)[px]) ∼= C(α)′C(α)[px] in this way to compute #C(α)px−1 = #C(α)′ · p so
that [C(α) : C(α)px−1 ] = #C(α)/#C(α)px−1 = px#C(α)′/(p#C(α)′) = px−1. In this way, we compute

#C(α, x− 1) = [C(α) : C(α)p
x−1

] = px−1

and

#C?(α, x) = [C(α) : C(α)p
x

]− [C(α) : C(α)p
x−1

] = px − px−1 = px−1(p− 1) = ϕ(px)

so that

#C(α, x− 1)
#C?(α, x) = px−1

px−1(p− 1) = 1
p− 1 = 1

ϕ(p) .

Observe that we can identify the first sum over classes A ∈ C(α)px with the sum over classes A ∈ C(α)′,
and the second sum over classes A ∈ C(α)px−1\C(α)px with the sum over classes A ∈ C(α)[px]. In particular,
the first sum stabilizes with the ring class exponent in the sense that C(α)′ ∼= C(0)′ for all α ≥ 1. Let us now
make the following choice of quadratic form representatives for these classes. For each class A0 ∈ C(0)′, we
consider the reduced binary quadratic form representative qA0(x, y) = γA0x

2 +δA0xy+ εA0y
2 of discriminant

δ2
A0
− 4γA0εA0 = D. We know classically that C(α) can be identified canonically with the class group Q(α)

of positive definite binary quadratic forms of discriminant Dp2α. We also know that we can consider the
quotientQ(α)′ = Q(α)/Q(α)[p] of elements of orders prime to p (with respect to the composition law). Hence,
we can consider the reduced quadratic form representative qA0(x, y) as an element Q(A0) = [qA0(x, y)] of the
quotient Q′(0). Let us write Qα(A0) to denote the image of Q(A0) under the corresponding isomorphism
Q(0)′ ∼= Q(α)′. We know there exists a unique reduced quadratic form representative qA0,α(x, y) for Qα(A0).
Hence, qA0,α(x, y) = γA0,αx

2+δA0,αxy+εA0,αy
2 with δ2

A0,α
−4γA0,αεA0,α = Dp2α and |δA0,α| ≤ γA0,α ≤ εA0,α

(with δA0,α ≥ 0 if either |δA0,α| = γA0,α or γA0,α ≤ εA0,α). At the same time, we argue that any quadratic
form fA0,α(x, y) ∈ Qα(A0) ∈ Q(α)′ will have to represent the first coefficient γA0 nontrivially. It is then
well-known (see [12, Lemma 2.3, p. 23]) that fA0,α(x, y) = γA0x

2 + B0,αxy + C0,αy
2 for integers B0,α

and C0,α, which have to satisfy the constraint B2
0,α − 4γA0C0,α = Dp2α = p2α(δ2

A0
− 4γA0εA0). Indeed, if

qA0,α(p, q) = γA0 for coprime integers p and q, then we can find integers r and s for which ps− qr = 1, and
consider the equivalent form defined by

qA0,α(px+ ry, qx+ sy) = qA0,α(p, q)x2 + (2γA0,αpr + δA0,αps+ δA0,αrq + 2εA0,αqs)xy + qA0,α(r, s)y2.

Taking fA0,α(x, y) = qA0,α(px+ ry, qx+ sy) = γA0x
2 + B0,αxy + C0,αy

2, with B0,α = (Dp2α + 4γA0C0,α) 1
2

and C0,α = (B2
0,α − Dp2α)/4γA0 as we may, and assuming we choose input integers so that the middle

coefficient B0,α is minimized (or equivalently so that the last coefficient C0,α is maximized), we find for each
class A0 ∈ C ′(0) a non-reduced binary quadratic form representative fA0,α for the image of A0 under the
isomorphism C(0)′ ∼= C(α)′ whose leading coefficient is γA0 . Let us henceforth take10 this quadratic form
representative fA0,α(x, y) for each class in C(α)′ ∼= C(0)′, for each ring class exponent α ≥ 1, as we may.
Hence, writing A0,α to denote the image of A0 ∈ C(0)′ under the natural isomorphism C(0)′ ∼= C(α)′ for any
ring class exponent ≥ 1, we parametrize the corresponding counting function rA0,α(n) via this non-reduced
from fA0,α(x, y). Using this choice in all of our arguments for each of these classes A0,α (for all α ≥ 1), we
see immediately that the leading coefficients γA0 do not depend on the ring class exponent α ≥ 1. In this

