
A NOTE ON LOCATING “TAMAGAWA MOTIVES” IN THE AUTOMORPHIC

COHOMOLOGY OF GLn

JEANINE VAN ORDER

Abstract. We consider analogues of Bloch’s Tamagawa number formulation of the Birch-Swinnerton-Dyer

conjecture in automorphic cohomology, with some new results and perspectives for the case of Mordell-Weil

rank one.
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1. Overview

Let E be an elliptic curve defined over the rational number field Q, with f ∈ Snew
2 (Γ0(N)) its corresponding

cuspidal eigenform, and π(f) the corresponding cuspidal automorphic representation of GL2(A). Hence,
writing the standard L-function of π(f) as Λ(s, π(f)) = L(s, π∞(f))L(s, π(f)) = Λ(s, f) = L∞(s, f)L(s, f),
and the Hasse-Weil L-function of E as L(E, s) we have by the modularity theorem of Wiles [48], Taylor-Wiles
[47], and Breuil-Conrad-Diamond-Taylor [9] an identification of completed L-functions

Λ(E, s) = L∞(E, s)L(E, s) := Λ(s− 1/2, π(f)) = Λ(s− 1/2, f).(1)

More generally, for f any cuspidal eigenform on Γ0(N) with corresponding GL2(A)-automorphic represen-
tation π(f) and standard L-function Λ(s, π(f)) = L(s, π∞(f))L(s, π(f)) = L∞(s, f)L(s, f), we write

r = r(f) = r(π) := ords=1/2 L(s, π(f)) = ords=1/2 L(s, f)

to denote the analytic rank, so the order of vanishing at the central point for the corresponding functional
equation. Writing × to denote the normalized unitary induction, and inspired by the volume computations
of Bloch in [5, (1.13)], we consider automorphic representations Π(r)(f) of GL2+r(A) defined by

Π(r)(f) := π(f)× | · | 12 × · · · × | · | 12︸ ︷︷ ︸
r-fold unitary induction

.(2)

Note that the corresponding completed L-function Λ(s,Π(f)) = Λ(s,Π∞(f))L(s,Π(f)) of this automorphic
representation Π(f) of GL2(A)×GL1(A)r ⊂ GL2+r(A) is given by the product

Λ(s,Π(f)) = Λ(s, π(f)) · Λ(s+ 1/2)r = Λ(s, f) · Λ(s+ 1/2)r
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of the standard L-function Λ(s, π(f)) = Λ(s, f) of π(f) times r-fold product of the completed Riemann
zeta function Λ(s) = ΓR(s)ζ(s) = π−

s
2 Γ
(
s
2

)
ζ(s) shifted by 1/2. Hence, the finite part L(s,Π(f)) of this

L-function given by the product

L(s,Π(f)) = L(s, π(f)) · ζ(s+ 1/2)r = L(s, f)ζ(s+ 1/2)r.

Observe that we could also define the analytic rank equivalently to be the least integer r ≥ 0 for which
the corresponding value Λ(1/2, π(f)) · Λ(1)r does not vanish. Either way, this analytic rank r = r(f) is
determined uniquely by the GL2(A)-automorphic representation π(f), or equivalently by the eigenform f .
The analytic rank r = r(f) in then predicted by the conjecture of Birch and Swinnerton-Dyer to equal the
algebraic rank of the elliptic curve, so that E(Q) ∼= Zr ⊕ E(Q)tors as finitely generated abelian groups.

1.1. Locating twists of Π(fk) in the GL(2 + r) automorphic cohomology. Let us suppose now that
fk ∈ Sk(Γ0(N)) is any cuspidal eigenform of even weight k ≥ 2 and trivial nebentype character. We shall
later consider a Hida family {fk}k interpolating the base eigenform f = f2 ∈ Snew

2 (Γ0(N)) parametrizing
an elliptic curve E of conductor N defined over Q with Mordell-Weil group E(Q) ∼= Zr ⊕E(Q)tors. We can
then consider the family of automorphic representations

Π(r)(fk) = π(fk)× | · | 12 × · · · × | · | 12︸ ︷︷ ︸
r-fold unitary induction

of the Levi subgroup GL2(A) × GL1(A)r of GL2+r(A). We see from the definitions that each Π(r)(fk)
determines an automorphic representation of GL2+r(A) which is algebraic but not cohomological (see [15,
pp. 84-89], [16]). That is, replacing Π(fk) by its unique isobaric quotient if needed, we see following the
definition given in [15, § 1.2.3] that the associated Langlands parameter is a representation of the Weil group
WR whose restriction to WC

∼= C× is given by

z 7−→

(z
z

) k−1
2

,
(z
z

)−( k−1
2 )

, (z · z) 1
2 , . . . , (z · z) 1

2︸ ︷︷ ︸
r times

 .

Thus, each Π(r)(fk) determines an algebraic representation representation Π(r)(fk) ∈ Alg(n) = Alg(2 + r),
with corresponding weights

p = (pj)
r+2
j=1 =

k − 1

2
,

1− k
2

,
1

2
, . . . ,

1

2︸ ︷︷ ︸
r times

 and q = (qj)
r+2
j=1 =

1− k
2

,
k − 1

2
,

1

2
, . . . ,

1

2︸ ︷︷ ︸
r times

 .

While each of the weights pj and qj of each Π(fk) is half-integral, and hence not regular according to the
definition given in [15, p. 84], each of the corresponding differences pj−qj is integral. Hence, Π(fk) is algebraic
according to the definition given in [15, pp. 89-91].

Let us now refine this setup. Let fk ∈ Snew
k (Γ0(N)) be any newform of even weight k ≥ 2 on Γ0(N).

Later, we shall also assume that fk belongs to the Hida family {fk}k associated to a cuspidal newform
f = f2 ∈ Snew

2 (Γ0(N)) parametrizing an elliptic curve E over Q of conductor N and Mordell-Weil rank
r = r(f) = 1, so that E(Q) ∼= Z⊕ E(Q)tors. In any case, we consider the algebraic representations

Π(fk) := π(fk)× | · | 12 ∈ Alg(3)

of the Levi subgroup GL2(A)×GL1(A) of GL3(A) henceforth. We can then consider cohomological twists
of these representations by taking products with so-called cohomological character | · |1/2 (see [11, §5]). That
is, we can consider the “cohomological twists” defined by the products

Π′(fk) := | · | 12 ·Π(fk) ∈ Alg(3).

Since the corresponding weights are seen by inspection to be integral for k ≥ 4 even, and hence regular for
k ≥ 4 even, each such Π′(fk) with k ≥ 4 even is seen to be a cohomological automorphic representation of
GL2(A) × GL1(A) ⊂ GL3(A). Note that the case of k = 2 is an outlier, with the algebraic representation
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Π′(f2) ∈ Alg(3) having non-regular weights p = (1, 0, 1) and q = (0, 1, 1). Hence, writing Coh(3) ⊂ Alg(3) to
denote the set of all cohomological automorphic representations of GL3(A), we have that

Π′(fk) ∈

{
Alg(3)\Coh(3) if k = 2

Coh(3) if k ≥ 4
.

Here, we view both Π(fk) and Π′(fk) as algebraic representations of the Levi subgroup

M(A) = M(2,1)(A) ∼= GL2(A)×GL1(A) ⊂ GL3(A)

coming from the parabolic subgroup P = MN associated to the partition 2 + 1 = 3.
Is it simple to see from definitions that the standard L-function Λ(s,Π′(fk)) of each of the algebraic

representations Π′(fk) ∈ Aut(3) equals a shift by s = 1/2 of that of Π(fk) ∈ Aut(3), so that

Λ(s,Π′(fk)) = Λ(s+ 1/2,Π(fk)) = Λ(s+ 1/2, π(fk))Λ(s+ 1).

Motivated by the main theorem of Bloch [5], and especially the volume computations given in [5, (1.13)],
we first seek to locate these cohomological automorphic representations Π′(fk) ∈ Coh(3) for k ≥ 4 even in
the GL3(A) automorphic cohomology. Taking for granted the setup with symmetric spaces used by Clozel
[16] and Franke-Schwermer [20] (for instance), and writing Lk to denote the uniquely-determined coefficient
sheaf associated to each eigenform fk ∈ Sk(Γ0(N)), we seek to address the following motivating questions.

Question 1.1. (i) Let f = f2 ∈ Snew
2 (Γ0(N)) denote the cuspidal newform of weight k = 2 parametrizing

an elliptic curve E over Q of conductor N and Mordell-Weil rank r = 1, so that E(Q) ∼= Z ⊕ E(Q)tors.
Let {fk}k denote the Hida family of eigenforms fk ∈ Snew

2 (Γ0(N)) of even weights k ≥ 2 corresponding to
f = f2 and any ordinary prime p. To which degree in the GL3(A)-automorphic cohomology does each of
the representations Π′(fk) ∈ Coh(3) with k ≥ 4 contribute, and what are the properties of the corresponding
limit K({fk}k) = lim−→k≥4

Π′(fk) ∈ Coh(3)?

(ii) In the more general setting where f = f2 ∈ Snew
2 (Γ0(N)) parametrizes an elliptic curve E defined over

Q having any Mordell-Weil rank r ≥ 1, can we find some class in the GL2+r(A)-automorphic cohomology
whose L-function coincides with that of the algebraic representation Π(r)(f) = Π(r)(f2) of GL2+r(A)?

Let us remark that Question 1.1 is linked to the open problem of finding a motive M(X) attached to the
torus extension class X – or more generally a motive M(T ) attached to the torus bundle T – described in
the works of Bloch, [5] and [6]. To be more precise, recall that given G an algebraic group defined over Q,
we can choose a lifting to a group scheme over the S-integers ZS for a finite set of places S, which allows
us to define G(Zp) for each finite place p /∈ S, and in this way the group of adelic points G(A). If G(Q)
embeds discretely into G(A), then we can consider the classical Tamagawa number conjecture for G: Writing
L(G, s) =

∏
v/∈S Lv(G, s) to denote the corresponding L-function, let r(G) ≤ 0 be the integer for which

lim
s→1

L(G, s)

(s− 1)r(G)
6= 0,∞.(3)

Fixing the Haar measure on G(A) by insisting that G(Zv) for each v /∈ S gets measure one, we then define
the Tamagawa number τ(G) of G to be the corresponding volume times the limiting quantity (3),

τ(G) := Vol (G(A)/G(Q)) · lim
s→1

L(G, s)

(s− 1)r(G)
.

Taking for granted the folklore conjecture that the corresponding Tate-Shafarevich group

X(G) := ker

(
H1(Q, G(Q)) −→

∏
v

H1(Qv, G(Q))

)
is finite, and writing Pic(G)tors to denote the torsion subgroup of the Picard group Pic(G), the Tamagawa
number conjecture for G asserts that the Tamagawa number τ(G) can be computed as the quotient

τ(G) =
# Pic(G)tors

#X(G)
.(4)
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On the other hand, recall that for E an elliptic curve of conductor N defined over Q as above, the conjecture
of Birch and Swinnerton-Dyer predicts that r = r(E) = r(f) = rkZE(Q). The refined conjecture of Birch
and Swinnerton-Dyer predicts in addition to this that we have the class-number-like formula

lim
s→1

Λ(E, s)

(s− 1)r
=

#X(E) · det〈 , 〉 · V∞ · Vbad

#E(Q)tors ·# Pic(E)tors
=

#X(E) · det〈 , 〉 · V∞ · Vbad

#E(Q)2
tors

.

Here, writing 〈 , 〉 : E(Q)× E(Q) −→ R to denote the Néron-Tate height pairing (as reconstructed in [5]),

X(E) := ker

(
H1(Q, E(Q)) −→

∏
v

H1(Qv, E(Q))

)
denotes the Tate-Shafarevich group (which again is conjectured to be finite),

det〈 , 〉 := det (〈Pi, Pj〉)i,j , {Pi}i any basis of E(Q)/E(Q)tors

the regulator,

V∞ = Vol (E ⊗Q R)

denotes the real period, and

Vbad := Vol

∏
v∈S
v<∞

E(Fv)


denotes the product of local Tamagawa factors at primes of bad reduction for E. Bloch shows in [5] that
each α ∈ Pic(E) corresponds to a Gm-torsor Xα −→ E, which for α ∈ Pic0(E) = E(Q) can be thought of
as a group extension of E by Gm, and in this way builds an extension

0 −→ T −→ X −→ E −→ 0,(5)

where T denotes the Q-split torus with character group X∗(T ) = E(Q)/E(Q)tors. We have the following
important theorem, which is shown in [5] more generally for abelian varieties over number fields.1

Theorem 1.2 (Bloch). The extension X defined via the exact sequence (5) determines an algebraic group
over Q, with rational points X(Q) embedding discretely into the adelic points X(A), with Tate-Shafarevich
group X(X) = X(E), and with Pic(X)tors = E(Q)tors. Moreover, the refined conjecture of Birch and
Swinnerton-Dyer for E is true if and only if the Tamagawa number conjecture for X is true, equivalently if
and only if the Tamagawa number of X is given by τ(X) = E(Q)tors/X(E) ∈ Q\{0}.

