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Abstract. We derive integral presentations for central derivative values of L-functions of elliptic curves

defined over the rationals, basechanged to a real quadratic field K, and twisted by ring class characters of

K. In particular, we derive an explicit formula for the central derivative value in terms of special values
of certain automorphic Green’s functions for Hirzebruch-Zagier divisors on the Hilbert modular surface

associated with the quadratic basechange form. In special cases, we can also describe these central derivative
values as periods, and more generally reinterpret the refined conjecture of Birch and Swinnerton-Dyer in

terms of special values of automorphic Green’s functions.
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1. Introduction

Let E be an elliptic curve of conductor N defined over the rational number field Q, with corresponding
Hasse-Weil L-function denoted by L(E, s). The modularity theorem of Wiles, Taylor-Wiles, and Breuil-
Conrad-Diamond-Taylor implies that L(E, s) has an analytic continuation L?(E, s) as the Mellin transform

L?(E, s) = L(s, f) =

∫ ∞
0

f

(
iy√
N

)
ys
dy

y
= N

s
2 (2π)−sΓ(s)L(E, s)(1)

of some weight-two newform f = fE ∈ Snew
2 (Γ0(N)). That is, writing π = ⊗vπv to denote the cuspidal

automorphic representation of GL2(A) associated to f , with L(s, π) =
∏
v≤∞ L(s, πv) its standard L-function

(using the unitary normalization so that s = 1/2 is the central value) we have equivalences of L-functions

L?(E, s) = L(s, f) = L(s− 1/2, π).

Suppose now k is any number field. The Mordell-Weil theorem implies that the group of k-rational points
E(k) has the structure of a finitely generated abelian group E(k) ∼= ZrE(k) ⊕ E(k)tors. It is a fundamental
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open problem to characterize the rank rE(k) = rkZE(k). Writing L(E/k, s) to denote the Hasse-Weil L-
function of E/k, Birch and Swinnerton-Dyer conjectured that this generating series L(E/k, s), defined a
priori only for <(s) > 3/2, has an analytic continuation to all s ∈ C, and satisfies a functional equation
relating values at s to 2 − s (so that s = 1 is the central point). Taking for granted this preliminary
hypothesis1, the conjecture of Birch and Swinnerton-Dyer predicts that the rank rE(k) is given by the order
of vanishing ords=1 L(E/k, s) at this central point. Although this conjecture has been verified over the past
several decades for rE(k) ≤ 1 with k = Q or k an imaginary quadratic field, it remains open at large, without
a single known example for rE(k) ≥ 2. The most stunning progress to date has come through the Iwasawa
theory of elliptic curves, using as a starting point special value formulae for the values L(rE(k))(E/k, 1). In
particular, the celebrated theorem of Gross-Zagier [23] (with generalizations such as [52] and [8]) for the
central derivative value L′(E/k, χ, 1), with χ a class group character of an imaginary quadratic field k, has
played a major role underlying most of this progress for rank one. This tour de force makes use of all that
is known about the theory of complex multiplication and explicit class field theory for imaginary quadratic
fields, and especially a construction of points eH ∈ E(k[1]) dating back to Heegner to relate the central
derivative values L′(E/k, χ, 1) for χ a character of the class group Pic(Ok) ∼= Gal(k[1]/k) (with k[1]/k the
Hilbert class field) to the regulator term RE(k) = [eH , eH ] (with [·, ·] the Néron-Tate height pairing).

Here, we return to the wilderness by taking k = K to be a real quadratic field K = Q(
√
d) of discriminant

dK =

{
d if d ≡ 1 mod 4

4d if d ≡ 2, 3 mod 4

prime to N , and corresponding even Dirichlet character η = ηK/Q. Let χ be any ring class character of
K of conductor c ∈ Z≥1 prime to dKN . More precisely, we consider χ a character of the class group
Pic(Oc) ∼= Gal(K[c]/K) of the Z-order Oc := Z + cOK of conductor c in K,

χ : Pic(Oc) := A×K/K
×
∞K

×Ô×c −→ S1, Ô×c :=
∏
v<∞

O×c,v.

As we explain below, the theories of Rankin-Selberg convolution and cyclic basechange allow us to deduce
from the modularity theorem (3.2) that the corresponding Hasse-Weil L-function L(E/K,χ, s) has an an-
alytic continuation L?(E/K,χ, s) to all s ∈ C, and has a functional equation relating values at s to 2 − s.
To be more precise, writing π(χ) to denote the automorphic representation of GL2(A) of level dKc

2 and
character η induced from the ring class character χ, this L?(E/K,χ, s) is equivalent to the correspond-
ing shifted GL2(A) × GL2(A) Rankin-Selberg L-function L(s − 1/2, π × π(χ)). Writing Π = BCK/Q(π) to
denote the quadratic basechange lifting of π to a cuspidal automorphic representation of GL2(AK), this
L?(E/K,χ, s) is also equivalent to the corresponding shifted GL2(AK)×GL1(AK) automorphic L-function
L(s− 1/2,Π⊗ χ). In this way, we deduce that that completed Hasse-Weil L-function L?(E/K,χ, s) has an
analytic continuation through its equivalent presentations

L?(E/K,χ, s) = L(s− 1/2, π × π(χ)) = L(s− 1/2,Π⊗ χ)

and in particular that it satisfies a symmetric functional equation (see (8)). The immediate consequence of
this is the following, whose proof we explain in the discussion leading to Hypothesis 2.1 below:

Lemma 1.1. Let E be an elliptic curve of conductor N defined over Q, and π = π(f) the cuspidal auto-
morphic representation of GL2(A) generated by the eigenform f ∈ Snew

2 (Γ0(N)) parametrizing E. Let K be
a real quadratic field of discriminant dK prime to N , so that we can write N = N+N− for N+ the product
of prime divisors q | N which split in K, and N− the product of prime divisors q | N which remain inert in
K, and η(−N) = η(N) = η(N−). If N− is the squarefree product of an odd number of primes, then

L?(E/K,χ, 1) = L(1/2, π × π(χ)) = L(1/2,Π⊗ χ) = 0

for any ring class character χ of K of conductor c prime to dKN .

Taking the conditions of Lemma 1.1 for granted, it makes sense to consider the corresponding central
derivative values L?′(E/K,χ, 1) = L′(1/2, π × π(χ)) = L′(1/2,Π ⊗ χ). The aim of this work is to use the
same setup with theta correspondence underlying the calculations of Gross-Zagier [23], Yuan-Zhang-Zhang

1which remains open in general for non-abelian number fields k which are neither totally real nor solvable
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[52], and especially Bruinier-Yang [8] to calculate these central derivative values in terms of theta liftings
from certain orthogonal groups connected to the basechange representation Π of GL2(AK). Here, we derive
several presentations, including connections to the Shimura-Shintani-Waldspurger correspondence (see (28)).

The main result is the following connection to automorphic Green’s functions evaluated along certain
geodesic orbits on spin Shimura varieties associated to Hilbert modular surfaces. While there is no known or
conjectural global analogue of the Heegner point construction in this setting, at least beyond well-known local
conjectures made by Darmon [15], we present some depiction of the provenance of such points e?? ∈ E(K[c])
in these geodesic orbits. As we explain, these Shimura varieties correspond to Hilbert modular surfaces related
to the basechange representation Π = BCK/Q(π). In the discussion below, we first recall some general theory
leading up to (11), starting with how we may find a certain cuspidal automorphic form ϕ ∈ Π = BCK/Q(π)
on GL2(AK) constructed from a pure tensor in the cuspidal automorphic representation Π so that

L′(1/2,Π⊗ χ) =
d

ds

∣∣∣∣
s=1/2

∫
A×K/K

×
ϕ

((
y

1

))
χ(y)|y|s− 1

2 dy.(2)

We consider realizations of this integral presentation via the theta correspondence, first abstractly via
symplectic-orthogonal pairs for Theorem 4.2 via Proposition 4.1, then in terms of the Shimura-Shintani-
Waldspurger correspondence for (28) via Proposition 4.3. We focus on the orthogonal symplectic pair for
the rest of this work. The setup we consider here is special in that we have the following accidental iso-
morphism to the spin group SpinV of the quadratic space (V, q) with V = Q ⊕ Q ⊕ K with q(x, y, λ) =
NK/Q(λ)− xy. More generally, for any class A ∈ Pic(Oc), we fix an integral representative a ⊂ OK so that
A = [a] ∈ Pic(Oc), and write aQ := a ⊗Z Q to denote the corresponding vector space. We also consider
the quadratic space (V, q) = (VA, qA) of signature (2, 2) defined by VA = Q ⊕Q ⊕ aQ with quadratic form
qA = NK/Q(λ)Na−1 − xy. Here, NK/Q(λ) = λλτ denotes the norm homomorphism, with τ the conjugation
in K. In each case, we have for the underlying rational quadratic space V an isomorphism of algebraic groups

SpinV
∼= ResK/Q SL2(K)

over Q (see (13)). These spin groups are related to the orthogonal groups SO(V ) via the short exact sequence

1 −→ {±1} −→ SpinV −→ SO(V )→ 1.

Now, we can view our cuspidal automorphic form ϕ of trivial central character on GL2(AK) as an auto-
morphic form on SL2(AK). Via the identification ResK/Q SL2(AK) ∼= SpinV (A), we then obtain from ϕ an
automorphic form ϕ′ on SpinV (A), and via the exact sequence

1 −→ {±1} −→ SpinV (A) −→ SO(V )(A)→ 1

an automorphic form ϕ′′ on SO(V )(A). These extend respectively to an automorphic form ϕ′ on the general
spin group GSpinV (A) and to an automorphic form ϕ′′ on the general orthogonal group GO(V )(A).

For any rational quadratic space (V, q) of signature (2, 2), there is a corresponding hermitian symmetric
domain DV which is in bijective correspondence with oriented positive-definite2 hyperplanes in VR. This leads
us to the spin Shimura variety Sh(DV ,GSpinV ) associated to this space, where the regularized theta lifts can
be seen as an arithmetic geometric development of the standard theta kernel from the Sp2

∼= SL2. The heart
of our approach, which develops the distinct proof of the Gross-Zagier formula [23] given by Bruinier-Yang
[8], is to realize the pure tensor ϕ ∈ Π = BCK/Q(π) on GL2(AK) or its incarnations ϕ′ on GSpinV (A) and ϕ′′

on GO(V )(A) via the accidental ResK/Q SL2(AK) ∼= SpinV (A) as a theta lifting for the reductive dual pair
(GO(V )(A),GSp(W )(A)) = (GO(V )(A),GL2(A)). In the preliminary abstract formula derived in Theorem
4.2 below for this setup, we first find an explicit realization of the quadratic basechange lifting Π = BCK/Q(π),
which allows us to recover the standard Rankin-Selberg integral presentation L′(1/2, π × π(χ)) in a novel
way. Broadly, we develop this preliminary formula by realizing the vectors that appear as certain arithmetic
automorphic forms on the ambient Shimura variety, and in particular as certain regularized theta lifts.

To describe the Shimura varieties in more detail, let H ⊂ GL2(AK,f ) be the compact open subgroup
determined by the level of the basechange representation Π = BCK/Q(π), with U = U(Π) the corresponding
compact open subgroup of GSpinV (Af ). We use the same notation to denote the corresponding compact

2or negative-definite
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open subgroup of GO(V )(Af ). Let DV denote the Grassmannian of oriented positive definite hyperplanes in
V (R). We can then consider ϕ′ and ϕ′′ as arithmetic automorphic forms on the respective Shimura varieties

ShU (GSpinV , DV ) = GSpinV (Q)\ (D ×GSpinV (Af )/U)

and

Sh(GO(V ), DV ) = GO(V )(Q)\ (DV ×GO(V )(Af )/H) .

