
ERRATUM: ON THE QUATERNIONIC p-ADIC L-FUNCTIONS

ASSOCIATED TO HILBERT MODULAR EIGENFORMS

JEANINE VAN ORDER

This erratum provides a correction to the main theorem given in [8], most notably
the discussion of µ-invariant in [8, Theorem 1.1 (iii)], plus a list of other corrections.

To begin with, let us clarify two conventions in [8]. First, we define ring class
characters of K in the more general sense of [1], so that the restriction to the finite
adeles of F must be everywhere unramified (rather than trivial). At the same time,
we later consider only those ring class characters which factor through the quotient
Gp∞ = lim←−nGpn ≈ Zδp, whose restrictions to the finite adeles of F are necessarily

trivial. Second, the word “supersingular” is used abusively to refer exclusively to
the special setting where ap = 0 (and is defined this way in [8, p. 1006, line 14]).

The interpolation formulae of the main result [8, Theorem 1.1] should include
certain normalization factors, as well as extra factors in the so-called supersingular
case, plus a correction to the characterization of the µ-invariants. Let us for ease
of reading first summarize these main corrections (with an indication of proof) in
the following revised statement of [8, Theorem 1.1]. Given an integer n ≥ 1, let

m(Opn) denote the volume of Ô×pn in the space K×\A×K/A
×
F with respect to our

fixed choice of Haar measure. Let h(OF ) denote the class number of F . Let us also
write G0 = G[p∞]tors to denote the torsion subgroup of G[p∞] = lim←−nG[pn], and

ε = ordP(|G0|) the order of P dividing the order of G0. Recall that we normalize
the quaternionic eigenform Φ to take values in the O, including the value 1 ∈ O,
and that this choice of normalization determines Φ uniquely up to multiplication
by a unit in O. Let us then define µ = µ(Lp(f ,Kp∞)) ≥ 0 to be the largest integer

for which Lp(f ,Kp∞) ∈ PµO[[G[p∞]]]. Recall that we fix an embedding Q→ Qp.

Theorem 0.1. Let f ∈ S2(N) be a cuspidal Hilbert eigenform of parallel weight 2,
trivial nebentype character, and level N ⊂ OF for which ordp(N) = 1, as in [8].

(i) If f is p-ordinary, then there is a nontrivial element Lp(f ,Kp∞) ∈ O[[G[p∞]]]

such that the following formula holds in Qp: Given ρ a primitive ring class
character of conductor pn (factoring through Gp∞) for n sufficiently large,

ρ (Lp(f ,Kp∞)) =
α−2n
p · ζF (2)

2 · L(π, ad, 1)
·
(
h(OF )

m(Opn)

)2

×

L(π, ρ, 1/2) · L(π, ρ−1, 1/2) ·
∏
v-∞

α(Φv, ρv) · α(Φv, ρ
−1
v )

 1
2

.

1
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(ii) If f is p-supersingular (as above), then there are nontrivial elements Lp(f ,Kp∞)± ∈
O[[G[p∞]]] such that the following formulae hold in Qp: Given ρ a prim-
itive ring class character of conductor pn (factoring through Gp∞) for n
sufficiently large and for which −ε = (−1)n (for ε = ± the sign),

ρ
(
Lp(f ,Kp∞)±

)
= Cn(ρ)2 · ζF (2)

2 · L(π, ad, 1)
·
(
h(OF )

m(Opn)

)2

×

L(π, ρ, 1/2) · L(π, ρ−1, 1/2) ·
∏
v-∞

α(Φv, ρv) · α(Φv, ρ
−1
v )

 1
2

.

Here, the fudge factor Cn(ρ) is defined as follows: Fixing a set of topological
generators γ1, . . . , γδ of Gp∞ ≈ Zδp, and writing Σpn(T ) to denote the pn-th
cyclotomic polynomial in T+1 (whose roots take the form ζ−1 for ζ ∈ µpn),

Cn(ρ) =


∏n

j=1
j≡0(2)

∏δ
i=1 Σpn(ρ(γi)− 1) if n is even∏n

j=1
j≡1(2)

∏δ
i=1 Σpn(ρ(γi)− 1) if n is odd.

