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Abstract. We derive integral presentations for central derivative values of L-functions of elliptic curves

defined over the rationals, basechanged to a real quadratic field K, and twisted by ring class characters of

K. In particular, we derive an explicit formula for the central derivative value in terms of special values
of automorphic Green’s functions for certain linear combinations of Hirzebruch-Zagier divisors on certain

Hilbert modular surfaces. In special cases, we can also describe these central derivative values as periods via
a reinterpretation of the corresponding Birch-Swinnerton-Dyer constant in terms of special values of these

automorphic Green’s functions.
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1. Introduction

Let E be an elliptic curve of conductor N defined over the rational number field Q, with corresponding
Hasse-Weil L-function denoted by L(E, s). The modularity theorem of Wiles, Taylor-Wiles, and Breuil-
Conrad-Diamond-Taylor implies that L(E, s) has an analytic continuation Λ(E, s) via the Mellin transform

Λ(E, s) = Λ(s, f) :=

∫ ∞
0

f

(
iy√
N

)
ys
dy

y
= N

s
2 (2π)−sΓ(s)L(s, f)(1)

of some weight-two newform

f(τ) = fE(τ) =
∑
n≥1

cf (n)e(nτ) =
∑
n≥1

af (n)n
1
2 e(nτ) ∈ Snew

2 (Γ0(N))
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with L-function corresponding to the Mellin transform (first for <(s) > 1)

L(s, f) :=
∑
n≥1

af (n)n−s =
∑
n≥1

cf (n)n−(s+1/2).

That is, writing π = ⊗vπv to denote the cuspidal automorphic representation of GL2(A) associated to f ,
with Λ(s, π) =

∏
v≤∞ L(s, πv) its standard L-function1 we have equivalences of L-functions

Λ(E, s) = Λ(s− 1/2, f) = Λ(s− 1/2, π).

Let k be any number field. The Mordell-Weil theorem implies that the group of k-rational points E(k)
has the structure of a finitely generated abelian group E(k) ∼= ZrE(k) ⊕ E(k)tors. It is a fundamental open
problem to characterize the rank rE(k) = rkZE(k). Writing L(E/k, s) to denote the Hasse-Weil L-function
of E/k, Birch and Swinnerton-Dyer conjectured that this generating series L(E/k, s), defined a priori only
for <(s) > 3/2, has an analytic continuation Λ(E/k, s) to all s ∈ C, with Λ(E/k, s) satisfying a functional
equation relating values at s to 2− s (so that s = 1 is the central point). Taking for granted this preliminary
hypothesis2, the conjecture of Birch and Swinnerton-Dyer predicts that the rank rE(k) is given by the order
of vanishing ords=1 Λ(E/k, s) at this central point. Although this conjecture has been verified over the past
several decades for rE(k) ≤ 1 with k = Q or k an imaginary quadratic field, it remains open at large, without
a single known example for rE(k) ≥ 2. The most stunning progress to date has come through the Iwasawa
theory of elliptic curves, using as a starting point special value formulae for the values Λ(rE(k))(E/k, 1). In
particular, the celebrated theorem of Gross-Zagier [24] (with generalizations such as [48] and [8]) for the
central derivative value Λ′(E/k, χ, 1), with χ a class group character of an imaginary quadratic field k, has
played a major role underlying most of this progress for rank one. This tour de force makes use of all that
is known about the theory of complex multiplication and explicit class field theory for imaginary quadratic
fields, and especially a construction of points eH ∈ E(k[1]) dating back to Heegner to relate the central
derivative values Λ′(E/k, χ, 1) for χ a character of the class group Pic(Ok) ∼= Gal(k[1]/k) (with k[1]/k the
Hilbert class field) to the regulator term RE(k) = [eH , eH ] (with [·, ·] the Néron-Tate height pairing).

Here, we return to the more mysterious setting of k = K a real quadratic field K = Q(
√
d) of discriminant

dK =

{
d if d ≡ 1 mod 4

4d if d ≡ 2, 3 mod 4

prime to N , and corresponding even Dirichlet character η = ηK/Q. Let χ be any ring class character of K
of conductor c ∈ Z≥1 prime to dKN . Hence, we view χ a character of the corresponding ring class group
Pic(Oc) ∼= Gal(K[c]/K) of the Z-order Oc := Z + cOK of conductor c in K,

χ : Pic(Oc) := A×K/A
×K×∞K

×Ô×c −→ S1, Ô×c :=
∏
v<∞

O×c,v.

Via (1), the theories of Rankin-Selberg convolution and quadratic basechange imply that the Hasse-Weil
L-function L(E/K,χ, s) has an analytic continuation Λ(E/K,χ, s) to all s ∈ C via a functional equation
relating values at s to 2− s. Writing π(χ) to denote the automorphic representation of GL2(A) of level dKc

2

and character η induced from the ring class character χ, this completed L-function Λ(E/K,χ, s) is equivalent
to the corresponding shifted GL2(A) × GL2(A) Rankin-Selberg L-function Λ(s − 1/2, π × π(χ)). Writing
Π = BCK/Q(π) to denote the quadratic basechange lifting of π to a cuspidal automorphic representation of
GL2(AK), the L-function Λ(E/K,χ, s) is also equivalent to the shifted GL2(AK)×GL1(AK) automorphic
L-function Λ(s− 1/2,Π⊗ χ). Hence, we see the analytic continuation through the equivalent presentations

Λ(E/K,χ, s) = Λ(s− 1/2, π × π(χ)) = Λ(s− 1/2,Π⊗ χ).

As explained in (6) below, each Λ(E/K,χ, s) satisfies a symmetric functional equation. This gives the fol-
lowing immediate consequence, whose proof we explain in the discussion leading to Hypothesis 2.1 below:

Lemma 1.1. Let E be an elliptic curve of conductor N defined over Q, and π = π(f) the cuspidal auto-
morphic representation of GL2(A) associated to the eigenform f ∈ Snew

2 (Γ0(N)) parametrizing E. Let K be
a real quadratic field of discriminant dK prime to N , with η(·) = ηK(·) =

(
dK
·
)

the corresponding Dirichlet

1using the unitary normalization so that s = 1/2 is the central value
2which remains open in general
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character. Hence, we can write N = N+N− for N+ the product of prime divisors q | N which split in K,
and N− the product of prime divisors q | N which remain inert in K, and η(−N) = η(N) = η(N−). If N−

is the squarefree product of an odd number of primes, then we have the vanishing of the central value

Λ(E/K,χ, 1) = Λ(1/2, π × π(χ)) = Λ(1/2,Π⊗ χ) = 0

for any ring class character χ of K of conductor c prime to dKN .

In the setup of forced vanishing described for Lemma 1.1, we study the central derivative values

Λ′(E/K,χ, 1) = Λ′(1/2, π × π(χ)) = Λ′(1/2,Π⊗ χ).

We derive integral presentations for these derivative values as twisted linear combinations of special values
of automorphic Green’s functions for certain Hirzebruch-Zagier-like divisors on Hilbert modular surfaces. To
do this, we adapt and develop calculation of Bruinier-Yang [8, Theorem 4.7], related to their distinct proof
of the Gross-Zagier formula [8, §7], cf. [24] and [48]. This allows us to show some preliminary analogue of
the Gross-Zagier formula for the mysterious setting of real quadratic fields. While there is no known global
analogue of the Heegner point construction in this setting, we present some depiction of the provenance of
such points e?? ∈ E(K[c]) in “geodesic” sets Z(VA,2) associated to embeddings of the modular curve Y0(N)
as a Hirzebruch-Zagier divisor into a quaternionic Hilbert modular surface.

Fix a primitive ring class character χ of K of conductor c prime to dKN (which we shall assume exists).
For each class A ∈ Pic(Oc), we fix an integral representative a ⊂ OK so that A = [a] ∈ Pic(Oc), and
write Qa(z) := NK/Q(z)/Na to denote the corresponding norm form of signature (1, 1). Here, we write
NK/Q(z) = zzτ to denote the corresponding norm homomorphism, where τ ∈ Gal(K/Q) denotes the
nontrivial automorpoms. We also fix a Z-basis a = [1, za] and write aQ := a ⊗Z Q = [1, za]Q to denote the
corresponding fractional ideal. We consider the quadratic space (VA, qA) of type (2, 2) defined by

VA = aQ ⊕ aQ, QA(z) = QA((z1, z2)) := Qa(z1)−Qa(z2).

We consider the corresponding spin group GSpin(VA). As we explain in Proposition 3.3 below, we have an
exceptinal isomorphism GSpin(VA) ∼= GL2

2 of algebraic groups over Q. Consider the Grassmannian

D(VA) = {z ⊂ VA(R) : dim(z) = 2, QA|z < 0}

of oriented negative definite3 hyperplanes in VA(R). Note that D(VA) has two connected components D±(VA)
corresponding to the choice of orientation. We shall fix one of these D±(VA) ∼= H2 consistently throughout.
For any compact open subgroup UA ⊂ GSpin(VA)(Af ), we can then consider the corresponding spin Shimura
variety Sh(D(VA),GSpin(VA)) with complex points

ShUA(D(VA)±,GSpin(VA))(C) = GSpin(VA)(Q)\
(
D(VA)± ×GSpin(VA)(Af )/UA

)
.

This gives a quasiprojective surface over Q, which can be identified with a (quaternionic) Hilbert modular
surface. Via the identification GSpin(VA) ∼= GL2

2, we can take UA to be the compact open subgroup of
GSpin(VA)(Af ) corresponding to the two-fold product of congruence subgroup Γ0(N) (see (9)). We then
have the more precise identification

ShUA(D(VA)±,GSpin(VA))(C) ∼= GL2(Q)2\
(
H2 ×GL2(Af )2/UA

) ∼= Y0(N)× Y0(N).

These surfaces come equipped with special Hirzebruch-Zagier divisors. To describe them, define for each
m ∈ Q>0

Ωm,A(Q) = {x ∈ VA : QA(x) = m} .

Consider the natural projection pr : D(VA)± × GSpin(VA)(Af ) −→ ShUA(D±(VA),GSpin(VA)). Given a
vector x ∈ VA(R), consider the orthogonal projection D(VA)±x = {z ∈ D(VA)± : z ⊥ x}. Let ΛA ⊂ VA
denote the maximal lattice associated with the compact open subgroup UA ⊂ GSpin(VA), with Λ#

A its dual

lattice, and Λ#
A/ΛA the corresponding discriminant group. We define for each µ ∈ Λ#

A/ΛA the divisor

ZA(µ,m) =
∑

x∈(GSpin(VA)(Q)∩UA)\ΩA,m(Q)

1µ(x) pr(D(VA)±x ).

3We could just as well consider positive definite hyperplanes, the choice makes no difference.
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Sums over cosets of these special divisors can be related to classical Hirzebruch-Zagier divisors. We consider
these divisors in relation to the anisotropic subspaces VA,2 ⊂ VA of signature (1, 1) cut out by the integer
ideal representatives a:

(VA,2, QA,2), VA,2 := aQ = a⊗Q, QA,2(λ) = Qa(λ) =
N(λ)

Na
=
λλτ

Na
(τ 6= 1 ∈ Gal(K/Q)) .

Each such subspace (VA,2, QA,2) gives rise to a “geodesic” set

zVA,2 ∈ D(VA,2) = {z ∈ VA,2(R) : dim(z) = 1, QA,2|z < 0}

in the corresponding subdomain D(VA,2) for VA,2 ⊂ VA. Again, we have two connected components D±(VA,2)
in D(VA) corresponding to the orientation of a hyperbolic line z in VA,2(R) = aQ ⊗ R = [1, za]R. Each
D±(VA,2) determines an open subset of real projective space of dimension one with a fixed orientation,

D±(VA,2) =
{
z± = [x : y] ∈ P1(R), orientation ± : QA,2(x, y) < 0

}
.

Each oriented hyperbolic line z± ∈ D±(VA,2) determines a real curve of dimension one – equivalent to a real
geodesic in the upper-half plane embedded into the Shimura surface ShUA(D±(VA),GSpin(VA)). Via the iden-
tifications GSpin(VA) ∼= GL2

2 and ShUA(D±(VA),GSpin(VA)) ∼= Y0(N)×Y0(N) described above, each hyper-
bolic line z± ∈ D±(VA,2) determines a real geodesic on Y0(N) embedded into Y0(N)×Y0(N). We consider for
each class A ∈ Pic(Oc) the corresponding “geodesic” set Z(VA,2) associated to ShUA(D±(VA),GSpin(VA)):

Z(VA,2) = GSpin(VA,2)(Q)\
(
D±(VA,2)×GSpin(VA,2)(Af )/ (UA ∩GSpin(VA,2)(Af ))

)
⊂ Y0(N).

To describe what we prove, we again write ΛA ⊂ VA denote the maximal lattice corresponding to the

chosen compact open subgroup UA ⊂ GSpin(VA)(Af ), with Λ#
A its dual lattice, and Λ#

A/ΛA its discriminant
group. Let θΛA(τ, z, hf ) denote the corresponding Siegel theta series defined on τ ∈ H, z ∈ D(VA), and
hf ∈ GSpin(VA)(Af ). Let H0,ΛA denote the space of harmonic weak Maass forms of weight 0 and Weil
representation rψ,ΛA (defined below), with M !

0,ΛA
⊂ H0,ΛA the subspace of weakly holomorphic forms,

M0,ΛA ⊂ M !
0,ΛA

the subspace of holomorphic forms, and S0,ΛA ⊂ Mk,ΛA the subspace of cuspidal forms.

Bruinier-Funke [7] define an antilinear differential operator

ξ0 : H0,ΛA −→ S2,ΛA , ξ0(φ) := 2i

(
∂φ

∂τ

)
.

Note that this is related to the classical weight-lowering operator L0 = −2iv2 ∂
∂τ by ξ0(φ)(τ) = v−2L0φ(τ).

In particular, this operator determines a short exact sequence of spaces of vector-valued modular forms

0 −→M !
0,ΛA −→ H0,ΛA

ξ0−→ S2,−ΛA −→ 0,

where the subspace of weakly holomorphic forms

φ(τ) =
∑

µ∈Λ#
A/ΛA

φµ(τ) =
∑

µ∈Λ#
A/ΛA

∑
m∈Q
m�−∞

cφ(µ,m)e(mτ)1µ ∈M !
0,ΛA ⊂ H0,ΛA

can be identified with ker(ξ0). Writing A0,ΛA for the space of all smooth modular forms of weight 0 and
representation rψ,ΛA , so that M !

0,ΛA
⊂ H0,ΛA ⊂ A0,ΛA , we define a scalar product 〈〈f, g〉〉 on forms

f(τ) =
∑

µ∈Λ#
A/ΛA

fµ(τ)1µ ∈ A0,ΛA and g(τ)
∑

µ∈Λ#
A/ΛA

gµ(τ)1µ ∈ A0,−ΛA

by the rule

〈〈f, g〉〉 =
∑

µ∈Λ#
A/ΛA

fµ(τ)gµ(τ).

Writing F = {τ = u + iv ∈ H : |u| ≤ 1/2, u2 + v2 ≥ 1} to denote the standard fundamental domain for
SL2(Z) acting on H, we define the Petersson inner product (when it converges) by the integral

〈f, g〉 =

∫
F

〈〈f(τ), g(τ)〉〉dudv
v2

.
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Given a harmonic weak harmonic weak Maass form f0 ∈ H0,ΛA , we then consider the regularized theta lift

ϑ?f0
(z, hf ) =

∫ ?

SL2(Z)\H
〈〈f0(τ), θΛA(τ)〉〉dudv

v2
= CTs=0

{
lim
T→∞

∫
FT
〈〈f0(τ), θΛA(τ)〉〉v−s dudv

v2

}
,

given by the constant term in the Laurent series expansion around s = 0 of the function

lim
T→∞

∫
FT
〈〈f0(τ), θΛA(τ)〉〉v−s dudv

v2
,

where the limit is taken truncated fundamental domains FT = {τ = u+ iv ∈ H : |u| ≤ 1/2, ττ ≥ 1, and v ≤ T}
for the action of SL2(Z) on H.

A theorem of Bruinier [5], refining work of Borcherds [4], allows us to view these regularized theta lifts
ϑ?f0

as automorphic Green’s functions in the sense of Arakelov theory. That is, if the Fourier coefficients

c+f0
(µ,m) of the holomorphic part of f0 are integers, then we define the corresponding divisor

ZA(f0) =
∑

µ∈Λ#
A/ΛA

∑
m∈Q
m>0

c+f0
(µ,−m)ZA(µ,m).

This theorem allows us to view the regularized theta lift ϑ?f0
as the automorphic Green’s function GZA(f0) for

this divisor ZA(f0). We refer to Theorem 4.5 below for a more precise description, which gives us an arithmetic

divisor ẐA(f0) = (ZA(f0), GZA(f0)). To be more precise, for each class A ∈ Pic(Oc) we take f0,η,A ∈ H0,−ΛA

to be the harmonic weak Maass form of weight 0 and Weil representation rψ,ΛA = rψ,−ΛA whose image
gη,A = ξ0(f0,η,A) ∈ S2,−ΛA under the differential operator ξ0 : H0,ΛA → S2,−ΛA has a canonical lift as
described in Theorem 4.6 to the twisted scalar-valued eigenform f ⊗ η ∈ Snew

2 (Γ0(d2
KN), η). Here, we write

−ΛA to denote the quadratic space determined by (ΛA,−qA). Each of the vector-valued cusp forms gA,η has
Fourier series expansion given explicitly in terms of the Fourier coefficients of the eigenform f ∈ Snew

2 (Γ0(N))
parametrizing the elliptic curve E. To be more precise, we have for each class A = [a] ∈ Pic(Oc) the relation

gη,A(τ) =
∑

µ∈Λ#
A/ΛA

gη,A,µ(τ)1µ =
∑

µ∈Λ#
A/ΛA

 ∑
m∈Q>0

m≡d2
K
NQA(µ) mod d2

K
N

cf (m)η(m)s(m)e

(
mτ

d2
KN

)1µ.

Here, using the standard notations τ = u + iv ∈ H and e(τ) = exp(2πiτ), we write s to denote the

function defined on classes m mod dKN by s(m) = 2Ω(m,d2
KN), where Ω(m, d2

KN) is the number of divisors
of the greatest common divisor (m, d2

KN) of m and dKN . This Maass form f0,η,A ∈ H0,ΛA determined by
ξ0f0,η,A(τ) = gη,A(τ) has a decomposition f0,η,A(τ) = f+

0,η,A(τ) + f−0,η,A(τ) into a holomorphic part f+
0,η,A(τ)

and an antiholomorphic part f−0,η,A(τ). We write the respective Fourier series expansions as

f+
0,η,A(τ) =

∑
µ∈Λ#

A/ΛA

f+
0,η,A,µ(τ)1µ =

∑
µ∈Λ#

A/ΛA

 ∑
m∈Q
m�−∞

c+f0,η,A
(µ,m)e(mτ)

1µ,

and

f−0,η,A(τ) =
∑

µ∈Λ#
A/ΛA

f−0,η,A,µ(τ)1µ =
∑

µ∈Λ#
A/ΛA

∑
m∈Q
m<0

c−f0,η,A
(µ,m)W0(2πmv)e(mτ)

1µ,

with Whittaker function W0(m) =
∫∞
−2m

e−tdt = Γ(1, 2|m|) defined for m < 0.
Our main results, Theorem 4.19 and Corollary 4.20, allow us to express the central derivative value

Λ′(1/2,Π ⊗ χ) in terms of sums of these Green’s functions GZ(f0,η,A) along the “geodesic” spaces Z(VA,2).
To give the relation more precisely, we first describe how we decompose the theta series θΛA(τ, z, hf ) for our
main calculation. We consider the anisotropic subspaces VA,1 := aQ with QA,1(z) = −Qa(z) and VA,2 = aQ
with QA,2(λ) = Qa(z) of type (1, 1). We consider for each j = 1, 2 the sublattice ΛA,j := ΛA ∩ VA,j , and the
corresponding (nonholomorphic) Siegel theta series θΛA,j (τ, z, hf ) : H×D(VA,j) −→ SΛA,j of weight zero and
representation rψ,ΛA,j , where D(VA,j) denotes the corresponding subdomain of D(VA). As explained below,
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since we evaluate at elements zVA,2 ∈ D(VA,2) and hf ∈ GSpin(VA,2)(Af ), we can replace the Siegel theta
series θΛA(τ, zVA,2 , hf ) with the corresponding product of specializations θΛA,1(τ, 1, 1) ⊗ θΛA,2(τ, zVA,2 , hf ).
We use the Siegel-Weil theorem (Theorem 4.8 and Corollary 4.9) to interpret the sum

2

∫
SO(VA,2)(Q)\ SO(VA,2)(A)

θΛA,2(τ, zVA,2 , h)dh

as the value at s = 0 of an SΛA,2 -valued Eisenstein series EΛA,2(τ, s; 0) of weight 0, which is holomorphic
at s = 0. Following the approach of Kudla [34], we interpret this Eisenstein series as the image under the
antilinear differential weight-lowering operator ξ2 of a derivative Eisenstein series E′ΛA,2(τ, 0; 2) of weight

two. We remark that this is not an “incoherent” Eisenstein series, but rather a classical Siegel Eisenstein
series of weight zero associated to the lattice ΛA,2. We describe it in more detail below, together with the
Langlands functional equation; see Propositions 4.10 and 4.12. Let EΛA,2(τ) denote the holomorphic part of

E′ΛA,2(τ, 0; 2). Writing θ+
ΛA,1

(τ) to denote the holomorphic part of the theta series θΛA,1(τ), we consider the

constant coefficient

(2) CT〈〈f+
0,η,A(τ), θ+

ΛA,1
(τ)⊗ EΛA,2(τ)〉〉

in the Fourier series expansion of 〈〈f+
0,η,A(τ), θ+

ΛA,1
(τ) ⊗ EΛA,2(τ)〉〉. Observe that this constant coefficient

(2) is an algebraic number. Let hK denote the class number of K, and εK the fundamental unit, so that
εK = 1

2 (t+ u
√
dK) is the least integral solution (with u minimal) to Pell’s equation t2 − dKu2 = 4.

Theorem 1.2 (Theorem 4.19, Corollary 4.5). In the setup described above, we have the integral presentation

Λ′(1/2,Π⊗ χ) = Λ′(E/K,χ, 1)

= −
√
dK

log εK · hK
· 1

2

∑
A∈Pic(Oc)
A=[a]

χ(A)

CT〈〈f+
0,η,A(τ), θ+

ΛA,1
⊗ EΛA,2(τ)〉〉+

vol(UA,2)

4

∑
(z±,h)∈Z(VA,2)

ϑ?f0,η,A
(z±, h)

 .