As we explain below, the latter Shimura variety can be identified with the non-compact Hilbert modular
surface Y (Γ) = Γ\H2, where Γ ⊂ SL2(OK) denotes the congruence subgroup determined by U ∩GO(V )(Q).

Fix a primitive ring class character χ of some conductor c prime to dKN , which we view as a character
of the class group Pic(Oc) of the order Oc ⊂ OK of conductor c in K. Fix an integral ideal representative
a ⊂ OK for each class A = [a] ∈ Pic(Oc), and consider the rational quadratic space (VA, qA) of signature
(2, 2) given by the vector space VA = Q⊕Q⊕ aQ and the quadratic form qA(x, y, λ) = NK/Q(λ)Na−1−xy.
Observe that the embedding of quadratic spaces VA −→ V induces and embedding of algebraic groups
GSpinVA −→ GSpinV . Writing UA = U ∩GSpinVA(Af ) to denote the corresponding compact open subgroup
in GSpinVA(Af ), and DVA the corresponding Grassmannian of positive hyperplanes, we have an embedding of
Shimura varieties ShUA(GSpinVA , DVA) −→ ShU (GSpinV , DV ). Similarly, we have an embedding of Shimura
varieties ShUA(GO(VA), DVA) −→ ShU (GO(V ), DV ). The subspace (VA,2, qA,2) of signature (1, 1) given by
the fractional ideal VA,2 = aQ and quadratic form qA,2(λ) = NK/Q(λ)Na−1 gives rise to a “point”

zVA,2 ∈ DVA,2 = {z ∈ VA,2(R) : dim(z) = 1, qA,2|z > 0}

in the corresponding subdomain DVA,2 for VA,2 ⊂ VA (see [7, §2, cf. § 5-6]). That is, each symmetric space
DVA,2 determines an open subset of real projective space of dimension one, and each “point” zVA,2 ∈ DVA,2

is a real curve of dimension one – equivalent to a real geodesic on a quaternionic Shimura curve which is
embedded into the ambient Hilbert modular variety as a Hirzebruch-Zagier divisor. We consider for each
class A ∈ Pic(Oc) the corresponding “geodesics” defined by

Z(VA,2) = GSpinVA,2(Q)\
(
DVA,2 ×GSpinVA,2(Af )/

(
U ∩GSpinVA,2(Af )

))
on the spin Shimura variety ShUA(GSpinVA , DVA) ⊂ ShU (GSpinV , DV ), and similarly

Z(VA,2) = O(VA,2)(Q)\
(
DVA,2 ×O(VA,2)(Af )/ (U ∩O(VA,2)(Af ))

)
on the orthogonal Shimura variety ShUA(GO(VA), DVA) ⊂ ShU (GO(V ), DV ). Again, these “geodesics” are
equivalent to real geodesics on quaternionic Shimura curves, embedded into the ambient Hilbert modular
surfaces as Hirzebruch-Zagier divisors. We refer to them as “geodesics” in this way for simplicity.

We realize the preliminary formula (2) more explicitly in terms of certain regularized theta lifts evaluated
along these “geodesic” subsets Z(VA,2), in the style of Bruinier-Yang [8, Theorem 4.7]. Let us first emphasize
that several distinct features appear in deriving such an integral presentation for L′(1/2,Π⊗χ) = L′(1/2, π×
π(χ)). Beyond the fact that the quadratic subspaces (VA,2, qA,2) have signature (1, 1) – as opposed to (0, 2)
when K is replaced by an imaginary quadratic field3 – we also work class-by-class A ∈ Pic(Oc) to obtain a
novel variation of the Rankin-Selberg integral presentation for the twist by χ ∈ Pic(Oc)∨, and also take into
account features of the non-holomorphic Siegel theta series that appear. Moreover, as an indirect consequence
of the fact that we do not work with “incoherent” Eisenstein series after taking the sum along the geodesic
– and applying the Siegel-Weil formula to identify special value of Eisenstein series – we obtain a surprising
formula for the sum L(1/2,Π⊗χ)+L′(1/2,Π⊗χ) of the central value L(1/2,Π⊗χ) plus the central derivative
value L′(1/2,Π⊗ χ).

Let us now describe the regularized theta lifts that appear, starting with those constructed abstractly
and “classically” for the ambient quadratic spaces (V, q) of signature (2, 2), Let ψ0 = ⊗vψ0,v denote the
standard additive character of A/Q. Let rψ0

denote the Weil representation (cf. [32], [8], [33]) associated to
the reductive dual pair (SO(V )(A),Sp(W )(A)),

rψ0
: SO(V )(A)× Sp(W )(Q) −→ S(W(A)), W = V ⊗W,

3with a minor alternation to the definition of the quadratic form, cf. [8]
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as well as its extension to similitudes

R(A) = {(h, g) ∈ O(V )(A)×GSp(W )(A) : ν(h) = det(g)} ⊂ GO(V )(A)×GSp(W )(A).

We have natural identifications Sp(W ) ∼= SL2 and GSp(W ) ∼= GL2. Given an even lattice Λ ⊂ V with
dual lattice Λ#, we consider the subspaces SΛ ⊂ S(W(Af )) of decomposable Schwartz functions with

support on the profinite completion Λ̂# = Λ# ⊗ Ẑ which are constant on cosets of Λ̂ = Λ ⊗ Ẑ. Note that
S(W(Af )) = lim−→Λ

SΛ can be decomposed into a basis of such functions (see (39)). We write 1µ to denote

such a characteristic function associated to a given coset µ ∈ Λ#/Λ. We shall consider certain automorphic
forms taking values in these spaces SΛ, with Λ ⊂ V the lattice corresponding to the fixed choice of compact
open subgroup U = U(ϕ) ⊂ GSpinV (Af ). That is, we take Λ ⊂ V to be the lattice whose profinite

completion Λ̂ = Λ⊗Z and discriminant group Λ#/Λ are both fixed by the action of U . As explained below
(Theorem 4.9) these can be viewed as canonical liftings of the scalar-valued eigenforms introduced above.
In particular, we shall consider the twist f ⊗ η ∈ Snew

2 (Γ0(dKN)) of our eigenform f by the quadratic
character η = ηK/Q associated to the real quadratic field K. Hence, writing the Fourier series expansion of
f as f(τ) =

∑
m≥1 af (m)e(mτ) for τ = u + iv ∈ H and e(z) = exp(2πiz), this quadratic twist f ⊗ η has

the series expansion f ⊗ η(τ) =
∑
m≥1 af (m)η(m)e(mτ). According to [53, Theorem 4.15], as summarized

in Theorem 4.9 below for our setup, we can associate to this quadratic twist f ⊗ η an SΛ-valued cusp form
gη ∈ S2,Λ. We can also view the usual theta kernel θrψ0

associated to the Weil representation rψ0 by the rule

θrψ0
(h, g; Φ) =

∑
x∈W(A)

rψ0
(h, g)Φ(x)

as such a vector-valued form θrψ0
,Λ defined on z ∈ DV , τ = u + iv ∈ H, and h ∈ GO(V )(Af ) according to

the discussion in [32] (see (50) below) as

θΛ(z, h, τ) = θΛ,rψ0
(z, h, τ) =

∑
µ∈Λ#/Λ

θ?rψ0
(z, h, gτ ; 1µ) · 1µ.

Here, 1µ = char(µ+ Λ̂) is the characteristic function of µ+ Λ̂, and gτ the matrix

gτ =

(
v u

1

)
∈ GL2(R) ∼= GSp(W )(R) or gτ =

(
v

1
2 uv−

1
2

v−
1
2

)
∈ SL2(R) ∼= Sp(W )(R).

More specifically, we shall consider the regularized theta lifts associated to these quadratic spaces as
follows. Fix a class A ∈ Pic(Oc), together with an integral ideal representative a ⊂ OK . We work with
the corresponding quadratic space (VA, qA) of signature (2, 2) and its hermitian symmetric domain DVA , as
described above. Taking UA = UA(Π) ⊂ GSpinVA(Af ) to be the compact open subgroup determined by
the level U = U(Π) ⊂ GSpinV (Af ) of the basechange representation Π = BCK/Q(π) on GL2(AK) (hence
UA = U ∩GSpinVA(Af )), we consider the corresponding spin Shimura variety

ShUA(GSpinVA , DVA) = GSpinVA(Q)\DVA ×GSpinVA(Af )/UA.

Fix a lattice ΛA ⊂ VA whose profinite completion Λ̂A = ΛA ⊗ Ẑ and discriminant group Λ#
A/ΛA are

both stabilized by the action of UA. We shall fix a certain left SO(VA)(R)-invariant Gaussian function
Φ∞ ∈ S(VA(R)) ⊗ C∞(DVA) as in [32, § 1] for the ambient space (VA, qA). More generally, we can choose
such a function Φ∞ for any case on the signature according to Bruinier-Funke [7, Proposition 5.6], and in
particular for our distinguished subspace (VA,2, qA,2) of signature (1, 1).4 Given a hyperplane z ∈ DVA , a
finite element hf ∈ SO(VA)(Af ), and a matrix g ∈ SL2(A), we then consider the linear function defined on
decomposable Schwartz functions Φf ∈ S(W(Af )) by

Φf 7−→ θ?rψ0
(z, hf , g; Φf ) :=

∑
x∈W(Q)

rψ0
(1, g) (Φ∞(·, z)⊗ rψ0

(hf , 1)Φf ) (x).

4The exact form of this archimedean component Φ∞ makes no difference for our subsequent discussion.
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Given any SΛA -valued modular form f0 of weight 0(= 1−2/2), we then define the corresponding regularized
theta lift ϑ?f0

on τ = u+ iv ∈ H by the limit

ϑ?f0
(z, hf ) :=

∫ ?

SL2(Z)\H
θ?rψ0

(z, hf , gτ , f0)
dudv

v2
= lim−→
T→∞

∫
FT

θ?rψ0
(z, hf , gτ , f0)

dudv

v2
,

where each FT denotes the truncated fundamental domain

FT = {τ = u+ iv ∈ H : |u| ≤ 1/2, ττ ≥ 1, and v ≤ T} .

A well-known theorem of Borcherds [4] (cf. [32, Theorem 1.2]) computes these regularized theta lifts in
terms of twists of meromorphic line bundles on the Shimura variety ShUA(GSpinVA , DVA) ⊂ ShU (GSpinV , DV ),
and moreover relates these to automorphic Green’s functions. This theorem was refined by Bruinier [5] and
Bruinier-Funke [7] to a level of generality that applies here, and in particular to allow for the input form f0

to be a harmonic weak Maass form. To describe this, let us for each class A ∈ Pic(Oc) take f0,η,A ∈ H0,−ΛA

to be the harmonic weak Maass form of weight 0 and (Weil) representation rψ0,ΛA = rψ0,−ΛA whose image
gη,A = ξ0(f0,η,A) ∈ S2,−ΛA under the antilinear differential operator ξ0 : H0,ΛA −→ S2,−ΛA described be-
low (cf. [8, (3.5)]) has a canonical lift as described in Theorem 4.9 to the twisted scalar-valued eigenform
f ⊗ η. Here, we write −LA to denote the quadratic space determined by (LA,−qA), and note that each
of the vector-valued cusp forms gA,η has Fourier series expansion given explicitly in terms of the Fourier
coefficients of the scalar-valued cuspidal eigenform f ∈ Snew

2 (Γ0(N)) parametrizing the elliptic curve E. To
be more precise, we have for each class A = [a] ∈ Pic(Oc) that

gη,A(τ) =
∑

µ∈Λ#
A/ΛA

gη,A,µ(τ)1µ =
∑

µ∈Λ#
A/ΛA

 ∑
m∈Q>0

m≡dKNqA(m) mod dKN

af (m)η(m)s(m)e

(
mτ

dKN

)1µ.