It would be interesting to give a completely automorphic description of the extension class X, leading
to the underlying automorphic motive M(X) (e.g. through the corresponding Galois representation). In
particular, the identification of such an automorphic Tamagawa motive M(X) would reduce the remaining
open cases of the conjecture of Birch and Swinnerton-Dyer for E(Q) for any rank r ≥ 0 to the corresponding
Bloch-Kato main conjecture [7] for M(X). This would offer some framework for approaching the remaining
open cases of Birch-Swinnerton-Dyer, namely via the Bloch-Kato (or Iwasawa-Greenberg) main conjectures
for M(X). In particular, if M(X) could be viewed as the Galois representation ρM(X) associated to some
automorphic form, then it would be reasonable to expect progress on the corresponding Bloch-Kato main
conjecture for ρM(X) though some Euler system construction. The Bloch-Kato main conjecture for this
M(X) (a variant of the Tamagawa number conjecture for X) would then imply the conjecture of Birch and
Swinnerton-Dyer for E. In this direction, we pose another question.

Question 1.3. Let E be an elliptic curve of conductor N defined over Q and Mordell-Weil rank r, with
corresponding eigenform f ∈ Snew

2 (Γ0(N)) and GL2(A)-automorphic representation π(f). Let {fk}k denote
a Hida family of eigenforms fk ∈ Sk(Γ0(N)) of higher even weights k ≥ 2 specializing to f = f2 for any
ordinary prime p. Can the corresponding family of algebraic representations Π(r)(fk) ∈ Alg(2+r) be used with
deformation theoretic methods to construct a suitable extension class M(f) associated to the corresponding

1In fact, Bloch shows the analogue of the theorem stated here for any abelian variety A defined over a global field k of
characteristic zero.
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Galois representations ρπ(f) : Gal(Q/Q) −→ GL2(Ql) or ρΠ′(f) : Gal(Q/Q) −→ GL2+r(Ql), or perhaps
even the “Tamagawa motive” M(X) itself?

The phrase “deformation theoretic methods” refers to something like the techniques of Skinner-Urban
[44] and [43]. These works attach to a newform f(z) =

∑
n≥1 af (n)e(nz) ∈ S2(Γ0(N)) of odd analytic rank

– equivalently to any newform f ∈ S2(Γ0(N)) which is invariant under the Fricke involution wN – and any
prime p for which f is ordinary (i.e. for which |af (p)|p = 1) an extension of the corresponding p-adic Galois
representation Vf using Galois representations ρV associated to Siegel modular forms which are congruent
modulo high powers of p to the Saito-Kurakawa lift SK(f) of f . The ideas underlying this construction
are rooted in the approach of Harder [27], who used a geometric approach with Eisenstein cohomology to
give a (conditional) construction of similar extension classes. They can also be extended to the case of even
analytic rank via unitary groups, as outlined in Skinner-Urban [46] and Belläıche-Chenevier [4]. While these
works broadly construct extension classes related to the Bloch-Kato Selmer group of some twist of the p-adic
Galois representation Vf constructed from f , we seek to address the more basic question of the existence or
provenance of an automorphic motive X = X(f) corresponding to Bloch’s extension class. Latently, the idea
is to relate difficult open problems to finding suitable integral presentations for the derivative central values
L(r)(1/2, π) = L(r)(E, s) for any Mordell-Weil rank r (particularly r ≥ 2) to the better-understood study of
central values L(1/2,Π) = L(1, X) of some automorphic form on a higher-rank group such as GL2+r(A).

1.2. Summary of results. We establish the following for Question 1.1 (i). Here, we use the constructions
of Galois representations due to to Scholze [39] and Clozel [16] to determine the degree to which the coho-
mological twists Π′(fk) ∈ Coh(3) (with k ≥ 4 even) contributes. We then consider such classes in a Hida
family corresponding to f to specialize to weight k = 2, and in this way address Question 1.1 (i). Let us first
remark that we are not able to realize this cohomological twist Π′(fk) ∈ Coh(3) via unnormalized induction
from the algebraic representation Π′(fk) of the Levi subgroup GL2(A) × GL1(A) of GL3(A) in these con-
structions. Rather, we use the constructions of [39] and [16] to view the GL3(A) locally symmetric space as
a Levi component in an Sp6(A) Shimura variety; we then use Poincaré duality with the vanishing theorems
of Lan-Suh [34] to determine the degrees to which the cohomological representations Π′(fk) ∈ Coh(3) with
k ≥ 4 even contribute. The framework of [39] and [16] with the boundary of the Borel-Serre compactification
of an ambient Shimura variety applies to any cohomological representation Π ∈ Coh(3) and more generally
Coh(n) (for instance). However, somewhat awkwardly, we must first realize our cohomological representations
Π′(fk) ∈ Coh(3) (for k ≥ 4 even) as the unnormalized inductions of certain non-algebraic representations of
the Levi subgroup M2,1

∼= GL2×GL1 ⊂ GL3 to describe precisely how our questions fit into this framework.
To fix ideas, let us start with the algebraic representation Π(fk) of M2,1(A) ⊂ GL3(A) defined for any

fk ∈ Sk(Γ0(N)) (k ≥ 2 even) by the normalized parabolic induction

Π(fk) := π(fk)× | · |1/2.

Each such representation Π(fk) ∈ Alg(3) has Langlands parameter

z 7−→
((z

z

) k−1
2

,
(z
z

)−( k−1
2 )

, (zz)
1
2

)
and algebraic weights

p(Π(fk)) =

(
k − 1

2
,

1− k
2

,
1

2

)
and q(Π(fk)) =

(
1− k

2
,
k − 1

2
,

1

2

)
.

Again, we consider the twist Π′(fk) := | · | 12 · (π(fk)× | · | 12 ), which has Langlands parameter

z 7−→
((z

z

) k−1
2

(zz)
1
2 ,
(z
z

)−( k−1
2 )

(zz)
1
2 , (zz)

)
and weights

p(Π′(fk)) =

(
k

2
,

2− k
2

, 1

)
and q(Π′(fk)) =

(
2− k

2
,
k

2
, 1

)
.
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Since the weights are integral for each k ≡ 0 mod 2 with distinct entries for each k ≥ 4, each corresponding
representation Π′(fk) of M(2,1)(A) ∼= GL2(A) × GL1(A) ⊂ GL3(A) is cohomological for k ≥ 2 even. In all
cases, Π′(fk) has the corresponding standard L-function Λ(s,Π′(fk)) = Λ(s+ 1/2, π(fk))Λ(s+ 1).

Unfortunately, the normalized parabolic induction Π(fk) and its cohomological twist Π′(fk) do not fit well
into the constructions of Galois representations given in [16] and [39] (via unnormalized induction). As we

explain in Proposition 2.6 below, we can realize the cohomological twist Π′(fk) := Π(fk)× | · | 12 equivalently
as the unnormalized parabolic induction of a non-algebraic representation Π′′0(fk) := | · |

(
π(fk)× | · |−1

)
.

Here, starting with a cuspidal eigenform fk ∈ S2(Γ0(N)) with even weight k ≥ 2, we first consider the
representation Π0(fk) of the Levi subgroup M2,1(A) ∼= GL2(A)×GL1(A) ⊂ GL3(A) defined by

Π0(fk) := π(fk)× | · |−1.

Hence, this Π0(fk) determines a non-algebraic representation of M2,1(A), with Langlands parameter

z 7−→

((z
z

) k−1
2

,

(
z

z

) k−1
2

, (zz)−1

)
and weights

p(Π0(fk)) =

(
k − 1

2
,

1− k
2

,−1

)
and q(Π0(fk)) =

(
1− k

2
,
k − 1

2
,−1

)
.

Similarly, the twist Π′′0(fk) := | · | · Π0(fk) = | · | · (π(fk)× | · |−1) determines a non-algebraic representation
of M2,1(A), with Langlands parameter

z 7−→

((z
z

) k−1
2 · (zz),

(
z

z

) k−1
2

· (zz), (zz)0

)
and weights

p(Π′′0(fk)) =

(
k + 1

2
,

3− k
2

, 0

)
and q(Π′′0(fk)) =

(
3− k

2
,
k + 1

2
, 0

)
.

However, the unnormalized parabolic induction Π?(fk) = χΠ′′0 (fk) of Π′′0(fk) recovers the cohomological twist
Π′(fk), and has the desired L-function Λ(s,Π?(fk)) = Λ(s, χΠ′′0 (fk)) = Λ(s,Π′(fk)) = Λ(s, π(fk))Λ(s+ 1/2).

When the weight k ≥ 4 of f ∈ Sk(Γ0(N)) is even, the construction of [39] (and more generally [16])
allows us to realize the representation Π?(fk) = Π′(fk) ∈ Coh(3) in the cohomology of the boundary of the
Borel-Serre compactification of an ambient Sp6(A) Shimura variety2. We use this construction to deduce
that each Π?(fk) = Π′(fk) ∈ Coh(3) contributes nontrivially to either H1(SK ,Lk) or H2

c (SK ,Lk), where
SK denotes the corresponding locally symmetric space for GL3(A). The corresponding symmetric space for
the Sp6(A) Shimura variety has a larger dimension than that of GL3(A). This in particular allows us to
use vanishing theorems such as those of Lan-Suh [34] (cf. [13], [14]) with Poincaré duality to deduce the
vanishing of the H2

c (SK ,Lk), and hence the following result.

Theorem 1.4 (Theorem 2.19). Let fk ∈ Sk(Γ0(N)) be a cuspidal eigenform of even weight k ≥ 4, with
corresponding GL2(A)-automorphic representation denoted by π(fk). Obtained via unnormalized induction
of the non-algebraic representation Π′′0(fk) defined above, the cohomological representation Π?(fk) = Π′(fk)
of GL3(A) factors through the automorphic cohomology in the first degree H1(SK ,Lk), giving rise to a class
in K(fk) ∈ H1(SK ,Lk).

Corollary 1.5. Let E be an elliptic curve of conductor N defined over Q, parametrized by a cuspidal newform
f(z) =

∑
n≥1 af (n)e(nz) ∈ Snew

2 (Γ0(N)). Fix a prime p for which which f is ordinary, so |af (p)|p = 1, and

2More generally, if we pass to a totally real or CM number fields as we may with these arguments, these constructions

lead to ambient Shimura varieties attached to the symplectic group Sp2(2+r) over a totally real field, or to the unitary group

U(2 + r, 2 + r) over a CM field.
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let ρf : Gal(Q/Q) → GL2(Zp) denote the corresponding p-adic Galois representation. Let {fk}k denote the
Hida family associated to ρf , with weight-two specialization f2 = f . Taking the direct limit

K ({fk}k) = lim−→
k≥4

K(fk)

of the corresponding cohomology classes K(fk) in lim−→k
H1(SK ,Lk), we specialize to weight k = 2 to obtain a

class K(f) = K(f2) in the GL3(A) completed cohomology lim←−K lim−→k
H1(SK ,Lk) corresponding to the algebraic

representation Π′(f) = Π′(f2) ∈ Alg(3) with standard L-functions Λ(s,Π′(f)) = Λ(s + 1/2,Π(f)), where
Λ(s,Π(f)) = Λ(s, π(f))Λ(s+ 1/2).

So, while we cannot realize the algebraic representation Π(f) = Π(f2) ∈ Alg(3) or its twist Π′(f) = Π′(f2)
in the GL3(A)-automorphic cohomologyH?(SK ,C), this does give rise via the limit K ({fk}k) = lim−→k≥4

K(fk)

to a class in the completed cohomology for GL3(A), in the sense of Calegari-Emerton (see e.g. [12], [18])3. It
would be interesting to investigate these classes in completed cohomology further, as well the more general
setting of classes arising from the boundaries of the Borel-Serre compactifications of Sp2n Shimura varieties,
with the aim of constructing p-adic realizations Mp(X) of the desired extension class M(X).

We conclude with some more remarks about motivation, and the connection to periods. Suppose the
underlying elliptic curve E has Mordell-Weil rank r = 1, and hence that f has analytic rank r(f) = 1 by
various theorems on cyclotomic main conjectures towards the conjecture of Birch and Swinnerton-Dyer –
namely those of Kato [31], Rohrlich [38], Skinner-Urban [46], and Kolyvagin [32]. Hence equivalently, the
central value of the corresponding induced L-function Λ(s,Π(f)) = Λ(s, π(f))Λ(s + 1/2) does not vanish,
i.e. as Λ(1/2, π(f)) = (E/Q, 1) = 0. In this setting, we know by the theorem of Gross-Zagier [23, (7.3)]
(cf. [24]) that for some rational point P ∈ E(Q), we have

Λ′(E/Q, 1) = Λ′(1/2, π(f)) = Λ(1/2,Π(f)) = A · Ω · 〈P, P 〉,(6)

where Ω = V∞ denotes the real period of a regular differential operator on E/Q, and A is some nonzero
rational number. To be more precise, since we know that Λ′(E/Q, 1) = Λ′(1/2, π(f)) = Λ(1/2,Π(f)) 6= 0,
we deduce that from [23, Theorem (7.3)] that P ∈ E(Q)/E(Q)tors is a generator. Using various Euler
characteristic calculations (see [30] and [49] with [10, Theorem 3.10]), we can also deduce that, up to powers
of 2 and 3, this rational number A is given by the Birch-Swinnerton-Dyer constant

#X(E) · Vbad

#E(Q)2
tors

∈ Q.