Equivalently, writing GZ(f0,η,A) for each class A to denote the automorphic Green’s function for the divisor

Z(f0,η,A) =
∑

µ∈Λ#
A/ΛA

∑
m∈Q>0

c+f0,η,A
(µ,−m) · ZA(µ,m)

given by linear combination of special (Hirzebruch-Zagier) divisors ZA(µ,m) on ShUA(DVA ,GSpin(VA)), let

GZ(f0,η,A)(VA,2) =
∑

(z±,h)∈Z(VA,2)

ϑ?f0,η,A
(z±, h)

denote the sum along the geodesic Z(VA,2) in ShUA(D(VA),GSpin(VA)). We obtain the integral presentation

Λ′(1/2,Π⊗ χ) = Λ′(E/K,χ, 1)

= −
√
dK

log εK · hK
· 1

2

∑
A∈Pic(Oc)
A=[a]

χ(A)

(
CT〈〈f+

0,η,A(τ), θ+
ΛA,1
⊗ EΛA,2(τ)〉〉+

vol(UA,2)

4
GZ(f0,η,A)(VA,2)

)
.

If we assume the ersatz Heegner hypothesis (Lemma 1.1, Hypothesis 2.1) that the inert level N− is given
by the squarefree product of an odd number of primes, then L(1/2,Π ⊗ χ) = 0 by symmetric functional
equation (6), and so the central derivative value Λ′(1/2,Π ⊗ χ) described by our formula is not forced to
vanish. The analogous formula for central values Λ(1/2,Π ⊗ χ) in the setting where η(−N) = η(N) = +1
is given by Popa [39, § 1, Theorem 6.3.1]. This develops Waldspurger’s theorem [45] to give an exact toric
period formula for these central values, and generalizes the formula of Gross [22] for the analogous setup with
K an imaginary quadratic field. Roughly speaking, Waldspurger’s theorem [45] equates the nonvanishing of
the central value Λ(1/2, π × π(χ)) with that of the period integral∫

A×K/K
×
ϕ(t)χ(t)dt,

for ϕ ∈ πJL a vector in the Jacquet-Langlands lift πJL of π to an indefinite quaternion algebra B over Q with
ramification given by the inert level: Ram(B) = {q | N−}. Popa [39] gives an exact and even classical formula
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for L(1/2, π × π(χ)) as such as toric integral, which according to the discussion in [39, § 6] can be viewed
as a twisted sum over geodesic on the modular curve X0(N) parametrizing E. Our Theorem 4.19 can be
viewed as an analogue of Popa’s theorem for the central derivative values Λ′(1/2,Π⊗χ) = Λ′(1/2, π×π(χ))
when the generic root number is η(−N) = η(N) = −1 (i.e. when Hypothesis 2.1 holds).

1.0.1. A geometric interpretation. Let us consider the geodesic sets Z(VA,2) associated to the subspaces
(VA,2, qA,2) of signature (1, 1). We describe these in more detail in §4.3.5 below.

We can identify the Grassmannian D(VA,2) ∼= {z = [x : y] ∈ P1(R) : qA,2(x, y) < 0} of hyperbolic
lines with the symmetric space D(GSpin(1, 1)) of GSpin(1, 1) ∼= Gm × SO(1, 1). On the other hand, we
can consider the symplectic group GSp4(W ) acting on a four-dimensional symplectic space W . The Siegel
parabolic P = {g ∈ GSp4(W ) : gL = L} of GSp4(W ) stabilizing a (maximal isotropic) two-dimensional
Lagrangian subspace L ⊂W has Levi subgroup MP

∼= Gm ×GL2. Viewing GL2 as an extension of SO(1, 1)
via the inclusion

SO(1, 1) ⊂ GSpin(1, 1) ∼= Gm ×Gm −→ GL2, (t1, t2) 7−→
(
t1

t2

)
,

we obtain an embedding of D(VA,2) into the corresponding symmetric space D(MP ) for MP . In this way, we
can realize each geodesic set Z(VA,2) inside a component of the boundary of the Borel-Serre compactification
of a GSp4(W ) Shimura variety.

To state this more formally, let (ṼA,2, q̃A,2) be any rational quadratic space of signature (3, 2) into which

(VA,2, qA,2) embeds. Consider the corresponding spin group GSpin(ṼA,2) and Grassmannian of negative

definite hyperplanes D(ṼA,2). Let Λ̃A,2 ⊂ ṼA,2 be any lattice for which Λ̃A,2 ∩ V2,A = ΛA,2 = a, and

let ŨA,2 denote the corresponding compact open subgroup of GSpin(ṼA,2)(Af ). The spin Shimura variety

ShŨA,2(GSpin(ṼA,2), D(ṼA,2)) with complex points

ShŨA,2(GSpin(ṼA,2), D(ṼA,2))(C) = GSpin(ṼA,2)(Q)\D(ṼA,2)×GSpin(ṼA,2)(Af )/ŨA,2

defines a quasiprojective variety of dimension 3 over Q. Via the accidental isomorphisms

Spin(3, 2) ∼= Sp4(W ), GSpin(3, 2) ∼= GSp4(W )

it can be identified as a Siegel threefold XA,2
∼= ShŨA,2(GSpin(ṼA,2), D(ṼA,2)). Hence, the symmetric space

D(VA,2) can be realized as a component in the boundary ∂XBS
A,2 of the Borel-Serre compactification XBS

A,2 of
XA. Via Theorem 1.2, this suggests that the study of the boundaries of Borel-Serre compactifications of Siegel
threefolds XA,2 of this type – realized as spin Shimura varieties associated to rational quadratic spaces of
signature (3, 2) – might shed light on the provenance of “Stark-Heegner” points in X0(N)(K[c]) −→ E(K[c]).
This observation also allows us to interpret our main formula in terms of ∂XBS

A,2 for any such Siegel threefold
XA,2. We hope to return to this idea in a subsequent work. Let us note that the strategy of realizing
locally symmetric spaces for GLn in the boundaries of Borel-Serre compactifications of ambient symplectic
or unitary Shimura varieties, which seems to go back to Clozel (cf. [13]), is used crucially in the constructions
by Scholze [42], Harris-Lan-Taylor-Thorne [26], and Allen-Calegari-Caraiani-Gee-Helm-Le Hung-Newton-
Scholze-Taylor-Thorne [1] of Galois representations associated to cuspidal GLn-automorphic representations.

1.0.2. Other remarks. (i). The regularized theta lifts ϑ?f0,η,A
= GZ(f0,η,A) can be related to the theta lifts

constructed by Kudla-Millson in [37] by the arguments of Bruinier-Funke [7, Theorems 1.4 and 1.5]. Such
relations, which hold for any signature (p, q), suggest another potential geometric development of this formula.

(ii). The role played by the holomorphic projection in [24] is replaced here by the holomorphic part EΛA,2(s, τ)
of the derivative Eisenstein series E′ΛA,2(s, τ ; 2). More precisely, applying the Siegel-Weil formula to θΛA,2

gives the value at s0 = 0 of a weight zero Eisenstein series ELA,2(s, τ ; 0). We can realize this ELA,2(s, τ ; 0) as
the image under the weight-lowering operator L2 of the derivative at s = 0 of a weight two Eisenstein series
EΛA,2(s, τ ; 2) (see Proposition 4.12). This derivative value E′LA,2(s, τ ; 2)|s=0 appears in the Rankin-Selberg

integral presentation of L′(0, ξ0(f0,η,A)× θΛA,1).
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(iii). Recall that a complex number is a period if its real and imaginary parts can be expressed as integrals
of rational functions with rational coefficients, over domains in Rn given by polynomials inequalities with
rational coefficients. We expect the values Λ′(E/K,χ, 1) are always periods (cf. [32, Question 4]), as this
would be implied refined conjecture of Birch and Swinnerton-Dyer. We note that this can be deduced in the
special cases described in Corollary 5.1 via the argument given in [32, §4] for the Birch-Swinnerton-Dyer
constant. We expect that the values taken by the regularized theta lifts ϑ?f0

here are periods. The following
heuristic suggests that the values of the regularized theta lift ϑ?f0

at special divisors should always be periods:
We can decompose any cuspidal harmonic weak Maass form f0 into a linear combination of Poincaré series
Fµ,m as in [5, Theorem 2.14]. Ignoring issues of convergence, we obtain a decomposition for the regularized
theta lift ϑ?f0

into a linear combination of its Poincaré series ϑ?Fµ,m . Evaluated at the “points” we consider,

these constituents ϑ?Fµ,m can be computed as a rational linear combination of the Gaussian hypergeometric

function 2F1 at rationals – which are known to be periods.
In this direction, we expect the values Λ′(E/K,χ, 1) on the right-hand side of Theorem 1.2 can be expressed

as some algebraic number times the arithmetic height of some algebraic cycle, and in this way seen to be a
period – in the same way that the Birch-Swinnerton-Dyer constant4 is shown to be a period in Kontsevich-
Zagier [32, § 3.5]. Note that such a relation to arithmetic heights can be established for the more general
setting of Green’s functions evaluated along CM cycles of spin Shimura varieties for (n, 2) by the combined
works of Bruinier-Yang [8, Theorem 1.2] and Andreatta-Goren-Howard-Madapusi Pera [2, Theorem A].

1.0.3. Applications towards Birch-Swinnerton-Dyer. Theorem 4.19 also suggests a possible origin of points
in the K[c]-rational Mordell-Weil groups E(K[c]) in via embeddings of Hirzebruch-Zagier divisors into spin
Shimura varieties. In this spirit, we also describe how the refined Birch and Swinnerton-Dyer conjecture
suggests new characterizations of the Tate-Shafarevich group XE(K[c]) and regulator term RE(K[c]). We
refer to (62), (63), and below for more details of what can be deduced here. One consequence is the following.

Corollary 1.3 (Theorem 5.1). Assume the ersatz Heegner hypothesis (Lemma 1.1, Hypothesis 2.1) that the
inert level N− is given by the squarefree product of an odd number of primes, then L(1/2,Π ⊗ χ) = 0 by
symmetric functional equation (6). Writing E again to denote the underlying elliptic curve over Q, we write
E(dK) to denote its quadratic twist. Let us also assume that E has semistable reduction so that its conductor
N is squarefree, with N coprime to the discriminant dK of K, and for each prime p ≥ 5:

• The residual Galois representations E[p] and E(dK)[p] attached to E and E(dK) are irreducible.
• There exists a prime divisor l || N distinct from p where the residual representation E[p] is ramified,

and a prime divisor q || NdK distinct from p where the residual representation E(dK)[p] is ramified.

For either elliptic curve A = E,E(dK), let us write XA(Q) to denote the Tate-Shafarevich group, with
TA(Q) the product over local Tamagawa factors, and ωA a fixed invariant differential for A/Q. Suppose that
ords=1 Λ(E/K, 1) = 1, so that either Λ(E, 1) = Λ(1/2, π) or the quadratic twist Λ(E(dK), 1) = Λ(1/2, π ⊗ η)
vanishes. Writing [e, e] to denote the regulator of either E or E(dk) according to which factor vanishes, we
have the following unconditional identity, up to powers of 2 and 3:

4We remark that the idea of the deduction, not given explicitly in [32, §3.5], is to use the formulae of Gross-Zagier [24] and
Gross-Kohnen-Zagier [23] to verify that L′(E, 1) = α ·R ·Ω, where α denotes some nonzero rational number, R = RE(Q) = 〈e, e〉
the regulator (given by the arithmetic height of a Heegner divisor on the modular curve X0(N)), and Ω = ΩE(Q) the real
period. Assuming the finiteness of the Tate-Shafarevich group XE(Q) (implicitly), the argument of Kontsevich-Zagier [32, §
3.5] shows that the Birch-Swinnerton-Dyer constant κE(Q) := (RE(Q) · TE(Q) ·XE(Q) · ΩE(Q))/#E(Q)2 is a period. In

other words, their deduction consists of first relating L′(E, 1) to κE(Q) via the Gross-Zagier formula, then using the fact that
κE(Q) is known to be a period to deduce that L′(E, 1) must be a period. There does not seem to be any direct proof in the

literature that the central derivative value L′(E, 1) is a period.
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#XE(Q) ·#XE(dK )(Q) · [e, e] · TE(Q) · TE(dK )(Q)

#E(Q)2
tors ·#E(dk)(Q)2

tors

·
∫
E(R)

|ωE | ·
∫
E(dK )(R)

|ωE(dk) |

= −
√
dK

log εK
· 1

2

∑
A∈Pic(OK)

CT〈〈f+
0,η,A(τ), θ+

ΛA,1
⊗ EΛA,2(τ)〉〉+

vol(UA,2)

4

∑
(zVA,2 ,h)∈Z(VA,2)

ϑ?f0,η,A
(zVA,2 , h)


= −

√
dK

log εK
· 1

2

∑
A∈Pic(OK)

(
CT〈〈f+

0,η,A(τ), θ+
ΛA,1
⊗ EΛA,2(τ)〉〉+

vol(UA,2)

4
GZ(f0,η,A)(ZA,2)

)
.

Note that the value on the left-hand side is known to be a period via the argument of [32, §4].

It would be interesting to develop these relations in connection to the real quadratic Borcherds products
studied by [15], perhaps leading to a global analogue of Darmon’s conjecture [14, Conjecture 5.6] via the
Borel-Serre compactifications of Siegel threefolds arising as spin Shimura varieties associated to rational

quadratic subspaces (ṼA,2, q̃A,2) ⊃ (VA,2, qA,2) of signature (3,2). It would also be interesting to use the same
setup with K replaced by an imaginary quadratic field of discriminant dk prime to N to develop a new proof
of the Gross-Zagier formula, developing the ideas of [8, §7-8] in this setup to derive a unified description for
quadratic fields, and perhaps in this way realizing the geodesics sets Z(VA,2) we consider here as boundary
components in compactifications of higher-dimensionam Shimura varieties, e.g. for GSp4.

Outline. We first describe the setup with L-functions and their functional equations in §2, then spin Shimura
varieties in §3. We describe regularized theta lifts in §4.4, leading to the main Theorem 4.19 and Corollary
4.5. Our main results are derived in Theorem 4.16 (using Proposition 4.12), Theorem 4.19, and Corollary
4.20. Finally, we describe relations to the Birch and Swinnerton-Dyer conjecture in §5.

Acknowledgements. I am extremely grateful to Jan Bruiner for many crucial comments and suggestions. I
also thank Thomas Zink for encouraging discussions in 2021-2022, as well as Spencer Bloch, Ashay Burungale,
Henri Darmon, Ben Howard, Steve Kudla, Alex Popa, and an anonymous referee for helpful exchanges.

2. Background on L-functions

2.1. Equivalences of L-functions and symmetric functional equations. Let E be an elliptic curve
of conductor N defined over Q, parametrized via modularity by a cuspidal newform f ∈ S2(Γ0(N)). Let
π = ⊗vπv denote the cuspidal automorphic representation of GL2(A) generated by f . Hence we have
identifications of completed L-functions

Λ(E, s) = Λ(s− 1/2, f) = Λ(s− 1/2, π) =
∏
v≤∞

L(s− 1/2, πv).(3)

Again, we fix K a real quadratic field of discriminant dK prime to the conductor N , and write η = ηK/Q to
denote the corresponding Dirichlet character. As well, we fix a ring class character χ of K of some conductor
c ∈ Z≥1 coprime to dKN . Let K[c] denote the ring class extension of K of conductor c. Inspired by the
conjecture of Darmon [14, Conjecture 5.6] and the theorem of Gross-Zagier [24], we seek to detect Heegner-like
points in the Mordell-Weil group E(K[c]) of K[c]-rational points through the study of integral presentations
of the central derivative value Λ′(E/K,χ, 1) of the completed Hasse-Weil L-function Λ(E/K,χ, s) of E
basechanged to K and twisted by χ. By the theory of Rankin-Selberg convolution (cf. e.g. [24]), we deduce
from (3) that the Hasse-Weil L-function L(E/K,χ, s) has an analytic continuation Λ(E/K,χ, s) to all
s ∈ C via its identification with the Rankin-Selberg L-function Λ(s, π × π(χ)) of π times the representation
π(χ) = ⊗vπ(χ)v of GL2(A) induced by π:

Λ(E/K,χ, s) = Λ(s− 1/2, π × π(χ)) =
∏
v≤∞

L(s− 1/2, πv × π(χ)v).(4)

On the other hand, recall that by the theory of cyclic basechange (in the sense of [38], [3]), we can attach to π a
cuspidal automorphic representation Π = BCK/Q of GL2(AK). It is then well-known that the Rankin-Selberg
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L-function Λ(s, π× π(χ)) for GL2(A)×GL2(A) is equivalent to the twisted standard or Godement-Jacquet
L-function Λ(s,Π⊗ χ) on GL2(AK)×GL1(AK). This gives us another equivalence of L functions

Λ(E/K,χ, s) = Λ(s− 1/2,Π⊗ χ) =
∏
w≤∞

L(s− 1/2,Πw ⊗ χw),(5)

where we view χ as an idele class character χ = ⊗wχw of K having trivial archimedean component χ∞ ≡ 1.
In each of these presentations (4) and (5), the L-function L(s, π × π(χ)) = L(s,Π⊗ χ) has a well-known

analytic continuation to all s ∈ C, and satisfies a functional equation relating values at s to 1− s. Moreover,
since π ∼= π̃ is self-dual, and ring class characters equivariant under complex conjugation, the Rankin-Selberg
L-function Λ(s, π × π(χ)) satisfies a symmetric functional equation

Λ(s, π × π(χ)) = ε(s, π × π(χ))Λ(1− s, π × π(χ))(6)

with epsilon factor

ε(s, π × π(χ)) = c(π × π(χ))
1
2−s · ε(1/2, π × π(χ)) = (d2

KN
2c4)

1
2−s · ε(1/2, π × π(χ))

and root number ε(1/2, π × π(χ)) ∈ {±1} ⊂ S1 given by the simple formula

ε(1/2, π × π(χ)) = η(−N) = η(N).(7)

Here, we write c(π×π(χ)) = d2
KN

2c4 to denote the conductor of the L-function Λ(s, π×π(χ)), and use that
the quadratic Dirichlet character η = ηK/Q is even (as K is a real quadratic field). Note that this formula (7)
holds for any choice of ring class character χ of K of conductor c coprime to the product dKN , and that this
functional equation does not depend on the choice of ring class character χ. Since the functional equation (6) is
symmetric, we deduce that must be forced vanishing of the central value Λ(1/2, π×π(χ)) = Λ(1/2,Π⊗χ) = 0
when η(N) = −1. We can therefore impose the following condition on the level N of π, equivalently the
conductor N of f and E, to ensure this forced vanishing. Here, since we assume that N is coprime to the
disciminant dK , we can assume that the conductor N factorizes as N = N+N−, where for each prime q | N ,

q | N+ ⇐⇒ η(q) = 1 ⇐⇒ q splits in K

q | N− ⇐⇒ η(q) = −1 ⇐⇒ q is inert K.

Hypothesis 2.1 (Ersatz Heegner hypothesis). Let us assume that the inert level N− is the squarefree product
of an odd number of primes, and hence that the root number of Λ(s, π×π(χ)) for χ any ring class character
of K of conductor c prime to dKN is given by ε(1/2, π × π(χ)) = η(−N) = η(N) = η(N−) = −1.

If the condition of Hypothesis 2.1 is met, then the corresponding central value Λ(1/2, π × π(χ)) is forced
by the functional equation (6) to vanish: Λ(1/2, π×π(χ)) = Λ(1/2,Π⊗χ) = 0. It then makes sense to derive
integral presentations for the central derivative values in this case,

Λ′(1/2, π × π(χ)) = Λ′(1/2, πK ⊗ χ) = ?

The conjectures of Birch-Swinnerton-Dyer, Darmon [14, Conjecture 5.6], Kudla, and even Bruinier-Yang [8,
Conjecture 1.1] (for instance) suggest that this central derivative value should be related to the height of a
CM-type point on some Shimura variety associated to the modular curve X0(N).

2.2. The basechange representation. Let us now consider the quadratic basechange lifting Π = BCK/Q(π)
of π to GL2(AK), which exists by the theory of Langlands [38] and more generally Arthur-Clozel [3]. Note
that this basechange representation Π of GL2(AK) has trivial central character. We refer to the article of
Gérardin-Labesse [20] for more background on the general properties of cyclic basechange representations.
Let us first record that this quadratic representation is known to be cuspidal.

Proposition 2.2. Let π = π(f) be a cuspidal automorphic representation of GL2(A) of trivial central
character corresponding to a newform f ∈ Snew

2 (Γ0(N)) parametrizing an elliptic curve E/Q of conductor
N . Let K be any real quadratic field. Let Π = BCK/Q(π) denote the quadratic basechange lifting of π to an
automorphic representation of GL2(AK). Then, Π must be cuspidal.
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Proof. We know by Langlands [38, Ch. 2, (B), p. 19] that the quadratic basechange representation Π is
cuspidal if and only if Π ∼= Πτ for τ ∈ Gal(K/Q) the nontrivial automorphism. On the other hand, by the
characterization given in [38, Ch. 2, (i), (ii)], we see that this condition must always hold here. Roughly
speaking, this characterization amounts to the condition L(s,Π) = L(s, π ◦NK/Q). Since π is defined over
Q and hence invariant under the action of τ ∈ Gal(K/Q), so too is the composition of π with the norm
homomorphism NK/Q. In this way, we see that L(s,Πτ ) = L(s, π ◦NK/Q) = L(s,Π) = L(s, π)L(s, π ⊗ η)
and hence Π ∼= Πτ , so that Π must be cuspidal.

We can also consider the basechange of the elliptic curve E/Q to the quadratic field K, with E(K) its
Mordell-Weil group. The theorem of Freitas-Le Hung-Siksek [17, Theorem 1] shows that E(K) is modular.
Hence, its completed L-function Λ(E/K, s) is equivalent to the shift by 1/2 of the corresponding L-function
L(s, σ), with σ = ⊗wσw a cuspidal automorphic representation of GL2(AK) determined uniquely by E(K).
On the other hand, using the modularity of E(Q) with the Artin basechange decomposition described above
(which implies that L(s,Π) = L(s, π)L(s, π ⊗ η)), it follows that

Λ(E/K, s) = Λ(s− 1/2, π)Λ(s− 1/2, π ⊗ η) = Λ(s− 1/2,Π).

Hence, we deduce that σ = Π, which gives us another proof that Π must be cuspidal. �

Corollary 2.3. Let E/Q be an elliptic curve of conductor N parametrized via modularity by a cuspidal
newform f ∈ Snew

2 (Γ0(N)) of weight 2, trivial character, and level N . Let π = π(f) denote the correspond-
ing cuspidal automorphic representation of GL2(A) of level c(π) = N and trivial central character whose
archimedean component is a holomorphic discrete series of weight 2. Using the unitary normalization for the
automorphic L-functions (so that s = 1/2 is the central value), we have the equivalences of L-functions

Λ(E, s) = Λ(s− 1/2, f) = Λ(s− 1/2, π).