10Note that the choice of reduced representative was somewhat arbitrary here. We have the freedom to take any choice of
representative for each class A ∈ C(α).
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way, we deduce via Deligne’s bound λ(n)�ε n
ε that for any α ≥ 1,∑

A∈C(α)px
Kf,γA(1) =

∑
A0,α∈C(α)′

Kf,γA0
(1)

=
∑

A0,α∈C(α)′
γ
− 1

2
A0

∑
q|γA0

µ(q)
q
λ

(
γA
q

)∑
r|q

µ(r)
r
λ
(q
r

)
· · ·
∑
d|r′′
d=1

µ(d)
d

λ

(
r′′

d

)

�ε

∑
A0,α∈C(α)′

γ
ε− 1

2
A0

∑
q|γA0

1
q

∑
r|q

1
r

· · ·∑
d|r′′
d=1

1
d

 · · ·



=
∑

A0,α∈C(α)′
γ
ε− 1

2
A0

k∏
i=1

q0,i|γA0

∑
d0,i|q0,i

1
d0,i

=
∑

A0,α∈C(α)′
γ
ε− 1

2
A0

k∏
i=1

q0,i|γA0

σ(q0,i)
q0,i

�
∑

A0,α∈C(α)′
γ
ε− 1

2
A0
· d(γA0) · σ(γA0)

γA0

.

Here, the product on the right-hand-side runs over all divisors q0,i of γA0 ; we write σ(n) = σ1(n) =
∑
d|n d to

denote the sum-over-divisors function and d(n) = σ0(n) =
∑
d|n 1 the divisor function. Using the standard

upper bounds d(n)�ε n
ε and σ(n) ≤ n log(n+ 1), we then deduce that

(93)
∑

A0,α∈C(α)′
Kf,γA0

(1)�ε

∑
A0,α∈C(α)′

γ
ε− 1

2
A0
· d(γA0) · σ(γA0)

γA0

�ε

∑
A0,α∈C(α)′

γ
2ε− 1

2
A0

· log(γA0 + 1) = OD(1).

On the other hand, the corresponding sum over classes A ∈ C(α)[px] satisfies a different bound. Here,
since the classes by definition cannot come from lifts of classes in C(α − 1), we deduce from the constraint
(92) that the coefficients γA of any set of binary quadratic form representatives qA(x, y) of the classes
A ∈ C(α)[px] carry a dependence on the ring class exponent α ≥ 1. In particular, we deduce that for each
class A ∈ C(α)[px], there exists a constant 0 < κ(A) ≤ 1 such that ordp(γA) = κ(A)x. Taking

κ = κ(α) = max
A∈C(α)[px]

{κ(A)},

we use the same argument to derive the corresponding bound

(94)

∑
A∈C(α)[px]

Kf,γA(1)�ε

∑
A∈C(α)[px]

γ
ε− 1

2
A · d(γA) · σ(γA)

γA

�ε

∑
A∈C(α)[px]

γ
2ε− 1

2
A · log(γA + 1)�D p · (pκx)ε− 1

2 · log(pκx).

To deduce that the limiting constant in (90) is nonvanishing, we can apply the calculations and lower
bounds of Lemma 3.2 directly in each case. Thus for k = 0, we obtain that∑

A∈C(α)px
L0,f,γA(1)− #C(α, x− 1)

#C?(α, x)
∑

A∈C(α)px−1

A/∈C(α)px

L0,f,γA(1)

= κD,N (1) · εp(1) · L(1,Sym2 f) ·

 ∑
A∈C(α)px

Kf,γA(1)− #C(α, x− 1)
#C?(α, x)

∑
A∈C(α)px−1

A/∈C(α)px

Kf,γA(1)


= κD,N (1) · εp(1) · L(1,Sym2 f) ·

 ∑
A∈C(α)/C(α)[p]