Now, we know by the argument given in Kontsevich-Zagier [33, §3.5] that the product A · Ω · 〈P, P 〉 is a
period. Hence from (6), we deduce that the central value Λ(1/2,Π(f)) is a period. It would be interesting if
we could use the mysterious completed completed class K({fk}k) to give a different calculation of this period
A ·Ω · 〈P, P 〉, in the style of the arguments of [3] and Kontsevich-Zagier [33, §3.5] applied to the central value
Λ(1/2,Π(f)) = Λ(1/2,Π(1)(f)), perhaps after some suitable interpretation of the class K({fk}k) in a p-adic
completion of the Eisenstein cohomology (cf. [27]). We can ask the same question more generally. That is, if
E is an elliptic curve defined over Q with any Mordell-Weil rank r = rE(Q) ≥ 0, we know from our initial
setup that we have an identification of central (derivative) values

Λ(r)(E/Q, 1) = Λ(r)(1/2, π(f)) = Λ(1/2,Π(r)(f)),(7)

and that the refined conjecture of Birch and Swinnerton-Dyer predicts an identification

Λ(r)(E/Q, 1) = Λ(r)(1/2, π(f)) = Λ(1/2,Π(r)(f))
?
=

#X(E) · Vbad

#E(Q)2
tors

· Ω · det〈, 〉.(8)

3Note that Theorem 1.4 and Corollary 1.5 can be extended naturally to totally real and CM number fields. That is if E
is a modular elliptic curve over a totally real field F , then arguments for Theorem 1.4 remain the same, with the ambient

Shimura variety attached to Sp6(AF ). If E is a modular elliptic curve over a CM field F , then the arguments for Theorem 1.4
remain almost the same after replacing the ambient Shimura variety attached to the unitary group U(3, 3)(AF ). The version
of Corollary 1.5 for the corresponding GL2(AF )-automorphic representation is then given similarly. If F is a totally real field,

then this class is realized in the cohomology of the Borel-Serre boundary of a Sp6(AF ) Shimura variety SK(Sp6(AF )). If F is a

CM field, then it is realized in the cohomology of the Borel-Serre boundary of a U(3, 3)(AF ) Shimura variety SK(U(3, 3)(AF )).
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The value on the right-hand side of (8) is shown to be a period in [33, §4]. On the other hand, the central
derivative values Λ(r)(E/Q, 1) = Λ(r)(1/2, π(f)) are conjectured to be periods (e.g. [33, Question 4]). It
would be interesting to develop the ideas of Beilinson [3] and Kontsevich-Zagier [33, § 3.5] to show that the
central values Λ(1/2,Π(r)(f)) of the GL2+r(A)-automorphic L-function Λ(1/2,Π(r)(f)) are periods to this
end, perhaps using p-adic analogues of the constructions from Eisenstein cohomology as in the approach
of Harder [27], and p-adic realizations in the completed cohomology as suggested by our discussion above.
However, we save these tasks for some future work.

Outline. We first review the construction of Clozel [16] generalizing Scholze [39] in § 2, then explain the
relation to ambient Shimura varieties as developed in [39] and [1] in §3. This leads to some discussion of
Poincaré duality and vanishing theorems (and conjectures) for the cohomology of the locally symmetric
spaces we consider. The main argument then appears Theorem 2.19.

Acknowledgements. I would like to thank Laurent Clozel for suggesting this approach via constructions of
Galois representations to me in 2020, and also Peter Scholze for explaining some of the mechanics of [39] and
[1] to me during the Oberwolfach Arbeitsgemeinschaft 2214 on Geometric Representation Theory in 2022.
Most of this note was written in the subsequent weeks at Oberwolfach, with support from an Oberwolfach
Research Fellowship, for which I am also grateful. Finally, I thank Spencer Bloch, Frank Calegari, Daniel
Gulotta, Günter Harder, James Newton, Vincent Pilloni, and Jack Thorne for various helpful discussions.

2. Symmetric spaces, Shimura varieties, and Borel-Serre compactifications

Here, we first describe the relevant construction of Eisenstein cohomology classes given in [16], [39], and
[1]. We then describe some more general results including various vanishing theorems (and conjectures)
before giving our main arguments.

2.1. Symmetric spaces. Let G be any reductive group over Q, and P = MN any parabolic Q-subgroup.
Following [16], we let A = AG denote the neutral component in the group of real points of some split maximal
central torus of G, and K∞ ⊂ G(R) the maximal compact subgroup. We shall also write K ⊂ G(Af ) to
denote a fixed compact open subgroup. We consider the cohomology of the symmetric spaces

XG = G(R)/AGK∞,

as well as their quotients Γ\XG by congruence subgroups Γ ⊂ G(Q). In fact, we consider the adelic analogues
of these symmetric spaces given by the double coset spaces

SK = G(Q)\G(A)/AGK∞K,

each of which can be written as a finite union of “classical” spaces of the form Γ\XG.

2.1.1. Cohomology of symmetric spaces. We consider the cohomology H∗(SK ,C) of the symmetric spaces
SK , noting that these can be thought of naturally as components the profinite limit

H∗(S,C) = lim←−
K⊂G(Af )

H∗(SK ,C)

over all compact open subgroups K ⊂ G(Af ) (see e.g. [20]). Theorems of Borel and Franke [19] show
that these spaces can be computed in terms of automorphic forms via the following relation to relative Lie
cohomology. Writing g to denote the Lie algebra of G, and A(GK) the space of automorphic forms on

GK := G(Q)\G(A)/AGK,

these theorems (e.g. [19, Theorem 18]) give an identification of cohomology groups

H∗(SK ,C) ∼= H∗(g,K∞,A(GK)).(9)

Here, the (g,K∞)-cohomology on the right hand side is defined via the action of G(R) by right multiplication.
This identification (9) can be further stratified thanks to the Langlands direct sum decomposition

A(GK) =
⊕
P∈C
AP (GK)(10)
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into the classes C = {P} of associate Q-parabolic subgroups P ⊂ G, where each AP (GK) ⊂ A(GK) denotes
the subspace of forms obtained via induction from P ⊂ G. That is, we obtain from (10) a decomposition

H∗(SK ,C) ∼=
⊕
P∈C

H∗(g,K∞,AP (GK)).(11)

We refer to the discussions in [20], [22], and [16] for more details about this latter decomposition (11) in
general, i.e. which we present here only in a simplified form for illustration. In brief, when the subspace of
cuspidal forms of A(GK) is sufficiently well-understood, we also have the decomposition of the part relative
to G,

H∗(g,K∞,A(GK)) ∼= H∗(g,K∞,Acusp(GK)) ∼=
⊕

π⊂L2
cusp(GK)

H∗(g,K∞, π).

Here,Acusp(GK) ⊂ A(GK) denotes the subspace of cuspidal forms, and the sum runs over cuspidal summands
π ⊂ L2(GK) in the space of L2-automorphic forms L2(GK) on the double quotient space GK .

2.1.2. Approaches to constructions of classes. Note that Harder and Schwermer have proposed a programme
for constructing cohomology classes associated to each AP (GKf ) for P = MN 6= G in terms of differential-
form-valued Eisenstein series induced from cuspidal forms on the corresponding Levi subgroup M ⊂ P .
Harder obtained important results in this direction for the case of G = GL2 ([25], [26], [28], [29]), and more
general constructions for G = GLn are given by Schwermer [42], [41] and Franke-Schwermer [20]; see also
the discussion in Grbac [22]. The approach of Scholze [39] and its generalization to general reductive groups
given by Clozel [16] differs from these works in that it is purely topological, using properties of the boundary
of the Borel-Serre compactifications of the symmetric spaces SK to given novel constructions of such classes.
However, without further innovation, these topological constructions appear to be limited to the special case
where P ⊂ G is a maximal parabolic subgroup. In particular, the discussion in Clozel [16, §5] shows why the
construction is a priori degenerate (vanishing) when the parabolic subgroup P ⊂ G is not maximal.

2.1.3. Parabolics associated to the partitions 2 + r = 2 + 1 + . . . 1. Let us for future reference spell out
the choices of groups which appear in our motivating examples. As indicated above, we consider the linear
reductive group G = GLn with n = 2 + r ≥ 2 (and r ≥ 0 fixed). The corresponding parabolic subgroup
P = MN ⊂ G we consider above is associated to the partition (2, 1, . . . , 1) of n = 2 + r. Hence, we have the
more explicit Levi decomposition

P(2,1,...,1) = M(2,1,...,1)N(2,1,...1) ⊂ GL2+r,

where the Levi subgroupM = M(2,1,...,1) can be identified in a natural way with the productM ∼= GL2×GLr1,
and the unipotent radical N = N(2,1,...,1) with the subgroup of the standard unipotent subgroup Nn = N2+r

of upper triangular matrices given on adelic points by

N(A) = N(2,1,...,1)(A) =


y =



1 0 u1,3 u1,4 · · · u1,n

1 u2,3 u2,4 . . . u2,n

1 u3,4 · · · u3,n

. . .
. . .

...
1 un−1,n

1


: ui,j ∈ A


⊂ Nn(A).

Hence, we have the semi-direct product decomposition

Nn ∼= N2 nN(2,1,···1).(12)

Let us remark that the unipotent radical N = N(2,1,...,1) implicit in this example is the same unipotent
radical N = N(2,1,...,1) = Yn,1 appearing in the classical works of Ginzburg, Jacquet, Piatetski-Shapiro, and
Shalika on Rankin-Selberg L-functions for GLn×GLm (our setup corresponding to the case with m = 1),
and also crucially in the proofs of converse theorems for GLn-automorphic L-functions shown by Cogdell.
We refer to the exposition in Cogdell [17] (for instance) for more background on this latter topic, and note
that the integrals over the quotients of these unipotent subgroups

N(Q)\N(A) = N(2,1,...,1)(Q)\N(2,1,...,1)(A) = Yn,1(Q)\Yn,1(A)
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correspond up to a factor of | · |n−2
2 to the classical projection operator Pn1 . These integrals satisfy various

remarkable properties, determining L2-automorphic forms on the mirabolic subgroup P2(A) ⊂ GL2(A), and
moreover preserve the L-function coefficient of cuspidal forms on GLn(A) through their Fourier-Whittaker
expansions, i.e. as L2-automorphic forms on the mirabolic subgroup P2(A) ⊂ GL2(A).

2.2. Cohomology of Borel-Serre compactifications of symmetric spaces. Let us now describe the
constructions of [39] and [16] for any reductive group G over Q.

2.2.1. Borel-Serre compactifications of symmetric spaces. Given a Q-parabolic subgroup P ⊂ G, we write
P = MN to denote the Levi decomposition, with M ⊂ P the Levi subgroup, and N ⊂ P the unipotent
radical. Let us fix a compact open subgroup K ⊂ G(Af ). We shall assume this compact open subgroup
decomposes as a direct product K =

∏
p<∞Kp, with each Kp ⊂ G(Qp) a subgroup. We shall also assume

that K is neat, in the strict sense4. That is, recall that an element g = (gp)p ∈ G(Af ) is said to be neat if

for any faithful representation ρ of G over Q, fixing an embedding of Q→ Qp for each prime p, and writing

Γp to denote the torsion subgroup Qp generated by the eigenvalues of gp, we have that⋂
p<∞

Γp = {1} .

We then say that K is neat (in the strict sense) if each element g = (gp)p ∈ K is neat. Fixing such a neat
compact open subgroup K ⊂ G(Af ), we shall then write KH for any connected linear algebraic subgroup
or quotient H of G to denote the corresponding intersection KH := K ∩H(Af ).

Let us now return to the symmetric space defined by

SK = G(Q)\G(A)/AGK∞K = G(Q)\ (XG ×G(A)) /K,

which recall can be written in classical terms as a finite disjoint union

SK =
∐
i

Γi\XG(13)

of quotients of XG by congruence subgroups Γi ⊂ G(Q). Note that our choice of Q-parabolic P = MN ⊂ G
gives rise to the corresponding symmetric spaces

SKP = P (Q)\P (A)/AMK∞,MKP

and

SKM = M(Q)\M(A)/AMK∞,MKM .

Here, viewing M as a reductive group, we write AM to denote the neutral component of the set of R-points
of the maximal split Q-torus in the centre of M , and K∞,M = M(R) the maximal compact subgroup. These
spaces have equivalent archimedean descriptions analogous to (13). We also have a natural projection map

πP : SKP −→ SKM

for which the quotient SK of SK can be realized as a fibre bundle with compact fibre N(Q)\N(A)/KN ,
where KN = K ∩N(Af ) is the corresponding (neat) compact open subgroup.

To describe the Borel-Serre bordification XBS
G of XG (in the terminology of [8]), let P to denote the set

of Q-parabolic subgroups P ⊂ G, and P ′ ⊂ P the subset of proper parabolic subgroups. We then define

XBS
G =

∐
P∈P

e(P ).