Let K be any real quadratic field. The basechanged elliptic curve E(K) can be associated to a cuspidal
Hilbert newform f of parallel weight two, trivial central character, and level N ⊂ OK equal to the conductor
of E/K, with Π = BCK/Q(π) the corresponding cuspidal automorphic representation of GL2(AK) of level
c(Π) = N ⊂ OK and trivial central character whose archimedean component is a holomorphic discrete series
of parallel weight two. We then have the corresponding equivalences of L-functions

Λ(E/K, s) = Λ(s− 1/2, f) = Λ(s− 1/2,Π)

= Λ(s− 1/2, π)Λ(s− 1/2, π ⊗ η) = Λ(s− 1/2, f)Λ(s− 1/2, f ⊗ η).

3. Spin groups and orthogonal groups

We now describe spin groups associated to rational quadratic spaces of type (2, 2). Here, we follow [6, §
2.3-2.7] and [8, § 2-4], but adapt for the special setting we consider in Proposition 3.3 below.

3.1. Rational quadratic spaces of type (2, 2). Let (V,Q) be any rational quadratic space (V,Q) of type
(2, 2) bilinear form (v1, v2) = Q(v1+v2)−Q(v1)−Q(v2). We shall later focus on the special example described

above. That is, we consider the real quadratic field K = Q(
√
d) with d > 0. Recall that for an integer c ≥ 1,

we consider the ring class group Pic(Oc) of the Z-order Oc := Z + cOK of conductor c in K through which
our fixed ring class character χ factors. We shall only consider this group when it exists. Note that this will
always be so for c = 1, in which case Pic(Oc) = Pic(OK) can be identified with the ideal class group of OK .
We fix for each class A ∈ Pic(Oc) an integral ideal representative a ⊂ OK of the class A = [a] ∈ Pic(Oc)
with a Z-basis [1, za].

Definition 3.1. Writing Qa(z) = NK/Q(z)/Na to denote the corresponding norm form of signature (1, 1),
we consider the quadratic space defined by VA = Q⊕ zaQ⊕ aQ ∼= aQ ⊕ aQ for aQ = a⊗Q with of the two
following (essentially equivalent) quadratic forms qA and QA:

(i) VA = Q⊕ zaQ⊕ aQ with qA(x, y, λ) := Qa(λ)− xy = Na−1 ·NK/Q(λ)− xy,
(ii) VA = aQ ⊕ aQ with QA(z) = QA(z1, z2) := Qa(z1)−Qa(z2).
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We see by inspection that (VA, qA) is a rational quadratic space of type (2, 2) as d > 0 is positive 5. We
also see by inspection that (V,A,QA) has type (2, 2) if d 6= 0 is positive or negative6. For either choice of
quadratic form, we write (·, ·)A : VA × VA → Q to denote the corresponding hermitian bilinear form.

3.2. Spin groups and exceptional isomorphisms. Let (V,Q) be any rational quadratic space of type
(2, 2). Let CV denote the corresponding Clifford algebra over Q. That is, consider the tensor algebra

TV =
⊕
m≥0

V ⊗m = Q⊕ V ⊕ (V ⊗Q V )⊕ · · · ,

with IV ⊂ TV the two-sided ideal generated by v ⊗ v − Q(v) for v ∈ V . We define CV = TV /IV . So, CV
is a Q-module of rank 4, there are canonical embeddings of Q and V into CV . By definition, we have that
Q(v) = v2 and uv + vu = (u, v) := Q(u+ v)−Q(u)− (v) for any u, v ∈ CV . We shall denote an element of
the form v1 ⊗ · · · ⊗ vm in CV for vi ∈ V by v1 · · · vm for simplicity.

Let C0
V ⊂ CV denote the Q-subalgebra generated by products of even numbers of basis vectors of V .

Writing C1
V ⊂ CV to denote the Q-subalgebra generated by products of odd numbers of basis vectors of V ,

we have the decomposition CV ∼= C0
V ⊕C1

V . Multiplication by −1 defines an isometry of V and gives rise to
an algebra homomorphism J : CV −→ CV known as the canonical automorphism. It is known that we can
characterize the even Clifford algebra equivalently as

C0
V = {v ∈ CV : J(v) = v} .

We have the canonical anti-involution on CV , defined by tCV −→ CV , (x1 ⊗ · · · ⊗ xm)t := xm ⊗ · · · ⊗ x1,
from which we can define the Clifford norm

NCV : CV −→ CV , NCV (x) := xtx.

Note that for x ∈ V , we have NCV (x) = Q(x). Hence, we see that the Clifford norm NCV is an extension of
the quadratic form Q. It is not generally multiplicative.

Theorem 3.2. Let (V,Q) be any rational quadratic space of type (2, 2), with Clifford algebra CV and even
subalgebra C0

V ⊂ CV . We again write (x, y) = Q(x+y)−Q(x)−Q(y) to denote the associated bilinear form.

(i) Fix any orthogonal basis v1, v2, v3, v4 of V , and put δ = v1v2v3v4. We can identify the centre Z(CV )
of the Clifford algebra CV with Q, and the centre Z(C0

V ) of its even part C0
V with Q + Qδ.

(ii) Fix any basis v1, v2, v3, v4 ∈ V and let S = ((vi, vj))i,j denote the corresponing Gram matrix. The
determinant d(V ) = det(S) does not depend on the chosen basis and defines the discriminant of V .
Moreover, we have the relation δ2 = 2−4d(V ) ∈ Q×/(Q×)2 for the volume form δ defined in (i).

Proof. See [6, § 2.2, Theorem 2.6 and Remark 2.5], these results are standard. �

Let us now for the general case (V,Q) consider the corresponding Clifford group CGV defined by

CGV =
{
x ∈ CV : x invertible , xV J(x)−1 = V

}
.

This definition allows us to associate to each x ∈ CV an automorphism αx of V defined by αx(v) = xvJ(x)−1

(for any v ∈ V ). We obtain from this a linear representation α : CGV −→ AutQ(V ), x 7→ αx known as the
vector representation. Note that the involution x 7→ xt sends CGV to itself, and so NCV (x) ∈ CGV for any
x ∈ CV . We also know (see [6, Lemma 2.11]) that the kernel of the vector representation α : CGV → AutQ(V )
equals Q×, that the Clifford norm NCV induces a homomorphism CGV → Q×, and that NCV in this setting
is multiplicative.

We now consider the general spin group GSpinV = CGV ∩C0
V and underlying spin group

Spin(V ) =
{
x ∈ GSpinV = CGV ∩C0

V : NCV (x) = 1
}
.

5That the space has signature (2, 2) when d > 0 can be seen directly after putting the quadratic form into diagonal form.
That is, we can introduce coordinates u = x+ y and v = x− y corresponding to a change of basis to {(1, za), (1,−za)} for the

subspace Q + zaQ. Checking that x = u+v
2

and y = u−v
2

, we find qA(x, y, λ) = NK/Q(λ)/Na− 1
4

(u2 − v2) in this new basis.
6Here, the norm form Qa(z) has type (1, 1) if d > 0 and type (2, 0) of d < 0, so that QA has type (2, 2) in either case.
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As the vector representation α here is surjective with kernel Q×, we see that the Clifford group GCV is
a central extension of the orthogonal group O(V ), and that the general spin group GSpinV is a central
extension of the special orthogonal group SO(V ). That is, we have exact sequences

1 −→ Q× −→ CGV −→ O(V ) −→ 1,

1 −→ Q× −→ GSpin(V ) −→ SO(V ) −→ 1.

As explained in [6, Lemma 2.14], we also have the simpler characterizations of spin groups

GSpin(V ) =
{
x ∈ C0

V : NCV (x) ∈ Q×
}
, Spin(V ) =

{
x ∈ C0

V : NCV (x) = 1
}
.

We can now deduce via Theorem 3.2 that we have the following identifications of algebraic groups.

Proposition 3.3. We have the following identifications of spin groups for the rational quadratic spaces
(VA, qA) and (VA, QA) described in Definition 3.1. Fix any class A ∈ Pic(Oc) with integer ideal representa-
tive a ⊂ Oc = Z + cOK and Z-basis a = [1, za]. We again write Qa(z) = NK/Q(z)/Na to denote the norm
form, as well as NK/Q(z) = zzτ and TrK/Q(z) = z + zτ for the nontrivial automorphism τ ∈ Gal(K/Q) to
denote the norm and trace homomorphisms.

(i) Consider the quadratic space (VA, qA) given by VA = Q ⊕ zaQ ⊕ aQ ∼= aQ ⊕ aQ and quadratic
form qA(x, y, λ) := Qa(λ)−xy. Then, the centre Z(C0

VA
) of the even Clifford algebra C0

VA
is given by

K, and we have an exceptional isomorphism Spin(VA) ∼= ResK/Q SL2(K) of algebraic groups over Q.

(ii) Consider the quadratic space (VA, QA) of type (2,2) given by VA = aQ⊕aQ with the altered quadratic
form QA(z) = QA((z1, z2)) := Qa(z1)−Qa(z2). Then, the centre Z(C0

VA
) of the even Clifford algebra

C0
VA

is given by Q, and we have exceptional isomorphisms Spin(VA) ∼= SL2
2 and GSpin(VA) ∼= GL2

2

of algebraic groups over Q.

Proof. Cf. the discussion in [6, §2.7] for the similar but distinct quadratic space V0 := Q ⊕ Q ⊕ K with
quadratic form q0(x, y, λ) := NK/Q(λ) − xy, where it is shown that we can identify the centre7 of the even

Clifford algebra as Z(C0
V0

) = K, and that we have the accidental isomorphism Spin(V0) ∼= ResK/Q SL2(K)
of algebraic groups over Q. We note that the spaces (VA, qA) and (VA, QA) we consider here are distinct, as
we shall show through direct calculations of the determinants and volume forms.

Let us start with (i). Hence, for the quadratic space (VA, qA), we fix the basis

v1 = (1, za, 0) , v2 = (1,−za, 0) , v3 = (0, 0, 1) , v4 = (0, 0, za) .

7Note however that [6, Example 2.10, p. 133 ] cannot be true for the special case where the centre Z = Z(C0
V ) of the even

Clifford algebra C0
V is k+ kδ = Q, i.e. where k = Q and the volume form δ = v1v2v3v4 is rational. That is, the Clifford algebra

CV has dimQ CV = 2dim(V ) = 24, and so dimQ C0
V = 8. Since this latter dimension is not a square, C0

V cannot be a quaternion

algebra over Q. Nor can it be a central simple algebra of dimension 4 = 22 over K, as its centre is Q. Rather, we deduce from
the standard classification of Clifford algebras over R that CV⊗R

∼= M4(R) and C0
V⊗R

∼= M2(R)⊕M2(R) that we must have

C0
V
∼= B ⊕B for B an indefinite quaternion algebra over Q of discriminant d(V ). In particular, if d(V ) = 1 (is a square), then

C0
V
∼= M2(Q)⊕M2(Q).
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We first compute the inner products

(v1, v1)A = −2 · 2za + 2 · (1 · za) = −2za

(v1, v2)A = (v2, v1)A = −2 · 0 + 1 · za + 1(−za) = 0

(v1, v3)A = (v3, v1)A = −1 · za +Qa(1) + 1 · za −Qa(1) = 0

(v1, v4)A = (v4, v1)A = −1 · za +Qa(z) + 1 · za −Qa(z) = 0

(v2, v2)A = 2 · 2za − 1 · za − 1 · za = 2za

(v2, v3)A = (v3, v2)A = 1 · za +Qa(1)− 1 · za −Qa(1) = 0

(v2, v4)A = (v4, v2)A = 1 · za +Qa(za)− 1 · za −Qa(1) = 0

(v3, v3)A = Qa(2)− 2 ·Qa(1) = Na−12

(v3, v4)A = (v4, v3)A = Qa(1 + za)−Qa(1)−Qa(za) = Na−1 TrK/Q(za)

(v4, v4)A = Qa(2za)− 2Qa(za) = Na−12NK/Q(za).

We then compute the determinant d(VA) = det ((vi, vj)A) of the corresponding Gram matrix

d(VA) = det


−2za 0 0 0

0 2za 0 0

0 0 2
Na

TrK/Q(za)

Na

0 0
TrK/Q(za)

Na

2NK/Q(za)

Na

 = −2za

∣∣∣∣∣∣∣
2za 0 0

0 2
Na

TrK/Q(za)

Na

0
TrK/Q(za)

Na

2NK/Q(za)

Na

∣∣∣∣∣∣∣
= − 4z2

a

Na2
·
(
4NK/Q(za)− TrK/Q(za)2

)
=

4z2
a

Na2
·
(
TrK/Q(za)2 − 4NK/Q(za)

)
∈ Q×/(Q×)2.

Hence, we find that d(VA) = TrK/Q(za)2 − 4NK/Q(za) ∈ Q×/(Q×)2. Writing za = α+ β
√
d again, we find

d(VA) = TrK/Q(za)2 − 4NK/Q(za) =
(
α+ β

√
d+ α− β

√
d
)2

− 4(α+ β
√
d)(α− β

√
d)

= 4α2 − 4(α2 − β2d) = 4(α2 − α2 + β2d) = 4β2d ≡ d mod (Q×)2.

Hence, we find that δ2 = 2−4d(VA) so that δ = 2−2
√
d and Z(C0

VA
) = Q+ δQ = K. It is then easy to deduce

that we have an isomorphism Spin(VA) ∼= ResK/Q SL2(K) of algebraic groups over Q.
Let us now consider (ii). In this case, we start with the same underlying vector space VA = aQ ⊕ aQ, but

consider the slightly altered quadratic form QA(z) = QA((z1, z2)) := Qa(z1)−Qa(z2). Fix the basis

w1 = (1, 0) , w2 = (za, 0) , w3 = (0, 1) , w4 = (0, za) .

Writing (wi, wj)A = QA(wi + wj)−QA(wi)−QA(wj) again to denote the inner product, we compute

(w1, w1)A = Qa(2)−Qa(1) = Na−12

(w1, w2)A = (w2, w1)A = Qa(1 + za)−Qa(1)−Qa(za) = Na−1 TrK/Q(za)

(w1, w3)A = (w3, w1)A = Qa(1)−Qa(1)−Qa(1) +Qa(1) = 0

(w1, w4)A = (w4, w1)A = Qa(1)−Qa(za)−Qa(1) +Qa(za) = 0

(w2, w2)A = Qa(2za)− 2Qa(za) = Na−12NK/Q(za)

(w2, w3)A = (w3, w2)A = Qa(za)−Qa(1) +Qa(1)−Qa(za) = 0

(w2, w4)A = (w4, w2)A = Qa(za)−Qa(za)−Qa(za) +Qa(za) = 0

(w3, w3)A = −Qa(2) + 2Qa(1) = −Na−12

(w3, w4)A = (w4, w3)A = −Qa(1 + za) +Qa(1) +Qa(za) = −Na−1 TrK/Q(za)

(w4, w4)A = −Qa(2za) + 2Qa(za) = −Na−12NK/Q(za).
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We then compute the determinant d(vA) = det((wi, wj))i,j of the corresponding Gram matrix

d(VA) = det


2za

TrK/Q(za)

Na 0 0
TrK/Q(za)

Na

2NK/Q(za)

Na 0 0

0 0 − 2
Na −TrK/Q(za)

Na

0 0 −TrK/Q(za)

Na − 2NK/Q(za)

Na

 ∈ Q×/(Q×)2

via the Lagrange cofactor method as

d(VA)

=
2

Na

∣∣∣∣∣∣∣
2NK/Q(za)

Na 0 0

0 − 2
Na −TrK/Q(za)

Na

0 −TrK/Q(za)

Na − 2NK/Q(za)

Na

∣∣∣∣∣∣∣−
TrK/Q(za)

Na

∣∣∣∣∣∣∣
TrK/Q(za)

Na 0 0

0 − 2
Na −TrK/Q(za)

Na

0 −TrK/Q(za)

Na − 2NK/Q(za)

Na

∣∣∣∣∣∣∣
=

4NK/Q(za)

Na2

(
4NK/Q(za)

Na2
−

TrK/Q(za)2

Na2

)
−

TrK/Q(za)2

Na2

(
4NK/Q(za)

Na2
−

TrK/Q(za)2

Na2

)
=

(
4NK/Q(za)

Na2
−

TrK/Q(za)2

Na2

)2

≡ 1 ∈ Q×/(Q×)2.

That is, we compute the discriminant d(VA) to be trivial, whence the volume form δ = 2−4 ∈ Q is rational.
Hence, we know by Theorem 3.2 that the centre Z(C0

VA
) = Q + δQ is simply Q. In this setting, since

dimQ C
0
VA

= 8 and CVA⊗R
∼= C2,2(R) ∼= M4(R), we deduce that C0

VA
∼= B⊕B for B an indefinite quaternion

algebra over Q. Morover, since the discriminant d(VA) = 1, we deduce that this must be the matrix algebra
B ∼= M2(Q). It is then easy to deduce from the disucssion above that we obtain the exceptional isomorphisms
Spin(VA) ∼= SL2

2 and GSpin(VA) ∼= GL2
2 of algebraic groups over Q. �

Relation to quadratic basechange liftings. Consider the quadratic space V0 = Q ⊕Q ⊕K with qua-
dratic form q0(x, y, λ) = NK/Q(λ)− xy. Although we do not use this quadratic space (V0, q0) for our main
calculations, we note that the accidental isomorphism Spin(V0) ∼= ResK/Q(SL2(K)) can be used to realize
the quadratic basechange lifting Π = BCK/Q(π) of the cuspidal automorphic representation π = π(f) to
GL2(AK) as a theta lift from SL2(A) to Spin(V0)(A), which after extending to similitudes can be viewed as
a theta lift from GL2(A) to GSpin(V0)(A). We refer to [6, §2-3] for a classical description of this setup.

4. Regularized theta lifts and automorphic Green’s functions

We now introduce regularized theta lifts associated with the quadratic spaces (VA, QA) described in
Proposition 3.3 above following Borcherds [4], Kudla [34], Bruinier [5], Bruinier-Funke [7], and Bruinier-
Yang [8]. We compute these theta lifts along the anisotropic subspace (VA,2, QA,2) = (VA,2, QA|VA,2) of
type (1, 1) defined by the ideal representative VA,2 := aQ = a ⊗ Q and the restricted quadratic form
QA,2(λ) = Qa(λ) = NK/Q(λ)/Na. In this way, we derive new integral presentations for the central derivative
values Λ′(E/K,χ, 1) = Λ′(1/2,Π⊗ χ) = Λ′(1/2, f × θ(χ)).

4.1. Setup. Fix a primitive ring class character χ of K of some conductor c ∈ Z≥1 coprime to NdK , which
we assume exists. (This is always the case for conductor c = 1, whence χ is a class group character). Thus,
χ factors through the ring class group Pic(Oc). Let us for each class A ∈ Pic(Oc) fix an integral ideal
representative a ⊂ OK of A = [a] ∈ Pic(Oc) with Z-basis a = [1, za]. We consider the rational quadratic
space (VA, QA) of type (2, 2) defined in Definition 3.1 (ii), hence with vector space VA = aQ ⊕ aQ and
quadratic form QA(z) = QA((z1, z2)) = Qa(z1)−Qa(z2).

4.1.1. Exceptional isomorphisms. By Proposition 3.3, we have an isomorphism of algebraic groups over Q

ζ : GSpin(VA) ∼= GL2
2 .(8)

We then take UA ⊂ GSpin(VA)(Af ) to be the compact open subgroup UA =
∏
p<∞ UA,p, where each

UA,p ⊂ GSpin(VA)(Qp) is determined by the condition that each component ζ(UA,p) ∼= K0,p(N)×K0,p(N)
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is given by the Cartesian product of congruence subgroup

K0,p(N) =

{(
a b
c d

)
∈ GL2(Zp) : c ∈ NZp

}
⊂ GL2(Zp).(9)

Via (8), we can identify the cuspidal automorphic representation π = π(f) of GL2(A) determined by the
eigenform f ∈ Snew

2 (Γ0(N)) parametrizing E/Q as a cuspidal automorphic representation of GSpin(VA)(A)
which is right-invariant under the action of UA ⊂ GSpin(VA)(Af ). We shall also take ΛA ⊂ VA to be the
maximal lattice corresponding to this subgroup UA ⊂ GSpin(VA)(Af ). Given any lattice ΛA ⊂ VA, we write

Λ#
A to denote the corresponding dual lattice, and Λ#

A/ΛA the corresponding discriminant group.

4.1.2. Weil representations. Let ψ = ⊗vψv denote the standard additive character of A/Q. We write

rψ = rψ,ΛA : SO(VA)(A)× SL2(V )(A) −→ S(VA(A))

for the corresponding Weil representation of SO(VA)(A)×SL2(A) on the space S(VA(A)) of Schwartz-Bruhat
functions on VA(A), as well as its extension to the similitude group

R(A) := {(h, g) ∈ GO(VA)(A)×GL2(A) : ν(h) = det(g)} ⊂ GO(VA)(A)×GL2(A).

Note that since dimQ(VA) = 4 is even, rψ = rψ,ΛA factors through SL2(A) rather than its two-fold

metaplectic cover S̃L2(A). The action of SL2(A) on S(VA(A)) commutes with that of SO(VA)(A). We write
rψ(h)Φ(x) = Φ(h−1x) for h ∈ SO(VA)(A) and Φ ∈ S(VA(A)) to denote the latter action.

4.1.3. Subspaces of Schwartz functions. Let SΛA ⊂ S(VA(Af )) denote the subspace of Schwartz functions

with support on Λ̂#
A := Λ#

A ⊗ Ẑ which are constant on cosets of Λ̂A := ΛA⊗ Ẑ. Note that SΛA admits a basis

of characteristic functions 1µ = char
(
µ+ Λ̂A

)
,

SΛA =
⊕

µ∈Λ#
A/ΛA

C · 1µ ⊂ S(VA(Af )).(10)

This space SΛA is stable under the action of Γ = SL2(Z) through the Weil representation rψ. The space of
Schwartz-Bruhat functions S(VA(Af )) can be expressed as the direct limit lim−→ΛA

SΛA of these subsapces.

4.1.4. Anisotropic subspaces. For each of the quadratic spaces (VA, QA) described in Definition 3.1 (ii) above,
we consider the anisotropic subspace (VA,2, QA,2) = (VA,2, QA|VA,2) of type (1, 1) defined by the fractional
ideal VA,2 := aQ = a ⊗Q and restricted quadratic form QA,2(λ) = Qa = NK/Q(λ)/Na. We also consider
the anisotropic subspace (VA,1, QA,1) = (VA,1, QA|VA,1) of type (1, 1) defined by VA,1 := aQ and restricted
quadratic form QA,1(x, y) = −Qa. We write (VA,j , QA,j) for j = 1, 2 to denote either of these spaces.