Kf,γA(1)− 1
ϕ(p)

∑
A∈C(α)[px]

Kf,γA(1)

 .
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Let us now consider the inner sum

(95)

∑
A∈C(α)px

Kf,γA(1)− #C(α, x− 1)
#C?(α, x)

∑
A∈C(α)px−1

A/∈C(α)px

Kf,γA(1)

=
∑

A∈C(α)/C(α)[p]

Kf,γA(1)− 1
ϕ(p)

∑
A∈C(α)[px]

Kf,γA(1)

= 1 +
∑

A∈C(α)/C(α)[p]
A6=1

Kf,γA(1)− 1
ϕ(p)

∑
A∈C(α)[px]

Kf,γA(1)

in this latter expression, recalling that

Kf,γA(1) = γ
− 1

2
A

∑
q|γA

µ(q)
q
λ

(
γA
q

)∑
r|q

µ(r)
r
λ
(q
r

)
· · ·
∑
d|r′′
d=1

µ(d)
d

λ

(
r′′

d

)

= λ(γA)

γ
1
2
A

+
∑
q|γA
q>1

µ(q)
q
λ

(
γA
q

)∑
r|q

µ(r)
r
λ
(q
r

)
· · ·
∑
d|r′′
d=1

µ(d)
d

λ

(
r′′

d

)
.

If the constant term (95) were to vanish, then we would have that

(96)

∑
A∈C(α)′

Kf,γA(1)∑
A∈C(α)[px]

Kf,γA(1) = 1
ϕ(p)

for any ring class exponent α � 1 and holomorphic eigenform f , where the right-hand-size is completely
independent of α and f . However, the left-hand side of (96) cannot satisfy this property. As discussed
above, the numerator on the left-hand-side can be viewed as a constant depending on f and D which is
bounded above by OD(1) according to (93), while the denominator depends on α and is bounded above by
�ε (px)−κ2 +ε for some constant κ = κ(α) > 0 according to (94). In this way, we see that the left-hand side
of (96) diverges in the limit with α → ∞, so that (96) cannot hold in general. Thus, the inner sum (95)
cannot vanish. We view it as a nonvanishing constant that depends on f and α. We then proceed to bound

∑
A∈C(α)px

L0,f,γA(1)− #C(α, x− 1)
#C?(α, x)

∑
A∈C(α)px−1

A/∈C(α)px

L0,f,γA(1) =
∑

A0,α∈C(α)′
L0,f,γA0

(1)− 1
ϕ(p)

∑
A∈C(α)[px]

L0,f,γA(1)

= κD,N (1) · εp(1) · L(1,Sym2 f) ·

 ∑
A0,α∈C(α)′

Kf,γA0
(1)− 1

ϕ(p)
∑

A∈C(α)[px]

Kf,γA(1)


�D κD,N (1) · εp(1) · L(1,Sym2 f)� κD,N (1) · εp(1) · log(N)−C � 1.

Here, we use the bounds (93) and (94) to estimate the contributions from each part of the inner sum (95).
For k = 1, we argue in the same way, using the calculation

L1,f,γA(1)

= L0,f,γA(1) ·
(

log
(
N |D|p2α

γA

)
+ L′

L
(1, η) + L′

L
(1,Sym2 f)− 2(γ + log(2π))− ζ(N)′

ζ(N) (2) +
ε′p
εp

(1) +
K′f,γA
Kf,γA

(1)
)
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from Lemma 3.2 to deduce that

∑
A∈C(α)px

L1,f,γA(1)− #C(α, x− 1)
#C?(α, x)

∑
A∈C(α)px−1

A/∈C(α)px

L1,f,γA(1) =
∑

A0,α∈C(α)′
L1,f,γA0

(1)− 1
ϕ(p)

∑
A∈C(α)[px]

L1,f,γA(1)

�f,p

∑
A0,α∈C(α)′

L0,f,γA0
(1) ·

(
log
(
N |D|p2α

γA0

)
+

K′f,γA0

Kf,γA0

(1)
)

− 1
ϕ(p)

∑
A∈C(α)[px]