(iii) Let ν = νΦ ≥ 0 denote the largest integer for which the quaternionic
form Φ associated to f is congruent to a constant modulo Pν , i.e. so that
Φ ≡ ϑ mod Pν for some constant function ϑ ∈ SB2 (H;O). We have
that µ(Lp(f ,Kp∞)) ≥ 2ν − ε in the p-ordinary case, and similarly that
µ(Lp(f ,Kp∞)±) ≥ 2ν − ε in the so-called p-supersingular case.

Indication of proof. Note that constructions of the elements are as given in [8], at
least up to the corrections described below, as so we consider only the interpolation
formulae and µ-invariants for the moment. The normalization factors defined above
should be added as follows in the proof of [8, Theorem 4.10], specifically for the
identification with the period integral on the first displayed line of [8, p. 1035] and
the last two displayed lines of [8, p. 1033] (cf. [10, (5)]). To be more precise, let us
assume that n is sufficiently large that the natural map Pic(OF )→ Pic(Opn) is an
injection. If ρ is a primitive ring class character of conductor pn factoring through
Gp∞ , then it is easy to see that it factors through the finite adelic quotient

K̂×/F̂×K×Ô×pn = Pic(Opn)/Pic(OF ).

Since ρ is invariant under Ô×pn , we can write the period l(Φ, ρ) as a finite sum:

l(Φ, ρ) =

∫
A×K/A

×
FK
×

Φ(t)ρ(t)dt = m(Opn)
∑

K̂×/F̂×K×Ô×
pn

Φ(t)ρ(t).

On the other hand, we can decompose our sum over Xn = Pic(Opn)/Pic(OF ) into∑
A∈Xn

ρ(A)Φ(A) =
∑

τ∈Pic(OF )

∑
t∈Pic(Opn )/Pic(OF )

ρ(t)Φ(τt),
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using that ρ is trivial on Pic(OF ). Observe now that for any choice of τ ∈ Pic(OF ),
the inner sum satisfies the property that∑

t∈Pic(Opn )/Pic(OF )

ρ(t)Φ(τt)

=
∑

τ−1t∈Pic(Opn )/Pic(OF )

ρ(τ−1t)Φ(t) =
∑

t∈Pic(Opn )/Pic(OF )

ρ(t)Φ(t),

from which it follows that∑
A∈Xn

ρ(A)Φ(A) = |Pic(OF )|
∑

t∈Pic(Opn )/Pic(OF )

ρ(t)Φ(t).

Hence, we have shown that∑
A∈Xn

ρ(A)Φ(A) =
h(OF )

m(Opn)
· l(Φ, ρ),

from which the claimed formula follows after dividing out by αnp where needed in
the ordinary case (i). In the so-called supersingular case (ii), we make an extra
argument following those Pollack [5, §5.2] or Kobayashi [4, (3.4), (3.5)] to derive
the interpolation formula with extra factors. To be more precise, recall that we
define in the notations of [8, Proposition 4.6] (after Darmon-Iovita [2]) an element

Lp(Φ,K)± = ϑ±Φ(ϑ±Φ)∗ =

{
(−1)

n
2 Θ+

Φ((−1)
n
2 Θ+

Φ)∗ if n is even

(−1)
n+1
2 Θ−Φ((−1)

n+1
2 Θ−Φ)∗ if n is odd.

Here, Θ±Φ ∈ Λ/Ω±n is the unique element such that ϑΦ,n = Ω̃∓nΘ±Φ , where

Ω̃+
n = Ω̃+

n (T1, . . . , Tδ) =

n∏
j=1
j≡0(2)

ξj(T1, . . . , Tδ)

Ω̃−n = Ω̃−n (T1, . . . , Tδ) =

n∏
j=1
j≡1(2)

ξj(T1, . . . , Tδ)

and

ξn(T1, . . . , Tδ) =

δ∏
i=1

Σpn(Ti), Σpn(T ) the pn-th cyclotomic polynomial in T + 1.

Granted such a description, we see that the specialization to a primitive ring class
character ρ of conductor pn factoring through Gp∞ introduces extra factors coming

from the Ω̃n(T1, . . . , Tδ)|(T1,...,Tδ)=(ρ(γ1)−1,...,ρ(γδ)−1), i.e. for γ1, . . . , γδ the fixed set

of topological generators of Gp∞ ≈ Zδp. To be more precise, we argue that we obtain

the stated extra extra factor Cn(ρ)2, where

Cn(ρ) = ρ(Ω̃±n ) =


∏n

j=1
j≡0(2)

∏δ
i=1 Σpn(ρ(γi)− 1) if n is even∏n

j=1
j≡1(2)

∏δ
i=1 Σpn(ρ(γi)− 1) if n is odd.