Writing K1 ⊂ K× to denote the elements of norm one, it is easy to see that Spin(VA,j) ∼= SO(VA,j) ∼= K1

for each of j = 1, 2. Writing K1
A to denote the adelic points, we have the Hilbert exact sequence

1 −−−−→ A× −−−−→ A×K −−−−→ K1
A −−−−→ 1.

In particular, we obtain natural identifications for the corresponding adelic quotient spaces

Spin(VA,j)(Q)\ Spin(VA,j)(A) ∼= SO(VA,j)(Q)\SO(VA,j)(A) ∼= A×K/A
×K×.

Hence, we can view the ring class character χ : A×K/A
×K× → C× as an automorphic representation of

SO(VA,j)(A). In a similar way, we have natural identifications

GSpin(VA,j)(Q)\GSpin(VA,j)(A) ∼= GO(VA,j)(Q)\GO(VA,j)(A) ∼= A×K/K
×.

Here, strictly speaking, we fix one of the two connected components GO±(VA,j) of GO(VA,j) so that

GSpin(VA,j)(Q)\GSpin(VA,j)(A) ∼= GO±(VA,j)(Q)\GO±(VA,j)(A) ∼= A×K/K
×.

We refer to the discussion in [39, Theorem 2.3.3] for more background leading to this identification.

4.2. Hermitian symmetric domains. The symmetric spaces associated to each quadratic space (VA, QA)
are hermitian symmetric domains, i.e. have a complex structure. We have the following equivalent realizations.
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4.2.1. The Grassmannian model. Let

D(VA) = {z ⊂ VA(R) : dim(z) = 2, QA|z < 0}

denote the Grassmannian of oriented hyperplanes of VA(R) on which QA is negative definite. As explained
above, we fix a choice of orientation D±(VA). We also write D±(VA,j) to denote the sub-Grassmannian for
the signature (1, 1) subspace VA,j ⊂ VA for each index j = 1, 2, each consisting of oriented hyperbolic lines:

D±(VA,j) = {z ⊂ VA,j(R) : dim(z) = 1, QA,j |z < 0} =
{

[x : y] ∈ P1(R) : orientation ±1, QA,j(x, y) < 0
}
.

4.2.2. The projective model. Note that D±(VA) can be identified with the complex surface defined by

Q(VA) = {w ∈ VA(C) : (w,w)A = 0, (w,w)A < 0} /C× ⊂ P(VA(C))

via the map

D±(VA) −→ Q(VA), z 7−→ v1 − iv2 = w,(11)

for v1, v2 a properly-oriented standard basis of D±(VA) with (v1, v1)A = (v2, v2)A = −1 and (v1, v2)A = 0.
We refer to this identifications D±(VA) ∼= Q(VA) as the projective model.

4.2.3. The tube domain model. Fix a Witt decomposition VA(R) = VA,0 + R · e+ R · f , with e and f chosen
so that (e, e)A = (f, f)A = 0 and (e, f)A = 1, and C(VA) = {y ∈ VA,0 : (y, y)A < 0} its negative cone. We
can then identify D±(VA) ∼= Q(VA) with the corresponding tube domain

H(VA) := {z ∈ VA,0(C) : =(z0) ∈ C(VA)} ∼= H2

via the map H(VA) −→ VA(C) sending z 7−→ w(z) := z+e−qA(z)f composed with the projection to Q(VA).
We call H(VA) ⊂ V0,A(C) ∼= C2 the tube domain model.

4.3. Spin Shimura varieties. We now describe the Shimura varieties associated with each group GSpin(VA).
Here, we can take UA ⊂ GSpin(VA)(Af ) any compact open subgroup. Later, we shall choose UA to corre-
spond to the level of the basechange representation Π = BCK/Q(π(f)) of GL2(AK), i.e. which determines a
compact open subgroup of SL2(AK,f ) corresponding to a congruence subgroup of SL2(OK). In the special

case we consider here, we can also use the exceptional isomorphism GSpin(VA) ∼= GL2
2, to choose this level

structure more explicitly as in (9) above.

4.3.1. Orbifolds. Consider the Shimura varieties ShUA(D±(VA),GSpin(VA)) with complex points given by

ShUA(D±(VA),GSpin(VA))(C) = GSpin(VA)(Q)\
(
D±(VA)×GSpin(VA)(Af )/UA

)
∼= GSpin(VA)(Q)\

(
H2 ×GSpin(VA)(Af )/UA

)
.

Note that this is a quasiprojective surface defined over Q. Via the exceptional isomorphism (8) with choice of
level (9), we obtain the identification ShUA(GSpin(VA), D±(VA))(C) ∼= GL2(Q)2\

(
H2 ×GL2(Af )2/ζ(UA)

)
with the two-fold product Y0(N)× Y0(N) of the noncompactified modular curve Y0(N) = Γ0(N)\H.

4.3.2. Decompositions. Fixing a (finite) set of representatives hj ∈ GSpin(VA)(Q)\GSpin(VA)(Af )/UA, we
get the decomposition

GSpin(VA)(A) =
∐
j

GSpin(VA)(Q) GSpin(VA)(R)0hjUA,(12)

where GSpin(VA)(R)0 denotes the identity component of GSpin(VA)(R) ∼= GSpin(2, 2). This gives us the
corresponding decomposition of the Shimura variety as

(13) ShUA(D±(VA),GSpin(VA)) =
∐
j

XA,j , where XA,j = Γj\D±(VA)

for the arithmetic subgroup ΓA,j = GSpin(VA)(Q)∩
(
GSpin(VA)(R)0hjUh

−1
j

)
. Chosing UA according to (9)

via (8), this simply recovers the decomposition ShUA(GSpin(VA), D±(VA)) ∼= Y0(N)× Y0(N).
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4.3.3. Special divisors. We now introduce special (arithmetic) divisors on ShUA(D±(VA),GSpin(VA)). Here,
we follow the discussion of Kudla [34] (cf. [33]), which we note applies to cycles of any codimension. Given
a vector x ∈ VA(Q) with QA(x) < 0, let VA,x := x⊥ ⊂ VA denote the orthogonal complement, and

D±(VA)x = {z ∈ D±(VA) : x ⊥ z}

the corresponding Grassmannian. Let GSpin(VA,x)(Af ) denote the stabilizer in GSpin(VA)(Af ) of x. We
have a natural map defined on h ∈ GSpin(VA)(Af ) by
(14)
GSpin(VA,x)(Q)\D±(VA)x ×GSpin(VA,x)(Af )/

(
GSpin(VA,x)(Af ) ∩ hUAh−1

)
−→ ShUA(GSpin(VA), D±(VA))

[z, h1] 7−→ [z, h1h].

Definition 4.1. Given x ∈ VA(Q) with QA(x) < 0 and h ∈ GSpin(VA)(Af ), let ZA(x, h) = ZA(x, h, UA)
denote the image of the map (14). Here, we drop the compact open subgroup UA ⊂ GSpin(VA)(Af ) from the
notation when the context is clear.

This image ZA(x, h) = ZA(x, h, UA) determines a special cycle ShUA(D±(VA),GSpin(VA)) which is defined
over Q. As explained in [34, §1] and [33], these cycles satisfy many nice properties, including compatibility
with Hecke operators. To illustrate a couple of the relevant properties we shall use here, let is for a given
positive rational number m ∈ Q>0 write ΩA,m(Q) to denote the corresponding quadric

ΩA,m(Q) = {x ∈ VA : QA(x) = m} .

If ΩA,m(Q) is not the empty set, in which case we fix a point x0 ∈ ΩA,m(Q), the corresponding finite adelic
points ΩA,m(Af ) determine a closed subgroup of VA(Af ). Given Φ ∈ S(VA(Af ))UA , we then write

supp(Φ) ∩ ΩA,m(Af ) =
∐
r

UA · ζ−1
r · x0(15)

for some finite set of representatives ζr ∈ GSpin(VA)(Af ). We then define from this decomposition (15) the
corresponding analytic divisor

ZA(Φ,m,UA) :=
∑
r

Φ(ζ−1
r · x0)ZA(x0, ζr, UA).(16)

If U ′A ⊂ UA is an inclusion of compact open subgroups of GSpin(VA)(Af ) and

pr : ShU ′A(D±(VA),GSpin(VA)) −→ ShUA(D±(VA),GSpin(VA))

the corresponding covering of Shimura varieties, we have the projection formula

pr∗ ZA(Φ,m,UA) = ZA(Φ,m,U ′A).

Hence, the analytic divisor is defined on the Shimura variety

Sh(D±(VA),GSpin(VA)) = lim←−
UA

ShUA(D±(VA),GSpin(VA)),

and so we are justified in dropping the reference to the compact open subgroup UA from the notation. We
can also consider the right multiplication by h ∈ GSpin(VA)(Af ), which determines a morphism

[h] : ShUA(D±(VA),GSpin(VA)) −→ ShhUAh−1(D±(VA),GSpin(VA)).

This morphism [h] is defined over Q, and its pushforward [h]∗ satisfies the relation

[h]∗ : ZA(Φ,m,UA) −→ Z(rψ(h)Φ,m, hUAh
−1), where rψ(h)Φ(x) = Φ(h−1x).

In this way, we can deduce that these analytic divisors (16) are compatible with Hecke operators on
Sh(D±(VA),GSpin(VA)). Moreover, with respect to the decomposition (13), the result of [33, Proposition
5.3] (cf. [34, §1]) shows that the analytic divisor ZA(Φ,m,UA) decomposes as

ZA(Φ,m,UA) =
∑
j

ZA,j(Φ,m,UA),
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where for each factor j we write

ZA,j(Φ,m,UA) =
∑

x∈ΩA,m(Q) mod ΓA,j

Φ(h−1
j x) prj(D

±(VA)x)

for prj : D±(VA) −→ ΓA,j\D±(VA) the natural projection. Writing Φ∨(x) = Φ(−x), these analytic divisors
also satisfy the functional equations ZA(Φ,m,UA) = ZA(Φ∨,m,UA).

Definition 4.2. Given a positive rational number m > 0 for which ΩA,m(Q) 6= ∅ and a coset µ ∈ Λ#
A/ΛA

with corresponding characteristic function 1µ = 1µ+Λ̂A
, we write ZA(µ,m) = ZA(1µ,m) = ZA(1µ,m,UA)

for the corresponding analytic divisor on the spin Shimura surface ShUA(D±(VA),GSpin(VA)).

4.3.4. Relation to Hirzebruch-Zagier divisors. The special divisors ZA(µ,m) of Definition 4.2 correspond to
sums of Hirzebruch-Zagier divisors on the Hilbert modular surface ShUA(D±(VA),GSpin(VA)) ∼= Y0(N)2.
This can be seen from the decomposition

ZA(µ,m)(C) ∼= Γ0(N)2
∖ ∐

x∈µ+ΛA
QA(x)=m

D(VA)x = Γ0(N)2
∖ ∐

x∈µ+ΛA
QA(x)=m

{
z ∈ D±(VA) : (z, x)A = 0

}
∼= Γ0(N)2

∖ ∐
x∈µ+ΛA
QA(x)=m

{
z = (z1, z2) ∈ H2 : QA(z + x)−QA(z) = m

}
⊂ Y0(N)(C)× Y0(N)(C).

Note that these special divisors ZA(µ, x) can be viewed as embeddings of modular curves into the surface
Y0(N)× Y0(N). Indeed, each positive definite point in the quadric ΩA,µ,m(Q) = {x ∈ µ+ ΛA : QA(x) = x}
gives rise to a rational quadratic subspace WA = x⊥ ⊂ VA of type (1, 2), with corresponding general
spin group GSpin(WA) ⊂ GSpin(VA), Grassmannian D(WA) ⊂ D(VA), and quaternionic Shimura curve
ShUA∩GSpin(WA)(Af )(GSpin(WA), D(WA)) −→ ShUA(GSpin(VA), D(VA)) ∼= Y0(N)× Y0(N).

Recall that the classical Hirzebruch-Zagier divisor Tm = Tm(ΛA) of discriminant m ∈ Q>0 for the lattice
ΛA ⊂ VA is defined by

Tm = Tm(ΛA) =
∑

λ=(λ1,λ2)∈Λ
#
A
/{±1}

QA(λ)=m
∆

{
z = (z1, z2) ∈ H2 : QA(z + λ)−QA(z)−QA(λ) = 0

}
,(17)

where ∆ = c2dK denotes the discriminant of the order Oc = Z + cOK . Hence, we find the relation

Tm = Tm(ΛA) =
∑

µ∈Λ#
A/ΛA

ZA(µ,m/∆).

We refer to [6, Definition 2.27], [28, §3], and [8, §8] for more background on these Hirzebruch-Zagier divisors.

4.3.5. Geodesic spaces. Each of the subspaces (VA,j , QA,j) of signature (1, 1) gives rise to a geodesic set

Z(VA,j) := GSpin(VA,j)(Q)\
(
D±(VA,j)×GSpin(VA,j)(Af )/UA,j

)
, UA,j := UA ∩GSpin(VA,j)(Af ).

We can embed each subset Z(VA,2) as “geodesic” subset

Z(VA,2) −→ ShUA(D±(VA),GSpin(VA)) ∼= GSpin(VA)(Q)\
(
H2 ×GSpin(VA)(Af )/UA

)
.(18)

That is, let us now consider the norm form Qa(z) = NK/Q(z)/Na as a binary quadratic form

QA,2(X,Y ) := NK/Q(X + zaY )/Na = aaX
2 + baXY + caY

2.

The roots Z±a = (−ba ±
√

∆)/2aa of the quadratic polynomial QA,2(X, 1) = 0 or QA,2(1, Y ) = 0 determine
the endpoints of a geodesic arc γa in H. In this way, through D(VA,2) ∼= H2, we can view Z(VA,2) as a
“geodesic” subset of Y0(N) ↪→ Y0(N) × Y0(N) ∼= ShUA(GSpin(VA), D±(VA)). More generally, viewing each
of the Hirzebruch-Zagier special divisors ZA(µ,m) ⊂ ShUA(GSpin(VA), D±(VA)) ∼= Y0(N)2 as a modular
curve, we view the geodesic sets Z(VA,2) as subsets of ZA(µ,m) ⊂ ShUA(GSpin(VA), D±(VA)) ∼= Y0(N)2.
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4.3.6. Arithmetic automorphic forms. Let LD±(VA) denote the restriction of D±(VA) ∼= Q(VA) of the tauto-

logical bundle on P(VA(C)). The natural action of GO(VA)(R) on VA(C) induces one of GSpin(VA)(R)0 on
LD±(VA). Hence, there is a holomorphic line bundle

L±A := GSpin(VA)(Q)\
(
LD±(VA) ×GSpin(VA)(Af )/UA

)
−→ ShUA(D±(VA),GSpin(VA)).

This holomorphic line bundle L±A is known by [25] to have a canonical model over Q.
We can define a hermitian metric hLD±(VA)

on LD±(VA) by the rule

hLD±(VA)
(w1, w2)A :=

1

2
· (w1, w2)A.

This metric is invariant under the action by the orthogonal group GO(VA)(R), and hence descends to L±A.
The map z 7→ w(z) used in to the tube domain model D±(VA) ∼= H±(VA) ∼= H2 can be viewed as a nowhere
vanishing section of LD±(VA), whose norm we define to be

||w(z)||A = −1

2
· (w(z), w(z))A = −(y, y)A =: |y|2A.

Moreover, given h ∈ GO(VA)(R) or h ∈ GSpin(VA)(R), we have an automorphy factor

j : GSpin(VA)(R)×D±(VA) −→ C×

defined by h · w(z) = w(hz) · j(h, z). In this way, the holomorphic sections of L⊗kA = L±⊗kA for any integer
k can be interpreted as holomorphic functions Ψ : D±(VA)×GSpin(VA)(Af ) −→ C satisfying the following
transformation properties: For any z ∈ D±(VA) and h ∈ GSpin(VA)(Af ),

• Ψ(z, hu) = Ψ(z, h) for all u ∈ UA,
• Ψ(γz, γh) = j(γ, z)k ·Ψ(z, h) for all γ ∈ GSpin(VA)(Q).

We define the norm of a section (z, h)→ Ψ(z, h) · w(z)⊗k to be

||Ψ(z, h)||2A = |Ψ(z, h)|2A · |y|2kA ,

we refer to this as the Petersson norm of the holomorphic section Ψ. Note that under the isomorphism
(13), such a section Ψ corresponds to the collection {Ψ(·, hj)}j of holomorphic functions on the connected
component D±(VA)0 which are holomorphic of weight k for the corresponding arithmetic subgroup ΓA,j .
The latter forms have a classical interpretation as modular forms corresponding to congruence subgroups of
lattices ΛA ⊂ VA, and correspond to holomorphic Hilbert modular forms of parallel weight k in this setting
(see e.g. the discussion [6, § 2.7]).

4.4. Regularized theta lifts. We now describe the construction of regularized theta lifts for the spaces we
consider (VA, AA). Here, we follow [34] and [8] for background.

4.4.1. Gaussian functions. Given z ∈ D±(VA), let prz : VA(R) −→ z denote the projection, whose kernel
defines the orthogonal complement z⊥ := ker(prz). Given a vector x ∈ VA(R), we then define

R(x, z)A := − (prx(x),prz(x)) = |(x,w(z))A|2A · |y|
2
A.

Using this definition, we can associate to a hyperplane z ∈ D±(VA) and vector x ∈ VA(R) a majorant

(x, x)A,z := (x, x)A + 2 ·R(x, z)A.

Writing C∞(D±(VA)) to denote the space of smooth functions on D±(VA), we use this majorant to define a
Gaussian function Φ∞ ∈ S(VA(R))⊗ C∞(D±(VA)) by the rule

Φ∞(x, z) := exp
(
−π · (x, x)A,z

)
.

It is known that Φ∞(hx, hz) = Φ∞(x, z) for all h ∈ SO(VA)(R), and also that Φ∞ has weight 0 for the
action of the maximal compact subgroup SO2(R) of SL2(R).
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4.4.2. Construction of the theta kernel. Given z ∈ D±(VA), hf ∈ SO(VA)(Af ) and g ∈ SL2(A), we write
θ?rψ to denote the linear functional on Φf ∈ S(VA(Af )) defined by

(19)

Φf 7−→ θ?rψ (z, hf , g; Φf ) :=
∑

x∈VA(Q)

rψ(g) (Φ∞(·, z)⊗ rψ(hf )Φf ) (x)

=
∑

x∈VA(Q)

rψ(1, g) (Φ∞(·, z)⊗ rψ(hf , 1)Φf ) (x).

It is easy to see that this is automorphic for the orthogonal group: For all γ ∈ SO(VA)(Q), we have

θ?rψ (γz, γhf , g; Φf ) = θ?rψ (z, hf , g; Φf ).

By Poisson summation (see [46], [34, (1.22)]), we can also see that the functional is automorphic for the
symplectic group: For all γ ∈ SL2(Q), we have

θ?rψ (z, hf , γg; Φf ) = θ?rψ (z, hf , g; Φf ).

Using properties of rψ, we can also see that for any h′f ∈ SO(VA)(Af ) and any g′ ∈ SL2(A),

θ?rψ (z, hfh
′
f , gg

′; Φf ) = θ?rψ (z, hf , g; rψ(h′f , g
′)Φf ).(20)

In this way, we see that for any compact open subgroup UA ⊂ GSpin(VA)(Af ) and decomposable UA-
invariant Schwartz function Φ ∈ S(VA(Af ))U , the functional

(z, hf ) 7−→ θ?rψ (z, hf , g; Φf )

on (z, hf ) ∈ D±(VA) × GSpin(VA)(Af ) descends to a function on the corresponding Shimura variety
ShUA(GSpin(VA), D±(VA)). Although it is not holomorphic in the variable z ∈ D±(VA), we obtain a function

θ?rψ : ShUA(D±(VA),GSpin(VA))× SL2(Q)\SL2(A) −→
(
S(VA(Af ))UA

)∨
.

Extending to similitudes, we also obtain a function

θ?rψ : ShUA(D±(VA),GSpin(VA))×GL2(Q)\GL2(A) −→
(
S(VA(Af ))UA

)∨
.

As explained in [34, §1], we can view the Gaussian Φ∞ as an eigenfunction for the action of the maximal
compact subgroup SO2(R) ⊂ SL2(R), which for any k∞ ∈ SO2(R), z ∈ D±(VA), and h ∈ GSpin(VA)(A)
satisfies the relation rψ(k∞)Φ∞(x, z) = Φ∞(x, z). Using the transformation property (20), we can then
deduce that for all k∞ in the maximal compact subgroup SO2(R) of SL2(R) and all k in the maximal

compact subgroup K = SL2(Ẑ) of SL2(Af ), we have that

θ?rψ (z, hf , gk∞k; Φf ) = (rψ(k)∨)
−1 · θ?rψ (z, hf , g; Φf ),(21)

where rψ(k)∨ denotes the action of K on the space S(VA(Af ))K dual to its action on S(VA(Af ))K. In
particular, this theta kernel θ?rψ in the setting of quadratic spaces of signature (2, 2) as we consider has

weight zero under the action of the maximal compact subgroup SO2(R) ⊂ SL2(R).

4.4.3. Construction of the regularized theta lift. Suppose now that we fix any function

φ : SL2(Q)\ SL2(A) −→ S(VA(Af ))UA

which for each g ∈ SL2(A), k∞ ∈ SO2(R), and k ∈ K satisfies the transformation property

φ(gkk∞) = rψ(k)−1 · φ(g).

It is then easy to check that the C-linear pairing {·, ·} defined as a function on g ∈ SL2(A) by the rule{
φ(g), θ?rψ (z, hf , g)

}
:= θ?rψ (z, hf , g;φ(g))

is both left SL2(Q)-invariant and right K SO2(R)-invariant. We can then consider the regularized theta lift

ϑ?φ(z, hf ) :=

∫ ?

SL2(Q)\ SL2(A)

{
φ(g), θ?rψ (z, hf , g)

}
dg =

∫ ?

SL2(Q)\ SL2(A)

θ?rψ (z, hf , g;φ(g))dg,(22)

as well as its extension to similitudes as described above, both as functions on (z, h) ∈ ShU (D±(VA),GSpin(VA)).
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To describe the integrals
∫ ?

in (22) defining these regularized theta lifts more explicitly, we first give
semiclassical translation of the setup (cf. [34, §1]). Recall (see e.g. [21, Proposition 4.4.4] or [18]) that after
fixing a standard fundamental domain F = {τ = u+ iv ∈ H : |<(τ)| ≤ 1/2, ττ ≥ 1} for the action of SL2(Z)
on H, each adelic matrix g ∈ SL2(A) can be expressed uniquely as a product

g = γ ·
(

1 u
1

)
·
(
v

1
2

v−
1
2

)
· k(23)

for some γ ∈ SL2(Q), τ = u + iv ∈ F , and k ∈ SO2(R). Taking the decomposition (23) for granted, let us
define for a given g ∈ SL2(A) the corresponding matrix

gτ :=

(
1 u

1

)(
v

1
2

v−
1
2

)
.