L0,f,γA(1) ·
(

log
(
N |D|p2α

γA

)
+

K′f,γA
Kf,γA

(1)
)

= log(|D| 32 p2α) · κD,N (1) · εp(1) · L(1,Sym2 f) ·

 ∑
A0,α∈C(α)′

Kf,γA0
(1)− 1

ϕ(p)
∑

A∈C(α)[px]

Kf,γA(1)


− κD,N (1) · εp(1) · L(1,Sym2 f) ·

 ∑
A0,α∈C(α)′

A6=1

Kf,γA0
(1) · log(γA0)− 1

ϕ(p)
∑

A∈C(α)[px]

Kf,γA(1) · log(γA)



+ κD,N (1) · εp(1) · L(1,Sym2 f) ·

 ∑
A0,α∈C(α)′

A6=1

Kf,γA0
(1) ·

K′f,γA0

Kf,γA0

(1)− 1
ϕ(p)

∑
A∈C(α)[px]

Kf,γA(1) ·
K′f,γA
Kf,γA

(1)


�f,D log(|D| 32 p2α) · κD,N (1) · εp(1) · L(1,Sym2 f)� 1.

Again, we use the bounds (93) and (94) to estimate the contributions from each part of the inner sum (95), as
well as the variations of this inner sum appearing in the expression above – which can be estimated similarly.

To deduce that the limiting constant in (91) is nonvanishing, we first express each summand as

L
(β)
f,γA

(1) = 2
w

∑
q|γA

µ(q) ·
λ
(
γA
q

)
γ

1
2
A

· 2
ϕ?(pβ)

∑
χ mod pβ
χ(−1)=1
primitive

(
Lqχ(1) + χ(γA)ε(χ)Lqχ(1)

)
,

where

Lqχ(1) = L(1, ηχ2) · Lq(1,Sym2 f (q) ⊗ χ)
L(Np)(1, χ)

, Lqχ(1) = L(1, ηχ2) · Lq(1,Sym2 f (q) ⊗ χ)
L(Np)(1, χ)

and

ε(χ) = ηχ2(−N)τ(ηχ2)4

|D|2p2β ∈ S1

as before denotes the root number for the ambient family of Rankin-Selberg L-functions L(s, f × ρχ ◦N),
with the twisted congruence symmetric square L-values Lq(1,Sym2 f (q) ⊗ χ) defined via the Dirichlet series
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expansions in (8) above. Hence, we have the more explicit expression
(97) ∑

A∈C(α)px
L

(β)
f,γA

(1)− #C(α, x− 1)
#C?(α)

∑
A∈C(α)px−1

A/∈C(α)px

L
(β)
f,γA

(1) =
∑

A0,α∈C(α)′
L

(β)
f,γA0

(1)− 1
ϕ(p)

∑
A∈C(α)[px]

L
(β)
f,γA

(1)

=
∑

A0,α∈C(α)′

2
w

∑
q|γA0

µ(q)
λ
(
γA0
q

)
γ

1
2
A0

2
ϕ?(pβ)

∑
χ mod pβ
χ(−1)=1
primitive

(
Lqχ(1) + ε(χ)χ(γA0)Lqχ(1)

)

− 1
ϕ(p)

∑
A∈C(α)[px]

2
w

∑
q|γA

µ(q)
λ
(
γA
q

)
γ

1
2
A

2
ϕ?(pβ)

∑
χ mod pβ
χ(−1)=1
primitive

(
Lqχ(1) + ε(χ)χ(γA)Lqχ(1)

)
.