Here, the product runs over all Q-parabolic subgroups P ⊂ G, and e(G) = XG. The boundary ∂XBS
G of this

manifold with corners XBS
G is given by the subproduct over proper Q-parabolic subgroups

∂XBS
G =

∐
P∈P′

e(P ).

4In the looser, classical sense: K ⊂ G(Af ) is neat if the intersection K ∩G(Q) has no nontrivial torsion element. Note that

the strict neat compact open subgroup form a basis of all compact open subgroups of G(Af ).
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Here, for each proper parabolic subgroup P ∈ P ′, we write e(P ) to denote a copy of XG/AP with AP = AM ,
with the “geodesic flow” of AP = AM commuting with the left action by P (R).

Let us now consider similar notions for the symmetric space SK . Here, we define

SBS
K = G(Q)\

(
XBS
G ×G(Af )

)
/K.

As explained in [16, §2], since the quotient G(A)/K is discrete, and since G(Q) acts with no fixed points,
we deduce that this space SBS

K is also a manifold without corners. Writing

G(Af ) =
∐
g

G(Q)gK

to denote the finite decomposition underling the decomposition (13), we can write SBS
K equivalently as

SBS
K =

∐
g

Γg\XBS
G , Γg := G(Q) ∩ gKg−1.

We have the following decompositions of the bordification SBS
K . Note that the set of Q-parabolic subgroups

of G modulo G(Q) is finite. Let us fix a set of representatives Q for this finite set. We then argue that we
can write SBS

K equivalently as the finite product

SBS
K =

∐
P∈Q

SBS
K (P ), SBS

K (P ) := G(Q)\ (e(P )×G(Af )) /K.(14)

Here, each of the components SBS
K (P ) can be thought of as the contribution of the parabolic P to SBS

K .
Moreover, in passing to the limit Kf → 1, the corresponding limits of cohomology groups H∗(SBS

K (P )) can
be seen as the realization of an induced representation of G(Af ) from P (Af ).

Now, we can decompose each of the contributions SBS
K (P ) in (14) as follows. Notice that the double coset

space P (Q)\G(Af )/K is finite, as P (Af )\G(Af ) can be viewed as the set of Af -points of a projective variety.
We may thus fix a set of representatives R(P ) for this space to derive the corresponding decomposition

SBS
K (P ) =

∐
h∈R(P )

P (Q)\ (e(P )× P (Af )) /KP (h), KP (h) := P (Af ) ∩ hKh−1.(15)

On the other hand, using properties of the “geodesic action” (according to the description in [16, (2.1)]), we
can identify each e(P ) = XG/AG in this latter expression (15) in terms of the parabolic subgroup as

e(P ) = XG/AG = (P (R)K∞/K∞) /AP = P (R)/AMK∞,M .

In this way, we can rewrite the decomposition (15) as

SBS
K (P ) =

∐
h∈R(h)

SKP (h), SKP (h) := P (Q)\P (A)/AMK∞,MKP (h).(16)

Here, each component SKP (h) can be viewed as the symmetric space corresponding to KP (h) ⊂ P (Af ).

Hence in summary, we get the decomposition of SBS
K into a finite disjoint of symmetric spaces

SBS
K =

∐
P∈Q

SBS
K (P ) =

∐
P∈Q

∐
h∈R(P )

SKP (h).(17)

Writing Q′ ⊂ Q to denote the representatives corresponding to maximal Q-parabolic subgroups P ⊂ G, the
boundary ∂SBS

K can then be described as

∂SBS
K =

∐
P∈Q′

SBS
K (P ) =

∐
P∈Q′

∐
h∈R(P )

SKP (h).(18)

Finally, let us note that

dim ∂SBS
K = dimXG − 1.

If P is a Q-parabolic with split component AP = AM , then then

dim e(P ) = dimXG − (dimAP − dimAG) .

As well, for P ∈ Q′ maximal, the quotients SBS
K (P ) correspond to the open cells of the boundary ∂SBS

K .
11



2.2.2. Actions of unramified Hecke algebras. Let us retain the setup described above, and write S to denote
the finite set of places for which Kp ⊂ G(Qp) is not hyperspecial. Let KS =

∏
p/∈S,p<∞Kp, and similarly

AS
f =

∏
p/∈S,p<∞Qp. We then consider the corresponding unramified Hecke algebras of bi-invariant functions

(19)

HS(G) = Cc
(
KS\G(AS

f )/KS ,Z
)

=
⊗
p/∈S

Hp(G), Hp(G) := Cc (Kp\G(Qp)/Kp,Z) ,

HS(P ) = Cc
(
KS
P \P (AS

f )/KS
P ,Z

)
=
⊗
p/∈S

Hp(P ), Hp(G) := Cc (Kp,P \G(Qp)/Kp,P ,Z)

HS(M) = Cc
(
KS
M\M(AS

f )/KS
M ,Z

)
=
⊗
p/∈S

Hp(M), Hp(G) := Cc (Kp,M\G(Qp)/Kp,M ,Z) ,

where the decompositions on the right hand sides denote the usual restricted tensor products in each case.
Here, for a given prime p, we also write Kp,P = Kp ∩ P (Qp) and Kp,M = Kp ∩M(Qp).

Let us assume that the set of representatives Q of Q-parabolic subgroups modulo G(Q) coincides with the
set of standard parabolic subgroups, i.e. those parabolic subgroups which contain a fixed minimal parabolic
subgroup P0. This assumption allows us for each prime p and for each Q-parabolic representative P ∈ Q to
find a maximal subgroup K0

p ⊂ Gp(Qp) for which

G(Qp) = K0
pP (Qp) = P (Qp)K

0
p .

We shall then assume that our fixed compact open K ⊂ G(Af ) can be decomposed into local components
K =

∏
p<∞Kp with Kp = K0

p for all p /∈ S. This latter assumption means that each of the subgroups and

subquotients P = MN we consider comes equipped with a natural Zp-structure for each p /∈ S. We can also
choose local Haar measures on each of these subgroups and subquotients so that the volumes of Zp-points
equal one for all p /∈ S.

We have the following morphisms between these algebras. On the one hand, we have the natural map

ρ : HS(G) −→ HS(P )

given by restriction of functions. On the other hand, we have the unnormalized constant term map

λ : HS(P ) −→ HS(M), ϕ 7−→ λϕ(m) :=

∫
N(Af )

ϕ(mn)dn (m ∈M(AS
f )).

Let us now consider cohomology, taking the coefficients over any local Artin ring κ5. Each of the Hecke
algebras (19) acts in a natural way on the cohomology groups H∗(SBS

K , κ). For instance, if for a given prime
p we consider the double coset operator KpgKp ∈ Hp(G) for some g ∈ G(Qp), then the action can be given
explicitly in terms of correspondences for the bordifications as follows: Writing Rg to denote the action by
right translation of g on SBS

K = G(Q)\
(
XBS
G ×G(Af )

)
/K, we have the commutative diagram

SBS
K∩gKg−1

Rg−−−−→ SBS
g−1Kg∩Ky y

SBS
K SBS

K .

(20)

Let us also note that this action of HS(G) respects each of the decompositions above leading to (16). In
particular, the action of HS(G) on H∗(∂SBS

K , κ) is compatible with the map H∗(SBS
K , κ) −→ H∗(∂SBS

K , κ).

2.2.3. Main construction for maximal parabolic subgroups. Let us assume now that P ∈ Q′ is a maximal
Q-parabolic subgroup of G, with Levi decomposition P = MN and fixed set of representatives R(P ) = {h}
for the finite set P (Q)\G(Af )/K. As explained in [16], the components SBS

K (P ) and SKP (h) are then open

in ∂SBS
K , and we obtain in this way a map

j∗ : Hi
c(SKP (h), κ) −→ Hi(∂SBS

K , κ).

5The arguments described here work for any coefficient ring, and although we are ultimately most interested in the case
where κ is a number field, this more general setup allows us to consider coefficients κ = Z/lnZ as in Scholze [39].
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We also have a natural projection map

π : SKP −→ SKM ,

whose pullback has compact fibres. In this way, we deduce that the pullback π∗ gives the map on cohomology

π∗ : Hi
c(SKM , κ) −→ Hi

c(SKP , κ).

Lemma 2.1. The maps j∗ and π∗ defined above satisfy the following properties.

(i) The map j∗ : Hi(SKP (h), κ) −→ Hi(∂SBS
K , κ) is equivariant under the action of HS(G), with HS(G)

acting naturally on Hi(∂SBS
K , κ), and via composition with the restriction map ρ on Hi(SKP (h), κ).

(ii) The map π∗ : Hi
c(SKM , κ) −→ Hi(SKP , κ) is equivariant under the action of HS(P ), with HS(P )

acting naturally on Hi(SKP , κ), and via composition with the constant term map λ on Hi(SKM , κ).

Proof. See [16, Lemma 2.1] or [39, Lemma V.2.3]. �

Let us now consider the “diagram”

Hi
c(SKP , κ)

j∗−−−−→ Hi(∂SBS
K , κ)

j∗−−−−→ Hi(SKP , κ),

writing the composition of these maps as

jc := j∗j∗ : Hi
c(SKP , κ) −→ Hi(SKP , κ).

Observe that the image of this map lies in the compactly supported part of the cohomology, i.e. in the inner
cohomology Hi

! (SKP , κ). In this way, we see that the image of j∗ gives us a surjective map

Im(j∗) −→ Hi
! (SKP , κ).(21)

We can now consider the “full diagram”

Hi
c(SKP , κ)

jc−−−−→ Hi(SKP , κ)xπ∗ yπ∗
Hi
c(SKM , κ)

jMc−−−−→ Hi(SKM , κ).

(22)

Here, the vertical map π∗ on the right-hand side is described more precisely as follows. A priori, the pushfor-
ward π∗ determines an identification H∗(SKP , κ) = H∗(SKM , Rπ∗κ). However, as explained in [16, (2.2)], this
cohomology group is associated to the local system H∗(F), where F = ΓN\N(R) is the fibre of the projection

π : SKP → SKM , which can be covered by the contractible space F̃ ∼= N(R) to obtain a map of local systems

H∗(F)→ H∗(F̃) = κ on SKM . In this way, we see that π∗ induces a map π∗ : Hi(SKP , κ) −→ H∗(SKM , κ).

Lemma 2.2. The map π∗ : Hi(SKP , k) −→ Hi(SKM , κ) is equivariant under the action of HS(P ), with
HS(P ) acting naturally on Hi(SKP , κ), and via composition with the constant term map λ on Hi(SKM , κ).

Proof. See [16, Lemma 2.2]. �

Now, observe that the by the commutativity of (22), the map π∗ : H∗(SKP , κ) −→ H∗(SKM , κ) must be
surjective. We can deduce the following more general result via the fundamental diagram (22).

Corollary 2.3. There exists a surjective map

Im(j∗) −→ Hi
! (SKM , κ),

where again j∗ denotes the map j∗ : Hi(SKP , κ) −→ Hi(∂SBS
K , κ). Moreover, this surjective map is equi-

variant for the action of HS(G), where HS(G) acts naturally on Im(j∗), and via composition with λ ◦ ρ on
Hi

! (SKM , κ).
13



Let us at last describe the crux of the argument, which involves the long exact sequence for the cohomology
of the manifold with boundary ∂SBS

K ,

· · · −−−−→ Hi
c(SK , κ) −−−−→ Hi(SBS

K , κ) −−−−→ Hi(∂SBS
K , κ) −−−−→ Hi+1

c (SK , κ) −−−−→ · · · .(23)

Note that the submodule

H := j∗H
i
c(SKP , κ) ⊂ Hi(∂SBS

K , κ)

admits a filtration

0 −−−−→ H ′ −−−−→ H −−−−→ H ′′ −−−−→ 0,

with

H ′ ⊂ Hi(SBS
K , κ) = Hi(SK , κ) and H ′′ ⊂ Hi+1

c (SK , κ).

Let us also note that all the cohomology spaces we consider here are finite over κ. Writing m ⊂ κ to denote
the maximal ideal, each module H admits a (finite) filtration

0 = mrH ⊂ mr−1H ⊂ . . . ⊂ mH ⊂ H,

with each successive quotient being stable under the action of HS(G). That is, writing Fκ = κ/m to denote
the residue field, HS(G) acts on each quotient via HS(G)⊗ Fκ. Let us write mH ⊂ HS(G)⊗ Fκ to denote
a maximal ideal. We can now deduce the following more substantial result via Corollary 2.3.

Theorem 2.4 (Clozel, d’après Scholze). The following assertions are true.

(i) Each irreducible subquotient of the HS(G)-submodule Hi
! (SKM , κ) is a subquotient of either Hi(SK , κ)

or Hi+1
c (SK , κ).

(ii) Given any maximal ideal mH ⊂ HS(G)⊗Fκ (not necessarily non-Eisenstein) for which the localiza-
tion Hi

! (SKM , κ)mH does not vanish, either Hi(SK , κ)mH 6= 0 or Hi+1
c (SK , κ)mH 6= 0.