Here, writing τ = u+ iv ∈ H and e(τ) = exp(2πiτ) as usual, we let s denote the function defined on classes
m mod dKN by s(m) = 2Ω(m,dKN), where Ω(m, dKN) is the number of divisors of the greatest comment
divisor (m, dKN) of m and dKN . Recall that this harmonic weak Maass form f0,η,A ∈ H0,ΛA determined by
the condition ξ0f0,η,A(τ) = gη,A(τ) has a decomposition f0,η,A(τ) = f+

0,η,A(τ) + f−0,η,A(τ) into a holomorphic

part f+
0,η,A(τ) and an antiholomorphic part f−0,η,A(τ). We write the respective Fourier series expansions as

f+
0,η,A(τ) =

∑
µ∈Λ#

A/ΛA

f+
0,η,A,µ(τ)1µ =

∑
µ∈Λ#

A/ΛA

 ∑
m∈Q
m�−∞

c+f0,η,A
(m,µ)e(mτ)

1µ,

and

f−0,η,A(τ) =
∑

µ∈Λ#
A/ΛA

f−0,η,A,µ(τ)1µ =
∑

µ∈Λ#
A/ΛA

∑
m∈Q
m<0

c−f0,η,A
(m,µ)W0(2πmv)

1µ,

with Whittaker function W0(n) =
∫∞
−2n

e−tdt = Γ(1, 2|n|) defined for n < 0. More generally, for any half-

integer k ∈ 1
2Z, we can consider the spaceHk,ΛA of harmonic weak Maass forms of weight k and representation

rψ0,ΛA (defined below), with M !
k,ΛA

⊂ Hk,ΛA the subspace of weakly holomorphic forms, Mk,ΛA ⊂ M !
k,ΛA

the subspace of holomorphic forms, and Sk,ΛA ⊂Mk,ΛA the subspace of cuspidal forms:

Sk,ΛA ⊂Mk,ΛA ⊂M !
k,ΛA ⊂ Hk,ΛA .

Bruinier-Funke [7] define an antilinear differential operator

ξk : Hk,ΛA −→ S2−k,ΛA , ξk(φ) := 2ivk
(
∂φ

∂τ

)
,

which is related to the classical weight-lowering operator

Lk = −2iv2 ∂

∂τ
6



by ξk(φ)(τ) = vk−2Lkφ(τ). In particular, this determines a short exact sequence of C-vector spaces

0 −→M !
k,ΛA −→ Hk,ΛA

ξk−→ S2−k,−ΛA −→ 0,

where the subspace of weakly holomorphic forms

φ(τ) =
∑

µ∈Λ#
A/ΛA

φµ(τ) =
∑

µ∈Λ#
A/ΛA

∑
m∈Q
m�−∞

cφ(µ,m)e(mτ)1µ ∈M !
k,ΛA ⊂ Hk,ΛA

is identified with ker(ξk). We can also define from the Petersson inner product 〈·, ·〉 a pairing

{·, ·} : Hk,ΛA ×M2−k,−ΛA −→ C.

That is, we can consider the space Ak,ΛA of all smooth modular forms of weight k and representation rψ0,ΛA ,
so that we have the inclusions M !

k,ΛA
⊂ Hk,ΛA ⊂ Ak,ΛA . Given forms f ∈ Ak,ΛA and g ∈ A−k,−ΛA with

f(τ) =
∑

µ∈Λ#
A/ΛA

fµ(τ)1µ, g(τ)
∑

µ∈Λ#
A/ΛA

gµ(τ)1µ,

we define the scalar product

〈〈f, g〉〉 =
∑

µ∈Λ#
A/ΛA

fµ(τ)gµ(τ).

Writing F = {τ = u + iv ∈ H : |u| ≤ 1/2, u2 + v2 ≥ 1} to denote a standard fundamental domain for the
action of SL2(Z) on H, we then define the Petersson inner product (if it converges) by

〈f, g〉 =

∫
F

〈〈f(τ), g(τ)〉〉vk dudv
v2

.

Given fk(τ) = f+
k (τ) + f−k (τ) ∈ Hk,ΛA any weakly holomorphic form of weight k and representation rψ0,ΛA ,

and g any modular form M2−k,−ΛA of weight 2− k and representation rψ0,−ΛA we then define

{fk, g} := 〈ξk(fk), g〉.

Returning to the case of weight k = 0 we consider, we can also define the regularized theta lift ϑ?f0
(z, hf )

equivalently in terms of this pairing via the limited of truncated integrals

ϑ?f0
(z, hf ) =

∫ ?

SL2(Z)\H
〈〈f0(τ), θΛA(τ)〉〉dudv

v2
= lim
T→∞

∫
FT
〈〈f0(τ), θΛA(τ)〉〉dudv

v2
.

Here, for each hf ∈ GSpinVA(Af )/UA, we realize the theta kernel described above more concretely in terms
of its corresponding Siegel theta series

θΛA(τ, z, hf ) : H×DVA −→ SΛA

(see [8, (2.6)]). In the special case where f0,A ∈ M !
0,ΛA

is a weakly holomorphic form, the regularized theta

lift ϑ?f0,A
(z, hf ) for the quadratic space (VA, qA) of signature (2, 2) can be computed thanks to a fundamental

theorem of Borcherds [4, Theorem 13.3] (cf. [32, Theorem 1.2]) as

ϑ?f0,A
(z, hf ) = −2 log |Ψf0,A

(z, hf )|2 − c+f0,A
(0, 0) · (2 log |y|+ Γ′(1)) ,

where Ψf0,A
is a meromorphic form on DV ×GSpinV (Af ) of weight k = c+f0,A

(0, 0)/2 (see [5, § 3]). Moreover,

Borcherds computes the divisor Div(Ψ2
f0,A

) of explicitly in terms of the Fourier coefficients of f0,A and certain

“special divisors” ZA(m,µ), which in the setting we consider correspond to Hirzebruch-Zagier divisors on
Hilbert modular surfaces corresponding to the spin Shimura varieties ShUA(DVA ,GSpinVA). Adding to this,
the theorem of Howard-Madapusi Pera [26, Theorem 9.1.1] allows us to deduce that this so-called Borcherds
product Ψf0

(z, hf ) takes algebraic values, so that the regularized theta lift ϑ?f0,A
(z, hf ) attached to any

weakly holomorphic form f0,A ∈ M !
0,ΛA

is seen to take values in logarithms of algebraic numbers. To give

more detail, we first define the special divisors ZA(m,µ). For each m ∈ Q, consider the quadric defined by

Ωm,A(Q) = {x ∈ VA : qA(x) = m} .
7



Consider the natural projection pr : DVA ×GSpinVA(Af ) −→ ShUA(DVA ,GSpinVA). Given a point x ∈ DVA ,
consider the orthogonal projection DVA,x = {z ∈ DVA : z ⊥ x} of the Grassmannian DVA . We then define

for each coset µ ∈ Λ#
A/ΛA the divisor

ZA(µ,m) =
∑

x∈(GSpinVA(Q)∩UA)\Ωm(Q)

1µ(x) pr(DVA,x).

Given a weakly holomorphic form f0,A ∈M !
0,ΛA

with holomorphic part

f+
0,A(τ) =

∑
µ∈Λ#

A/ΛA

f+
0 (τ)1µ =

∑
µ∈Λ#

A/ΛA

∑
m∈Q
m�−∞

c+f0
(µ,m)e(mτ)1µ,

we then define the corresponding divisor

Z(f0,A) =
∑

µ∈Λ#
A/ΛA

∑
m∈Q
m>0

c+f0,A
(µ,−m)Z(µ,m).

Note that in the special case where f0,A ∈ M0,ΛA ⊂ M !
0,ΛA

is holomorphic, we have f0,A = f+
0,A, and hence

cf0,A
(µ,m) = c+f0,A

(µ,m) for each of the coefficients in the Fourier expansion. In this case, as explained in

[32] and [26], we consider the metrized line bundle

ω̂ ∈ P̂ic
(
ShUA(DVA ,GSpinVA)

)
of modular forms of weight one, which under the complex uniformization of ShUA(DVA ,GSpinVA) pulls back
to the tautological line bundle on DVA . Now, the Shimura varieties ShUA(DVA ,GSpinVA) we consider have
regular, flat integral models ShUA(DVA ,GSpinVA) −→ Spec(Z). The metrized line bundle ω̂ and the special
divisors Z(µ,m) both extend in a natural way to the integral model ShUA(DVA ,GSpinVA).

Theorem 1.2 (Borchards, Howard-Madapusi Pera). Let f0,A ∈ M !
0,ΛA

be a weakly holomorphic form with

integral holomorphic Fourier coefficients c+f0,A
(µ,−m) ∈ Z for all µ ∈ Λ#

A/ΛA and m ∈ Q>0. After replac-

ing f0,A by a suitable integer multiple if necessary, there exists a rational section Ψf0,A
of the line bundle

ω
c+f0,A

(0,0)
on ShUA(DVA ,GSpinVA) whose norm under the metric defined by

||z||A =
(z, z)A
4πeγ

=
qA(z + z)− qA(z)− qA(z)

4πeγ

satisfies the relation

−2 log ||Ψf0,A
(z, h)||A = ϑ?f0,A

(z, h)

for all (z, h) ∈ DVA ×GSpinVA(Af ). Hence by Borcherds’ theorem, we have that

Div(Ψf0,A
) = Z(f0,A) =

∑
µ∈Λ#

A/ΛA

∑
m∈Q>0

c+f0,A
(µ,−m) · ZA(m,µ).

Proof. See Howard-Madapusi Pera [26, Theorem 9.1.1], which gives a refinement of the original theorem of
Borcherds [4, Theorem 13.3], as described in [32, Theorem 1.2]. In particular, [26, Theorem 9.1.1] shows that
the Borcherds product is defined over Q, from which we deduce that it takes algebraic values. �

We have the following relevant generalization when f0,A ∈ H0,−ΛA is not a weakly holomorphic form:

Theorem 1.3 (Bruinier, Bruinier-Funke). Let f0,A ∈ H0,−ΛA be a harmonic weak Maass form of weight 0
and representation rψ0,−ΛA . The regularized theta lift ϑ?f0,A

is a smooth function on ShUA(DVA ,GSpinVA)\Z(f0,A),

with a logarithmic singularity along −2 logZ(f0,A). Moreover,

• The (1, 1) form ddcϑ?f0,A
(z, h) has an analytic continuation to a smooth form on ShUA(DVA ,GSpinVA),

and satisfies the Green current equation ddc[ϑ?f0,A
(z, h)] + δZ(f0,A) = [ddcϑ?f0,A

(z, h)], where δZ(f0,A)

denotes the Dirac current of the divisor Z(f0,A).
• The regularized theta lift ϑ?f0,A

is an eigenfunction for the generalized Laplacian operator ∆z defined

on z ∈ DVA , with eigenvalue c+f0,A
(0, 0)/2.
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In particular, the regularized theta lift ϑ?f0,A
can be identified with the automorphic Green’s function GZ(f0,A)

for the divisor Z(f0,A), giving us an arithmetic divisor Ẑ(f0,A) = (Z(f0,A), ϑ?f0,A
) on ShUA(DVA ,GSpinVA).