Using the nonvanishing of L(1,Sym2 f⊗χ), we deduce that each of the congruence symmetric square L-values
Lqχ(1) does not vanish. Here, we can deduce this using the same contour argument as given in [8, Lemma 4.2]
(for instance) applied to the Dirichlet series Lq(s,Sym2 f (q)⊗χ). We could also calculate Lq(1,Sym2 f (q)⊗χ)
in terms of L(1,Sym2 f ⊗χ) in the style of Lemma 3.2 above to reach the same conclusion. Since χ(γA)ε(χ)
is an algebraic number for each constant coefficient γA we consider here, we can use a minor variation of the
argument given in the proof of Theorem 4.6 to deduce that each summand Lqχ(1) + χ(γA)ε(χ)Lqχ(1) in (97)
does not vanish. To be sure, suppose otherwise that any of these summands vanishes, equivalently that

Lqχ(1)
Lqχ(1) = −ε(χ)χ(γA).(98)

Since the right-hand-side of (98) is an algebraic number, we can act on each side by σ ∈ Gal(Q(χ)/Q).
Taking the product of such Galois conjugates on each side of (98), we then obtain the identity∏

σ∈Gal(Q(χ)/Q)

Lqχσ (1)
Lqχσ (1) = −

∏
σ∈Gal(Q(χ)/Q)

ε(χσ)χσ(γA),

which after pairing together each character χσ with its inverse χσ = χσ
−1 becomes the impossible identity

1 = −1. Hence, the identity (98) cannot hold, and so Lqχ(1) + χ(γA)ε(χ)Lqχ(1) cannot vanish. Similarly, we
can show that the corresponding sum over all primitive even Dirichlet characters χ mod pβ∑

χ mod pβ
χ(−1)=1
primitive

(
Lqχ(1) + χ(γA)ε(χ)Lqχ(1)

)

does not vanish. To be clear, if we suppose otherwise that it does vanish, then we must have the identity∑
χ mod pβ
χ(−1)=1
primitive

Lqχ(1) = −
∑

χ mod pβ
χ(−1)=1
primitive

ε(χ)χ(γA)Lqχ(1),

which after exponentiating each side gives∏
χ mod pβ
χ(−1)=1
primitive

exp
(
Lqχ(1)

)
=

∏
χ mod pβ
χ(−1)=1
primitive

exp
(
−ε(χ)χ(γA)Lqχ(1)

)
.

Comparing products in this latter expression, we deduce that for each primitive even Dirichlet character
χ mod pβ , there exists a unique primitive even Dirichlet character χ′ mod pβ such that

exp
(
Lqχ(1)

)
= exp

(
−ε(χ′)χ′(γA)Lqχ′(1)

)
,

which after taking logarithms gives
Lqχ(1) = −ε(χ′)χ′(γA)Lqχ′(1),
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equivalently
Lqχ(1)
Lqχ′(1) = −ε(χ′)χ′(γA).(99)

Since the right-hand-side of (98) is again an algebraic number, we can consider the action by an automorphism
σ ∈ Gal(Q(χ)/Q). Taking the product of (99) over all such Galois conjugates, we then obtain∏

σ∈Gal(Q(χ)/Q)

Lqχσ (1)
Lqχ′σ (1) =

∏
σ∈Gal(Q(χ)/Q)

−ε(χ′σ)χ′σ(γA),

which after pairing each character χσ with its inverse χσ = χσ
−1 gives the impossible identity 1 = −1.

Hence, we have shown that for any class A ∈ C(α) and any divisor q | γA of the first coefficient γA of the
chosen binary quadratic form representative for A, the sum

2
ϕ?(pβ)

∑
χ mod pβ
χ(−1)=1
primitive

(
Lqχ(1) + ε(χ)χ(γA)Lqχ(1)

)

does not vanish. It is then simple to see that the first sum

∑
A0,α∈C(α)′

2
w

∑
q|γA0

µ(q)
λ
(
γA0
q

)
γ

1
2
A0

2
ϕ?(pβ)

∑
χ mod pβ
χ(−1)=1
primitive

(
Lqχ(1) + ε(χ)χ(γA0)Lqχ(1)

)

= 2
w

2
ϕ?(pβ)

∑
χ mod pβ
χ(−1)=1
primitive

(Lχ(1) + ε(χ)χ(γA0)Lχ(1))

+
∑

A0,α∈C(α)′
A0,α 6=1

2
w

∑
q|γA0

µ(q)
λ
(
γA0
q

)
γ

1
2
A0

2
ϕ?(pβ)

∑
χ mod pβ
χ(−1)=1
primitive

(
Lqχ(1) + ε(χ)χ(γA)Lqχ(1)