Proof. See [16, Theorem 2.4 and Theorem 2.5], and also [39, Corollary 5.2.4]. �

Hence, we have summarized the main construction of classes of [39] and [16]. We refer to [16, § 3, Theorem
3.4 and Proposition 3.5] for a detailed account of the setup with complex coefficients (summarized below),
as well as to [16, §4] for a description of the compatibility of this construction with Eisenstein cohomology,
and to [16, §5] for a discussion of the degenerate case where the Q-parabolic subgroup P is not maximal,
and in particular a proof that the corresponding composition map j∗j∗ in that case vanishes.

2.2.4. Complex coefficients. Since it is relevant to Question 1.1, let us give a brief description of the general
construction given above for complex coefficients. Note however we can also deduce a relevant version of
Theorem 2.4 to this end after rationalization of each of the cohomology groups, using that the ambient
groups can be computed in terms of automorphic forms on G. In any case, we give some more details for the
abstract classical theorems in this setting, again following Clozel [16, §3].

Again, we fix a (neat) compact open subgroupK ⊂ G(Af ), together with a maximal Q-parabolic subgroup
P = MN . Let us assume we are also given a complex algebraic representation L of G. This gives rise in a
natural way to a local system L on SK . Since the bordification SBS

K defines a homotopy equivalence, it is
easy to see that L extends to a local system on SBS

K . Moreover, it is not hard to justify that most of the
discussion above carries over the with Artinian local ring k replaced by the local system L. Here, we have a
natural map

Hi(SBS
K ,L) −→ Hi(∂SBS

K ,L).

The total space of the vector bundle L on SK is given by

G(Q)\ (X ×G(Af )/K)× L,(24)
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with G(Q) acting diagonally on each component. The action Rg of an element g ∈ G(Af ) via right translation
can be described accordingly, in the usual way 6. We obtain the same equivariant actions of the unramified
Hecke algebra HS(G) on the cohomology groups H∗(SBS

K ,L) and H∗(∂S∂K ,L) as described above, with
corresponding equivariant map j∗ : Hi(SKP ,L) −→ Hi(∂SBS

K ,L).
In this generality, Harder and Schwermer describe H∗(SKP ,L) as a cohomology space on SKM via the

degeneracy of the Leray spectral sequence for the fibration SKP −→ SKM by compact nilmanifolds. Let us
again write the Levi decomposition as P = MN , and n for the Lie algebra of the unipotent radical N . For
each integer j ≥ 0, the cohomology group Hj(n, L) determines an M(R)-module, and hence a local system
Hj(n, L) on SKM . Theorems of Harder [25] and Schwermer [42] show that we have an HS(M)-equivariant
decomposition

Hi(SKP ,L) ∼=
⊕
j+k=i

Hk(SKM ,Hj(n, L))(25)

on compactly supported cohomology, which is also equivariant under the action of HS(P ) ([16, Lemma 3.2]).
The construction of classes in this setting works in the same way as described above, incorporating the

decomposition (26). That is, we obtain the from the “diagram”

Hi
c(SKP ,L)

j∗−−−−→ Hi(∂SBS
KP
,L)

j∗−−−−→ Hi(SKP ,L)

a surjective map of HS(G)-modules Im(j∗) −→ Hi
! (SKP ,L), which can be described more precisely in terms

of the decomposition (25) as a HS(G)-equivarient surjective map

Im(j∗) −→ Hi
! (SKP ,L) ∼=

⊕
i=j+k

Hk(SKM ,Hj(n, L)).(26)

We then consider the corresponding long exact cohomology sequence

· · · −−−−→ Hi
c(SK ,L) −−−−→ Hi(SBS

K ,L) −−−−→ Hi(∂SBS
K ,L) −−−−→ Hi+1

c (SK ,L) −−−−→ · · ·

for this decomposition to deduce that the subquotients of (26) on which HS(G) acts via the composition
λ ◦ ρ occur in either Hi(SK ,L) or Hi+1

c (SK ,L). Here, we can give the following abstract version of Theorem
2.4, described in terms of characters of the Hecke algebra HS(G) rather than maximal ideals. Let us write

GK = G(Q)\G(A)/AGK,

so that SK = GK/K∞. We then consider the usual inclusion of G(R)-representations given by the inclusion
of the space of L2-cuspidal automorphic forms on GK inside the discrete spectrum

L2
cusp(GK) ⊂ L2

dis(GK),

with corresponding inclusion of spaces of automorphic forms denoted by

Acusp(GK) ⊂ Adis(GK).

Taking (g,K∞)-cohomology here gives the corresponding cuspidal and L2-cohomology groups respectively.
Here, the so-called L2-cohomology H∗(2)(SK) corresponding to the discrete spectrum can be represented by

L2-harmonic forms of SK , and we have the inclusions H∗cusp(SK) ⊂ Hi
! (SK) ⊂ S∗(2)(SK). Taking coefficients

L, we can then describe the cuspidal cohomology on SK and SM in terms of relative Lie cohomology,

H∗cusp(SK ,L) = H∗(g,K,Acusp(GK)⊗ L), H∗cusp(SKM ,L) = H∗(m,Acusp(GKM )⊗ L).

6In brief, put K′ = K ∩ gKg−1 and K′′ = g−1Kg ∩K. Given a point y ∈ SK′ , we can construct a map Ly −→ LRgy as

follows. Write a representative of Ly in (24) as (x, h)×L for (x, h) ∈ X×G(Af ) a representative of y. The map Rg is then given

by the rule (x, h) 7−→ (x, hg). In a similar way, LRgy can be represented by (x, hg)×L. The map (x, h, l) 7−→ (x, hg, l) for l ∈ L
is then seen to descend to the quotient (24), hence giving the the desired map. In this way, we can study of the corresponding
commutative diagram to extend most of the construction leading to Theorem 2.4 to this setting, i.e. by a similar study of

SBS
K′

Rg−−−−−→ SBS
K′′y y

SBS
K SBS

K .
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Here, we write m to denote the Lie algebra of M , and

GKM = M(Q)\M(A)/AMKM .

We can now state the following version of Theorem 2.4, according to [16, Theorem 3.4 and Proposition 3.5].

Theorem 2.5. Let G be any reductive group over Q, with P = MN any maximal Q-parabolic subgroup,
and L any complex algebraic representation of G. The following assertions hold for the setup described above.

(i) Let χ be a character of HS(M) which occurs nontrivally in Hk
! (SKM ,Hj(n, L)) for some integers

j, k ≥ 0. Putting i = j + k, the character of HS(G) defined by χ′ = χ ◦ (λ ◦ ρ) occurs nontrivially in
either Hi(SK ,L) or Hi+1

c (SK ,L).

(ii) If χ occurs in the cuspidal cohomology Hk
cusp(SKM ,Hj(n, L)) = Hk(m,KM ,Acusp(GM )⊗Hj(n, L)),

then the character χ′ = χ ◦ (λ ◦ ρ) of HS(G) occurs in either Hi(SK ,L) or Hi+1
c (SK ,L).

(iii) If χ again is a character of HS(M) with corresponding character χ′ = χ ◦ (λ ◦ ρ) of HS(G), then we
have the following dimension bound for isotypic components (for any degree i ≥ 0):

dimHi(SK ,L)χ′ + dimHi+1
c (SK ,L)χ′ ≥

∑
i=j+k

dimHk
! (SKM ,Hj(n, L))χ.

2.2.5. Langlands parameters and weights. Let us now consider the corresponding automorphic character
χ of Theorems 2.4 and 2.5 for the setup we consider. The definition here carries some subtlety in that
these constructions are given in terms of unnormalized7 induction. Let Lk denote the complex algebraic
representation of GL3(Q) determined by the archimedean component Π(fk)′∞ of the cohomological twist
Π(fk)′. Note that this is determined by the weight of the underlying eigenform fk ∈ Sk(Γ0(N)). We write
Lk to denote the corresponding coefficient sheaf. Let us consider the map

j∗ : Hi
c(SKP ,Lk) −→ H(∂SBS

K ,Lk),

as well as the surjection

Im(j∗) −→ Hi
! (SKP ,Lk).

Note that we have the decomposition

Hi
! (SKP ,Lk) =

⊕
i=j1+j2

Hj1
! (SKM ,Hj2(n, Lk)).

We write α ∈ Hi(SKP ,Lk) to denote the generalized eigenclass associated to the character χ = λ ◦ ρ, as in
[16, Theorem 3.7]. We decompose the symmetric space SKM for the Levi subgroup M = M2,1 ⊂ GL3 into
the corresponding product

SKM = SM,1 × SM,2; SM,j := R×>0\GLj(A)/Kj,αK for each of j = 1, 2.

Since the first factor SM,1 is finite, we consider the cohomology in degree zero, using the Künneth formula for
the product. Let us now consider the GL2(A)-automorphic representation π(fk) determined by the cuspidal

eigenform fk ∈ Sk(Γ0(N)), with π(fk)× | · | 12 the representation of GL3(A) defined by unitary induction on
the second factor SM,2, which we deduce constrains us to looking at j1 = 1 and Hj2(n, Lk) as a representation
of M . That is, we consider the corresponding decomposition

H1
! (SKP ,Lk) = H0(SM,1,Lk)⊕H1

! (SM,2,Lk).

We shall see later that the cohomological twist Π(fk)′ contributes nontrivially to H1
! (SKP ,Lk), and hence to

Im(j∗). The associated character of the Hecke algebra HGL3
is obtained from that of HM via the composition

χGL3
= χM ◦ λ ◦ ρ. Note that the constant term map λ : HP → HM is unnormalized, and hence that the

character of HGL3
occurring in Im(j∗) will be given correspondingly by unnormalized induction, in that it

7I am grateful to Laurent Clozel for pointing this out to me.
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will give a representation of GL3(A) of the form IndGL3

P (π(f2)⊗ 1). Now, writing δP to denote the module
of P , we know that the unitary induction ind(∗) is related to this unnormalized induction by the relation

ind(∗) = IndGL3

P (∗ ⊗ δ
1
2

P ).(27)

To work out the relation (27) to this unnormalized induction out explicitly, we first recall that δP is given
locally for any m ∈M by the rule δP (m) := |det(Adm|n)|. Here, we write

M =

{(
g

z

)
: g ∈ GL2, z ∈ GL1

}
and n =

{
Y :=

(
0 X

0

)
, X ∈ F 2

}
,

so that via the relation

mYm−1 =

(
0 gXz−1

0

)
we have

δP (m) = |det(g)| · |z|−2 =⇒ δP (m)
1
2 = |det(g)| 12 · |z|−1.

In this way, we deduce that

IndGL3

P (Π(fk)⊗ 1) = ind
(

Π(fk)⊗ 1⊗ | det(∗)|− 1
2 ⊗ | · |

)
.

Hence, the Langlands parameter of the character χ
π(fk)×|·|

1
2

associated to the (normalized) unitary induction

π(fk)× | · | 12 is in fact given by the character

z ∈WC
∼= C× 7−→

((z
z

) k−1
2 · (zz)− 1

2 ,

(
z

z

) k−1
2

· (zz)− 1
2 , (zz)

)
with weights (in z and z respectively) given by

p(χ
π(fk)×|·|

1
2

) =

(
k − 2

2
,−k

2
, 1

)
and q(χ

π(fk)×|·|
1
2

) =

(
−k

2
,
k − 2

2
, 1

)
.

Hence, this character χ
π(fk)×|·|

1
2

of the Hecke algebra HGL3
arising in the constructions of Theorems 2.4 and

2.5 determines a cohomological automorphic representation σ(fk) of GL3(A), with corresponding L-function

Λ(s, σ(fk)) = Λ(s− 1/2, π(fk)) · Λ(s+ 1).

This is not the L-function Λ(s,Π(f2)) = Λ(s, π(fk))Λ(s+1/2) we want to consider for arithmetic applications.
On the other hand, we can consider the character χΠ′′0 (fk) of HGL3

associated with the non-algebraic

representation Π′′0(fk) := | · | · (π(fk)× | · |−1). This representation Π′′0(fk) has Hodge-Tate weights

p(Π′′0(fk)) =

(
k + 1

2
,

3− k
2

, 0

)
and q(Π′′0(fk)) =

(
3− k

2
,
k + 1

2
, 0

)
.

Its unnormalized induction gives this cohomological representation Π?(fk) = σ′′0 (fk) = χΠ′′0 (fk) of M(2,1)(A)
in GL3(A), with Langlands parameter

z ∈WC
∼= C× 7−→

((z
z

) k−1
2 · (zz) 1

2 ,

(
z

z

) k−1
2

· (zz) 1
2 , (zz)

)
,

and hence with Hodge-Tate weights (in z and z respectively) given by the desired vectors

p(Π?(fk)) =

(
k

2
,

2− k
2

, 1

)
and q(Π?(fk)) =

(
2− k

2
,
k

2
, 1

)
Observe that while Π?(fk) = σ′′0 (fk) is not regular for k = 2, i.e. as the Hodge-Tate weights p′′0 = (1, 0, 1)
and q′′0 = (0, 1, 1) when k = 2, it determines a cohomological representation for all even weights k ≥ 2
which is regular for k ≥ 4. Moreover, for any even weight k ≥ 2, the corresponding standard L-function
Λ(s,Π?(fk), s) is given by a shift by 1/2 of the one we wish to consider. That is, we have that

Λ(s,Π?(fk)) = Λ(s+ 1/2, π(fk)) · Λ(s+ 1).