Similarly, fixing a standard fundamental domain G = {τ = u+ iv : 0 ≤ |<(τ)| ≤ 1/2, ττ ≥ 1} for the action
of GL2(Z) on GL2(R), each element g ∈ GL2(A) can be decomposed uniquely as as a product of matrices

g = γ ·
(

1 u
1

)
·
(
v

1

)
· k(24)

for some γ ∈ GL2(Q), τ = u + iv ∈ G, and k ∈ O2(R). Taking such a decomposition (24) for granted, we
also define for a given g ∈ GL2(A) the corresponding archimedean mirabolic matrix

gτ :=

(
1 u

1

)(
v

1

)
.

Given a weight-zero L2-automorphic form φ on SL2(Q)\SL2(A) or more generally GL2(Q)\GL2(A), we
shall write f(τ) := φ(gτ ) to denote the corresponding weight-zero Maass form on τ = u+ iv ∈ H.

Suppose now that (ρ,V) is a representation of the maximal compact subgroup K = SL2(Ẑ) ⊂ SL2(Af ).
Fix φ : SL2(Q)\SL2(A) −→ V a weight-zero automorphic form satisfying φ(gk∞k) = ρ(k)φ(g) for all
g ∈ SL2(A), k ∈ K, and k∞ ∈ SO2(R). Given γ ∈ SL2(Z), we write kγ to denote the unique lifting kγ ∈ K
determined by the diagonal embedding. We know that the weight-zero Maass form defined by f(τ) := φ(gτ )
satisfies the following transformation law: For all γ ∈ SL2(Z), we have f(γ(τ)) = ρ(kγ)f(τ). We can proceed
in the same way for the more general setting with φ : GL2(Q)\GL2(A) −→ V and automorphic form

of weight zero, satisfying φ(gk∞k) = ρ(k)φ(g) for all g ∈ GL2(A), k ∈ K = GL2(Ẑ) ⊂ GL2(Af ), and
k∞ ∈ O2(R). Thus, the corresponding weight-zero form defined by f(τ) = φ(gτ ) satisfies the transformation
law f(γ(τ)) = ρ(kγ)f(τ) for all γ ∈ GL2(A), with kτ the unique lift to K via the diagonal embedding. Using
these semiclassical notations, the regularized theta integral (22) can be expressed more concretely as

(25)

ϑ?φ(z, hf ) = ϑ?f (z, hf ) =

∫ ?

SL2(Z)\H

{
f(τ), θ?rψ0

(z, hf , gτ )
} dudy

v2

=

∫ ?

SL2(Z)\H
θ?rψ0

(z, hf , gτ ; f(τ))
dudv

v2
,

where the symbol
∫ ?

denotes the regularized theta integral. To describe this more explicitly, let us write
CTs=0 F (s) to denote the constant term in the Laurent series expansion around s = 0 of a function F (s) in
s ∈ C. Then, the regularized theta integral is given more explicitly by the constant terms∫ ?

SL2(Z)\H

{
f0(τ), θ?rψ (z, hf , gτ )

} dudy
v2

= CTs=0

{
lim−→
T

∫
FT

{
f(τ), θ?rψ (z, hf , gτ )

}
v−s

dudv

v2

}

= CTs=0

{
lim−→
T

∫
FT

θ?rψ (z, hf , gτ ; f(τ))v−s
dudv

v2

}
,

where the limits again are taken over the truncated fundamental domains

FT := {τ = u+ it ∈ H : |u| ≤ 1/2, ττ ≥ 1, and v ≤ T} .
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4.4.4. Harmonic weak Maass forms. We now consider SΛA -valued harmonic weak Maass forms. Let (ρΛA ,VA)
be the conjugate Weil representation on SΛA , that is ρΛA(γ) = rψ,ΛA(kγ) = rψ,−ΛA(gγ) for γ ∈ Γ = SL2(Z)

and its corresponding diagonal image kγ ∈ K = SL2(Ẑ) (cf. [8, (2.7)]). Suppose first that k ∈ Z is any integer
weight; we shall later specialize to the case of k = 0. Let |k,ρΛA

denote the Petersson weight k operator with

respect to ρΛA , defined on a function f on Γ\H by the rule

f |k,ρΛA
(γ(τ)) = (cτ + d)k · ρΛA(γ) · f(τ) for all γ =

(
a b
c d

)
∈ Γ.

Let ∆k denote the hyperbolic Laplacian of weight k, defined for τ = u+ iv ∈ H by

∆k := −v2

(
∂2

∂u2
+

∂2

∂v2

)
+ ik

(
∂

∂u
+ i

∂

∂v

)
.

Note that this Laplacian can be expressed in terms of the respective weight k Maass weight raising and
lowering operators Rk and Lk as −∆k = Lk+2Rk + k = Rk−2Lk, where

Rk = 2i · ∂
∂τ

+ k · v−1(26)

denotes the Maass weight raising operator of weight k (which raises the weight by 2), and

Lk = −2iv2 · ∂
∂τ

(27)

denotes the Maass lowering operator (which lowers the weight k by 2).

Definition 4.3. Fix an integer k ≤ 1, and a lattice ΛA ⊂ VA with corresponding subspace SΛA ⊂ S(VA(A))).
A twice differentiable function f : H −→ SΛA is a harmonic weak Maass form of weight k with respect to
Γ = SL2(Z) and representation ρΛA if:

(i) The function is invariant under the Petersson weight-k operator: f |k,ρΛA
γ = f for all γ ∈ Γ.

(ii) There exists an SΛA-valued Fourier polynomial

Pf (τ) =
∑

µ∈Λ#
A/ΛA

∑
m≤0

c+f (µ,m)e(mτ)1µ

such that f(τ) = Pf (τ) +O(e−εv) as v = =(τ)→∞ for some ε > 0.

(iii) The function is harmonic of weight k, i.e. ∆kf = 0.

We write Hk,ρΛA
for the vector space of such functions, and call the polynomial Pf (τ) the principal part of

f . In the special case where we take the representation ρΛA to be the Weil representation rψ,ΛA , we shall
sometimes write Hk,ΛA = Hk,ρΛA

for simplicity.

Recall that the Fourier series expansion of any weak harmonic Maass form f ∈ Hk,ρΛA
decomposes

uniquely as the sum f(τ) = f+(τ) + f−(τ), where

f+(τ) :=
∑

µ∈Λ#
A/ΛA

∑
m∈Q
m�−∞

c+f (µ,m)e(mτ)1µ

is the holomorphic part, and

f−(τ) :=
∑

µ∈Λ#
A/ΛA

∑
m∈Q
m<0

c−f (µ,m)Wk(2πmv)e(mτ)1µ,

for Wk(a) :=
∫∞

2a
e−tt−kdt = Γ(1− k, 2|a|) for a < 0 is the non-holomorphic part.

We consider the subspace M !
k,ρΛA

⊂ Hk,ρΛA
of such weakly holomorphic forms, these being meromorphic

modular functions whose poles are supported at the cusps. As explained in [8, §3], there is an antilinear
differential operator ξk taking Hk,ρΛA

to the space S2−k,ρΛA
of holomorphic forms of weight 2 − k with

23



respect to Γ and ρΛA , these forms being defined in the analogous way with f = f+ for each f ∈ S2−k,ρΛA
.

This operator ξk can be defined explicitly as follows: We have an exact sequence of C-vector spaces

0 −−−−→ M !
k,ρΛA

−−−−→ Hk,ρΛA

ξk−−−−→ S2−k,ρΛA
−−−−→ 0,(28)

where the map ξk : Hk,ρΛA
−→ Sk−2,ρΛA

is defined by

f(τ) 7→ ξkf(τ) := vk−2Lkf(τ).

Here, the Petersson inner product 〈·, ·〉 induces a bilinear pairing

{·, ·} : M2−k,ρΛA
×Hk,ρΛA

−→ C, {g, f} := 〈g, ξk(f)〉.

By [7, Proposition 3.5] (cf. [8, § 3.1]), given g ∈M2−k,ρΛA
with Fourier series expansion

g(τ) =
∑

µ∈Λ#
A/ΛA

∑
m≥0

cg(µ,m)e(mτ),

the pairing against a harmonic weak Maass form f ∈ Hk,ρΛA
with expansion as described above is given by

{g, f} = 〈ξk(f), g〉 =
∑

µ∈Λ#
A/ΛA

∑
m≤0

c+f (µ,m)cg(µ,−m).

In particular, his implies that {g, f} depends only on the principal part Pf (τ) of f . We also deduce from
the exactness of (28) that this pairing {·, ·} between S2−k,ρΛA

and Hk,ρΛA
/M !

k,ρΛA
is nondegenerate. Given

f ∈ Hk,ρΛA
with constant principal part Pf (τ), it is known that f must be a holomorphic modular form

f ∈Mk,ρΛA
(see [8, Lemma 3.3]).

4.4.5. Theorems of Borcherds, Bruinier, and Howard-Madapusi Pera. Let us now return to the case of weight
k = 0 we consider. We can define the regularized theta lift ϑ?f0

(z, hf ) for any harmonic weak Maass form
f0 ∈ H0,ΛA as

ϑ?f0
(z, hf ) =

∫ ?

SL2(Z)\H
〈〈f0(τ), θΛA(τ)〉〉dudv

v2
= CTs=0

{
lim
T→∞

∫
FT
〈〈f0(τ), θΛA(τ)〉〉v−s dudv

v2

}
.

Here, for each hf ∈ GSpin(VA)(Af )/UA, we realize the theta kernel described above more concretely in
terms of the Siegel theta series

θΛA(τ, z, hf ) : H×D±(VA) −→ SΛA

determined by

θΛA(τ, z, hf ) =
∑

µ∈Λ#
A/ΛA

θ?rψ,ΛA(z, hf , gτ ; 1µ).

When f0,A ∈M !
0,ΛA

is a weakly holomorphic form, the regularized theta lift ϑ?f0,A
(z, hf ) for the space (VA, qA)

of signature (2, 2) can be computed by a theorem of Borcherds [4, Theorem 13.3] (cf. [34, Theorem 1.2]) as

ϑ?f0,A
(z, hf ) = −2 log |Ψf0,A

(z, hf )|2A − c+f0,A
(0, 0) · (2 log |y|A + Γ′(1)) .

Here, Ψf0,A
is a meromorphic form on D±(VA) × GSpin(VA)(Af ) of weight k = c+f0,A

(0, 0)/2 known as

the Borcherds product associated to f0,A. Moreover, Borcherds [4] computed the divisor Div(Ψ2
f0,A

) of this

meromorphic function Ψf0,A
explicitly in terms of the Fourier coefficients of f0,A and the special divisors

ZA(m,µ) of Definition (4.2) above. The subsequent theorem of Howard-Madapusi Pera [27, Theorem 9.1.1]
shows that the Borcherds product Ψf0,A

(z, hf ) takes algebraic values, so that the regularized theta lift

ϑ?f0,A
(z, hf ) attached to any weakly holomorphic form f0,A ∈ M !

0,ΛA
is seen to take values in logarithms of

algebraic numbers (and hence in the ring of periods). To be more precise, given a weakly holomorphic form
f0,A ∈M !

0,ΛA
with holomorphic part

f+
0,A(τ) =

∑
µ∈Λ#

A/ΛA

f+
0,A(τ)1µ =

∑
µ∈Λ#

A/ΛA

∑
m∈Q
m�−∞

c+f0,A
(µ,m)e(mτ)1µ,
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whose Fourier coefficients c+fA,0(µ,m) ∈ Z are integers, let us define the corresponding divisor

Z(f0,A) =
∑

µ∈Λ#
A/ΛA

∑
m∈Q
m>0

c+f0,A
(µ,−m)ZA(µ,m).

Note that in the special case where f0,A ∈ M0,ΛA ⊂ M !
0,ΛA

is holomorphic, we have that f0,A = f+
0,A, and

hence cf0,A
(µ,m) = c+f0,A

(µ,m) for each of the coefficients in the Fourier series expansion. As explained

in [34] and [27], we consider the metrized line bundle ω̂ ∈ P̂ic (ShUA(D±(VA),GSpin(VA))) of modular
forms of weight one, which under the complex uniformization of ShUA(D±(VA),GSpin(VA)) pulls back to
the tautological line bundle on D±(VA). Now, the Shimura varieties ShUA(D±(VA),GSpin(VA)) we consider
have regular, flat integral models ShUA(D±(VA),GSpin(VA)) −→ Spec(Z). The metrized line bundle ω̂ and
the special divisors Z(µ,m) both extend in a natural way to ShUA(D±(VA),GSpin(VA)).

Theorem 4.4 (Borchards, Howard-Madapusi Pera). Let f0,A ∈ M !
0,ΛA

be a weakly holomorphic form

with integral Fourier coefficients c+f0,A
(µ,−m) for all µ ∈ Λ#

A/ΛA and m ∈ Q>0. Replacing f0,A by a

suitable integer multiple if needed, there exists a rational section Ψf0,A
of the line bundle ω

c+f0,A
(0,0)

on
ShUA(D±(VA),GSpin(VA)) whose norm under the metric defined by

||z||A =
(z, z)A
4πeγ

=
QA(z + z)−QA(z)−QA(z)

4πeγ

satisfies the relation

−2 log ||Ψf0,A
(z, h)||A = ϑ?f0,A

(z, h)

for all (z, h) ∈ D±(VA)×GSpin(VA)(Af ). Hence by Borcherds’ theorem, we have that

Div(Ψf0,A
) = Z(f0,A) =

∑
µ∈Λ#

A/ΛA

∑
m∈Q>0

c+f0,A
(µ,−m) · ZA(m,µ).

In particular, the Borcherds product is defined over Q, from which we deduce that it takes algebraic values.

Proof. See [27, Theorem 9.1.1], which refines [4, Theorem 13.3], cf. [34, Theorem 1.2]. �

We have the following generalization when f0,A ∈ H0,−ΛA is not a weakly holomorphic form:

Theorem 4.5 (Borcherds, Bruinier). Let f0,A ∈ H0,−ΛA be a harmonic weak Maass form of weight 0 and rep-
resentation rψ,−ΛA . The regularized theta lift ϑ?f0,A

is a smooth function on ShUA(D±(VA),GSpin(VA))\Z(f0,A),

with a logarithmic singularity along −2 logZ(f0,A). Moreover:

• The (1, 1) form ddcϑ?f0,A
(z, h) has an analytic continuation to a smooth form on ShUA(D(VA)±,GSpin(VA)),

and satisfies the Green current equation ddc[ϑ?f0,A
(z, h)] + δZ(f0,A) = [ddcϑ?f0,A

(z, h)]. Here, δZ(f0,A)

denotes the Dirac current of the divisor Z(f0,A).

• The regularized theta lift ϑ?f0,A
is an eigenfunction for the generalized Laplacian operator ∆z defined

on z ∈ D(VA), with eigenvalue c+f0,A
(0, 0)/2.

In particular, the regularized theta lift ϑ?f0,A
can be identified with the automorphic Green’s function GZ(f0,A)

for the divisor Z(f0,A), giving an arithmetic divisor Ẑ(f0,A) = (Z(f0,A), ϑ?f0,A
) on ShUA(D±(VA),GSpin(VA)).

Proof. See [8, Theorems 4.2 and 4.3] and [6], as well as [7, Proposition 5.6, Theorem 6.1, Theorem 6.2]. As
explained in [8, Theorem 4.3] and [5, Corollary 4.22], the difference GZ(f0,A)(z, h)−ϑ?f0,A

(z, h) can be viewed

as a smooth subharmonic function on ShUA(D±(VA),GSpin(VA))(C) which is contained in the Hilbert space
L1+ε(ShUA(D±(VA),GSpin(VA)), dµ). The theorem of Yau [47] shows that such a function is constant. For
the case of holomorphic forms due to Borcherds, see also [4, Theorem 13.3] and [34, Theorem 1.3]. �
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4.5. Choice of harmonic weak Maass form. We choose the harmonic weak Maass form f0,η,A ∈ H0,ρΛA

so that the cuspidal form gA,η = ξ0(f0,η,A) ∈ S2,ρΛA
is the canonical lift in the sense of Theorem 4.6 below

of the twisted eigenform f ⊗ η ∈ S2(Γ0(d2
KN), η). Here again, f ∈ S2(Γ0(N)) denotes the cuspidal newform

parametrizing E/Q, and η = ηK/Q =
(
dK
·
)

the even Dirichlet character associated K. For simplicity, we
assume that (N, dK) = 1. That is, we have the following relation to scalar-valued forms (cf. [8, §3]).

Theorem 4.6. Let us retain the setup described above with (VA, QA) a quadratic space of type (2, 2). Let
ΛA ⊂ VA be the lattice associated to the compact open subgroup UA of GSpin(VA)(Af ) described by (9) via
(8). Let η denote the extension of the quadratic Dirichlet character η = ηK/Q to a character of Γ0(d2

KN),

with fη = f ⊗ η ∈ S2(Γ0(d2
KN), η) the twisted cusp form having the Fourier series expansion

fη(τ) = (f ⊗ η)(τ) =
∑
m≥1

cf (m)η(m)e(mτ).

There exists an SΛA-valued modular form gη of weight 2, determined canonically as the lifting of fη defined
in [49], whose Fourier series expansion is given by

gη(τ) =
∑

µ∈Λ#
A/ΛA

gη,µ(τ)1µ, where gη,µ(τ) =
∑
m∈Q

m≡d2
K
NQA(µ) mod (d2

K
N)

cf (m)η(m)s(m)e

(
mτ

d2
KN

)
.

Here, s(m) denotes the function defined on each class m mod dKN by s(m) = 2Ω(m,d2
KN), where Ω(m, d2

KN)
denotes the number of divisors of the greatest common divisor (m, d2

KN).

Proof. This is a special case of [49, Theorem 4.15], adapted to match the setup of [8, p. 639, Lemma 3.1]. �

Observe from the Fourier series expansion described in Theorem 4.6 above that f0,η,A must be cuspidal,
and hence that the corresponding regularized theta lift ϑ?f0,η,A

is annihilated by ∆z. That is, the Green’s

function ϑ?f0,η,A
for the divisor ZA(f0,η,A) is a Laplacian eigenvector of eigenvalue 0 by Theorem 4.5:

Corollary 4.7. The regularized theta lift ϑ?f0,η,A
is annihilated by the generalized Laplacian operator ∆z.

Hence, the automorphic Green’s function GZ(f0,η,A) =ϑ?f0,η,A
is harmonic with respect to ∆z.

4.6. Langlands Eisenstein series and the Siegel-Weil formula. Let us now record some special cases
of the Siegel-Weil formula for our later calculations of averages over the subspaces Z(VA,2) associated to the
anisotropic subspaces (VA,2, QA,2). We first introduce Langlands Eisenstein series and review the relevant
Siegel-Weil formula abstractly following [34, Theorem 4.1] and [8, Theorem 2.1]. We then give a more
arithmetic description of the vector-valued Siegel theta and Eisenstein series.

Recall we introduced the anisotropic subspaces (VA,j , QA,j) of signature (1, 1). Let us temporarily write
(V0, Q0) to denote the ambient quadratic space (VA, AA) of signature (2, 2), so that (Vj , Qj) for j = 0, 1, 2
can denote any of these three spaces. In each case, we write rψ,j : SO(Vj)(A) × SL2(A) −→ S(Vj(A)) to
denote the corresponding (restriction of the) Weil representation rψ : SO(VA)(A)× SL2(A) −→ S(VA(A)),
with θrψ,j the corresponding theta kernel defined on h ∈ SO(Vj)(A), g ∈ SL2(A) and Φ ∈ S(Vj(A)) by

θrψ,j (h, g; Φ) =
∑

x∈Vj(Q)

rψ,j(h, g)Φ(x).

We now consider the associated Langlands Eisenstein series. Recall that we write K = SL2(Ẑ) to denote
the maximal compact subgroup of SL2(Af ). To describe this, we shall use the Iwasawa decomposition

SL2(A) = N2(A)M2(A)K SO2(R),(29)

with standard shorthand matrix notations

n(b) =

(
1 b

1

)
∈ N2(A), m(a) =

(
a 0
0 a−1

)
∈M2(A), k(θ) =

(
cos θ − sin θ
sin θ cos θ

)
∈ SO2(R).

Let χVj denote the idele class character of Q defined on x ∈ A×/Q× by the formula χVj (x) = (x, det(Vj))A,
where (·, ·)A denotes the Hilbert symbol on A, and det(Vj) the Gram determinant. Writing s ∈ C to denote a
complex parameter, let I(s, χVj ) denote the corresponding principal series representation of SL2(A) induced
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by the quasi-character χVj | · |s. This consists of all smooth (decomposable) functions ϕ(g, s) on g ∈ SL2(A)
and s ∈ C satisfying

ϕ(n(b)m(a)g, s) = χVj (a)|a|s+1ϕ(g, s)

for all b ∈ A and a ∈ A×. Note that SL2(A) acts on the space I(s, χVj ) by right translations. Writing
s0(Vj) := dim(Vj)/2− 1, there is an SL2(A)-intertwining map

λ : S(Vj(A)) −→ I(s0(Vj), χVj ), Φ 7→ λ(Φ)(g) := (rψ,j(g)Φ)(0).

A section ϕ = ϕ(g, s) ∈ I(s, χVj ) is said to be standard if its restriction to the maximal compact subgroup
K SO2(R) does not depend on s ∈ C. As explained in [8, § 2.1], using the Iwasawa decomposition, we
deduce that λ(Φ) ∈ I(s0(Vj), χVj ) has a unique extension to a standard section λ(Φ, s) ∈ I(s, χVj ) for which
λ(Φ, s0(Vj)) = λ(Φ). Given any standard section ϕ = ϕ(g, s) ∈ I(s, χVj ), and writing P = N2M2 ⊂ SL2 to
denote the standard parabolic subgroup, we then consider the Eisenstein series defined by

E(g, s;ϕ) = Erψ,j (g, s;ϕ) =
∑

γ∈P (Q)\ SL2(Q)

ϕ(γg, s).

We can now state the following special case(s) of the Siegel-Weil formula in this setting.

Theorem 4.8 (Siegel-Weil). Let (Vj , Qj) for j = 0, 1, 2 denote any of the quadratic spaces introduced above.
We have for any g ∈ SL2(A) and decomposable Schwartz function Φ ∈ S(Vj(A)) the average formula

κ ·
∫

SO(Vj)(Q)\ SO(Vj)(A)

θrψ,j (h, g; Φ)dh = Erψ,j (g, s0, λ(Φ)),

where

κ =

{
1 if dim(Vj) > 2

2 if dim(Vj) ≤ 2
and s0 = s0(Vj) =

dim(Vj)

2
− 1.