)

in (97) does not vanish identically. Here, we write L1
χ(1) = Lχ(1), as in the proof of Theorem 4.6 above. We

now consider the full residual sum (97). We claim that this cannot vanish. For supposing otherwise that it
did, we would obtain that

∑
A0,α∈C(α)′

2
w

∑
q|γA0

µ(q)
λ
(
γA0
q

)
γ

1
2
A0

2
ϕ?(pβ)

∑
χ mod pβ
χ(−1)=1
primitive

(
Lqχ(1) + ε(χ)χ(γA0)Lqχ(1)

)

= 1
ϕ(p)

∑
A∈C(α)[px]

2
w

∑
q|γA

µ(q)
λ
(
γA
q

)
γ

1
2
A

2
ϕ?(pβ)

∑
χ mod pβ
χ(−1)=1
primitive

(
Lqχ(1) + ε(χ)χ(γA)Lqχ(1)

)
,

which after canceling out identical extra scalar terms and switching the order of summation is the same as

∑
χ mod pβ
χ(−1)=1
primitive

∑
A0,α∈C(α)′

∑
q|γA0

µ(q)
λ
(
γA0
q

)
γ

1
2
A0

(
Lqχ(1) + ε(χ)χ(γA0)Lqχ(1)

)

=
∑

χ mod pβ
χ(−1)=1
primitive

1
ϕ(p)

∑
A∈C(α)[px]

∑
q|γA

µ(q)
λ
(
γA
q

)
γ

1
2
A

(
Lqχ(1) + ε(χ)χ(γA)Lqχ(1)

)
.
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Exponentiating both sides, we obtain

∏
χ mod pβ
χ(−1)=1
primitive

exp

 ∑
A0,α∈C(α)′

∑
q|γA0

µ(q)
λ
(
γA0
q

)
γ

1
2
A0

(
Lqχ(1) + ε(χ)χ(γA0)Lqχ(1)

)

=
∏

χ mod pβ
χ(−1)=1
primitive

exp

 1
ϕ(p)

∑
A∈C(α)[px]

∑
q|γA

µ(q)
λ
(
γA
q

)
γ

1
2
A

(
Lqχ(1) + ε(χ)χ(γA)Lqχ(1)

) .

Comparing products again, it follows that for each primitive even Dirichlet character χ mod pβ , there exists
a unique primitive even Dirichlet character χ′ mod pβ for which

exp

 ∑
A0,α∈C(α)′

∑
q|γA0

µ(q)
λ
(
γA0
q

)
γ

1
2
A0

(
Lqχ(1) + ε(χ)χ(γA0)Lqχ(1)

)
= exp

 1
ϕ(p)

∑
A∈C(α)[px]

∑
q|γA

µ(q)
λ
(
γA
q

)
γ

1
2
A

(
Lqχ′(1) + ε(χ′)χ′(γA)Lq

χ′
(1)
) ,

which after taking logarithms gives

∑
A0,α∈C(α)′

∑
q|γA0

µ(q)
λ
(
γA0
q

)
γ

1
2
A0

(
Lqχ(1) + ε(χ)χ(γA0)Lqχ(1)

)

= 1
ϕ(p)

∑
A∈C(α)[px]

∑
q|γA

µ(q)
λ
(
γA
q

)
γ

1
2
A

(
Lqχ′(1) + ε(χ′)χ′(γA)Lq

χ′
(1)
)
,

equivalently ∑
A0,α∈C(α)′

∑
q|γA0

µ(q)
λ
( γA0

q

)
γ

1
2
A0

(
Lqχ(1) + ε(χ)χ(γA)Lqχ(1)

)
∑

A∈C(α)[px]

∑
q|γA

µ(q)λ(
γA
q )

γ
1
2
A

(
Lqχ′(1) + ε(χ′)χ′(γA)Lq

χ′
(1)
) = 1

ϕ(p) .(100)

We claim that this identity cannot hold. To be more precise, a simpler variation of the arguments used to
derive the bounds (93) and (94) to estimate (95) shows that the limit on the right-hand side of (100) diverges
with α→∞. This gives a contradiction, from which we deduce the nonvanishing of the residual term (97).

�
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