Let us summarize this discussion as follows.
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Proposition 2.6. Let fk ∈ S2(Γ0(N)) be any cuspidal eigenform of even weight k ≥ 2, with corresponding
GL2(A)-automorphic representation π(fk). The unnormalized induction Π?(fk) of the non-algebraic auto-
morphic representation Π′′0(fk) := | · | ·Π0(fk) of the Levi subgroup M(2,1)(A) ∼= GL2(A)×GL1(A) ⊂ GL3(A)

defined via unitary induction Π0(fk) := π(fk) × | · |−1 is a cohomological automorphic representation with
corresponding standard L-function Λ(s,Π?(fk), s) = Λ(s+ 1/2, π(fk)) · Λ(s+ 1). It has Hodge-Tate weights
p? = p′′0 = (k2 ,

2−k
2 , 1) in z and q? = q′′0 = ( 2−k

2 , k2 , 1) in z. Moreover, for even weights k ≥ 4, this represen-
tation Π?(fk) = Π′′0(fk) is regular.

2.3. Relations to Shimura varieties. We now explain the following novel variations of the long exact
sequence (23) which appear in the arguments of [1], [13], and [14] (see also [40, §5]). For the special case of
G = GLn we consider, the locally symmetric spaces XK and SK are not generally hermitian. However, they
can be realized as components in the Borel-Serre compactifications of certain ambient hermitian symmetric
spaces XK and corresponding Shimura varieties SK , from which we can extract a variation of the exact
sequence (23). Essentially, this allows us to use Poincaré duality ([1, Proposition 2.1.12 and Corollary 2.1.13])
and vanishing theorems in the style of Caraiani-Scholze [13] and [14] (cf. [1, Theorem 1.1.1]) and Lan-Suh
[34, Theorem 10.1] to deduce the vanishing the higher degree cohomology group Hi+1

c (SK) in the setting we
consider above, at least in the case of rank n = 2 + r = 3 corresponding to Mordell-Weil rank r = 1.

2.3.1. Poincaré duality for cohomology of locally symmetric spaces. Let us first state the following relevant
version of Poincaré duality satisfied for the cohomology groups we consider. Here, we can suppose more
generally that G is any connected linear reductive group defined over any number field F , and consider the
corresponding symmetric space

XG = G(F∞)/K∞R×

for G, where K∞ ⊂ G(F∞) denotes the maximal compact subgroup. Let us write d = d(F ) = dimRX
G

to denote the dimension. Given a compact open subgroup K ⊂ G(AF ), we then write XG
K to denote the

corresponding symmetric space defined by

XG
K = G(F )\

(
XG ×G(AF,f )/K

)
.

Fixing a finite set of prime S of F as above, we shall also writeHS(G) to denote the corresponding unramified
algebra of Hecke operators. We shall also assume that K decomposes as product K =

∏
v<∞Kv with each

Kv ⊂ G(Fv), and use the standard upstairs/downstairs notations KS =
∏
v/∈S Kv and KS =

∏
v∈S Kv. Fix

a prime l, and let E be a finite extension of Ql contained in Ql, taken to be large enough to contain the
image of each embedding F ↪→ Ql. We then take O = OE to be the ring of integers of E, with $ = $E ∈ O
a fixed uniformizer.

Proposition 2.7. Let κ denote either κ = O or κ = O/$m for some integer m ≥ 1. Let K ⊂ G(AF,f )
be a neat (in the strict sense8) compact open subgroup which decomposes as K =

∏
v<∞Kv, with each

Kv ⊂ G(Fv). Let V be any κ[KS ]-module which is finite and free as a κ-module, with V∨ = Hom(V, κ) its
Pontrjagin dual. Then, the duality involution

ι : HS(G) −→ HS(G),
[
KSgKS

]
7−→

[
KSg−1KS

]
(28)

descends to an isomorphism of κ-algebras

HS(G)
(
Hj
c (XG

K ,V)
) ∼= HS(G)

(
Hd−j(XG

K ,V∨)
)

for any integer j ≥ 0. In particular, if m ⊂ HS(G) is any maximal ideal in the support of H∗(XG
K ,V∨), then

the corresponding dual m∨ is in the support of H∗c (XG
K ,V).

Proof. See [37, Proposition 3.7], as well as [1, Proposition 2.2.12 and Corollary 2.2.13]. �

Let us now return to the setup described above, leading up to the statements of Theorems 2.4 and 2.5.
We can now deduce the following result.

8Defined in the same way as above, after extending scalars to AF,f
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Corollary 2.8. We have for each integer j ≥ 0 an identification of HS(G)-modules Hj
c (SK ,V) ∼= Hd−j(SK ,V∨),

as well as Hj
c (SK , κ) ∼= Hd−j(SK , κ), via the duality involution (28). In particular, we obtain from (23) the

respective induced long exact sequences

· · · −−−−→ Hj
c (SK ,V) −−−−→ Hj(SBS

K ,V) −−−−→ Hj(∂SBS
K ,V) −−−−→ Hd−(j+1)(SK ,V∨) −−−−→ · · ·

(29)

and

· · · −−−−→ Hj
c (SK , κ) −−−−→ Hj(SBS

K , κ) −−−−→ Hj(∂SBS
K , κ) −−−−→ Hd−(j+1)(SK , κ) −−−−→ · · · .

(30)

2.3.2. Ambient Shimura varieties. We now explain how the cohomology groups of the GLn-symmetric spaces
H∗(XG, κ) and H∗(SK , κ) we consider above above (particularly in the induced exact sequence (30)) can be
realized in the cohomology of Borel-Serre compactifications of certain ambient auxiliary Shimura varieties.
Here, we follow the general setup described in [39, § V], as well as [40, § 5], [37, §5], [1, § 2], [13], and [14].

Let F be either a totally real or CM number field, writing F+ to denote the maximal totally real subfield.
Hence, in the event that F is totally real, we have F = F+. In the event that F is CM, by which we mean
F is a totally imaginary quadratic extension of its maximal totally real subfield F+, we have [F : F+] = 2.
Let us then take G to be the reductive algebraic group over Q defined by

G =

{
ResF/Q Sp2n if F = F+ is totally real

ResF/Q U(n, n)/F+ if F 6= F+ is CM.

In either case, the linear algebraic group

M = ResF/Q GLn/F

appears as a maximal Levi subgroup of G. Let us in each case take D to be the standard conjugacy class of
u : U(1) −→ Gad

R , so that (G,D) determines a Shimura datum, and hence a corresponding Shimura variety
Sh(G,D) = {SK}K , with K ⊂ G(Af ) ranging over all compact open subgroups. In particular, we can use this
setup to view the cohomology of the GLn-locally symmetric spaces SK = SKM

we consider above in terms
of the cohomology of the boundary components of the Borel-Serre compactifications of the corresponding
Shimura variety SK . To describe this in more detail, let us fix a parabolic subgroup P ⊂ G, with Levi
decomposition P = MN . Given KM ⊂ M(Af ) a compact open subgroup, and writing K∞,M ⊂ M(R)
again to denote the maximal compact subgroup, we consider the corresponding locally symmetric space

SKM
= M(Q)\ [M(R)/R>0KM,∞]×M(Af )/KM .

Given a compact open subgroup KP ⊂ P (Af ), we consider the corresponding locally symmetric space

SKP
= P (Q)\ [P (R)/R>0KM,∞]× P (Af )/KP .

As explained in [39, Lemma V.2.2], given KP ⊂ P (Af ) a compact open subgroup with image KM ⊂M(Af ),
we have a natural projection SKP

−→ SKM
, which can be viewed as a bundle with fibres (S1)m, where m

denotes the dimension of the unipotent radical N of P = MN . Here again, given K ⊂ G(Af ) a compact open
subgroup, we write SBS

K to denote the Borel-Serre compactification of the corresponding Shimura variety SK .

Hence, SBS
K is a compactifaction of the manifold with corners SK , and the inclusion SK ↪→ SBS

K a homotopy

equivalence. Writing ∂SBS
K = SBS

K \SK again to denote the Borel-Serre boundary, we have the exact sequences

· · · −−−−→ Hi
c(SK , κ) −−−−→ Hi(SK , κ) −−−−→ Hi(∂SBS

K , κ) −−−−→ · · · .

Writing KP = K ∩ P (Af ) to denote the image of K in P (Af ), we also have an open embedding

SKP
−→ ∂SBS

K ,

and this gives rise to natural maps

Hi
c(SKP

, κ) −−−−→ Hi(∂SBS
K , κ) −−−−→ Hi(SKP

, κ).
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Here again, we consider the actions of Hecke algebras in the same way as described above for the more
general case, and note that we have a commutative diagram of k-modules

Hi(∂SBS
K , κ)

Hi
c(SKP

, κ) Hi(SKP
, κ)

Hi
c(SKM

, κ) Hi(SKM
, κ)

This key property underlies the constructions of Galois representations given in [39], [37], and [1]; cf. [40, §
5]. Here, in either case described above, we can realize the GLn-symmetric spacesXGLn

and SK as components
of ∂SBS

K of SK in the corresponding long exact sequence

· · · −−−−→ Hi
c(SK , κ) −−−−→ Hi(SBS

K , κ) −−−−→ Hi(∂SBS
K , κ) −−−−→ Hi+1

c (SK , κ) −−−−→ · · · .

To be more precise, we have the following analogues of the long exact sequences appearing in Theorem 2.4 and
2.5. We refer to [37, §5.1] (cf. [1, Proposition 2.2.8]) and [1, §2.2] for more explicit descriptions of rational and
integral coefficient systems that can be specified for related constructions of Galois representations. These
works allow us to deduce that we have long exact sequences of HS(G)-modules

· · · −−−−→ Hi
c(SK , κ) −−−−→ Hi(SBS

K , κ) −−−−→ Hi(∂SBS
K , κ) −−−−→ Hi+1

c (SK , κ) −−−−→ · · ·

and

· · · −−−−→ Hi
c(SK ,V) −−−−→ Hi(SBS

K ,V) −−−−→ Hi(∂SBS
K ,V) −−−−→ Hi+1

c (SK ,V) −−−−→ · · · ,

where the boundary ∂SBS
K in each case can be viewed as a torus bundle T (SKM

) = T (SK) of the GLn locally
symmetric space SKM

. Note that this SKM
was denoted in our previous discussion above by SK , so that we

now identify the GLn locally symmetric space as SK = SKM
. We have the following results.

Proposition 2.9. We have a long exact sequences of HS(G)-modules

· · · −−−−→ Hi
c(SK , κ) −−−−→ Hi(SBS

K , κ) −−−−→ Hi(T (SKM
), κ) −−−−→ Hi+1

c (SK , κ) −−−−→ · · ·

and

· · · −−−−→ Hi
c(SK ,V) −−−−→ Hi(SBS

K ,V) −−−−→ Hi(T (SKM
),V) −−−−→ Hi+1

c (SK ,V) −−−−→ · · · .

Applying Poincaré duality (Proposition 2.7), we can then derive the following variation for later use.

Corollary 2.10. Writing d = dimRXG = [F+ : Q] · n2 to denote the dimension of the symmetric space

attached to G, we have induced long exact sequences of HS(G)-modules

· · · −−−−→ Hi
c(SK , κ) −−−−→ Hi(SBS

K , κ) −−−−→ Hi(T (SKM
), κ) −−−−→ Hd−(i+1)(SK , κ) −−−−→ · · ·

and

· · · −−−−→ Hi
c(SK ,V) −−−−→ Hi(SBS

K ,V) −−−−→ Hi(T (SKM
),V) −−−−→ Hd−(i+1)(SK ,V∨) −−−−→ · · · ,

Relations to unitary Shimura varieties We now describe the CM setting with the unitary group U(n, n).
Let us suppose that F is any CM field, so a totally imaginary quadratic extension of its maximal totally real
subfield F+. We write c ∈ Gal(F/F+) to denote the nontrivial automorphism (complex conjugation), with
OF as usual to denote the ring of integers of F , and OF+ that of the maximal totally real subfield F+. Let
us also fix an integer n ≥ 1, and write Ψn denote the n× n matrix with ones along the antidiagonal,

Ψn =

 1
...

1

 .
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We then write Jn to denote the 2n× 2n matrix defined by

Jn =

(
Ψn

−Ψn

)
.

Note that this matrix Jn gives rise to a perfect hermitian pairing,

〈·, ·〉 : O2n
F ×O2n

F −→ OF , (x, y) 7−→ 〈x, y〉 := tx Jn y
c.

Let us now consider the group G defined over OF+ by the following rule: For any OF+ -algebra R,

G(R) =
{
g ∈ GL2n(OF ⊗OF+ R) : tg Jn g

c = Jn
}
.