Proof. See [8, Theorems 4.2 and 4.3] and [6], as well as [7, Proposition 5.6, Theorem 6.1, Theorem 6.2]. �

We develop this setup by evaluating these automorphic Green’s functions GZ(f0,A) along the “geodesic”
anisotropic subspaces of signature (1, 1) corresponding to the fractional ideals aQ of the real quadratic field
K to derive a novel integral presentation for the sum L(1/2,Π⊗χ) +L′(1/2,Π⊗χ). In this way, we recover
a formula for the central derivative value L′(1/2,Π⊗χ) = L′(E/K,χ, 1) when the ersatz Heegner hypothesis
(Hypothesis 2.1) is assumed – so that the central value L(1/2,Π⊗ χ) = L(E/K,χ, 1) is forced to vanish by
the symmetric functional equation. We also derive a novel formula for the central value in the complementary
setting for the central value L(1/2,Π⊗ χ) = L(E/K,χ, 1), giving a new realization the toric period formula
derived by Popa [37] (and more generally/abstractly by Waldspurger [49]).

Let us now summarize the main results, given in more detail in Theorem 4.19 and Corollary 4.20. We first
decompose the Siegel theta series θΛA(τ, z, hf ). To be more precise, recall that we split each quadratic space
VA = Q⊕Q⊕ aQ with qA(x, y, λ) = Na−1N(λ)− xy into subspaces VA,1 := Q⊕Q with qA,1(x, y) = −xy
and VA,2 = aQ with qA,2(λ) = Na−1N(λ). Note that each subspace (VA,j , qA,j) has signature (1, 1). Let us
for each index j = 1, 2 consider the corresponding sublattice

ΛA,j := ΛA ∩ VA,j

of signature (1, 1). We then have for each index j = 1, 2 the corresponding Siegel theta series

θΛA,j (τ, z, hf ) : H×DVA,j −→ SΛA,j ,

of weight zero and representation rψ0,ΛA,j , where DVA,j denotes the corresponding subdomain of DVA . Since
we evaluate at points zVA,2 ∈ DVA,2 and hf ∈ GSpinVA,2(Af ) in our main calculation, and since we have a

natural splitting ΛA = ΛA,1 + ΛA,2, we decompose each Siegel theta series θΛA(τ, zVA,2 , hf ) as

θΛA(τ, zVA,2 , hf ) = θΛA,1(τ, 1, 1)⊗ θΛA,2(τ, zVA,2 , hf ).

The Siegel-Weil theorem (Theorem 4.10 and Corollary 4.11) allows us to interpret the average

2

∫
SO(VA,2)(Q)\ SO(VA,2)(A)

θΛA,2(τ, zVA,2 , hf )dh

as the value at s = 0 of a certain SΛA,2-valued Eisenstein series EΛA,2(τ, s; 0) of weight 0, which in turn can
be interpreted in terms of the image under the antilinear differential weight-lowering operator ξ2 of a related
derivative Eisenstein series E′ΛA,2(τ, 0; 2) of weight two. Writing L2 to denote the standard weight lowering

operator, we have the relation

L2E
′
ΛA,2(τ, 0; 2) =

1

2
· EΛA,2(τ, 0; 0)− 1

2
· E′ΛA,2(τ, 0; 0).

We consider the Fourier series expansion

E′ΛA,2(τ, 0; 2) =
∑

µ∈Λ#
A,2/ΛA,2

∑
m∈Q

bΛA,2(µ,m, v)e(mτ) · 1µ,

we can then consider the coefficients for each pair (µ,m) by

κΛA,2(µ,m) = lim
v→∞

{
bΛA,2(µ,m, v) if µ 6= 0 or m 6= 0

bΛA,2(µ,m, v)− log(v) if µ = m = 0
,

and form from these the series

EΛA,2(τ) =
∑

µ∈Λ#
A,2/ΛA,2

∑
m∈Q

κΛA,2(µ,m)e(mτ) · 1µ.
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Note that EΛA,2(τ) is the holomorphic part of E′ΛA,2(τ, 0; 2). As we shall see, this holomorphic part EΛA,2(τ)

plays a role analogous to that of the holomorphic projection in the theorem of Gross-Zagier [23] for the
corresponding integral presentation of L′(1/2,Π⊗ χ) with K an imaginary quadratic field. Let

(3)

CT
(
〈〈f+

0,η,A(τ), θΛA,1(τ)⊗ EΛA,2(τ)〉〉
)

= CT

 ∑
µ1∈Λ

#
A,1

/ΛA,1,µ2∈Λ
#
A,1

/ΛA,2

µ1+µ2≡µ mod ΛA

∑
m,m1,m2∈Q≥0

c+f0,η,A
(−m,µ)cθΛA,1 (m1, µ1)κΛA,2(m2, µ2)


=

∑
µ1∈Λ

#
A,1

/ΛA,1,µ2∈Λ
#
A,1

/ΛA,2

µ1+µ2≡µ mod ΛA

∑
m,m1,m2∈Q≥0
m1+m2=m

c+f0,η,A
(−m,µ)cθΛA,1 (m1, µ1)κΛA,2(m2, µ2)

denote the constant coefficient of 〈〈f+
0,η,A(τ), θΛA,1(τ)⊗EΛA,2(τ)〉〉. Observe that since there are only a finite

number of m ≥ 0 for which c+f0,η,A
(−m,µ) 6= 0 for any µ ∈ Λ#

A/ΛA and κΛA,2(m2, µ2) 6= 0 only for m2 ≥ 0

for any µ2 ∈ Λ#
A,2/ΛA,2, this sum (3) is finite. Let hK denote the class number of K, and εK the fundamental

unit, so that εK = 1
2 (t+u

√
dK) is the least integral solution (with u minimal) to Pell’s equation t2−dKu2 = 4.

Theorem 1.4 (Theorem 4.19, Corollary 4.7). Let us retain the setup above. Hence, let E be an elliptic
curve of conductor N defined over Q, with π = π(f) the cuspidal automorphic representation of GL2(A)
generated by the cuspidal eigenform f(τ) =

∑
m≥1 af (m)e(mτ) ∈ Snew

2 (Γ0(N)) parametrizing E. Let K be a
real quadratic field of discriminant dK prime to N and even quadratic Dirichlet character η = ηK/Q. Writing
V = (V, q) for the rational quadratic space of signature (2, 2) determined by the vector space Q ⊕ Q ⊕ K
and quadratic form q(x, y, λ) = N(λ)− xy, let U = U(Π) denote the compact open subgroup of GSpinV (Af )
determined by the level H = H(Π) ⊂ GL2(AK,f ) of the quadratic basechange lifting Π = BCK/Q(π) of
π = π(f) to GL2(AK). Let Λ ⊂ V denote the maximal lattice corresponding to this compact open subgroup
U ⊂ GSpinV (A).

Let χ be any ring class character of K of conductor c prime to dKN (assuming such a character exists),
which we view as a character χ : Pic(Oc) → S1 on the class group Pic(Oc) of the order Oc ⊂ OK of
conductor c in K. Fixing an integral ideal representative a ⊂ OK for each class A = [a] ∈ Pic(Oc), consider
the rational quadratic space VA = (VA, qA) of signature (2, 2) defined by the vector space VA = Q⊕Q⊕ aQ
and the quadratic form qA(x, y, λ) = Na−1N(λ) − xy. Let GSpinVA denote corresponding spin group, with
UA = U ∩ GSpinVA(Af ) the corresponding level structure, and ΛA = Λ ∩ VA the corresponding lattice. Let
ShUA(DVA ,GSpinVA) denote the corresponding spin Shimura variety, which can be viewed classically as the
Hilbert modular surface with congruence subgroup determined by ΛA. For each index j = 1, 2, we consider
the subspace VA,j = (VA,j , qA,j) of signature (1, 1) with corresponding lattice ΛA,j = ΛA ∩ VA,j and level
UA,j = UA∩GSpin(VA,j)(Af ) defined as follows: For j = 1, we restrict to VA,1 = Q⊕Q with qA,1 = qA|VA,1 ,
and for j = 2 we restrict to the fractional ideal representative VA,2 = aQ with qA,2 = qA|VA,2 . Let

Z(VA,2) = GSpinVA,2(Q)\DVA,2 ×GSpinVA,2(Af )/UA,2 ⊂ ShUA(DVA ,GSpinVA)

denote the corresponding geodesic of points. Let θΛA,1(τ, z, h) denote the Siegel theta series associated to
the lattice ΛA,1 as above, and EΛA,2 the holomorphic part of the Eisenstein series E′ΛA,2(τ, 0; 2) constructed

via Siegel-Weil after averaging the Siegel theta series θΛA,2(τ, z, h) over the geodesic (z, h) ∈ Z(VA,2) as a

lifting under the weight-lowering operator L2. Let f0,η,A = f+
0,η,A + f−0,η,A ∈ H0,−ΛA be the harmonic weak

Maass form of weight 0 and representation rψ0,−ΛA whose image gA,η(τ) = ξ0(f0,η,A)(τ) ∈ S2,ΛA under
the antilinear differential operator ξ0 : H0,−ΛA → S2,ΛA is the vector-valued lift of the twisted eigenform
f ⊗η(τ) =

∑
m≥1 af (m)η(m)e(mτ) ∈ Snew

2 (Γ0(d2
KN)). Writing Vol(UA,2) to denote the volume of UA,2 with
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respect to a certain chioce of Haar measure on GSpinVA(A), we derive the integral presentation

L′(1/2,Π⊗ χ) + L(1/2,Π⊗ χ) = L?′(E/K,χ, 1) + L?(E/K,χ, 1)

=

√
dK

log εK · hK

∑
A∈Pic(Oc)
A=[a]

χ(A)

CT
(
〈〈f+

0,η,A(τ), θΛA,1 ⊗ EΛA,2(τ)〉〉
)
− vol(UA,2)

∑
(zVA,2 ,h)∈Z(VA,2)

ϑ?f0,η,A
(zVA,2 , h)

 .

Equivalently, writing GZ(f0,η,A) for each class A to denote the automorphic Green’s function for the divisor

Z(f0,η,A) =
∑

µ∈Λ#
A/ΛA

∑
m∈Q>0

c+f0,η,A
(µ,−m) · ZA(µ,m)

given by linear combination of special (Hirzebruch-Zagier) divisors ZA(µ,m) on ShUA(DVA ,GSpinVA), let

GZ(f0,η,A)(VA,2) =
∑

(z,h)∈DVA,2×GSpinVA,2
(Af )

ϑ?f0,η,A
(z, h)

denote the sum along the geodesic Z(VA,2) in ShUA(DVA ,GSpinVA). We obtain the integral presentation

L′(1/2,Π⊗ χ) + L(1/2,Π⊗ χ) = L?′(E/K,χ, 1) + L?(E/K,χ, 1)

=

√
dK

log εK · hK

∑
A∈Pic(Oc)
A=[a]

χ(A)
(

CT
(
〈〈f+

0,η,A(τ), θΛA,1 ⊗ EΛA,2(τ)〉〉
)
− vol(UA,2)GZ(f0,η,A)(VA,2)

)
.