Moreover, the Eisenstein series Erψ,j (g, s, λ(Φ)) in each case j = 0, 1, 2 is holomorphic at s = s0.

Proof. See [34, Theorem 4.1], and more generally [36, § I.4]. �

Let us now consider the following more explicit version of Theorem 4.8. We first describe the theta kernel
θrψ,j and Eisenstein series Erψ,j in terms of vector-valued modular forms. Following [8, § 2.1], we can for any

integer weight l ∈ Z consider the unique standard section Φl∞(s) ∈ I∞(s, χV0) for which

Φl∞(k(θ), s) = exp(ilθ)(30)

In terms of the Iwasawa decomposition (29), this section also satisfies the transformation property

Φl∞(n(b)m(a)k(θ), s) = χV0
(a)|a|s+1 exp(ilθ)(31)

for all n(b) ∈ N2(A), m(a) ∈ M2(A), and k(θ) ∈ SO2(R). We shall use the same notation to denote the
restriction to each of the subspaces Φl∞ = Φl∞(s) ∈ I(s, χVj ).

Following the discussion in [8, (2.15)], we deduce from our definition of the weight zero Gaussian function
Φ∞ ∈ S(V0(R))⊗ C∞(D±(V0)) that we have the relation

λ∞(Φ∞) = λ∞(Φ∞(·, z)) = Φ
p(V0)−q(V0)

2∞ (s0(V0)) = Φ0
∞(1) ∈ I∞(1, χV0

).(32)

Here, (p(Vj), q(Vj)) denotes the signature of any of the spaces Vj . We remark that each of the quadratic spaces
Vj we consider leads to looking at an Eisenstein series of weight k = k(Vj) = (p(Vj)−q(Vj))/2 = 0. We know
that (32) has a unique extension to a standard section Φ0

∞(s) ∈ I∞(s, χV0
) so that Φ0

∞(s0(V0)) = λ∞(Φ∞).
We can restrict this section Φ0

∞ = Φ0
∞(s) ∈ I(s, χV0

) naturally to each of the subspaces Vj with j = 1, 2.
Again, we shall use the same notations to denote each of these restrictions Φ0

∞ = Φ0
∞(s) ∈ I(s, χVj ).

Given any even lattice Λj ⊂ Vj , and writing λf to denote the finite component of the standard section
λ(Φ) = λ(Φ, s) ∈ I(s, χVj ) described above, we consider the corresponding SΛj -valued Eisenstein series of
weight k = 0 defined on τ = u+ iv ∈ H and s ∈ C by

EΛj (τ, s; 0) :=
∑

µ∈Λ#
j /Λj

Erψ,j (gτ , s; Φ0
∞ ⊗ λf (1µ)) · 1µ.
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We consider the SΛj -valued theta function defined on τ = u+ iv ∈ H, z ∈ D±(Vj), and hf ∈ GO(Vj)(A) by

θΛj (τ, z, h) :=
∑

µ∈Λ#
j /Λj

θ?rψ,j (z, hf , gτ ; 1µ) · 1µ.(33)

Theorem 4.9 (Siegel-Weil for SΛj -valued forms). We have the identification of functions of τ ∈ H:

κ ·
∫

SO(Vj)(Q)\ SO(Vj)(A)

θΛj (τ, z, hf ) = EΛj (τ, s0, k) = EΛj (τ, s0(Vj); k(Vj)).

Here again, s0 = s0(Vj) := dim(Vj)/2− 1, and k = k(Vj) := (p(Vj)− q(Vj))/2 = 0.

Proof. Cf. [8, Proposition 2.2], and note that we deduce this from Theorem 4.8 with (30) and (32). �

4.7. Eisenstein series and Maass weight-raising operators. As preparation for our later calculations,
let us also give the following more classical descriptions of the Eisenstein series appearing in Theorem 4.9,
with relations to the Maass raising and lowering operators Rl, Ll introduced above for any integer l. We
remark that these are not incoherent Eisenstein series in the sense of Kudla. We also use the same notational
conventions with the three spaces (Vj , qj), j = 0, 1, 2 as in our discussion of the Siegel-Weil theorem above.

Here, we take for granted the definition of the matrix gτ for τ = u+iv ∈ H in the unique decomposition (23)
above via the Iwasawa decomposition for SL2(A), also as described above in (29). Following the discussion
in [8, § 2.2], we consider elements of SL2(A) of the form

γ · gτ = n(β) ·m(α) · k(θ) for γ =

(
a b
c d

)
∈ Γ = SL2(Z), β ∈ R, α ∈ R>0, k(θ) ∈ SO2(R).

A direct calculation shows that

α = v
1
2 · |cτ + d|−1, exp(iθ) =

cτ + d

|cτ + d|
,

so that substituting into (31) gives us

Φl∞(γgτ , s) = v
s
2 + 1

2 (cτ + d)−l|cτ + d|l−s−1.

Hence, writing Γ∞ = P (Q) ∩ Γ for Γ = SL2(Z) as above, we find that

Erψ,2(gτ , s; Φl∞ ⊗ λf (1µ)) =
∑

γ∈Γ∞\Γ

(cτ + d)−l
v
s
2 + 1

2

|cτ + d|s+1−l · λf (1µ)(γ)

=
∑

γ∈Γ∞\Γ

(cτ + d)−l
v
s
2 + 1

2

|cτ + d|s+1−l · 〈1µ, (r
−1
ψ0,j

(γ)10)〉,

where 〈·, ·〉 here denotes the L2 inner product on SΛj . In this way, we find that the vector-valued Eisenstein
series we considered above can be written classically as

EΛj (τ, s; l) =
∑

γ∈Γ∞\Γ

[
=(τ)

(s+1−l)
2 10

] ∣∣∣∣
l,ρΛj

γ,(34)

where |l,ρΛj
again denotes the Petersson weight-l slash operator for ρΛj .

4.7.1. Eisenstein series associated to the anisotropic subspaces. Let us now say more about the Eisenstein
series associated to the lattices ΛA,2 = ΛA∩VA,2 in the signature (1, 1) subspace VA,2 = (VA,2, QA,2). Writing
da to denote the different of the integer ideal representative a ⊂ OK of the class A = [a], with inverse different

d−1
a = {λ ∈ a : Tr(λa) ∈ Z}, we have Λ#

A,2
∼= d−1

a ∩ ΛA,2 and Λ#
A,2/ΛA,2

∼= (d−1
a ∩ ΛA,2)/ΛA,2. We can also

identify χVA,2 = η = ηK with the quadratic Dirichlet character ηK(·) =
(
dK
·
)
. Writing

Λ(s, η) = d
s
2

KΓR(s+ 1)L(s, η), ΓR(s) := π−
s
2 Γ
(s

2

)
to denote its corresponding completed L-function, we consider the completed Eisenstein series defined by

E?ΛA,2(τ, s) := Λ(s+ 1, η)EΛA,2(τ, s).
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Proposition 4.10. The Eisenstein series E?ΛA,2(τ, s) has a meromorphic continuation to all s ∈ C, and

satisfies the symmetric functional equation E?ΛA,2(τ, s) = E?ΛA,2(τ,−s).

Proof. See the proof of [8, Proposition 2.5] or more generally [11, Theorem 3.7.2]. We deduce this in a more
straightforward way from the Langlands functional equation for the (coherent) Eisenstein series

EΛA,2(τ, s) = EΛA,2(τ, s; 0) =
∑

µ∈Λ#
A,2/ΛA,2

E(gτ , s,Φ
0
∞ ⊗ λf (1µ)) =

∑
γ∈Γ∞\Γ

[
=(τ)

(s+1)
2 10

] ∣∣∣∣
0,ρΛA,2

γ.

To be more precise, it will suffice to prove the functional equation for each of the Langlands Eisenstein
series E(gτ , s,Φ

0
∞ ⊗ λf (1µ)) = Erψ,2(gτ , s,Φ

0
∞ ⊗ λf (1µ)). Let us write the Euler product decomposition

of Λ(s, η) = Λ(s, ηD) as Λ(s, η) =
∏
v≤∞ L(s, ηv). Let us also for simplicity write Φµ = λf (1µ) for the

nonarchimedean part of our chosen global section ϕ = Φ0
∞ ⊗ λf (1µ) ∈ I(s, χVA,2) = I(s, η). Given any

standard section ϕ = ϕ(s) ∈ I(s, η) and g ∈ SL2(A), the Langlands functional equation implies that

E(g, s;ϕ) = E(g,−s;M(s)ϕ)

for M(s) =
∏
v≤∞Mv(s) : I(s, η) → I(s, η) the global intertwining operator. Recall that for <(s) � 0

sufficiently large, each of the local intertwining operators Mv(s) : Iv(s, η)→ Iv(s, η) is given by the formula

Mv(s)ϕv(g, s) =

∫
Qv

ϕv(wn(b)g, s)db, w :=

(
−1

1

)
for ϕv in the local principal series representation Iv(s, η). At the real place v =∞, it is well-known that

M∞(s)Φ0
∞(g, s) = C∞(s)Φ0

∞(g,−s), C∞(s) = γ∞(VA,2) · ΓR(s+ 1)

ΓR(s+ 1)
.

Here, γ∞(VA,2) = 1 denotes the local Weil index for the representation rψ,ΛA,2 of SO(VA,2)× SL2(R) acting
on S(V (R)) associated to the signature (1, 1) lattice ΛA,2. At finite places v - dK∞, is also well-known that

Mv(s)Φµ(g, s) = Cv(s)Φ
0
µ(g,−s), Cv(s) =

L(s, ηv)

L(s+ 1, ηv)
.

For the remaining finite places v | dK , we can use the same computation of the local intertwining operators
Φµ given in [8, Proposition 2.5] to show that

Mv(s)Φµ(g, s) = γv(VA,2) vol(ΛA,2,v)Φµ(g,−s),

where γv(VA,2) is the local Weil index, and vol(ΛA,2,v) = [Λ#
A,2,v : ΛA,2,v]

− 1
2 is the measure of ΛA,2,v with

respect to the self-dual Haar measure on ΛA,2,v for the local additive character ψv. Combining the previous
local functional equations with the product formulae∏

v|dK

vol(ΛA,2,v) = d
− 1

2

K ,
∏
v≤∞

γv(VA,2) = 1,

we then obtain the global functional equation

E(g, s,Φ0
∞ ⊗ Φµ) =

Λ(s, η)

Λ(s+ 1, η)
· E(g,−s,Φ0

∞ ⊗ Φµ).

Using the classical (Dirichlet) functional equation Λ(s, η) = Λ(1− s, η), we then deduce the claim. �

4.7.2. Maass weight raising and lowering operators. Recall that we defined the Maass weight raising and
lowering operators Rl and Ll in (26) and (27) above. These operators raise and lower the weights of these
Eisenstein series by two respectively. To be more precise, it is easy to check from the definitions that

LlEΛj (τ, s; l) =
1

2
· (s+ 1− l) · EΛj (τ, s; l − 2),

RlEΛj (τ, s; l) =
1

2
· (s+ 1 + l) · EΛj (τ, s : l + 2).
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We refer to [34, Proposition 2.7] and [8, Lemma 2.3] for details. Here, we have for the Eisenstein series
corresponding to our signature (1, 1) subspace V2 that

(35) L2EΛ2
(τ, s; 2) =

1

2
· (s− 1) · EΛ2

(τ, s; 0).

Observe that the Eisenstein series EΛ2
(τ, s; 0) is holomorphic at s = s0 = s0(V2) := dim(V2)/2 − 1 = 0

thanks to Siegel-Weil, Theorem 4.8 (cf. Corollary 4.9). It follows that at s = 0, we have the identity

L2EΛ2
(τ, 0; 2) = −1

2
· EΛ2

(τ, 0; 0).(36)

Now, taking the first derivative with respect to s on each side of (35) we get

L2E
′
Λ2

(τ, s; 2) =
1

2
· (s− 1) · E′Λ2

(τ, s; 0) +
1

2
· EΛ2(τ, s; 0).

Evaluating this identity at s = 0 gives us

L2E
′
Λ2

(τ, 0; 2) =
1

2
· EΛ2

(τ, 0; 0)− 1

2
· E′Λ2

(τ, 0; 0)

and hence

(37) 2L2E
′
Λ2

(τ, 0; 2) = EΛ2
(τ, 0; 0)− E′Λ2

(τ, 0; 0).

Let ∂ and ∂ denote the Dolbeault operators, so that the exterior derivative on differential forms on H is
given by d = ∂ + ∂. We also write dµ(τ) = dudv

v2 for τ = u+ iv ∈ H. We have the following useful relation.

Lemma 4.11. The weight-lowering operator Ll can be described in terms of differential forms as

∂(fdτ) = −v2−lξl(f)dµ(τ) = −Llfdµ(τ).

Proof. See [16, Lemma 2.5] (cf. [8, Lemma 2.3]). �

We now derive the following result for later use.

Proposition 4.12. We have that E′Λ2
(τ, 0; 0) = 0, and hence via (37) that −2L2E

′
Λ2

(τ, 0; 2) = −EΛ2(τ, 0; 0).
Expressed equivalently in terms of differential forms via Lemma 4.11, we obtain the relation

−2L2E
′
Λ2

(τ, 0; 2)dµ(τ) = 2∂
(
E′Λ2

(τ, 0; 2)dτ
)

= −EΛ2
(τ, 0; 0)dµ(τ),

equivalently

(38) EΛ2
(τ, 0; 0)dµ(τ) = −2∂

(
E′Λ2

(τ, 0; 2)dτ
)
.

Proof. We know by the Siegel-Weil formula (Theorem 4.9) that the Eisenstein series EΛ2
(τ, s; 0) is analytic at

s = 0. Hence, EΛ2
(τ, s; 0) and its derivatives with respect to s are analytic at s = 0. This implies, for instance,

that the values EΛ2
(τ, 0; 0) and E′Λ2

(τ, 0; 0) are defined and finite, and that we can expand EΛ2
(τ, s; 0) into

its Taylor series expansion around s = 0. Now, we know from the discussion of Proposition 4.10 that
the Eisenstein series EΛ2(τ, 0; 0) associated to the signature (1, 1) lattice Λ2 has an analytic continuation
E?Λ2

(τ, s) = E?Λ2
(τ, s; 0) to all s ∈ C which satisfies an even functional equation E?Λ2

(τ, s) = E?Λ2
(τ,−s).

Comparing the corresponding Taylor series expansions around s = 0 as we may, we then see that for any
s ∈ C with 0 ≤ <(s) < 1 we have the relation

E?Λ2
(τ, 0) + E?′Λ2

(τ, 0)s+O(s2) = E?Λ2
(τ, 0)− E?′Λ2

(τ, 0)s+O(s2),

equivalently

E?′Λ2
(τ, 0)s+O(s2) = −E?′Λ2

(τ, 0)s+O(s2).

Taking the limit as <(s)→ 0, we then see that E?′Λ2
(τ, 0) must vanish, and hence that E′Λ2

(τ, 0; 0) = 0. �

Let us now consider the Fourier series expansion of the Eisenstein series

EΛ2
(τ, s; 2) =

∑
µ∈Λ#

2 /Λ2

∑
m∈Q

AΛ2
(s, µ,m, v)e(mτ)1µ.
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We can use8 the discussion in Kudla [34, §2] (cf. [8, § 2.2]) to show that the Laurent series expansions of
each of the Fourier coefficients AΛ2(s, µ,m, v) around s = 0 takes the form

AΛ2
(s, µ,m, v) = aΛ2

(µ,m) + bΛ2
(µ,m, v)s+O

(
s2
)
,(39)

and deduce that the corresponding derivative Eisenstein series at s = 0 has the Fourier series expansion

(40)
E′Λ2

(τ, 0; 2) =
∑

µ∈Λ#
2 /Λ2

∑
m∈Q

bΛ2
(µ,m, v)e(mτ)1µ.

Following the argument of [34, Theorem 2.12], we then consider the limiting values

κΛ2
(µ,m) =

{
limv→∞ bΛ2(µ,m, v) if µ 6= 0 or m 6= 0

limv→∞ bΛ2(µ,m, v)− log(v) if µ = 0 and m = 0.
(41)

We define from these coefficients the SΛ2-valued periodic function EΛ2(τ) on τ = u+ iv ∈ H via

EΛ2(τ) :=
∑

µ∈Λ#
2 /Λ2

∑
m∈Q

κΛ2(µ,m)e(mτ)1µ.(42)

Observe (cf. [8, Remark 2.4, (3.5)]) that we can view this form EΛ2
(τ) defined by (42) as the holomorphic

part of derivative Eisenstein series E′Λ2
(τ, 0; 2), i.e. EΛ2(τ) = E′+Λ2

(τ, 0; 2). We shall return to this point later.

4.8. Summation along anisotropic subspaces of type (1, 1). We now calculate the regularized theta
lifts ϑ?f0

(z, h) along the anisotropic subspace of type (1, 1) corresponding to the ideal representative a ⊂ OK
of the class A = [a] ∈ Pic(Oc). Let us simplify notations in writing (V, q) = (VA, QA) to denote the ambient
quadratic space of signature (2, 2). We then write (Vj , Qj) for j = 1, 2 to denote the respective subspaces
(VA,1, QA,1), and (VA,2, QA,2) of signature (1, 1). We also write Λ = ΛA, Λ1 = ΛA∩VA,1, and Λ2 = ΛA∩VA,2
for the corresponding lattices. Let f0 ∈ H0,Λ be any harmonic weak Maass form. We develop the ideas of
[8, Theorem 4.7] and [16] to calculate the values of the regularized theta lift ϑ?f0

(z, h) along the geodesic

subset corresponding to the subspace (V2, Q2) = (VA,2, QA,2) in terms of the central derivative values of
some related Rankin-Selberg L-function. Let us note again that we do not encounter incoherent Eisenstein
series in this setup, and so our arguments differ from those of [8], [34], and [16] (for instance).

We again write D±(V ) = D±(VA) for the Grassmannian of oriented hyperplanes z ⊂ V (R), with
D±(V2) = D±(VA,2) the subdomain of hyperbolic lines. Hence, each z ∈ D±(V ) gives rise to a pair of
hyperbolic lines z±V2

∈ D±(V2). Again, we consider GSpin(V2) as a subgroup of GSpin(V ) acting trivially on
V1. Fixing a compact open subgroup U ⊂ GSpin(V )(Af ) as above, let U2 := U ∩GSpin(V2)(Af ). We then
consider the corresponding “geodesic” set

Z(V2) = GSpin(V2)(Q)\{D±(V2)} ×GSpin(V2)(Af )/U2

associated to

ShU (GSpin(V ), D±(V )) := GSpin(V )(Q)\D±(V )×GSpin(V )(Af )/U.

Given a point (z±V2
, h) ∈ Z(V2) and a harmonic weak Maass form f0 ∈ H0,Λ, we now compute the

summation of the regularized theta lift ϑ?f0
(z±V2

, h) defined above over Z(V2),

ϑ?f0
(Z(V2)) :=

∑
(z±V2

,h)∈Z(V2)

ϑ?f0
(z±V2

, h).

Fix a Tamagawa measure on SO(V2)(A) for which vol(SO(V2)(R)) = 1 and vol (SO(V2)(Q)\ SO(V2)(A)) = 2.
Fix a Haar measure on A×f with the property that vol(Z×p ) = 1 for each finite place p, and vol(A×f /Q

×) = 1/2.

We obtain from these choices a Haar measure on GSpin(V2)(Af ) via the short exact sequence

1 −→ A×f −→ GSpin(V2)(Af ) −→ SO(V2)(Af )→ 1.

8Note that no assumption is made on the signature of the quadratic space (V,Q) underlying the Eisenstein series in [34, §4].

31



Lemma 4.13. Let U ⊂ GSpin(V )(Af ) be any compact open subgroup, and U2 = U ∩GSpin(V2)(Af ). Then,

ϑ?f0
(Z(V2)) =

1

vol(U2)
·
∫

SO(V2)(Q)\ SO(V2)(A)

ϑ?f0
(z±V2

, h)dh.

Proof. Cf. [8, Lemma 4.5], we apply [41, Lemma 2.13] to the function B(h) = ϑ?f0
(z±V2

, h). This result shows

that for any function B(h) on GSpin(V2)(A) which (i) depends only on the image of h in SO(V2)(Af ), (ii) is
left GSpin(V2)(Q)-invariant, and (iii) is right invariant under the compact open subgroup U2, we have that∫

SO(V2)(Q)\ SO(V2)(A)

B(h)dh = vol(U2)
∑

h∈GSpin(V2)(Q)\GSpin(V2)(A)/U2

B(h).

Here, the sum on the right-hand side is finite. In this way, we compute the sum over the subset Z(V2) as

ϑ?f0
(Z(V2)) =

1

vol(U2)
·
∫

SO(V2)(Q)\ SO(V2)(A)

ϑ?f0
(z±V2

, h)dh.

�

Fix an SΛ-valued harmonic weak Maass form f0 ∈ H0,Λ, with decomposition f0 = f+
0 + f−0 into holo-

morphic part f+
0 and non-holomorphic part f−0 . We consider the even lattice Λ ⊂ V with its corresponding

SΛ-valued Siegel theta series θΛ(τ, z, h) defined on z ∈ D+
V , h ∈ GSpin(V )(Af ), and τ = u+ iv ∈ H by

θΛ(τ, z, h) = θΛ,rψ0
(τ, z, h) =

∑
µ∈Λ#/Λ

θ?rψ0
(z, h, gτ ; 1µ) · 1µ.

Following [8, (3.3), Lemma 3.1], we argue that after replacing f0 by its restriction f0,Λ1⊕Λ2
, we may also

replace the theta series θΛ(τ, z, h) of the lattice Λ with the theta series θΛ1⊕Λ2(τ, z, h) of the finite-index
sublattice Λ1 ⊕ Λ2 ⊂ Λ. That is, we use the relation (θΛ)Λ1⊕Λ2 = θΛ1+Λ2 to derive the identity

〈〈f0(τ), θΛ(τ)〉〉 = 〈〈f0,Λ1⊕Λ2
(τ), θΛ1⊕Λ2

(τ)〉〉.

Let us henceforth write f0(τ) to denote the restriction f0,Λ1⊕Λ2
of f0(τ) to the finite-index sublattice Λ1⊕Λ2

of Λ (see [8, Lemma 3.1]). We shall then work with the corresponding theta series θΛ1⊕Λ2(τ, z, h), which has
the following convenient decomposition: For (z±V2

, h) ∈ Z(V2) and τ = u+ iv ∈ H,

θΛ(z±V2
, τ) = θΛ1

(τ)⊗ θΛ2
(τ, z±V2

, h) = θΛ1
(τ, 1, 1)⊗ θΛ2

(τ, z±V2
, h).(43)

To proceed, we first give the following standard expression for the regularized theta lift

ϑ?f0
(z±V2

, h) = CTs=0

 lim
T→∞

∫
FT

〈〈f0(τ), θΛ(τ, z±V2
, h)〉〉v−sdµ(τ)


as a limit of truncated integrals.