Let P ⊂ G denote the subgroup which stabilizes the subspace OnF ⊕ 0n ⊂ O2n
F , and M ⊂ P the closed

subgroup which stabilizes the factors OnF ⊕0n and 0n⊕OnF . We then let T ⊂ G denote the standard diagonal
torus, with B ⊂ G the standard Borel subgroup of upper triangular matrices, and S ⊂ T the subtorus
of elements having determinant contained in OF+ . In the style of [1, § 2] and [37], we drop the underline
notations to denote the corresponding basechange to F -fibres, so that

G = G×OF+ F, P = P ×OF+ F, M = M ×OF+ F

and

T = T ×OF+ F, B = B ×OF+ F, S = S ×OF+ F.

Thus, after basechange to the CM field F , we can view P ⊂ G as a parabolic subgroup with M ⊂ P the
unique Levi subgroup containing T , and with S ⊂ T a maximal F+-split torus of G having the property that
T = ZG(S). Moreover, we have the identification G = U(n, n) with the quasi-split unitary group U(n, n)
over F . Note that all of these groups are all reductive. Moreover, we have the following result.

Lemma 2.11. The following assertions are true.

(i) If v is a finite place of F+ which is unramified (split or inert) in F , then GO
F

+
v

is reductive, and

hence GF+
v

is unramified.

(ii) Let N ⊂ P denote the closed subgroup which acts trivially on the subspaces OnF ⊕ 0n and 0n ⊕OnF .
Then, we have the semi-direct product decomposition P ∼= M nN , as well as the identification

M ∼= ResOF /OF+
GLn .

Proof. See [37, Lemma 5.1]. �

2.3.3. Vanishing theorems. Let us also record the following general results about vanishing of cohomology
groups for the setting described above, noting that many (but not all) of the results described in this
paragraph apply to the unitary setting with F a CM field.

We first describe the general theorem of Lan-Suh [34, Theorem 10.1]. Although this applies in general
to both cases we consider, we illustrate the “sufficient regularity” condition in terms of a specific coefficient
system V. Here, we follow [37] (cf. [1, §2.2]) for the setting of unitary Shimura varieties described above, but
note that the analogous theorem holds for any PEL-type Shimura variety. Let us thus fix a prime l, together
with any finite extension E of Ql which contains the image of each embedding τ : F −→ Ql. Write O = OE
to denote its ring of integers. Fix a uniformizer $ ∈ O, and let k = O/$ to denote the residue field. Let us
also introduce the following notations, writing

Zn+ = {(λ1, . . . , λn) ∈ Zn : λ1 ≥ . . . ≥ λn}
to denote the set of dominant weights, and

Zn++ = {(λ1, . . . , λn) ∈ Zn : λ1 > . . . > λn}

the set of strictly dominant weights. To any tuple of dominant weights λ = (λτ ) ∈ (Zn+)Hom(F,E), we can
associate a local system Vλ of finite free O-modules on the GLn-symmetric space SK we consider above
(defined in [37, §2.2] and [1, §2.2]). The corresponding cohomology groups H∗(SK ,Vλ) are finite O-modules,
and we can associate to place v /∈ S a family of local Hecke operators T 1

v , . . . , T
n
v ∈ Hv(GLn) in terms
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of double coset operators9. On the other hand, in the setup linking to the unitary group U(n, n) outlined
above, a similar choice of local system on SK leads to a compatible choice of local system Vλ̃, as defined in
[37, §5.1] and [1, §2.2]. To describe this briefly, let us retain the general setup, with F a CM field having
maximal totally real subfield F+, and c ∈ Gal(F/F+) the nontrivial automorphism corresponding to complex
conjugation. Write Il to denote the set of embeddings τ : F+ → E. Let us for each such embedding τ ∈ Il
fix a lifting of τ̃ : F → E of τ to the totally imaginary quadratic extension F/F+, and write Ĩl = {τ̃ : τ ∈ Il}
to denote the set of these liftings. Let Tn ⊂ M denote the standard diagonal maximal torus, so that our
fixed embedding M → G induces an identification Tn

∼= T . This latter identification can be used to relate
local systems on SK and SK in the setup above as follows. Fix a place v ∈ S above the fixed rational prime
l, and let τ ∈ Il be the embedding inducing v. The choice of lifting τ̃ : F → E then determines canonical
identifications M ⊗F+,τ E ∼= GLn×GLn, Tn ⊗F+,τ E ∼= GLn1 ×GLn1 , and hence X∗(Tn,E,τ ) ∼= Zn × Zn.
An element (λτ̃ , λτ̃c) ∈ X∗(Tn,E,τ ) ∼= Zn × Zn lies in the dominant subset of X∗(Tn,E,τ )+ ⊂ X∗(Tn,E,τ )
if any only if it factors through Zn+ × Zn+. Given a dominant weight (λτ̃ , λτ̃c) ∈ Zn+ × Zn+, we consider the
O[M(OF+

v
)]-module Vλτ̃ ,λcτ̃ as defined in [37, §2.2], which determines a finite O-module. Given a tuple of

dominant weights λ = (λτ̃ ) ∈ (Zn+)Hom(F,E) = (Zn+,Z
n
+)Hom(F+,E), we consider the tensor product over O,

Vλ :=
⊗
τ∈Il

Vλτ̃ ,λτ̃c .

This tensor product Vλ determines an O[M(OF+ ⊗Z Zl)]-module which is finite and free as an O-module.
It is also to be viewed as the local system corresponding to our symmetric space SM = SK . To describe the
local system associated to the unitary Shimura variety SK , as well as its relation to this Vλ, we consider the
following setup. Let us again choose a place v ∈ S above l, with τ ∈ Il the embedding τ : F+ → E inducing v.

The choice of lifting τ̃ ∈ Ĩl then determines canonical isomorphisms G⊗F+,τ E ∼= GL2n, T ⊗F+,τ E ∼= GL2n
1 ,

and hence X∗(TE,τ ) ∼= Z2n. An element µτ ∈ X∗(TE,τ ) ∼= Z2n lies in the dominant subspace X∗(TE,τ )+ ⊂
X∗(TE,τ ) is and only if it factors through Z2n

+ . Now, note that under the induced isomorphism of character
groups X∗(Tn,E,τ ) ∼= X∗(TE,τ ), we have the following correspondence of weights:

(31)
X∗(Tn,E,τ ) ∼= X∗(TE,τ ),

λτ := (λτ̃ ,1, . . . , λτ̃ ,n, λτ̃c,1, . . . , λτ̃c,n)↔ λ̃τ := (−λτ̃c,n, . . . ,−λτ̃c,1, λτ̃ ,1, . . . , λτ̃ ,n).

In this way, the subset of dominant weights X∗(TE,τ )+ ⊂ X∗(Tn,E,τ )+ can also be described by the simpler

condition −λτ̃c,1 ≥ λτ̃ ,1. Given a dominant weight λ̃τ ∈ X∗(TE,τ )+, we consider the the O[G(OF+
v

)]-module

Vλ̃τ defined in [37, §2.2], which again determines a finite O-module. Given a tuple of dominant weights

λ̃ = (λ̃τ ) ∈ (Z2n
+ )Hom(F+,E), we can again consider the tensor product over O,

Vλ̃ :=
⊗
τ∈Il

Vλ̃τ .

This tensor product Vλ̃ determines an O[G(OF+⊗ZZl)]-module which is finite and free as an O-module. The
modules Vλ and Vλ̃ can be related more explicitly according to [37, Lemma 5.4], which states roughly that

for matching dominant weights λ↔ λ̃ as in (31), there is a direct sum decomposition of O[KM,l]-modules

ResKlKM,l Vλ̃ = Vλ ⊕ κ,

with Vλ ⊂ V
KN,l

λ̃
. These modules also satisfy convenient properties after twisting; see [37, Lemma 5.5] and

[1, Proposition 2.2.14]. Now, we have general vanishing theorem for the cohomology groups H∗(SK ,Vλ̃),

provided at the dominant weight λ↔ λ̃ as described in (31) is “sufficiently regular” in the sense of [34].

Theorem 2.12 (Lan-Suh). Let us suppose first that we are in the setting with F 6= F+ a CM field, with
G = G as described above. Suppose the chosen prime l is unramified in F . Fix K ⊂ G(AF,f ) a decomposable

9Note that [37] write TS(H∗(SK ,Vλ)) (in our notations) to denote the commutative O-subalgebra of EndO(H∗(SK ,Vλ))
generated by these operators.
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compact open subgroup which is neat in the strict sense, and whose component at l is maximal. Let us choose

a strictly dominant weight λ̃ = (λ̃τ )τ = ((λ̃τ,j)j)τ ∈ (Z2n
++)Hom(F+,E) subject to the constraint

[F : Q] · n(n+ 1) +
∑
τ∈Ip

2n∑
j=1

(
λ̃τ,j − 2

⌊
λ̃τ,2n

2

⌋)
< l.

let d := [F+ : Q] ·n2 denote the dimension of the symmetric space attached to G, and let us take for granted

the correspondence of strictly dominant weights λ↔ λ̃ described in (31) above. Then for each 0 ≤ i < d, we
have the vanishing of the corresponding cohomology

Hi(SK ,Vλ̃) = Hi(SK ,Vλ ⊗O κ) = 0.(32)

Similarly, for each i > d, we have the vanishing of the compactly supported cohomology with dual coefficients:

Hi
c(SK ,V∨λ̃ ) = Hi

c(SK ,V∨λ ⊗O κ) = 0.(33)

In the setting where F = F+ is totally real and SK is a symplectic Shimura variety according to our
discussion above, the same vanishing identifications (32) and (33) hold for V a local system of “sufficiently
regular” weight, with d = 1

2 · n · (n+ 1) the dimension of the corresponding locally symmetric space SK .

Proof. See [34, Theorem 10.1], as well as the relevant summary for this case given in [37, Theorem 5.10]. �

Observe that via Proposition 2.9, we then derive the long exact sequence

0 −−−−→ H
d
c (SK ,Vλ̃) −−−−→ Hd(SK ,Vλ̃) −−−−→ Hd(T (SKM ),Vλ̃) −−−−→ H

d+1
c (SK ,Vλ̃) −−−−→ 0,

(34)

or equivalently

0 −−−−→ H
d
c (SK ,Vλ̃) −−−−→ Hd(SK ,Vλ̃) −−−−→ Hd(∂SBS

K ,Vλ̃) −−−−→ H
d+1
c (SK ,Vλ̃) −−−−→ 0.

Corollary 2.13. We have the short exact sequence of cohomology groups

0 −−−−→ H
d
c (SK ,Vλ̃) −−−−→ Hd(SK ,Vλ̃) −−−−→ Hd(T (SKM ),Vλ̃) −−−−→ 0

Equivalently,

0 −−−−→ H
d
c (SK ,Vλ̃) −−−−→ Hd(SK ,Vλ̃) −−−−→ Hd(∂SBS

K ,Vλ̃) −−−−→ 0.

Proof. Consider the last term H
d+1
c (SK ,Vλ̃) in the exact sequence (34). We argue we can assume without

loss of generality that Vλ̃ is also sufficiently regular in the sense of [34, Theorem 10.1] (Theorem 2.12),
twisting by a character according to the description given in [37, Lemma 5.5] if necessary. We can then

invoke Theorem 2.12 again to deduce that H
d+1
c (SK ,Vλ̃) = 0, from which the claimed short exact sequence

follows immediately via (34). �

We also have the following related vanishing theorems, which we state to give additional context. Let us
start by recounting the general expectation for the cohomology of GLn locally symmetric spaces.

Conjecture 2.14 (Folklore). Let G = ResF/Q GLn(F ) for any integer n ≥ 1 and any number field F . Fix
K ⊂ G(Af ) any compact open subgroup, and let XG and SK denote the corresponding symmetric spaces,
as introduced above. Writing K∞ ⊂ G(R) again to denote the maximal compact subgroup, with A∞ = AG
the identity component of R-points of the maximal Q-split torus of the centre ZG, and d = dimRX

G the
dimension of the symmetric space for G, let l0 = rkG(R)− rk(K∞)− rk(A∞) and q0 = 1

2 (d− l0). Then, for

any rational prime l, we have that Hj(SK ,Zl) = 0 unless j ∈ [q0, q0 + l0]. That is, the cohomology of the
locally symmetric space SK with coefficients in Zl is supported only in degrees j ∈ [q0, q0 + l0].

Although this conjecture remains largely open (see e.g. [14]), we have the following results. First, we have
the following theorem due to Li and Schwermer [36].
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Theorem 2.15 (Li-Schwermer). Let G be a connected, semisimple algebraic group defined over Q, and
Γ ⊂ G(Q) a torsionfree congruence subgroup. Let (ν,E) be any finite-dimensional representation of G(R) on
a complex vector space E for which the highest weight is regular. Writing K∞ ⊂ G(R) again to denote the
maximal compact subgroup, with XG = G(R)/K∞ the symmetric space, we consider the cohomology groups
H∗(Γ\XG, E). In particular, for all j < 1

2 · [dimXG − (rk(G(R)− rk(K∞)))] = 1
2 · (2q0 + l0 − l0) = q0,

Hj(Γ\XG, E) = 0.