In particular, if we assume the ersatz Heegner hypothesis (Lemma 1.1, Hypothesis 2.1) that the inert level
N− is given by the squarefree product of an odd number of primes, then L(1/2,Π ⊗ χ) = 0 by symmetric
functional equation (8), and we obtain a formula for the central derivative value L′(1/2,Π⊗ χ).

Corollary 1.5. Assume the ersatz Heegner hypothesis (Lemma 1.1, Hypothesis 2.1) that the inert level N−

is given by the squarefree product of an odd number of primes. We have the central derivative value formula

L′(1/2,Π⊗ χ) = L?′(E/K,χ, 1)

=

√
dK

log εK · hK

∑
A∈Pic(Oc)
A=[a]

χ(A)
(

CT
(
〈〈f+

0,η,A(τ), θΛA,1 ⊗ EΛA,2(τ)〉〉
)
− vol(UA,2)GZ(f0,η,A)(VA,2)

)
.

The analogous formula for central values L(1/2,Π ⊗ χ) = L(1/2, π × π(χ)) = L?(E/K,χ, 1) in the
setting where the generic root number η(−N) = η(N) = +1 is given by Popa [37, § 1, Theorem 6.3.1],
which develops Waldspurger’s theorem [49] into an exact toric period formula for these central values, and
moreover generalizes the corresponding formula of Gross [22] for for the analogous setup with K an imaginary
quadratic field. Roughly speaking, Waldspurger’s theorem [49] equates the nonvanishing of the central value
L(1/2, π × π(χ)) with that of the toric period integral∫

A×K/K
×
ϕ(t)χ(t)dt,

for ϕ ∈ πJL a vector in the Jacquet-Langlands lift πJL of π to an indefinite quaternion algebra B over Q with
ramification given by the inert level: Ram(B) = {q | N−}. Popa [37] gives an exact and even classical formula
for L(1/2, π × π(χ)) as such as toric integral, which according to the discussion in [37, § 6] can be viewed
as a twisted sum over geodesic on the modular curve X0(N) parametrizing E. Our Theorem 4.19 can be
viewed as an analogue of Popa’s theorem for the central derivative values L′(1/2,Π⊗χ) = L′(1/2, π×π(χ))
when the generic root number is η(−N) = η(N) = −1 (i.e. when Hypothesis 2.1 holds), and moreover
as a variant for the central values L(1/2,Π ⊗ χ) = L(1/2, π × π(χ)) when the generic root number is
η(−N) = η(N) = +1 (i.e. when Hypothesis 2.1 does not hold). Let us also remark that in the setting we
consider here (when the ersatz Heegner hypothesis 2.1 holds), the corresponding Jacquet-Langlands lift πJL

is an automorphic form on the definite quaternion algebra D over Q with ramification given by the inert level
N−, so Ram(D) = {q | ∞N−}. It is tempting to ask if one could develop an arithmetic formula resembling
that of Gross [22] to describe the central derivative values L′(1/2, π×π(χ)) in this way. However, we remark
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that there is no connection a priori5 to the modular curve X0(N) via the Jacquet-Langlands correspondence
in this way, nor the Hilbert modular variety associated to the basechange Π. That is, the double coset space
D×(Q)\D×(A)/U(π) through which any ϕ ∈ πJL factors is a finite set. On the other hand, working with
the basechange L-function L(1/2,Π⊗ χ) and its connection to spin Shimura varieties as outlined above, we
also obtain from Theorem 4.19 the following result when Hypothesis 2.1 does not hold.

Corollary 1.6. Assume that the inert level N− is given by the squarefree product of an even number of
primes, so that the sign η(−N) = η(N) = η(N−) = 1 of the functional equation is “even”, and hence that
L′(1/2,Π⊗ χ) = L?,′(E/K,χ, 1) vanishes. Then, we have the central value formula

L(1/2,Π⊗ χ) = L?(E/K,χ, 1)

=

√
dK

log εK · hK

∑
A∈Pic(Oc)
A=[a]

χ(A)
(

CT
(
〈〈f+

0,η,A(τ), θΛA,1 ⊗ EΛA,2(τ)〉〉
)
− vol(UA,2)GZ(f0,η,A)(VA,2)

)
.

Moreover, comparing Corollary 1.6 with the formula of Popa [37, Theorem 6.3.1], we derive the following
relation in the special case where conductor N is squarefree with trivial inert level N− = 1, so that each
prime dividing N = N+ splits in K, and χ is a ring class character of conductor c = 1 factoring through the
narrow class group of K. Recall that in this setting with N = N+ split, there exist optimal embeddings

α : K −→M2(Q), α(
√
dK) =

(
a b
c −a

)
for integers a, b, c ∈ Z satisfying the constraints

a2 + bc = dK , 2N | c, 2 | b, gcd(a, b/2, c/2) = 1,

with α(K) ∩ B0(N) = α(OK) for B0(N) the subgroup of upper-triangular matrices whose lower left entry
is divisible by N . Fixing a square root a0 of dK mod 4N , such an optimal embedding α : K → M2(Q) is
said to be oriented if a2

0 ≡ dK mod 4N . We write ΞN to denote the set of such oriented optimal embeddings,
noting that each α ∈ ΞN corresponds to a binary quadratic form

Qα(x, y) = − c
2
x2 + axy +

b

2
y2,

and that there is a natural action of the congruence subgroup Γ0(N) on ΞN for which quotient ΞN/Γ0(N)
can be identified with the narrow class group of K. In this setting we have the central value formula

(4)

L(1/2,Π⊗ χ) = L?(E/K,χ, 1)

=

√
dK

log εK · hK

∑
A∈Pic(Oc)
A=[a]

χ(A)
(

CT
(
〈〈f+

0,η,A(τ), θΛA,1 ⊗ EΛA,2(τ)〉〉
)
− vol(UA,2)GZ(f0,η,A)(VA,2)

)

= 4
√
dK ·

∣∣∣∣∣∣
∑

α∈ΞN/Γ0(N)

χ−1(α)

Mαzα∫
zα

f(z)dz

∣∣∣∣∣∣
2

.

Here, fixing a square root i =
√
−1 ∈ H, we write zα ∈ X0(N) to denote the point determined by

zα =

(
a+ dK a− dK

c c

)
i.

Expanding the fundamental unit εK explicitly as εK = m + n
√
dK for some m,n ∈ Z/2Z, we also write

Mα ∈ Γ0(N) to denote the matrix determined by

Mα =

(
m+ na nb
nc m− na

)
∈ Γ0(N).

That is, the integrals on the right hand side of (4) are taken over the geodesic cycles on X0(N) determined
by semicircles of H connecting zα and Mαzα = α(εK)zα, and passing through the real points (a±

√
dK)/2.

Moreover, the modular curve X0(N) can be realized as the compactification of the spin Shimura variety

5Note that K does not embed into the quaternion algebra D in this setting.
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Y0(N) = ShU ′(DV ′ ,GSpinV ′) associated to the quadratic space V ′ = (V ′, q′) of signature (1, 2) given by the
vector space V ′ = M tr=0

2 (Q) and the quadratic form q′(x) = N det(x), with level U ′ = U ′(π) ⊂ GSpinV ′(Af )
corresponding to Γ0(N) by the explicit description given in [8, §7.1]. It is tempting to ask if in general, the
various ring classesA ∈ Pic(Oc) give rise to embeddings of rational quadratic spaces jA : (V ′, q′) −→ (VA, qA),
and hence the corresponding Shimura varieties jA : Y0(N) = ShU ′(DV ′ ,GSpinV ′) −→ ShU (DVA ,GSpinVA),
in such a way that the pullbacks of the divisors Z(f0,η,A) and more generally the Hirzebruch-Zagier divisors
ZA(µ,m) might give new constructions of points in the Mordell-Weil group E(K[c]), including the provenance
of the elusive “Start-Heegner” points in the setting of Corollary 1.5. We expect that such embeddings exist
in the split case N = N+ corresponding to central values, and that a suitable application of level-raising
congruences for the Jacquet-Langlands lifts ϕ ∈ π(f)JL might always allow us to reduce to this setting, in
the style of the argument of Bertolini-Darmon [3]. However, we refrain from posing any conjecture.

1.0.1. Some remarks. Let us now make a few more comments about Theorem 1.4.

(i) Proposition 4.3 below suggests there should be an integral presentation for L′(1/2,Π⊗ χ) in terms
of Fourier coefficients of half-integral weight forms. For instance, we expect that some application of
the derivations shown in Bump-Friedberg-Hoffstein [12] links these central derivative values to the
constant coefficients of certain Eisenstein series on the metaplectic cover of GSp4(A). We intend to
develop these connections in subsequent work.

(ii) The presentation of Theorem 4.19 applies to both totally odd and totally even ring class characters.
In fact, our main derivations would apply to any Hecke character of K, but restrict our focus to the
interesting arithmetic setup where the corresponding functional equation is symmetric.

(iii) The regularized theta lifts ϑ?f0,η,A
= GZ(f0,η,A) can be related to the theta lifts constructed by Kudla-

Millson in [35] by the arguments of Bruinier-Funke [7, Theorems 1.4 and 1.5]. Such relations, which
hold for any signature (p, q), suggest another potential geometric development of this formula.

(iv) The role played by the holomorphic projection in Gross-Zagier [23] is replaced here by the holomor-
phic part ELA,2(s, τ) of the derivative Eisenstein series E′LA,2(s, τ ; 2) appearing in our formula. More

precisely, this derivative Eisenstein series appears after applying the Siegel-Weil formula to the theta
series θLA,2(τ) corresponding to each signature (1, 1) quadratic subspace (VA,2, qA,2), and then after
interpreting the corresponding value at s0 = 0 of the weight zero Eisenstein series ELA,2(s0, τ ; 0)
appearing in this way under some Maass weight lowering operator of E′LA,2(s, τ ; 2). Although the

underlying weight-zero Eisenstein series ELA,2(τ, s; 0) in our setup is coherent, i.e. not incoherent in
the sense of Kudla (e.g. [32]), we also find it in our main calculation for Theorem 4.19.

(v) Recall that a complex number is said to be a period if its real and imaginary parts can be ex-
pressed as integrals of rational functions with rational coefficients, over domains in Rn given by
polynomials inequalities with rational coefficients. We expect that the central derivative values
L′(1/2,Π ⊗ χ) = L?′(E/K,χ, 1) are always periods (cf. [30, Question 4]), as this would be implied
refined conjecture of Birch and Swinnerton-Dyer, and note that this can be deduced in the special
cases described in Corollary 1.6 and Corollary 6.1 from Theorem 4.19. We expect more generally that
the central derivative values appearing in [8, Theorem 4.7] are periods, as well as the values taken by
the regularized theta lifts ϑ?f0

. Although we can only deduce this in special cases such as (4) above,
the following heuristic calculation suggests that the values of the regularized theta lift ϑ?f0

at special
divisors should always be periods. We can decompose any cuspidal harmonic weak Maass form f0

into a linear combination of Hejhal-Maass Poincaré series Fµ,m as in [5, Theorem 2.14]. Ignoring
issues of absolute convergence, we obtain a corresponding decomposition for the regularized theta
lift ϑ?f0

into a linear combination of its Poincar series constituents ϑ?Fµ,m . Evaluated at the “points”

we consider, these constituents ϑ?Fµ,m can be computed equivalently as rational linear combination

of the Gaussian hypergeometric function 2F1 at rational (which are known to be periods).
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(vi) Although we do not give a formula in terms of cycles on the spin Shimura varieties we consider, we do
give a formula for L′(1/2,Π⊗ χ) = L′(1/2, π × π(χ)) = L?,′(E/K,χ, 1) in terms of the “geodesics”
Z(VA,2). These are the locally symmetric spaces associated to the signature (1, 1) quadratic sub-
spaces (VA,2, qA,2), which via the theta correspondence can be related to the locally symmetric space
associated to GL2(A). This latter characterization should have a natural interpretation in terms of
the Borel-Serre compactification of a Shimura variety for GSp4(A). This idea of realizing locally
symmetric spaces in the boundaries of Borel-Serre compactifications of ambient Shimura varieties,
which seems to go back to Clozel, is used crucially in the constructions by [25] and [41] of Galois
representations for GLn over totally real fields. It would be very interesting if we could describe the
sums of regularized theta lifts

∑
(z,h)∈Z(VA,2) ϑ

?
f0,η,A

(z, h) = GZ(f0,η,A)(Z(VA,2)) explicitly in terms

cycles on these boundaries of the Borel-Serre compactifications of such ambient Shimura varieties.
We hope to return to this idea.