For (iii), let us first note that the proof given in [8, Theorem 1.1 (iii)] for the
stated characterization of µ = µ(Lp(f ,Kp∞)) is not valid, as the constant term
in the power series expansion of the theta element θΦ is in fact not given by the
expression c∞(1) appearing in the first displayed line of [8, p. 1036]. However,
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the lower bound µ ≥ 2ν − ε can be justified via the following argument. We first
show that it will suffice to establish the divisibility by P2ν−ε of the specializations
ρ(Lp(f ,Kp∞)) = ρ(θΦθ

∗
Φ) for ρ any ring class character ρ of G[p∞], i.e. assuming for

simplicity that we are in the p-ordinary case. Keep all of the same notations and
conventions with power series as given on p. 1029. Let g = g(T1, ..., Tδ) be a nonzero
power series in O[[T1, . . . , Tδ]]. If for all finite order characters ρ of Gp∞ ≈ Zδp it is
true that ordp(ρ(g)) is greater than or equal to some integer m ≥ 0, then we claim
it is also true that the µ-invariant µ(g) is greater than or equal to m. To see why
this is true, let us write A to denote the O-Iwasawa algebra A = O[[T1, . . . , Tδ−1]].
Since A is a complete local ring, we can apply the Weierstrass preparation theorem
to argue that g ∈ A[[Tδ]] is expressible uniquely in the form

g(T1, . . . , Tδ) = Pµ(g)f(T1, . . . , Tδ)u(T1, . . . , Tδ)

for f(T1, . . . Tδ) ∈ A[[Tδ]] a distinguished polynomial and u(T1, . . . , Tδ) ∈ A[[Tδ]] a
unit. Let us now write Y to denote the set of all finite order characters of Γ which
are trivial on the subgroup of Γ generated by γ1, . . . , γδ−1. If ψ is a character in
Y , then the specialization ψ(g) of g to ψ is equal to ψ(g) = Pµ(g)ψ(f)ψ(u), where
ψ(u) is a p-adic unit. On the other hand, the specialization ψ(f) of f to ψ takes
the form

ψ(f) = b0 + b1ψ(Tδ) + . . .+ bk−1ψ(Tδ)
k−1 + ψ(Tδ)

k,

where each of the coefficients b0, . . . , bk−1 lies in O. Hence, when the order of ψ is
sufficiently large, we see that ordp(ψ(f)) = k · ordp(ψ(Tδ)). Thus, we have shown
that ordp(ψ(f)) = µ(g) + σ(ψ) for some σ(ψ) which tends to zero as the order of
ψ tends to infinity. In other words, we have shown that µ(g) ≥ m, as claimed.

We now claim that that the specialization ρ(θΦ) is divisible by Pν for ρ any ring
class character. To see why this is, let ρ be a ring class character factoring through
some quotient Xn as above. Since we know that ρ(Lp(f ,Kp∞)) = ρ(θΦ)ρ−1(θΦ),
it will suffice to show that ρ(θΦ), ρ−1(θΦ) ≥ ν. This latter assertion follows easily
from the definition of the specialization of Lp(f ,Kp∞) to characters of Xn, using
orthogonality relations. To be more precise, we have for the elements constructed
in case (i) the relation

ρ(θΦ) = α−np

∑
A∈Xn

ρ(A)Φ(A) ≡ α−np

∑
A∈Xn

ρ(A)ϑ(A) ≡ 0 mod Pν .

Here, the last congruence follows from the fact that the values ϑ(A) do not depend
on the classes A. The same argument shows that ρ−1(θΦ) ≡ 0 mod Pν , as well as
the analogous assertions for the elements constructed in (ii). To deduce the final
part of the claim, we consider the image of Lp(f ,Kp∞) under the canonical injection
of completed group rings

O[[G[p∞]]] −→
⊕
ρ0∈G∨0

O[[Gp∞ ]], L 7−→ (ρ0(L))ρ0 ,(1)

and then for each component under the non-canonical isomorphism of completed
group rings O[[Gp∞ ]] ≈ O[[T1, . . . , Tδ]], and then apply the observation about power
series given above. If p does not divide the order of the torsion subgroup G0,
then the canonical injection (1) is a bijection, making stated property (iii) easy to
deduce. In general, the cokernel of (1) is annihilated by the order |G0| of the torsion
subgroup G0 of G[p∞], and hence by Pε for ε = ordP(|G0|). In this way, we deduce
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the claimed bound µ(L(δ)
p (Φ,K)) ≥ 2ν− ε. The lower bounds can be established in

a similar way for the invariants µ(L(δ)
p (Φ,K)±) in the so-called supersingular case,

as is consistent with the descriptions given by [6, Theorem 1.1 (2)] and also [3]. �

Now, here is a list of other errors and corrections:

p. 1008, [8, Theorem 1.1 (iii)]. As noted above, the characterization of µ(Lp(f ,Kp∞))
is not proven in Theorem 4.14, as the constant term in the power series expansion
of θΦ is not in fact given by the expression c∞(1) appearing in the first displayed
line of p. 1036. However, the lower bound µ ≥ 2ν − ε can be justified via the line
of argument given above.

p. 1009, Proof of Theorem 1.3: The argument is only sketched, and the reference
to [9] should be replaced by a reference to [10].

p. 1009, line 20: The j should be a k.

p. 1012, line 4: The space is treated as zero if πv is a discrete series.

p. 1012, line 8: The discussion here means that we choose the quaternion algebra
B so that its ramification set Ram(B) equals Σ.

p. 1013, Corollary 2.5: The statement of requires some modification if the residue
degree δ = [Fp : Qp] is greater than one. More precisely, if δ = 1, then the stated
result is easy to deduce from either the cited algebraicity theorem of Shimura [7]
or else Weierstrass preparation (after Cornut-Vatsal [1]). If on the other hand δ is
greater than one, then all that can be deduced is the nonvanishing of each of the
Galois conjugate twists. Thus if L(π, ρ, 1/2) does not vanish for some ring class
character ρ, then the same is true for each L(π, ρσ, 1/2), where σ runs over the
automorphisms of C which fix the Hecke field Q(π). In other words, if ρ has exact
order px say, then L(π, ρ′, 1/2) 6= 0 for each of the ϕ(px) many ring class characters
ρ′ of exact order px. Thus, for each of the good ρ ∈ P (n, ρ0) in the statement of
Theorem 2.4, nonvanishing can be deduced for each L(π, ρ′, 1/2) for ρ′ in the Galois
orbit of ρ. The stronger assertion that nonvanishing occurs for all but finitely many
ρ ∈ Y can then be deduced in the special case where the residue degree δ equals one.

p. 1015, Lemma 3.1: The double cosets are not necessarily disjoint. Also, the union

should be over classes F×+ \F̂×/F×p Ô×F , i.e. over the quotient of the narrow class
group by the subgroup generated by the class of p.

p. 1017, line 11. The description of the Hecke operator Up on cΦ requires more
justification if the prime p is not principal. The general case is treated in [9].

p. 1017, line -5. The orientation s, t is chosen arbitrarily.

p. 1018, line 14. The EndFp
(L) should be EndOFp

(L).
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p. 1019, Proposition 3.7. Though not given explicitly, the case of p | M is proven
in a similar way.

p. 1023, line 22. The line should read “... use the Yuan-Zhang-Zhang generaliza-
tion of Waldspurger’s theorem ...”

p. 1023, final line: We should in fact mod out by O×Fp
in the domain of rK , and

this affects all subsequent definitions in the obvious way.

p. 1026, line 12. The claim that the functions ΦK,j descend to functions on
the quotients Hj requires justification, as the subsequent clauses in lines 13-15 are
nonsense. See the construction given in [9] for a corrected discussion of these issues.

p. 1028, final line. The H∞ should be replaced by a H∞.

p. 1029, lines 6-7. A more explicit account of how the construction of θΦ depends
on the choice of directed edgeset (as would be appropriate here) is given in [9, §4].

p. 1031, statement of Lemma 4.7. The subscript should be n ≡ (−1)n.

p. 1035, lines 16-18. To define the anticyclotomic µ-invariant, we normalize the
eigenform Φ to take values in O, and in such a way that it takes value 1 ∈ O. Cf.
the discussions in [6] and [9, §4] for more details.

Finally, let us note that a more general construction has now been given in
the preprint [9] using purely representation theoretic language, although this latter
work only treats the ordinary case, and does not include any discussion of the
analytic µ-invariant (or Howard’s criterion). Still, it should be possible to use this
latter approach to give a more general and uniform treatment of all of these ideas.
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