Lemma 4.14. Let θ+
Λ1

(τ) denote the holomorphic part of the Siegel theta series θΛ1(τ). We have that

ϑ?f0
(z±V2

, h) =

 lim
T→∞

∫
FT

〈〈f0(τ), θΛ1
(τ)⊗ θΛ2

(τ, z±V2
, h)〉〉dµ(τ)−A0 log(T )

 ,
where

A0 = CT〈〈f+
0 (τ), θ+

Λ1
(τ)⊗ 10+Λ2〉〉

denotes the constant term in the Fourier series expansion of the modular form 〈〈f+
0 (τ), θ+

Λ1
(τ)⊗ 10+Λ2〉〉.

Proof. See [34, Proposition 2.5], [8, Lemma 4.5], and [16, Lemma 3.4]. We first split the regularized theta
integral into two parts according to the decomposition f0 = f+

0 + f−0 to get

ϑ?f0
(z±V2

, h) =

∫ ?

F
〈〈f+

0 (τ), θΛ(τ, z±V2
, h)〉〉dµ(τ) + lim

T→∞

∫
FT

〈〈f−0 (τ), θΛ(τ, z±V2
, h)〉〉dµ(τ).
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Here, the second integral is absolutely convergent. We then decompose the first integral similarly according
to the corresponding decomposition θΛ = θ+

Λ + θ−Λ for the Siegel theta series θΛ to get∫ ?

F
〈〈f+

0 (τ), θΛ(τ, z±V2
, h)〉〉dµ(τ) =

∫ ?

F
〈〈f+

0 (τ), θ+
Λ (τ, z±V2

, h)〉〉dµ(τ) + lim
T→∞

∫
FT
〈〈f+

0 (τ), θ−Λ (τ, z±V2
, h)〉〉dµ(τ).

Here again, the second integral is absolutely convergent. To evaluate the remaining first integral, we use the
decomposition of theta series described in (43) with the calculation9 of Kudla [34, Proposition 2.5] to find∫ ?

F
〈〈f+

0 (τ), θ+
Λ (τ, z±V2

, h)〉〉dµ(τ) = lim
T→∞

∫
FT

〈〈f+
0 (τ), θ+

Λ1
(τ)⊗ θ+

Λ2
(τ, z±V2

, h)〉〉dµ(τ)−A0 log(T )

 .
Putting together the three pieces (expressed as limits of truncated integrals), we derive the stated formula. �

Corollary 4.15. Using the Siegel-Weil formula of Theorem 4.8 and Corollary 4.9, we have that

ϑ?f0
(Z(V2)) =

2

vol(U2)
· lim
T→∞

[∫
FT
〈〈f0(τ), θΛ1(τ)⊗ EΛ2(τ, 0; 0)〉〉dµ(τ)− 1

2
·A0 log(T )

]
.

Proof. We expand the definition using Lemma 4.13, Lemma 4.14 and the decomposition (43); we then switch
the order of summation, and apply Corollary 4.9 (with κ = 2) to evaluate the inner integral over θΛ2

(z±V2
, h).

In this way, we compute

ϑ?f0
(Z(V2)) =

1

vol(U2)
·
∫

SO(V2)(Q)\ SO(V2)(A)

ϑ?f0
(z±V2

, h)dh

=
1

vol(U2)
·
∫

SO(V2)(Q)\ SO(V2)(A)

lim
T→∞

[∫
FT
〈〈f0(τ), θΛ1

(τ)⊗ θΛ2
(z±V2

, h, τ)〉〉dµ(τ)−A0 log(T )

]
dh

=
1

vol(U2)
· lim
T→∞

[∫
FT
〈〈f0(τ), θΛ1

(τ)⊗

(∫
SO(V2)(Q)\ SO(V2)(Af )

θΛ2
(z±V2

, h, τ)dh

)
〉〉dµ(τ)−A0 log(T )

]

=
2

vol(U2)
· lim
T→∞

[∫
FT
〈〈f0(τ), θΛ1

(τ)⊗ EΛ2
(τ, 0; 0)〉〉dµ(τ)− 1

2
·A0 log(T )

]
.

�

Given g ∈ S2,Λ a cuspidal holomorphic modular form of weight 2 and representation rψ,Λ, let us now
consider the Rankin-Selberg L-function given by the integral presentation

L(s, g, V2) := 〈g(τ), θΛ1(·)⊗ EΛ2(τ, s; 2)〉 =

∫
F

〈〈g(τ), θΛ1(τ)⊗ EΛ2(τ, s, 2)〉〉v2dµ(τ).

We shall take g = ξ0(f0), and write L′(s, g, V ) = d
dsL(s, g, V ) to denote the derivative with respect to s.

Recall that we write EΛ2
(τ) by the Fourier expansion (42), with coefficients defined in (41).

Theorem 4.16. Writing θ+
Λ1

(τ) to denote the holomorphic part of the Siegel theta series θΛ1
(τ), and

EΛ2
(τ) = E+

Λ2
(τ, 0; 2) the holomorphic part of the derivative Eisenstein series E′Λ2

(τ, 0; 2), we obtain

ϑ?f0
(Z(V2)) = − 4

vol(U2)
·
(
CT〈〈f+

0 (τ), θ+
Λ1

(τ)⊗ EΛ2
(τ)〉〉+ L′(0, ξ0(f0), V2)

)
.

Proof. We derive a variation of [8, Theorem 4.7] and [16, Theorem 3.5] via Proposition 4.12 above. Here,
Lemma 4.13, Lemma 4.14, and Corollary 4.15 imply that

ϑ?f0
(Z(V2)) =

2

vol(U2)
· lim
T→∞

[
IT (f0)− 1

2
·A0 log(T )

]
, IT (f0) :=

∫
FT
〈〈f0(τ), θΛ1

(τ)⊗ EΛ2
(τ, 0; 0)〉〉dµ(τ).

(44)

9Formally, we replace the weakly holomorphic form f(τ) in [34, Proposition 2.5] with f+
0 (τ)⊗ θ+

Λ1
(τ).
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Using the identity (38) for the Eisenstein series EΛ2(τ, s, 0) at s = 0, we find that

(45)

IT (f0) =

∫
FT
〈〈f0(τ), θΛ1

(τ)⊗ EΛ2
(τ, 0; 0)〉〉dµ(τ) = −2

∫
FT

〈〈f0(τ), θΛ1
(τ)⊗ ∂E′Λ2

(τ, 0; 2)dτ〉〉

= −2

∫
FT

d〈〈f0(τ), θΛ1(τ)⊗ E′Λ2
(τ, 0; 2)dτ〉〉+ 2

∫
FT

〈〈∂f0(τ), θΛ1(τ)⊗ E′Λ2
(τ, 0; 2)dτ〉〉.

To compute the first integral on the right-hand side of (45), we apply Stokes’ theorem10 to find that
(46)

− 2

∫
FT

d〈〈f0(τ), θΛ1(τ)⊗ E′Λ2
(τ, 0; 2)dτ〉〉 = −2

∫
∂FT
〈〈f0(τ), θΛ1(τ)⊗ E′Λ2

(τ, 0; 2)dτ〉〉

= −2

∫ iT+1

τ=iT

〈〈f0(τ), θΛ1(τ)⊗ E′Λ2
(τ, 0; 2)〉〉dτ = −2

∫ 1

0

〈〈f0(u+ iT ), θΛ1(u+ iT )⊗ E′Λ2
(u+ iT, 0; 2)〉〉du.

To compute the second integral on the right-hand side of (45), we use the relation of differential forms

∂(f0(τ)dτ) = −v2ξ0(f0)(τ)dµ(τ) = −L0f0(τ)dµ(τ)

implied by Lemma 4.11 to deduce that

(47) 2

∫
FT

〈〈∂f0(τ), θΛ1
(τ)⊗ E′Λ2

(τ, 0; 2)dτ〉〉 = −2

∫
FT

〈〈ξ0(f0)(τ), θΛ1
(τ)⊗ E′Λ2

(τ, 0; 2)〉〉v2dµ(τ).

Hence, we obtain the identity

(48) IT (f0) = −2

iT+1∫
t=iT

〈〈f0(τ), θΛ1
(τ)⊗ E′Λ2

(τ, 0; 2)〉〉dτ − 2

∫
FT
〈〈ξ0(f0), θΛ1

(τ)⊗ E′Λ2
(τ, 0; 2)〉〉v2dµ(τ)

Inserting this identity (48) back into the initial formula (44) then gives us the preliminary formula

(49)

ϑ?f0
(Z(V2)) = − 2

vol(U2)
· lim
T→∞

[
2

∫ iT+1

τ=iT

〈〈f0(τ), θΛ1
(τ)⊗ E′Λ2

(τ, 0; 2)〉〉dτ − 1

2
·A0 log(T )

]

− 2

vol(U2)
· lim
T→∞

2

∫
FT
〈〈ξ0(f0), θΛ1(τ)⊗ E′Λ2

(τ, 0; 2)〉〉v2dµ(τ).

We now argue as in [16, Theorem 3.5, (3.12), (3.11)] that we may replace the f0(τ) in the first integral on
the right of (48) with its holomorphic part f+

0 (τ), as the remaining non-holomorphic part f−0 (τ) is rapidly
decreasing as v →∞. That is, we first split the constant coefficient term in (49) into three parts as

(50)

lim
T→∞

∫ iT+1

τ=iT

〈〈f0(τ), θΛ1(τ)⊗ E′Λ2
(τ, 0; 2)〉〉dτ

= lim
T→∞

∫ iT+1

τ=iT

〈〈f+
0 (τ), θ+

Λ1
(τ)⊗ E′Λ2

(τ, 0; 2)〉〉dτ

+ lim
T→∞

∫ iT+1

τ=iT

〈〈f+
0 (τ), θ−Λ1

(τ)⊗ E′Λ2
(τ, 0; 2)〉〉dτ

+ lim
T→∞

∫ iT+1

τ=iT

〈〈f−0 (τ), θΛ1
(τ)⊗ E′Λ2

(τ, 0; 2)〉〉dτ.

10Note that this does not require a change of sign after identifying the boundary ∂FT with the interval [iT, iT +1], and that

there is a sign error in the first integral on the right-hand side of the second identity stated in [8, p. 655, proof of Theorem 4.7].
There is also a sign error in the second integral, c.f. [2, Theorem 5.7.1]. This latter error appears to come from the differential

forms identity ∂(fdτ) = −vl−2ξk(f)dµ(τ) = −Llfdµ(τ), cf. [16, Lemma 2.5], which is used implicitly without the sign change
in the first identification of [8, p. 655].
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Let us first consider the third integral on the right-hand side of (50), writing the Fourier series expansion as

〈〈f−0 (τ), θΛ1(τ)⊗ E′Λ2
(τ, 0; 2)〉〉 =

∑
n∈Z

a(n, iv)e(nτ).

Opening up this expansion in the corresponding integral, then using the orthogonality of additive characters
on the torus R/Z ∼= [0, 1] to evaluate, we find that

iT+1∫
τ=iT

〈〈f−0 (τ), θΛ1
(τ, 1, 1)⊗ E′Λ2

(τ, 0; 2)〉〉dτ =

∫ 1

0

〈〈f−0 (u+ iT ), θΛ1
(u+ iT, 1, 1)⊗ E′Λ2

(u+ iT, 0; 2)〉〉du

=
∑
n∈Z

a(n, iT )e(inT )

∫ 1

0

e(nu)du = a(0, iT ) =
∑

µ∈Λ#/Λ

∑
m∈Q>0

c−f0
(−µ,m)W0(−2πmv)cg(µ,m, v).

Here, we write cg(m,µ, v) to denote the Fourier series coefficients of g(τ) = θΛ1
(τ, 1)⊗ E′Λ2

(τ, 0; 2), i.e.

g(τ) = θΛ1(τ, 1)⊗ E′Λ2
(τ, 0; 2) =

∑
µ∈(Λ1⊕Λ2)#/(Λ1⊕Λ2)

∑
m∈Q

cg(µ,m, v)1µe(mτ).

We can now use the rapid decay for the Whittaker coefficients W0(y) =
∫∞
−2y

e−tdt = Γ(1, 2|y|) for y → −∞
in the Fourier series expansions of f−0 (τ) with standard bounds for the Fourier coefficients of f−0 (τ) and g(τ)
to deduce that for some integer M > 0 and some constant C > 0, we have for each m ≥M that

c−f0
(µ,−m)W0(−2πmv)cg(µ,m, v) = O

(
e−mCv

)
.

We deduce from this that for some constants c, C > 0, we have the upper bound

|a(0, iT )| ≤ c · e−CT

(1− e−CT )
,

from which it follows that limT→∞ |a(0, iT )| = 0. Hence, the third integral on the right-hand side of (50)
vanishes in the limit with T → 0. A similar argument (cf. [16, 3.11]) shows that the second integral on the
right-hand side of (50) vanishes,

lim
T→∞

∫ iT+1

τ=iT

〈〈f+
0 (τ), θ−Λ1

(τ)⊗ E′Λ2
(τ, 0; 2)〉〉dτ = 0.

Hence, the first term on the right-hand side of (49) can be simplified to the expression

4

vol(U2)
· lim
T→∞

[∫ iT+1

τ=iT

〈〈f+
0 (τ), θ+

Λ1
(τ)⊗ E′Λ2

(τ, 0; 2)〉〉dτ − 1

4
·A0 log(T )

]
.(51)

To evaluate this, we follow the approach of [8, Theorem 4.7] with the calculations (41) and (42) to find that
(52)

lim
T→∞

[∫ iT+1

τ=iT

〈〈f+
0 (τ), θ+

Λ1
(τ)⊗ E′Λ2

(τ, 0; 2)〉〉dτ −A0 log(T )

]

= lim
T→∞

∫ 1

0

〈〈f+
0 (u+ iT ), θ+

Λ1
(u+ iT )⊗

∑
µ∈Λ#

2 /Λ2

∑
m∈Q

(bΛ2
(µ,m, T )− δµ,0δm,0 log(T )) e(m(u+ iT ))1µ〉〉du

= lim
T→∞

∫ 1

0

〈〈f+
0 (u+ iT ), θ+

Λ1
(u+ iT )⊗

∑
µ∈Λ#

2 /Λ2

∑
m∈Q

κΛ2
(µ,m)e(m(u+ iT ))1µ〉〉du = CT〈〈f+

0 (τ), θ+
Λ1

(τ)⊗ EΛ2
(τ)〉〉.

To use (52) to evaluate (51), we first pair off one of the integrals with limT→∞−A0 log(T ), then argue that
the contributions from the nonholomorphic part E′−Λ2

(τ, 0; 2) of the derivative Eisenstein series E′Λ2
(τ, 0; 2)
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in each of the three remaining integrals vanishes (cf. [34, Proposition 2.11]). That is, we first evaluate

lim
T→∞

[
4

∫ iT+1

τ=iT

〈〈f+
0 (τ), θ+

Λ1
(τ)⊗ E′Λ2

(τ, 0; 2)〉〉dτ −A0 log(T )

]

= CT〈〈f+
0 (τ), θ+

Λ1
(τ)⊗ EΛ2(τ)〉〉+ lim

T→∞
3

∫ iT+1

τ=iT

〈〈f+
0 (τ), θ+

Λ1
(τ)⊗ E′Λ2

(τ, 0; 2)〉〉dτ

= 4 CT〈〈f+
0 (τ), θ+

Λ1
(τ)⊗ EΛ2(τ)〉〉+ 3 lim

T→∞

∫ iT+1

τ=iT

〈〈f+
0 (τ), θ+

Λ1
(τ)⊗ E′−Λ2

(τ, 0; 2)〉〉dτ.

We then argue that the limit

3 lim
T→∞

∫ iT+1

τ=iT

〈〈f+
0 (τ), θ+

Λ1
(τ)⊗ E′−Λ2

(τ, 0; 2)〉〉dτ = 3 lim
T→∞

∫ 1

0

〈〈f+
0 (u+ iT ), θ+

Λ1
(u+ iT )⊗ E′−Λ2

(u+ iT, 0; 2)〉〉du

on the right-hand side vanishes. Indeed, opening up the Fourier series expansions and evaluating the unipotent
integral via orthogonality of additive characters, we see that this limit has the Fourier series decomposition

lim
T→∞

3
∑

µ∈(Λ1+Λ2)#/(Λ1+Λ2)

∑
m∈Q>0

c+f0
(µ,m)cθ+

Λ1
⊗E′−Λ2

(−µ,−m)W2(−2πmT )

= lim
T→∞

3
∑

µ∈(Λ1+Λ2)#/(Λ1+Λ2)

∑
m∈Q>0

c+f0
(µ,m)

∑
µ1∈Λ

#
1 /Λ1

µ2∈Λ
#
2 /Λ2

µ1+µ2≡−µ mod (Λ1+Λ2)

∑
m1∈Q≥0
m2∈Q<0

m1+m2=−m

c+θΛ1
(µ1,m1)c−E′Λ2

(µ2,m2)W2(−2πm2T ).

We then use the rapid decay of the Whittaker function W2(y) =
∫∞
−2y

e−tt−2dt = Γ(−1, 2|y|) with y → −∞
to deduce that each inner sum tends to zero with T → ∞. Hence, we find that (51) can be identified with
4 CT〈〈f+

0 (τ), θ+
Λ1

(τ)⊗ EΛ2(τ)〉〉. Substituting this identification back into (49), we then derive the formula

ϑ?f0
(Z(V2)) = − 4

vol(U2)
·
(

CT〈〈f+
0 (τ), θ+

Λ1
(τ)⊗ EΛ2(τ)〉〉+ lim

T→∞

∫
FT
〈〈ξ0(f0), θΛ1(τ)⊗ EΛ2(τ, 0; 2)〉〉v2dµ(τ)

)
.

Taking the limit with T →∞ gives the stated formula. �

4.9. Application to the central derivative value Λ′(1/2,Π ⊗ χ). Recall that we write η = ⊗vηv to
denote the idele class character of Q associated to the quadratic extension K/Q, which we can and do
identify with its corresponding Dirichlet character η = ηK/Q. Recall as well that Π = BCK/Q(π) denotes
the quadratic basechange of the cuspidal automorphic representation π = ⊗vπv of GL2(A) corresponding to
our elliptic curve E/Q to GL2(AK). As a consequence of the theory of cyclic basechange, we then have an
equivalence of the GL2(AK) × GL1(AK)-automorphic L-function Λ(s,Π ⊗ χ) with the GL2(A) × GL2(A)
Rankin-Selberg L-function Λ(s, π×π(χ)). Let us now consider the following classical integral representations
of the Rankin-Selberg L-functions relevant to the discussion above.

To describe this setup in classical terms, recall that we consider the cuspidal newform of weight 2 associated
to the elliptic curve E/Q, with Fourier series expansion

f(τ) = fE(τ) =
∑
m≥1

cf (m)e(mτ) =
∑
m≥1

af (n)n
1
2 e(nτ) ∈ Snew

2 (Γ0(N)), τ = u+ iv ∈ H

Hence, the finite part L(s, f) of the standard L-function Λ(s, f) = Λ(s, π) = L(s, π∞)L(s, π) has the Dirichlet
series expansion L(s, f) =

∑
m≥1 af (n)n−s =

∑
m≥1 cf (n)n−(s+1/2) (first for <(s) > 1). Recall that we fix a

ring class character χ of some conductor c ∈ Z≥1 of K. Hence, χ = ⊗xχw is a character of the class group

Pic(Oc) = A×K/A
×K×∞K

×Ô×c , Ô×c =
∏
w<∞

O×c,w

of the Z-order Oc = Z + cOK of conductor c in K. We consider the corresponding Hecke theta series defined
by the twisted linear combination (see e.g. [24, (5.4)])

θ(χ)(τ) =
∑

A∈Pic(Oc)

χ(A)θA(τ),(53)
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where each of the partial theta series θA(τ) can be defined classically as follows. Let wK = µ(K)/2 denote
half the number of roots of unity in k. Since the unit group O×K ∼= Z × µ(K) = 〈εK〉 × µ(K) is not torsion

by Dirichlet’s unit theorem, we fix a fundamental domain a? = [1, za]? for the action of O×K/µ(K) = 〈εK〉
on a. The corresponding theta series can then be described more explicitly via the expansion

θA(τ) =
1

wK

∑
λ∈a?

e

(
NK/Q(λ)

Na
· τ
)

=
∑
m≥0

rA(m)e(mτ),

where rA(m) denotes the corresponding counting function

rA(m) =
1

wK
·#
{
λ ∈ a? = [1, za]? :

NK/Q(λ)

Na
= m

}
.

A classical theorem of Hecke shows that each θ(χ)(τ) is a modular form of weight zero, level Γ0(dK) and
character η = ηK . We consider the corresponding Rankin-Selberg presentation

Λ(s, π × π(χ)) = Λ(s, f × θ(χ)) =
∑

A∈Pic(Oc)

χ(A)Λ(s, f × θA),

given as a twisted linear combination of the partial Rankin-Selberg L-functions (cf. e.g. [24, § IV (0.1)])11

(54)

Λ(s, f × θA) := 〈f, θAE?(·, s; 2)〉 =
Γ(s)

(4π)s
· Λ(2s, η) ·

∑
m≥1

cf (m)rA(m)

ms

=
Γ(s)

(4π)s
· Λ(2s, η) · 1

wK

∑
λ∈a?

[a]=A∈Pic(Oc)

cf (N(λ))

N(λ)s
(<(s) > 1)

associated to each class A ∈ Pic(Oc). We also consider the quadratic twist f ⊗ η = fE ⊗ ηK/Q given by

(f ⊗ η)(τ) =
∑
m≥1

cf (m)η(m)e(mτ) =
∑
m≥1

af (m)m
1
2 η(m)e(mτ) ∈ Snew

2 (Γ0(d2
KN), η),

along with its corresponding Rankin-Selberg L-function

Λ(s, (π ⊗ η)× π(χ)) = Λ(s, (f ⊗ η)× θ(χ)) =
∑

A∈Pic(Oc)

χ(A)Λ(s, f ⊗ η × θA),

where each partial L-series Λ(s, (f ⊗ η)× θA) is given by the expansion

Λ(s, (f ⊗ η)× θA) := 〈f ⊗ η, θAE?(·, s; 2)〉 =
Γ(s)

(4π)s
· Λ(2s, η2) ·

∑
m≥1

cf (m)η(m)rA(m)

ms

=
Γ(s)

(4π)s
· Λ(2s) · 1

wK

∑
λ∈a

[a]=A∈Pic(Oc)

cf (N(λ))η(N(λ))

N(λ)s
(<(s) > 1).