1.0.2. Applications towards Birch-Swinnerton-Dyer. Theorem 4.19 also suggests a possible origin for cer-
tain “real multiplication” points in the K[c]-rational Mordel-Weil groups E(K[c]) coming from geodesic
cycles Z(VA,2) related to the spin Shimura varieties ShU (GSpinV , D) and orthogonal Shimura varieties
ShU (O(V ), D) corresponding to the Hilbert modular variety Y (Γ) = Γ\H2. In this spirit, we also describe
interpretations of these formulae in terms of the corresponding homology groups (cf. [37, § 6.4], [?, §8]),
and also how the refined Birch and Swinnerton-Dyer conjecture suggests new characterizations of the Tate-
Shafarevich group XE(K[c]) and regulator term RE(K[c]). We refer to (99), (100) and below for more
details of what can be deduced here. One consequence is the following result.

Corollary 1.7 (Theorem 6.1). Assume the ersatz Heegner hypothesis (Lemma 1.1, Hypothesis 2.1) that the
inert level N− is given by the squarefree product of an odd number of primes, then L(1/2,Π ⊗ χ) = 0 by
symmetric functional equation (8). Writing E again to denote the underlying elliptic curve over Q, we write
E(dK) to denote its quadratic twist. Let us also assume that E has semistable reduction so that its conductor
N is squarefree, with N coprime to the discriminant dK of K, and for each prime p ≥ 5:

• The residual Galois representations E[p] and E(dK)[p] attached to E and E(dK) are irreducible,
• There exists a prime divisor l || N distinct from p where the residual representation E[p] is ramified,

and a prime divisor q || NdK distinct from p where the residual representation E(dK)[p] is ramified.

For either elliptic curve A = E,E(dK), let us write XA(Q) to denote the Tate-Shafarevich group, with
TA(Q) the product over local Tamagawa factors, and ωA a fixed invariant differential for A/Q. Suppose that
ords=1 L

?(E/K, 1) = 1, so that either L?(E, 1) = L(1/2, π) or the quadratic twist L?(E(dK), 1) = L(1/2, π⊗η)
vanishes. Writing [e, e] to denote the regulator of either E or E(dk) according to which factor vanishes, we
have the unconditional identity up to powers of 2 and 3:

#XE(Q) ·#XE(dK )(Q) · [e, e] · TE(Q) · TE(dK )(Q)

#E(Q)2
tors ·#E(dk)(Q)2

tors

·
∫
E(R)

|ωE | ·
∫
E(dK )(R)

|ωE(dk) |

=

√
dK

log εK

∑
A∈Pic(OK)

CT
(
〈〈f+

0,η,A(τ), θLA,1 ⊗ ELA,2(τ)〉〉
)
− vol(UA,2)

∑
(zVA,2 ,h)∈Z(VA,2)

ϑ?f0,η,A
(zVA,2 , h)


=

√
dK

log εK

∑
A∈Pic(OK)

(
CT

(
〈〈f+

0,η,A(τ), θLA,1 ⊗ ELA,2(τ)〉〉
)
− vol(UA,2)GZ(f0,η,A)(ZA,2)

)
.

In particular, the value on the left-hand side is known to be a period (see [30, §4]).

It would be interesting to develop these connections further, especially in connection to the real quadratic
Borcherds products studied by [16], perhaps leading to a global analogue of Darmon’s [15, Conjecture 5.6].

Outline. We first describe the setup with L-functions and their functional equations with more detail in
§2, followed by Eulerian integral presentations in §3, then connections to spin and spin Shimura varieties
in §4. We give some relevant abstract discussion of the theta correspondence leading to Proposition 4.1
and Theorem 4.2 realizing the quadratic basechange lifting in an explicit way. We also present Proposition
4.3 and (28), explaining the connection to the Shimura-Shintani-Waldspurger correspondence. We describe
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regularized theta liftings following [32] and [8, §§2-4] in §4.4, leading to the main Theorem 4.19 and Corollary
4.7. Our main results are then derived in Theorem 4.16, Theorem 4.19, and Corollary 4.20. We describe the
connection to the setting of Hilbert modular forms in §5. Finally, we describe the connection to homology
classes in §6.1 and arithmetic invariants associated with Mordell-Weil groups via the refined Birch and
Swinnerton-Dyer conjecture in §6.2.

Acknowledgements. I would like to thank Thomas Zink for many discussions, as well as Alex Popa and
Adrian Diaconu for interesting suggestions at the Bucharest Number Theory Days in July, 2023. I am also
extremely grateful to Jan Bruiner for offering many crucial insights (and answering many basic questions),
as well as to Ashay Burungale, Henri Darmon, Ben Howard, and Steve Kudla for helpful exchanges, and to
anonymous referees for comments on an earlier version of this work.

2. Review of equivalent L-functions and their functional equations

Recall that we let E be an elliptic curve defined over the rationals, corresponding via modularity to a
cuspidal newform f ∈ S2(Γ0(N)). Let us write π = ⊗vπv to denote the cuspidal automorphic representation
of GL2(A) generated by f , so that we have identifications of completed L-functions

L?(E, s) = L(s− 1/2, π) =
∏
v≤∞

L(s− 1/2, πv)(5)

Again, we fix K a real quadratic field of discriminant dK prime to the conductor N , and write η = ηK/Q to
denote the corresponding Dirichlet character. As well, we fix a ring class character χ of K of some conductor
c ∈ Z≥1 coprime to the product dKN , and let us write K[c] for the ring class extension of K of conductor
c. Inspired by the conjecture of Darmon [15, Conjecture 5.6] and the theorem of Gross-Zagier [23], as well
as the various related theorems (e.g. those of [49] and [37]) we seek to detect Heegner-like points in the
Mordell-Weil group E(K[c]) of K[c]-rational points through the study of integral presentations of the central
derivative value L?′(E/K,χ, 1) of the completed Hasse-Weil L-function L?(E/K,χ, s) of E basechanged to
K and twisted by χ. By the theory of Rankin-Selberg convolution (cf. e.g. [23], [11, Ch. 3]), we can deduce
from modularity, or rather from the corresponding identification of L-functions (5), that L(E/K,χ, s) has
an analytic continuation to all s ∈ C given through its identification with the Rankin-Selberg L-function
L(s, π × π(χ)) of π times the representation π = ⊗vπ(χ)v of GL2(A) induced by π:

L?(E/K,χ, s) = L(s− 1/2, π × π(χ)) =
∏
v≤∞

L(s− 1/2, πv × π(χ)v).(6)

On the other hand, recall that by the theory of cyclic basechange (in the sense of [36], [2]), we can attach to π a
cuspidal automorphic representation Π = BCK/Q of GL2(AK). It is then well-known that the Rankin-Selberg
L-function L(s, π×π(χ)) on GL2(A)×GL2(A) is equivalent to the (twisted) standard or Godement-Jacquet
L-function L(s,Π⊗ χ) on GL2(AK)×GL1(AK). This gives us another equivalence of L-functions

L?(E/K,χ, s) = L(s− 1/2,Π⊗ χ) =
∏
w≤∞

L(s− 1/2,Πw ⊗ χw),(7)

where we view χ as an idele class character χ = ⊗wχw of K having trivial archimedean component χ∞ ≡ 1.
In each of these presentations (6) and (7), the automorphic L-function L(s, π × π(χ)) = L(s,Π⊗ χ) has

a well-known analytic continuation to all s ∈ C, and satisfies a functional equation relating values at s to
1 − s. Moreover, since π ∼= π̃ is self-dual, and ring class characters equivariant under complex conjugation,
it is well-known that the Rankin-Selberg L-function L(s, π×π(χ)) satisfies a symmetric functional equation

L(s, π × π(χ)) = ε(s, π × π(χ))L(1− s, π × π(χ))(8)

with epsilon factor

ε(s, π × π(χ)) = c(π × π(χ))
1
2−s · ε(1/2, π × π(χ)) = (d2

KN
2c4)

1
2−s · ε(1/2, π × π(χ))

and root number ε(1/2, π × π(χ)) ∈ {±1} ⊂ S1 given by the simple formula

ε(1/2, π × π(χ)) = η(−N) = η(N).(9)

Here, we write c(π × π(χ)) = d2
KN

2c4 to denote the conductor of the L-function L(s, π × π(χ)), and use
that the quadratic Dirichlet character η = ηK/Q is even (as K is a real quadratic extension). Note that this
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formula (9) holds for any choice of ring class character χ of K of conductor c coprime to the product dKN ,
and moreover that this does not depend on this choice. Since the functional equation (8) is symmetric, we
deduce that must be forced vanishing of the central value L(1/2, π× π(χ)) = L(1/2,Π⊗χ) = 0 in the event
that η(N) = −1. We can therefore impose the following condition on the level N of π, equivalently the
conductor N of f and E, to ensure this forced vanishing. Here, since we assume that N is coprime to the
disciminant dK , we can assume that the conductor N factorizes as N = N+N−, where for each prime q | N ,

q | N+ ⇐⇒ η(q) = 1 ⇐⇒ q splits in K

q | N− ⇐⇒ η(q) = −1 ⇐⇒ q is inert K.

Hypothesis 2.1 (Ersatz Heegner hypothesis). Let us assume that the inert level N− is the squarefree product
of an odd number of primes, and hence that the root number of L(s, π×π(χ)) for χ any ring class character
of K of conductor c prime to dKN is given by ε(1/2, π × π(χ)) = η(−N) = η(N) = η(N−) = −1.

If the condition of Hypothesis 2.1 is met, as we shall assume henceforth, then the corresponding central
value L(1/2, π×π(χ)) is forced by the functional equation (8) to vanish: L(1/2, π×π(χ)) = L(1/2,Π⊗χ) = 0.
It then makes sense to derive integral presentations for the central derivative values in this case,

L′(1/2, π × π(χ)) = L′(1/2, πK ⊗ χ) = ?

That is, if one believes in the conjectures of Birch-Swinnerton-Dyer, Darmon (e.g. [15, Conjecture 5.6]),
Kudla, and also Bruinier-Yang [8, Conjecture 1.1] (for instance), then this central derivative value should be
related to the height of some CM-type point or arithmetic divisor on some Shimura variety.