We also have the following results for the CM setup described above, with the split unitary group U(n, n).
To describe these, let us again take F to be a CM field with maximal totally real subfield F+. Fix K ⊂
G(AF+,f ) a decomposable compact open subgroup, which is neat in the strict sense. Fix a finite set of places
S of F+ including all places v for which Kv 6= G(F+

v ). Fix a rational prime l, together with a maximal
ideal m ⊂ HS(G) appearing in the support of the cohomology H∗(SK ,Fl). Let us enlarge the set S to

include l, and fix an embedding HS(G) −→ Fl. The constructions of [39] and [1] then show the existence of
a 2n-dimensional Galois representation

ρm : Gal(F/F ) −→ GL2n(Fl)

whose characteristic polynomials of Frobenius ρm(Frobv) for all v /∈ S are given by the usual Hecke polynomial

(described in terms of local Hecke operators at v) modulo m.

Theorem 2.16 (Caraiani-Scholze). Let us assume, in the setup described above, that:

(i) The maximal totally real subfield F+ is nontrivial, [F+ : Q] > 1.

(ii) The residual Galois representation ρm has length at most 2.

(iii) There exists a rational prime p 6= l which splits completely in the CM field F , and such that for
each v | p in F , the residual Galois representation ρm is unramified at v, and the set of eigenvalues

{α1,v, . . . , α2n,v} of ρm(Frobv) satisfies the condition that αi,v 6= p · αj,v for all i 6= j.

Then, writing d = [F+ : Q] · n2 again to denote the dimension of the symmetric space attached to G,{
Hi(SK ,Fl)m = 0 if i < d

Hi
c(SK ,Fl)m = 0 if i > d.

Proof. See [14, Theorem 1.1], and also the descriptions given in [1, Theorem 1.1.1] and [40, Theorem 5.2]. �

Corollary 2.17. We have the short exact sequence of cohomology groups

0 −−−−→ H
d
c (SK ,Fl)m −−−−→ Hd(SK ,Fl)m −−−−→ Hd(T (SKM ),Fl)m −−−−→ 0.

Equivalently, we have

0 −−−−→ H
d
c (SK ,Fl)m −−−−→ Hd(SK ,Fl)m −−−−→ Hd(∂SBS

K ,Fl)m −−−−→ 0.

Proof. The claim follows from the long exact sequence appearing in Proposition 2.9; cf. also [40, §5]. �

We also have the following result for rational coefficients in the setup outlined above.

Theorem 2.18 (Allen-Calegari-Caraiani-Gee-Helm-Le Hung-Newton-Scholze-Taylor-Thorne). Let F/F+ be
a CM field, and K ⊂ GLn(AF,f ) a decomposable and neat (in the strict sense) compact open subgroup. Put
q0 = [F+ : Q]n(n − 1)/2 and l0 = [F+ : Q]n − 1. Let m ⊂ HS(G) be a maximal ideal whose corresponding
residual Galois representation ρm is absolutely irreducible, equivalently “non-Eisenstein”. Then,

Hj(SK ,Vλ)m

[
1

l

]
= 0 if j /∈ [q0, l0 + q0].

Moreover, if Hj(SK ,Vλ)m
[

1
l

]
6= 0 for some j ∈ [q0, l0 +q0], then Hj(SK ,Vλ)m

[
1
l

]
6= 0 for all j ∈ [q0, l0 +q0].

Proof. See [1, Theorem 2.4.9 (2)]. �
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2.4. Return to the motivating question for Mordell-Weil rank r = 1. Let us now return to our
motivating Question 1.1 with f = f2 ∈ Snew

2 (Γ0(N)) an eigenform parametrizing an elliptic curve E of
conductor N over Q whose corresponding standard L-function Λ(E, s) = Λ(s − 1/2, π(f)) has analytic
rank r = r(f) = 1. We first pass to higher-weight forms, taking k ≥ 4 to be any even integer, taking
fk ∈ Sk(Γ0(N)) any cuspidal eigenform of even weight k ≥ 4. We shall later consider a Hida family {fk}k of
such forms with weight-two specialization f2 = f ∈ Snew

2 (Γ0(N)).

Theorem 2.19. Let fk ∈ Sk(Γ0(N)) be any cuspidal eigenform of even weight k ≥ 4 and corresponding
cuspidal automorphic representation π(fk) of GL2(A). The cohomological representation Π?(fk) = Π′(fk)
as described in Proposition 2.6 contributes to the cohomology in the first degree H1(SK ,Lk), as opposed to
H2
c (SK ,Lk). Here, SK denotes the symmetric space defined from the corresponding compact open subgroup

K ⊂ G(Af ) = GL3(Af ) determined by Π?(fk) = Π′(fk) ∈ Coh(3), and Lk the coefficient system determined
uniquely by the eigenform fk ∈ Sk(Γ0(N)).

Proof. Again, we view Π?(fk) as a representation of the Levi subgroup M = M2,1
∼= GL2×GL1 ⊂ G = GL3,

and use the constructions of Theorem 2.4 and 2.5 to realize this unnormalized parabolic induction explicitly
through the cohomology of the Borel-Serre compactification of a Shimura variety for Sp6. Writing P = MN
again to denote the corresponding Levi decomposition P(2,1) = M(2,1)N(2,1), and using the Harder-Schwermer
decomposition (25), we see that the cohomological representation Π?(fk) = Π′(fk) ∈ Coh(3) is realized
through the image Im(j∗) with its induced decomposition (26),

Im(j∗) −→ Hi
! (SKP ,Lk) ∼=

⊕
i=j1+j2

Hj2(SKM ,Hj1(n, Lk)).

In this way, we deduce that Π?(fk) factors through one of the summandsH∗(SKM ,Lk) ⊂ H∗(SKM ,H∗(n, Lk)).
We then deduce by Theorem 2.5 or Theorem 2.4 that Π?(fk) contributes to either H1(SK ,Lk) or H2

c (SK ,Lk).
To be clear, we know that the symmetric space XG corresponding to G = GL3 has dimension 5. We de-
duce from this that the cohomology Hi(SK ,Lk) of corresponding quotient SK of the symmetric space XG

should sit in degrees i ∈ [0,dimXG − rkG] = [0, 5− 3] = [0, 2], and by Poincaré duality that the compactly
supported cohomology Hi

c(SK ,L∨k ) should sit in degrees i ∈ [3, 5]. On the other hand10, we argue that the
cohomological dimension of the symmetric space SKM corresponding to M = M2,1 is 1 as opposed to 2, as the
corresponding boundary component is essentially an arithmetic quotient of GL2(R)/O2(R) as opposed to
GL2(R)/R×, and so that the class corresponding to Π?(fk) appears in either H1(SKM ,Lk) or H2

c (SKM ,Lk).
Hence, we can restrict our attention to H1(SK ,Lk) and H2

c (SK ,Lk).
Writing L = Lk, we consider the inclusion of each Hi(SK ,L) in the long exact sequence (23),

· · · −−−−→ Hi
c(SK ,L) −−−−→ Hi(SK ,L) −−−−→ Hi(∂SBS

K ,L) −−−−→ Hi+1
c (SK ,L) −−−−→ . . . ,(35)

which after applying Poincaré duality (Proposition 2.7) to the last term gives the induced exact sequence

· · · −−−−→ Hi
c(SK ,L) −−−−→ Hi(SK ,L) −−−−→ Hi(∂SBS

K ,L) −−−−→ Hd−(i+1)(SK ,L∨) −−−−→ . . . .

(36)

Here again, we note that d = 5.
On the other hand, fixing an isomorphism Ql

∼= C, and realizing the GL3 symmetric space SK as the
Levi component SKM

corresponding to the Sp6 Shimura variety SK over the totally real field F+ = Q, we

can also realize each Hi(SK ,L) inside the corresponding exact sequence

· · · −−−−→ Hi
c(SK ,V) −−−−→ Hi(SK ,V) −−−−→ Hi(T (SKM

),V) −−−−→ Hi+1
c (SK ,V) −−−−→ . . . ,

(37)

which after applying Poincaré duality to the last term gives the induced exact sequence

· · · −−−−→ Hi
c(SK ,V) −−−−→ Hi(SK ,V) −−−−→ Hi(T (SKM ),V) −−−−→ Hd−(i+1)(SK ,V∨) −−−−→ . . . .

(38)

Here, letting R denote either O or O/$m for some integer m ≥ 1, we can take V to be any R[KS ]-module
which is finite and flat as an R-module, as in the statement of Proposition 2.7. We also have the corresponding
dimension formula d = 1

2n(n+ 1) = 1
23(4) = 6, and can assume from the discussion above that i = 1.

10I am grateful to Laurent Clozel for pointing this out to me.
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At this point we can argue in several ways. To describe the first, we consider H2
c (SK ,L), which by Poincaré

duality can be identified as H2
c (SK ,L) ∼= Hd−2(SK ,L∨) = H3(SK ,L∨). Via the fixed isomorphism C ∼= Ql,

we can then realize this latter group H3(SK ,L∨) as H3(SKM ,V) for a corresponding Levi component SKM

for the hermitian symmetric space SK attached to the Sp6 Shimura variety, as described above. Here, we

argue that we can take the local system V = Vλ̃ associated to a sufficiently regular weight λ̃ for the vanishing
theorem of Lan-Suh [34, Theorem 10.1] (Theorem 2.12), namely by embedding the cohomology groups we
consider into such ambient cohomology groups. We can then consider the corresponding exact sequence (37),

· · · −−−−→ H3
c (SK ,Vλ̃) −−−−→ H3(SK ,Vλ̃) −−−−→ H3(T (SKM

),Vλ̃) −−−−→ H4
c (SK ,Vλ̃) −−−−→ . . . ,

where the second term H3(SK ,Vλ̃) is seen immediately to vanish by Theorem 2.12. On the other hand, we
argue that we can use Poincaré duality to identify the last term in this sequence as

H4
c (SK ,Vλ̃) ∼= Hd−4(SK ,V∨λ̃ ) = H2(SK ,V∨λ̃ ).

We now argue that we can assume without loss of generality that V∨
λ̃

, is sufficiently regular, twisting by a

character as in [37, Lemma 5.5] if necessary to reduce to this case. We may then apply Theorem 2.12 again
to deduce that H4

c (SK ,Vλ̃) ∼= H2(SK ,V∨λ̃ ) = 0, from which we deduce that H3(SK ,Vλ̃) ∼= H3(T (SKM ),Vλ̃).

Using Theorem 2.12 again, we see that H3(SK ,Vλ̃) ∼= H3(T (SKM ),Vλ̃) = 0. We then deduce via Poincaré

duality that H2
c (SK ,L) = 0, so that that our representation Π?(fk) of M ⊂ G must contribute to H1(SK ,C).

In a similar way, we could also consider the final term Hi+1
c (SK ,Vλ̃) in (37), which by Poincaré duality

(Proposition 2.7) can be identified as Hi+1
c (SK ,Vλ̃) ∼= Hd−(1+i)(SK ,V∨λ̃ ) = H6−(1+i)(SK ,V∨λ̃ ). Taking i = 1

and n = 3 for our example, we are looking at H2
c (SK ,Vλ̃) ∼= H4(SK ,V∨λ̃ ). Taking V∨

λ̃
to be sufficiently regular

in the sense of [34, Theorem 10.1] (Theorem 2.12) then we can deduce that this term must vanish. Thus via
(37), we derive the corresponding exact sequence

. . . −−−−→ H1
c (SK ,C) −−−−→ H1(SK ,C) −−−−→ H1(T (SKM

),C) −−−−→ 0,

and via (35) the exact sequence

· · · −−−−→ H1
c (SK ,C) −−−−→ H1(SK ,C) −−−−→ H1(∂SBS

K ,C) −−−−→ 0.

In particular, this would also prove the claim.
As a variation of the latter argument, we could consider Hd−(i+1)(SK ,C) = Hd−2(SK ,C) = H3(SK ,C)

in the exact sequence (36). That is, we could then consider the exact sequences

· · · −−−−→ H3
c (SK ,Vλ̃) −−−−→ H3(SK ,Vλ̃) −−−−→ H3(T (SKM

),Vλ̃) −−−−→ H4
c (SK ,Vλ̃) −−−−→ . . . ,

and

· · · −−−−→ H3
c (SK ,Vλ̃) −−−−→ H3(SK ,Vλ̃) −−−−→ H3(T (SKM

),Vλ̃) −−−−→ Hd−4(SK ,V∨λ̃ ) −−−−→ . . . .

corresponding respectively to (37) and (38). Let us look at the latter sequence, which after applying Poincaré
duality to the first term can be put into the more convenient form

· · · −−−−→ Hd−3(SK ,V∨λ̃ ) −−−−→ H3(SK ,Vλ̃) −−−−→ H3(T (SKM
),Vλ̃) −−−−→ Hd−4(SK ,V∨λ̃ ) −−−−→ . . . .

Arguing again that we can take V∨
λ̃

to be sufficiently regular in the sense of Theorem 2.12, we then see that

the outer terms vanish, so that we get an induced isomorphism H3(SK ,Vλ̃) ∼= H3(T (SKM
),Vλ̃). On the

other hand, arguing again that we can assume without loss of generality that Vλ̃ is sufficiently regular in the
same sense of Theorem 2.12, possibly after twisting by a character as described in [37, Lemma 5.5], we can
again use Theorem 2.12 to deduce the vanishing of these terms, i.e. as 3 < d = 6. �
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