Lemma 4.17. We have the equivalent Rankin-Selberg integral presentations

Λ(s, π × π(χ)) = Λ(s, f × θ(χ)) = Λ(s, (f ⊗ η)× θ(χ)) = Λ(s, (π ⊗ η)× π(χ))

for the basechange L-function Λ(s,Π⊗ χ) = Λ(s,BCK/Q⊗χ), for χ any ring class character of K.

Proof. Consider the basechange Π′ = BCK/Q(π ⊗ χ) of the cuspidal automorphic representation π ⊗ η of
GL2(A) to GL2(AK) generated by f ⊗ η, whose corresponding standard L-function Λ(s,Π′) decomposes
as Λ(s,Π′) = Λ(s, π ⊗ η)Λ(s, π ⊗ η2) = Λ(s, π ⊗ η)Λ(s, π). Here again, we use that the quadratic Dirichlet
character η(·) =

(
dK
·
)

has order 2 to deduce that Λ(s,Π′) = Λ(s, π ⊗ η)Λ(s, π) = Λ(s,Π). Hence, we deduce
that the equivalent GL2(AK)×GL1(AK)-automorphic L-functions Λ(s,Π⊗χ) = Λ(s,Π′⊗χ) have the same
GL2(A) × GL2(A) Rankin-Selberg presentation Λ(s, π × π(χ)) = Λ(s, (π ⊗ η) × π(χ)), equivalently that
Λ(s, f × θ(χ)) = Λ(s, f ⊗ η × θ(χ)). �

11Observe that since θA(τ) has weight zero, the arithmetic normalization of the Rankin-Selberg L-function

L(2s, η)
∑
m≥1 cf (m)cθA (m)m

−
(
s+ 2+0

2
−1
)

= L(2s, η)
∑
m≥1 cf (m)cθA (m)m−s = L(2s, η)

∑
m≥1 cf (m)rA(m)m−s coincides

with the unitary normalization L(2s, η)
∑
m≥1 af (m)aθA (m)m−s = L(2s, η)

∑
m≥1 cf (m)m−

1
2 cθA (m)m

1
2m−s.
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Recall that Theorem 4.6 gives us a relation between the scalar-valued form fη := f⊗η and its vector-valued
avatar gη. Let us for each class A ∈ Pic(Oc) fix an integral ideal representative a ⊂ OK with Z-basis [1, za]. We
again consider for each class A ∈ Pic(Oc) the corresponding quadratic space (VA, QA) described in Definition
3.1, with vector space VA = aQ ⊕ aQ, and quaratic form QA(z) = QA((z1, z2)) = Qa(z1)−Qa(z2). As well,
we consider the anisotropic subspaces (VA,j , QA,j) of type (1,1) defined by VA,1 = aQ with QA,1 = −Qa

and VA,2 = aQ with QA,2 = Qa. Recall we write ΛA ⊂ VA for the lattice determined by the compact open
subgroup UA ⊂ GSpin(VA)(Af ) described in (9) via (8). We write ΛA,j := ΛA ∩ VA,j for each of j = 1, 2 to
denote the signature (1,1) sublattice determined by restriction to VA,j . By Theorem 4.6, we can associate to
the quadratic twist f ⊗ η ∈ Snew

2 (Γ0(d2
KN), η) an SΛA -valued modular form gη of weight 2. Recall as well

that we consider the (incomplete, partial) Rankin-Selberg L-functions given by the Petersson inner products

L(s, gη, VA,2) := 〈gη(·), θΛA,1(·)⊗ EΛA,2(·, s; 2)〉 = 〈gη(τ), θΛ1
(τ)⊗ EΛA,2(τ, s; 2)〉.

We also consider the completed version, given with respect to the completed Eisenstein series E?Λ2
(τ, s; 2):

L?(s, gη, VA,2) := 〈gη(·), θΛA,1(·)⊗ E?ΛA,2(·, s; 2)〉 = 〈gη(τ), θΛ1
(τ)⊗ E?ΛA,2(τ, s; 2)〉.

Corollary 4.18. We have in the setup described the equivalent presentations

Λ(s− 1/2,Π⊗ χ) =
∑

A∈Pic(Oc)

χ(A)Λ(s− 1/2, f ⊗ η × θA) =
1

2
·

∑
A∈Pic(Oc)

χ(A)L?(2s− 2, gη, VA,2).

In particular, we have that

Λ′(1/2,Π⊗ χ) =
∑

A∈Pic(Oc)

χ(A)Λ′(1/2, f ⊗ η × θA) =
1

2
·

∑
A∈Pic(Oc)

χ(A)L?′(0, gη, VA,2).

Proof. In the same way as for [8, §4, (4.24)] (with Fourier coefficient notations as described above), each
partial Rankin-Selberg product L(s, gη, VA,2) has the Dirichlet series expansion

L(s, gη, VA,2) =
Γ
(
s+2

2

)
(4π)

s+2
2

∑
µ∈Λ#

A,1/ΛA,1

∑
m∈Q>0

cgη (µ,m)c+θΛA,1
(µ,m)

m
s+2

2

=
Γ
(
s+2

2

)
(4π)

s+2
2

∑
µ∈Λ#

A,1/ΛA,1

∑
m∈Q>0

cgη (µ,m)rΛA,1(µ,m)

m
s+2

2

,

where rΛA,1(µ,m) denotes the counting function

rΛA,1(µ,m) =
1

wK
·# {λ ∈ µ+ ΛA,1 : QA,1(λ) = m} /〈εK〉.

Here again, we fix a fundamental domain for the action of the fundamental unit 〈εK〉 ∼= O×K/µ(K). Now, since
the lattice ΛA,1 will form a Z-basis for the ideal representative a ⊂ OK of A = [a], we see that QA,1(x, y) is
a binary quadratic form representative. Hence, rΛA,1(µ,m) counts the number of ideals in µ+ a? of norm m.
It then follows as a relatively formal consequence that we can identify the partial Rankin-Selberg L-function
L(s, gη, VA,2) with the classical partial Rankin-Selberg L-function L(s, fη × θA), as we can expand

L(s, gη, VA,2) =
Γ
(
s+2

2

)
(4π)

s+2
2

∑
µ∈Λ#

A,1/ΛA,1

∑
m∈Q>0

cgη (µ,m)c+θΛA,1
(µ,m)

m
s+2

2

=
Γ
(
s+2

2

)
(4π)

s+2
2

· 1

wK

∑
µ∈Λ#

A,1/ΛA,1

∑
λ∈µ+a?

cgη (µ,QA,1(λ))

QA,1(λ)
s+2

2

=
Γ
(
s+2

2

)
(4π)

s+2
2

· 2

wK

∑
λ∈a?

cfη (N(λ))

N(γ)
s+2

2

=
Γ
(
s+2

2

)
(4π)

s+2
2

· 2

wK

∑
λ∈a?

cf (N(λ))η(N(γ))

N(γ)
s+2

2

.

Here, we use the relation of coefficients described in Theorem 4.6 and that the Dirichlet series expansion is
taken over rational integers m ≥ 1 coprime to dKN . We then deduce that we have for each class A ∈ Pic(Oc)
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the relation L?(2s − 1, gη, VA,2) = 2Λ(s, fη × θA) (cf. [24, § IV (0.1), p. 271]). The stated relations follow,
with the analytic continuation and functional equations determined by the underlying Eisenstein series. �

Theorem 4.19 (Twisted linear combinations of regularized theta integrals). Let us retain the setup above,
with f = fE ∈ Snew

2 (Γ0(N)) the cuspidal eigenform parametrizing our elliptic curve E/Q, π the corresponding
cuspidal automorphic representation of GL2(A), and Π = BCK/Q(π) its quadratic basechange lifting to a
cuspidal automorphic representation of GL2(AK). Let χ be any ring class character of the real quadratic
field K of conductor c coprime to dKN . Let f0,η,A ∈ H0,ρΛA

for each class A ∈ Pic(Oc) denote the harmonic

weak Maass form of weight zero with image ξ0(f0,η,A) = gη,A ∈ S2,ρΛA
where gη,A denotes the lifting our our

quadratic twist f ⊗ η ∈ Snew
2 (Γ0(d2

KN), η) the space vector-valued forms S2,ρΛA
as described in Theorem 4.6

above. Then, we have the formula

Λ′(1/2,Π⊗ χ)

L(1, η)
= −1

2
·

∑
A∈Pic(Oc)

χ(A)

(
CT〈〈f+

0,η,A(τ), θ+
ΛA,1

(τ)⊗ EΛA,2(τ)〉〉+
vol(UA,2)

4
· ϑ?f0,η,A

(Z(VA,2))

)
.

Here, for each class A ∈ Pic(Oc), we write UA,2 := U ∩GSpinVA,2(Af ) as in Lemma 4.13 above.

Proof. Formally, this is a consequence of Lemma 4.17 and Corollary 4.18 after applying Theorem 4.16 to
each of the partial Rankin-Selberg L-series L(s, gη, VA,2) = L(s, ξ0(f0,η,A), VA,2), which together imply that∑

A∈Pic(Oc)

χ(A) · vol(UA,2)

4
· ϑ?f0,η,A

(Z(V2,A))

= −
∑

A∈Pic(Oc)

χ(A) ·
(

CT〈〈f+
0,η,A(τ), θ+

ΛA,1
(τ)⊗ EΛA,2(τ)〉〉+ L′(0, ξ0(f0,η,A), VA,2)

)
.

It is then easy to identify the second term in this latter expression in terms of the central derivative value
L′(1/2,Π ⊗ χ) via Corollary 4.18. Let us thus consider the first term, which according to the expansions
implied by Theorem 4.6 and the discussions in [8, §§ 4-5] can be evaluated as

(55)

∑
A∈Pic(Oc)

χ(A) CT〈〈f+
0,η,A(τ), θ+

ΛA,1
(τ)⊗ EΛA,2(τ)〉〉

=
∑

A∈Pic(Oc)

χ(A) CT


∑

µ1∈Λ
#
A,1

/ΛA,1

µ2∈Λ
#
A,2

/ΛA,2

µ1+µ2≡µ mod ΛA

f+
0,A,µ(τ)θ+

ΛA,1,µ1
(τ)⊗ EΛA,2,µ2

(τ)



=
∑

A∈Pic(Oc)

χ(A)


∑

µ1∈Λ
#
A,1

/ΛA,1

µ2∈Λ
#
A,2

/ΛA,2

µ1+µ2≡µ mod ΛA

∑
m,m2∈Q≥0,m1∈Q

m1+m2=m

c+f0,η,A
(−m,µ)c+θΛA,1

(m1, µ1)κΛA,2(m2, µ2)

 .

Note that the analogous constant term for the CM setting is the subject of [8, Conjectures 5.1 and 5.2], and
that this has now been improved in important special cases by [2, Theorem A]. �

Now, recall that the Dirichlet analytic class number formula gives us the following classical arithmetic
description of the value L(1, η). Writing dK again to denote the fundamental discriminant associated to

K = Q(
√
d), let hK = # Pic(OK) denote the class number, and εK = 1

2 (t+ u
√
dK) for the smallest solution

t, u > 0 (with u minimal) to Pell’s equation t2 − dKu2 = 4. We can then express the formula derived above
for the central derivative value L′(1/2,Π⊗ χ) in terms of Dirichlet’s analytic class number formula

L(1, η) =
log εK · hK√

dK
.(56)
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Corollary 4.20. We have that

Λ′(1/2,Π⊗ χ) = Λ′(1/2, π × π(χ)) = Λ′(1/2, f × θ(χ)) = Λ′(E/K,χ, 1)

= −
√
dK

log εK · hK
· 1

2

∑
A∈Pic(Oc)

χ(A)

(
CT〈〈f+

0,η,A(τ), θ+
ΛA,1

(τ)⊗ EΛA,2(τ)〉〉+
vol(UA,2)

4
· ϑ?f0,η,A

(Z(VA,2))

)
.

Moreover, if we assume Hypothesis 2.1 that the inert level N+ is the squarefree product of an odd number of
primes, then this central derivative value is not forced by the functional equation (6) to vanish identically.

Proof. This simply restates Theorem 4.19 in terms of the Dirichlet analytic class number formula (56). �

5. Relation to the conjecture of Birch and Swinnerton-Dyer

Let us now consider Theorem 4.19 from the point of view of the refined conjecture of Birch and Swinnerton-
Dyer, comparing with the Gross-Zagier formula [24]. To date, there is no known or conjectural construction
of points on the corresponding elliptic curve E(K[c]) or modular curve X0(N)(K[c]) analogous to Heegner
points12, where K[c] denotes the ring class extension of conductor c of the real quadratic field K. We
can consider the implications for arithmetic terms in the refined Birch and Swinnerton-Dyer formula for
L?′(E/K,χ, 1) here, in the style of the comparison given in Popa [39, §6.4]. Taking for granted the refined
conjecture of Birch and Swinnerton-Dyer for E(K[c])) in this setting – particularly for the case of rank one
corresponding to Hypothesis 2.1 – we shall then derive “automorphic” interpretations of the corresponding
Tate-Shafarevich group X(E/K[c]) and regulator Reg(E/K[c]). We also derive an unconditional result in
special cases to illustrate surprising connections here.

Again, we fix χ a primitive ring class character of some conductor c ≥ 1 prime to dKN , and view this
as a character of the class group Pic(Oc). Recall that the reciprocity map of class field theory gives us an

isomorphism Pic(Oc) := A×K/A
×K×∞K

×Ô×c −→ Gal(K[c]/K), where K[c] is (by definition) the ring class
extension of conductor c of K. Recall as well that by the theory of cyclic basechange of [38] and more
generally [3] with Artin formalism, we can write the completed Hasse-Weil L-function Λ(E/K[c], s) of E
basechanged to K[c]/K as the product

(57)

Λ(E/K[c], s) =
∏

χ∈Pic(Oc)∨∼=Gal(K[c]/K)∨

Λ(E/K,χ, s)

=
∏

χ∈Pic(Oc)∨∼=Gal(K[c]/K)∨

Λ(s− 1/2,Π⊗ χ)

=
∏

χ∈Pic(Oc)∨∼=Gal(K[c]/K)∨

Λ(s− 1/2,BCK/Q(π)⊗ χ)

=
∏

χ∈Pic(Oc)∨∼=Gal(K[c]/K)∨

Λ(s− 1/2, π × π(χ))

=
∏

χ∈Pic(Oc)∨∼=Gal(K[c]/K)∨

Λ(s− 1/2, f × θ(χ)).

Here, we use all of the same conventions and definitions as established above with Π = BCK/Q(π(f)). Writing
ords=s0 as usual to denote the order of vanishing at a given s0 ∈ C, it then follows as a formal consequence
of (57) that we have the relation(s)

(58) ords=1 Λ(E/K[c], s) =
∑

χ∈Pic(Oc)∨∼=Gal(K[c]/K)∨

ords=1/2 Λ(s,Π⊗ χ),

so that the conjecture of Birch and Swinnerton-Dyer predicts the rank equivalence

(59) rkZE(K[c]) = ords=1 Λ(E/K[c], s) =
∑

χ∈Pic(Oc)∨∼=Gal(K[c]/K)∨

ords=1/2 Λ(s,Π⊗ χ).

12There is however a p-adic construction due to Darmon [14].
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Let us now assume Hypothesis 2.1, so that for each ring class character χ on the right hand side of (59),
we know by the symmetric functional equation (6) that ords=1/2 Λ(s,Π⊗χ) ≥ 1. Let us also assume for the
moment that the rank equality predicted by the conjecture of Birch and Swinnerton-Dyer holds, so that

rkZE(K[c]) = h(Oc) := # Pic(Oc) = # Gal(K[c]/K).(60)

Let rE(K[c]) denote the Mordell-Weil rank of E over the ring class extension K[c] of conductor c over K.
The refined conjecture of Birch and Swinnerton-Dyer predicts that the leading term in the Taylor series
expansion around Λ(rE(K[c]))(E/K[c], s)/(rE(K[c]))! around s = 1 is given by the following formula. Let
XE(K[c]) denote the Tate-Shafarevich group of E over K[c],

XE(K[c]) = ker

(
H1(K,E) −→

∏
w

H1(Kw, E)

)
,

which we shall assume is known to be finite. Let RE(K[c]) denote the regulator of E over K[c]. Hence, fixing

a basis (ej)
rE(K[c])
j=1 of E(K[c])/E(K[c])tors, and writing [·, ·] to denote the Néron-Tate height pairing,

RE(K[c]) = det ([ei, ej ])i,j .

Let us also write TE(K[c]) to denote the product over local Tamagawa factors, so

TE(K[c]) =
∏
ν<∞

primes of OK[c]

[E(K[c]ν) : E0(K[c]ν)] ·
∣∣∣∣ ωω∗ν

∣∣∣∣
ν

,

where ω = ωE is a fixed invariant differential for E/K[c], and each ω∗ν the Néron differential at ν. The refined
conjecture of Birch and Swinnerton-Dyer then predicts that the leading term in the Taylor series expansion
around s = 1 of Λ(rE(K[c])))(E/K[c], s)/(rE(K[c]))! around s = 1 is given by the formula

(61)

#XE(K[c]) ·RE(K[c]) · TE(K[c])√
dK ·#E(K[c])2

tors

·
∏
µ|∞

µ:K[c]→R
real places

∫
E(K[c]µ)

|ω| ·
∏
σ|∞

σ,σ:K[c]→C
pairs of complex places

2

∫
E(K[c]σ)

ω ∧ ω.

Let us first assume for simplicity that the class number is one: h(Oc) = hK = 1. Then, assuming the
conjecture of Birch and Swinnerton-Dyer (60) and (61), we derive via Theorem 4.19 and Corollary 4.5 the
(conditional) identifications

Λ′(E/K, 1) = Λ′(1/2,Π) = Λ′(1/2,Π) =
#XE(K) ·RE(K) · TE(K)√

dK ·#E(K)2
tors

·
∏
µ|∞

µ:K→R

∫
E(Kµ)

|ω|

= −
√
dK

log εK
· 1

2

CT
(
〈〈f+

0,η,OK (τ), θ+
ΛOK,1

⊗ EΛOK,2(τ)〉〉
)

+
vol(UOK ,2)

4

∑
(z±VOK,2

,h)∈Z(VOK,2)

ϑ?f0,η,OK
(z±VOK,2

, h)

 .

This suggests that the regulator RE(K) = [e??, e??] should be given by the formula
(62)
RE(K) = [e??, e??]

= −

#E(K)2
tors · dK

CT
(
〈〈f+

0,η,OK (τ), θ+
ΛOK,1

⊗ EΛOK,2(τ)〉〉
)

+
vol(UOK,2)

4

∑
(z±VOK,2

,h)∈Z(VOK,2)

ϑ?f0,η,OK
(z±VOK,2

, h)


2 log εK ·#XE(K) · TE(K) ·

∏
µ|∞

µ:K→R

∫
E(Kµ)

|ω|
.
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Similarly, the cardinality #XE(K) of Tate-Shafarevich group XE(K) should be given by the formula
(63)
#XE(K)

= −

#E(K)2
tors · dK

CT
(
〈〈f+

0,η,OK (τ), θ+
ΛOK,1

⊗ EΛOK,2(τ)〉〉
)

+
vol(UOK,2)

4

∑
(z±VOK,2

,h)∈Z(VOK,2)

ϑ?f0,η,OK
(z±VOK,2

, h)


2 log εK ·RE(K) · TE(K) ·

∏
µ|∞

µ:K→R

∫
E(Kµ)

|ω|
.

Note that we can also derive similar albeit more intricate conditional arithmetic expressions for #XE(K[c])
and RE(K[c]) in the more general setting where hK ≥ 1, e.g. after specializing our main result to the
principal character χ = χ0 of the class group of K, and summing over classes. We leave the details as an
exercise to the reader. Finally, we can also establish the following unconditional result.

Theorem 5.1. Assume that ords=1 Λ(E/K, 1) = 1, so that either Λ(E, 1) = Λ(1/2, π) or the quadratic
twist Λ(E(dK), 1) = Λ(1/2, π ⊗ η) vanishes. Let us also assume that E has semistable reduction so that its
conductor N is squarefree, with N coprime to the discriminant dK of K, and for each prime p ≥ 5:

• The residual Galois representations E[p] and E(dK)[p] attached to E and E(dK) are irreducible.

• There exists a prime divisor l || N distinct from p where the residual representation E[p] is ramified,
and a prime divisor q || NdK distinct from p where the residual representation E(dK)[p] is ramified.

Writing [e, e] to denote the regulator of either E or E(dk) according to which factor vanishes, we have the
following unconditional identity, up to powers of 2 and 3:

#XE(Q) ·#XE(dK )(Q) · [e, e] · TE(Q) · TE(dK )(Q)

#E(Q)2
tors ·#E(dk)(Q)2

tors

·
∫
E(R)

|ωE | ·
∫
E(dK )(R)

|ωE(dk) |

= −
√
dK

log εK
· 1

2

∑
A∈Pic(OK)

CT
(
〈〈f+

0,η,A(τ), θ+
ΛA,1
⊗ EΛA,2(τ)〉〉

)
+

vol(UA,2)

4

∑
(z±VA,2

,h)∈Z(VA,2)

ϑ?f0,η,A
(z±VA,2 , h)

 .

Proof. Assuming as we do that ords=1 Λ(E/K, 1) = 1, we deduce from the Artin formalism that

Λ′(E/K, 1) = Λ′(E, 1)Λ(E(dK), 1) + Λ′(E(dK), 1)Λ(E, 1),

or equivalently that

Λ′(1/2,Π) = Λ′(1/2, π)Λ(1/2, π ⊗ η) + Λ′(1/2, π ⊗ η)Λ(1/2, π),

where precisely one of the summands on the right-hand side in each version does not vanish. Note that we can
take for granted the refined conjecture of Birch and Swinnerton-Dyer (61) for the nonvanishing summand up
to powers of 2 and 3 by our hypotheses, using the combined works of Kato [30], Kolyvagin [31], Rohrlich [40],
and Skinner-Urban [43] with the corresponding Euler characteristic calculations of Burungale-Skinner-Tian
[9] (cf. [9], [12]) for the analytic rank zero part, together with Jetchev-Skinner-Wan [29], Skinner-Zhang [44],
and Zhang [50] for the analytic rank one part. We refer to the summary given in [9, Theorem 3.10] for the
current status of these deductions confirming the p-part of the conjectural Birch-Swinnerton-Dyer formula
via Iwasawa-Greenberg main conjectures. Applying (61) to each factor, we can then deduce (up to powers
of 2 and 3) that we have the refined product formula

Λ′(E/K, 1) = Λ′(1/2,Π)

=
#XE(Q) ·#XE(dK )(Q) · [e, e] · TE(Q) · TE(dK )(Q)

#E(Q)2
tors ·#E(dk)(Q)2

tors

·
∫
E(R)

|ωE | ·
∫
E(dK )(R)

|ωE(dk) |.

The stated identity then follows from Theorem 4.19 and Corollary 4.5. �
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