3. Eulerian integral presentations

Let us now work with the basechange Π = BCK/Q(π) of π to GL2(AK), which exists by the theory of
Langlands [36] and more generally Arthur-Clozel [2]. In addition to Hypothesis 2.1, we shall also require that
the basechange representation Π = ⊗wΠw of GL2(AK) is cuspidal. Happily, this follows from the modularity
theorem of Freitas-Le Hung-Siksek [18]:

Proposition 3.1. The quadratic basechange Π = BCK/Q(π) of the cuspidal automorphic representation π
of GL2(A) corresponding to our elliptic curve E/Q to an automorphic representation GL2(AK) is cuspidal.

Proof. We consider the basechange of the our fixed elliptic curve E to the quadratic field K, and its cor-
responding Mordell-Weil group E(K). The main theorem [18, Theorem 1] implies that E(K) is modular,
and hence that its completed L-function L?(E/K, s) is equivalent to the shift by 1/2 of the corresponding
L-function L(s, σ), wth σ = ⊗wσw a cuspidal automorphic representation of GL2(AK) determined uniquely
by E(K). On the other hand, by modularity of E(Q) with the Artin basechange decomposition described
above (which implies that L(s,Π) = L(s, π)L(s, π ⊗ η)), we already have the formal relations

L?(E/K, s) = L(s− 1/2, π)L(s− 1/2, π ⊗ η) = L(s− 1/2,Π).

Hence, we deduce that σ = Π, whence Π must be cuspidal by [18, Theorem 1]. �

In classical terms, this gives the following immediate consequence, which we record for future reference:

Corollary 3.2. Our modular elliptic curve E(Q) can be associated to some cuspidal newform f ∈ Snew
2 (Γ0(N))

of weight 2, trivial character, and level N equal to the conductor of E/Q, with π = ⊗vπv the correspond-
ing cuspidal automorphic representation of GL2(A) of level c(π) = N and trivial central character whose
archimedean component is a holomorphic discrete series of weight 2. Using the unitary normalization for the
automorphic L-functions (so that s = 1/2 is the central value), we have the equivalences of L-functions

L?(E, s) = L(s− 1/2, f) = L(s− 1/2, π).

The basechanged elliptic curve E(K) can be associated to some cuspidal Hilbert newform f of parallel weight
two, trivial central character, and level N ⊂ OK equal to the conductor of E/K, with Π = ⊗wΠw the
corresponding cuspidal automorphic representation of GL2(AK) of level c(Π) = N ⊂ OK and trivial central
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character whose archimedean component is a holomorphic discrete series of parallel weight two. We then
have the corresponding equivalences of L-functions

L?(E/K, s) = L(s− 1/2, f) = L(s− 1/2,Π)

= L(s− 1/2, π)L(s− 1/2, π ⊗ η) = L(s− 1/2, f)L(s− 1/2, f ⊗ η).

Let us now consider the following vector in our cuspidal automorphic representation Π = ⊗wΠw of
GL2(AK), which will play a role analogous to a “newform” or new vector in this setup. Hence let us fix
a pure tensor ϕ = ⊗wϕw ∈ VΠ whose nonarchimedean local components are each “essential Whittaker
vectors”, we have the corresponding Whittaker function defined on g ∈ GL2(AK) by

Wϕ(g) =

∫
AK/K

ϕ

((
1 x

1

)
g

)
ψ(−x)dx =

∫
N2(K)\N2(AK)

ϕ(ng)ψ(−n)dn,

i.e. so that ϕ has the Fourier-Whittaker expansion

ϕ(g) =
∑
γ∈K×

Wϕ

((
γ

1

)
g

)
.

Here, we write N2 ⊂ GL2 as usual to denote the standard unipotent subgroup of upper triangular matrices.
We also have the classical “Eulerian” integral presentation (as detailed e.g. in the lectures of [14])

(10)

L(s,Π⊗ χ) =

∫
A×K/K

×
ϕ

((
y

1

))
χ(y)|y|s− 1

2 dy

=

∫
A×K/K

×

∑
γ∈K×

Wϕ

((
γy

1

))
χ(y)|y|s− 1

2 dy

=

∫
A×K

Wϕ

((
y

1

))
χ(y)|y|s− 1

2 dy.

In particular, this gives us the preliminary integral presentation

(11)

L′(1/2,Π⊗ χ) =
d

ds

∣∣∣∣
s=1/2

(∫
A×K/K

×
ϕ

((
y

1

))
χ(y)|y|s− 1

2 dy

)

=
d

ds

∣∣∣∣
s=1/2

(∫
A×K

Wϕ

((
y

1

))
χ(y)|y|s− 1

2 dy

)
.

4. Connection to spin groups and orthogonal groups

Let us now explain how to view this preliminary Eulerian integral presentation (11) for the central deriv-
ative value in terms of Shimura varieties associated to spin groups and orthogonal groups, as well as how to
use two corresponding versions of the theta correspondence to derive distinct integral presentations for the
central derivative value L′(1/2,Π⊗ χ). Here, we follow [6, §§ 2.3, 2.7] and [8, §§ 2, 4].

4.1. An accidental isomorphism. Let us first explain how for a certain hermitian quadratic space (V, q)
over Q, we can view our automorphic form ϕ ∈ VΠ on GL2(AK) from (11) as an automorphic form ϕ′ on
the spin group GSpinV (A) as well as an automorphic form ϕ′′ on the orthogonal group O(V )(A).

4.1.1. The quadratic space (V, q). Writing our quadratic extension as K = Q(
√
d) for d > 0, let V = (V, q)

be the quadratic space with underlying vector space

V = Q⊕Q⊕K,(12)

and associated quadratic form q defined by

q(x, y, λ) = λλτ − xy for x, y ∈ Q and λ ∈ K.
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Here, λτ denotes the image of λ ∈ K under the conjugation in K. Hence, we can see by inspection that (V, q)
is a rational quadratic space of type (2, 2) as d > 0 is positive6. We shall write (·, ·) : V × V → Q to denote
the corresponding hermitian bilinear form defined on v1, v2 ∈ V by (v1, v2) = q(v1 + v2)− q(v1)− q(v2).

Remark We shall later take (V, q) to be any quadratic space of signature (2, 2) with underlying vector space
V = Q⊕Q⊕K, as well as slightly more general choices of quadratic form associated to the ring class group
Pic(Oc) of the Z-order Oc := Z + cOK of conductor c in K through which our fixed ring class character χ
factors. In this more general setting, the quadratic form q will be given by q(x, y, λ) = c ·NK/Q(λ)− xy for

some positive constant c > 0 determined by the conductor, namely c = Na−1 for a ⊂ OK an integral ideal
representative of a given class A ∈ Pic(Oc). Hence for this reason, we shall consider a slightly more general
choice of quadratic space (V, q) in the preliminary discussion.

4.1.2. Relation to spin and orthogonal groups of V . As explained in [6, §2.7], fixing the orthogonal basis

v1 = (1, 1, 0), v2 = (1,−1, 0), v3 = (0, 0, 1), v4 = (0, 0,
√
d)

so that δ := v1v2v3v4 satisfies δ2 = d, the centre Z(C0
V ) of the Q-submodule C0

V of the Clifford algebra
CV of V spanned by products of even numbers of basis vectors (see [6, § 2.2]) can be identified with
Z(C0

V ) ∼= Q + Qδ ∼= K. Moreover, as explained in [6, Example 2.10, § 2.7], we have the identification

C0
V
∼= Z(C0

V ) + Z(C0
V )v1v2 + Z(C0

V )v2v3 + Z(C0
V )v1v3

∼= M2(K)

of C0
V with the split quaternion algebra M2(K) over K via the assignment

1 7→
(

1
1

)
, v1v2 7→

(
1
−1

)
, v2v3 7→

(
1

−1

)
, v1v3 7→

(
1

1

)
.

The canonical involution on C0
V corresponds to the conjugation ? in M2(K) defined by(

a b
c d

)?
=

(
d −b
−c a

)
,

and the Clifford norm is seen in this way to correspond to the determinant in M2(K). In particular, using
the known characterization of elements of Clifford algebras in lower dimensions in terms of the Clifford norm
NCV (see e.g. [6, Lemma 2.14]), we then deduce that we have the accidental isomorphism

SpinV := {x ∈ C0
V : NCV (x) = 1} ∼= ResK/Q SL2(K)(13)

as algebraic groups over Q. On the other hand, we also have the short exact sequence

1 −→ {±1} −→ SpinV −→ SO(V ) −→ 1,(14)

with SO(V ) the special orthogonal group of V ,

SO(V ) = {σ ∈ Aut(V ) : q(σ(v)) = q(v) ∀v ∈ V, det(σ) = 1} .
Note that we can derive from (13) and (14) the corresponding relations for the general orthogonal group

GO(V ) =
{
σ ∈ Aut(V ) : q(σ(v)) = q(v) ∀v ∈ V, det(σ) ∈ Q×

}
.

To be more precise, we also have the identification

GSpinV := {x ∈ C0
V : NCV (x) ∈ Q×},

as well as the injection

GSpinV −→ ResK/Q GL2(K),(15)

of algebraic groups over Q. We also have the short exact sequence

1 −→ Q× −→ GCV −→ GO(V ) −→ 1,(16)

where GCV ⊃ GSpinV := GCV ∩C0
V denotes the Clifford group of V . We refer to [6, Lemma 2.14] for details.

6Note that when d < 0 (so that K = Q(
√
d) is imaginary quadratic), the corresponding space (V, q) is of type (3, 1). That

the space has signature (2, 2) when d > 0 can be seen more directly after putting the quadratic form into diagonal form, say
with respect to the basis (1, 1), (1,−1), with x replaced by (u + v) and y replaced by (u − v), so that the quadratic form q is
given equivalently by q(u, v, λ) = NK/Q(λ)− (u+ v)(u− v) = λλτ − u2 + v2. Expanding this in terms of an integral basis for

the real quadratic field K = Q(
√
d), it is then easy to see by inspection that this space has signature (1, 1).
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4.1.3. Realizations of the automorphic form ϕ ∈ VΠ. Since the basechange representation Π has trivial central
character in our setup, we can view our cuspidal automorphic form ϕ ∈ VΠ of trivial central character on
GL2(AK) as a cuspidal automorphic form on SL2(AK). Via the isomorphism (13), we can then view this
form ϕ ∈ VΠ as an automorphic form ϕ′ on the spin group SpinV (A), and via the short exact sequence
(14) as an automorphic form ϕ′′ on the orthogonal group O(V )(A). It is easy to see that we can view these
latter forms on the corresponding general spin and general orthogonal groups of trivial central character. In
this way, we can view this form ϕ ∈ VΠ as an automorphic form ϕ′ on GSpinV (A), and via the short exact
sequence (16) as an automorphic form ϕ′′ on GO(V )(A).

4.1.4. The quadratic subspace (V2, q2). We shall sometimes consider the subspace V2 ⊂ V of signature (1, 1)
corresponding to the quadratic field V2 = K with restricted form q2 = q|V2

. We write GSpinV2
to denote

the corresponding general spin group, and GO(V2) the corresponding orthogonal group. Note that we have
natural identifications SpinV2

∼= ResK/Q SL1(K) and SO(V2) ∼= ResK/Q SL1(K) of algebraic groups over Q
by a variation of the discussion above (see [6, §2.3]). In particular, we obtain natural identifications of the
idele class group A×K/K

×:

GSpinV2
(Q)\GSpinV2

(A) ∼= GO(V2)(Q)\GO(V2)(A) ∼= A×K/K
×.(17)

Here, strictly speaking, we fix one of the two connected components GO±(V ) of GO(V ), so that the identi-
fication (17) should read

GSpinV2
(Q)\GSpinV2

(A) ∼= GO±(V2)(Q)\GO±(V2)(A) ∼= A×K/K
×.

We shall drop the superscript GO±(V ) to simplify notations in the subsequent discussion. We refer to the
discussion in [37, Theorem 2.3.3] for more background leading to this identification.

Given an idele class character χ = ⊗wχw of A×K/K
×, we shall write χ′ to denote the corresponding

automorphic form on GSpinV2
(A) and χ′′ the corresponding automorphic form on GO(V2)(A) under (17).

We shall also assume that the natural embeddings GSpinV2
(A)→ GSpinV (A) and GO(V2)(A)→ GO(V )(A)

induced by the subspace inclusion V2 ⊂ V coincide under the identification (15) with the natural embedding

A×K
∼= GL1(AK) −→ GL2(AK), y 7−→

(
y

1

)
.

4.2. Relations to spin and orthogonal Shimura varieties. We obtain the following immediate relation
to spin and orthogonal Shimura varieties from the discussion of the accidental isomorphism (13) above.

Let use write D = DV = D+
V to denote the Grassmannian of oriented 2-dimensional subspaces of V (R)

on which the quadratic form q is positive definite,

D = D+
V = {W ⊂ V (R) : dim(W ) = 2, q|W > 0} ,

and D− the Grassmannian of oriented 2-dimensional subspaces of V (R) on which the q is negative definite,

D− = {W ⊂ V (R) : dim(W ) = 2, q|W < 0} .

Again, we write D±2 = D±V2
to denote the corresponding Grassmannians for the signature (1, 1) subspaces

V2 ⊂ V , as introduced above (see e.g. [7, §]).

4.2.1. Relation to GSpinV Shimura varieties. Let H = H(ϕ′) ⊂ GSpinV (A) denote the compact open
subgroup corresponding to the form ϕ′ on GSpinV (A) and hence to the form ϕ ∈ VΠ on GL2(AK). We can
consider the automorphic form ϕ′ as a function on the corresponding spin Shimura variety

ShU (GSpinV , D
±) = GSpinV (Q)\

(
D± ×GSpinV (Af )/U

)
.

Note that this determines a variety of dimension 2 defined over Q7, and that the quadratic subspace (V2, q2)
described above gives rise to a “point” defined with respect to the sub-Grassmannian D±2 = D±V2

by

ShU (GSpinV2
, D±2 ) = GSpinV2

(Q)\
(
D±2 ×GSpinV2

(Af )/U
)
, U := U ∩GSpinV2

(Af ).

7In general, for a hermitian space (V, q) of signature (n, 2), the corresponding Shimura variety ShU (SpinV ,D±) is a quasi-

projective variety of dimension n over Q, projective if and only if V is anisotropic.
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Writing χ′ again to denote the automorphic form on GSpinV2
(A) corresponding to a ring class character

χ = ⊗wχw of A×K/K
×, we can rewrite the preliminary integral presentation (11) equivalently as

L′(1/2,Π⊗ χ) =
d

ds

∣∣∣∣
s=1/2

 ∫
GSpinV2

(Q)\GSpinV2
(A)

ϕ′ (y)χ′(y)|y|s− 1
2 dy

 .(18)

4.2.2. Relation to GO(V ) Shimura varieties. Let U = U(ϕ′′) denote the compact open subgroup of GO(V )(Af )
corresponding to the form ϕ′′ on GO(V )(Af ), and hence to the form ϕ ∈ VΠ on GL2(AK). We can also view
ϕ′′ as an automorphic form on the orthogonal Shimura variety

ShU (GO(V ), D±) = GO(V )(Q)\
(
D± ×GO(V )(Af )/U

)
,

which for the special case of quadratic space (V, q) of signature (2, 2) which we consider is a Hilbert modular
surface (see e.g. [6, §2]). Again, the quadratic subspace (V2, q2) of signature (1, 1) gives rise to a “point”
defined with respect to the corresponding Grassmannian D±2 = D±V2

,

ShU (GO(V2), D±) = GO(V2)(Q)\
(
D± ×GO(V2)(Af )/U

)
, U := U ∩GO(V2)(Af ).

Writing χ′′ to denote the automorphic form on GO(V2)(A) corresponding to a ring class character χ = ⊗wχw
of A×K/K

×, we can also write the preliminary integral presentation (11) equivalently as

L′(1/2,Π⊗ χ) =
d

ds

∣∣∣∣
s=1/2

 ∫
GO(V2)(Q)\GO(V2)(A)

ϕ′′ (y)χ′′(y)|y|s− 1
2 dy

 .(19)

4.3. Realization of the basechange form as a theta lifting. We now explain how we can use the
identification (15) and short exact sequence (16) to give an realization of our automorphic form ϕ ∈ VΠ

on GL2(AK) as a theta lifting from GSp2(A) corresponding to the basechange lifting. This little-known
classical construction is detailed in Bruinier [6, §2.7], which we follow. Here, we give representation theoretic
descriptions of the setup, and defer giving a more arithmetic description in terms of regularized theta liftings
and Borcherds products (or automorphic Green’s functions) until the next section.

Remark Note that we could also realize our cuspidal form ϕ on GL2(AK) as a Shimura lifting from from

a genuine automorphic form on the two-fold metaplectic cover S̃L2(AK) of SL2(AK) in the sense of the
theorems of Shimura [42], [43] and Waldspurger [47], and that the preliminary setup would be formally
almost identical. We omit giving details of this variation for simplicity.

4.3.1. Abstract lifting via the orthogonal symplectic pair (GO(V ),GSp2). We refer to [33, § II.1] and [34]
for more background. Let W ∼= Q4 denote the standard symplectic space over Q with pairing [·, ·] : W ×
W → Q given by the determinant, and write Sp(W ) ∼= Sp2

∼= SL2 to denote corresponding symplectic
group. Writing W = V ⊗Q W ∼= V 2 to denote the corresponding product space with Q-bilinear form
[[·, ·]] : W × W → Q defined by the rule [[v1 ⊗ w2, v1 ⊗ w2]] = q(v1, v2) · [w1, w2], we can consider the
corresponding reductive dual pair (SO(V ),Sp(W )) in Sp(W). Extending to similitudes then gives us the
reductive dual pair (GO(V ),GSp(W )), where GSp(W )(A) ∼= GL2(A) and GO(V )(A) can be identified with
GL2(AK) for our purposes via the accidental isomorphism (13) with the exact sequence (16).

We consider the global theta correspondence for (SO(V ),SL2) and its extension to similitudes (GO(V ),GL2).
Hence, let us now write ψ0 = ⊗vψ0,v to denote the standard additive character of A/Q, and

rψ0 : SO(V )(A)× SL2(A) −→ Aut(V (A)2)

the Weil representation extended to the similitude group

R(A) = {(h, g) ∈ GO(V )(A)×GL2(A) : ν(h) = det(g)} ⊂ GO(V )(A)×GL2(A).

We can then consider the corresponding theta kernel defined on (h, g) ∈ R(A) and a decomposable Schwartz
function Φ = ⊗vΦv ∈ S(V (A)2) by

θrψ0
(h, g; Φ) =

∑
x∈V (Q)2

rψ0(h, g)Φ(x).
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Taking φ to be an automorphic form on GL2(A) ∼= GSp(W )(A), let us now consider the automorphic
form defined on h ∈ GO(V )(A) by the theta integral

ϕ(h) = ϑφ(h; Φ) :=

∫
SL2(Q)\ SL2(A)

θrψ0
(h, σg; Φ)φ(σg)dσ.(20)

Here, we choose some g ∈ GL2(A) with matching similitude factor det(g) = ν(h). We also claim that we
can use our chosen cuspidal pure tensor ϕ ∈ VΠ above to be as such a theta lifting (20) as follows. Recall
that any automorphic form ϕ on GL2(AK) can be viewed as an automorphic form ϕ′′ on GO(V )(A) via
the short exact sequence (14) with the accidental isomorphism (13). Recall as well that by a “new vector”
φ ∈ Vπ or ϕ ∈ VΠ, we mean a pure tensor φ = ⊗vφv ∈ Vπ or ϕ = ⊗vϕv ∈ VΠ whose nonarchimedean local
components are each essential Whittaker vectors. We can derive the following explicit relation here.

Proposition 4.1 (Realization of the basechange form ϕ ∈ VΠ as a theta lift from GSp2(A)). Write π = ⊗vπv
again to denote our cuspidal automorphic representation of GL2(A) (of trivial central character), with Π =
⊗wΠw its quadratic basechange lifting Π = BCK/Q(π) to a cuspidal automorphic representation GL2(AK).
Let φ ∈ Vπ be any new vector. Then, the corresponding theta lift ϑφ defined in (20) determines an automorphic
form ϕ′′ = ϑφ on h ∈ GO(V )(A), which via the discussion above with the accidental isomorphism (15) and
short exact sequence (16) can be identified as a cuspidal automorphic form ϕ on g ∈ GL2(AK). This latter
form ϕ can be identified with our chosen pure tensor ϕ ∈ VΠ as in the discussion above, i.e. which is also a
new vector in the sense that it corresponds to a pure tensor ϕ = ⊗wϕw ∈ VΠ whose nonarchimedean local
components ϕw are each essential Whittaker vectors.

Proof. Cf. [6, Theorem 2.23] for a classical description of this setup. That such a vector exists is a consequence
of the existence of the quadratic basechange lifting of Langlands [36] and more generally Arthur-Clozel [2],
together with the global theta correspondence for the reductive dual pair (GO(V ),GSp2) described above. �

This realization of the basechange lifting Π as a theta lifting (20) according to Proposition 4.1 allows us
to derive the following “seesaw” identity via the substitution

(21)

L(s,Π⊗ χ) =

∫
A×K/K

×
ϑφ

((
y

1

)
; Φ

)
χ(y)|y|s− 1

2 dy

=

∫
A×K/K

×

(∫
SL2(Q)\ SL2(A)

θrψ0

((
y

1

)
, σg; Φ

)
φ(σg)dσ

)
χ(y)|y|s− 1

2 dy

=

∫
SL2(Q)\ SL2(A)

φ(σg)

(∫
A×K/K

×
θrψ0

((
y

1

)
, σg; Φ

)
χ(y)|y|s− 1

2 dy

)
dσ.

Observe now (cf. [33, § IV.I]) that we can consider the orthogonal decomposition V = V1 ⊕ V2, where
V1 = Q⊕Q with associated quadratic form q|V1 and V2 = K with associated quadratic form q|V2 = NK/Q.
We can then express (21) equivalently via the seesaw dual pair

GO(V ) [GL2×GL2]

[GO(V1)×GO(V2)] GL2

as
(22)

L(s,Π⊗ χ) =

∫
SL2(Q)\ SL2(A)

φ(σg)

(∫
GO(V2)(Q)\GO(V2)(A)

θrψ0

((
y

1

)
, σg; Φ

)
χ(y)|y|s− 1

2 dy

)
dσ.

Here again, we use the natural identification GO(V2)(Q)\GO(V2)(A) ∼= A×K/K
×.
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As explained in [37, Theorem 2.3.3], setting s = 1/2, the inner integral in (22) can be identified as an
explicit realization of a vector in the space of the induced representation π(χ) of GL2(A). That is, we find a
distinct variation of the equivalent Rankin-Selberg integral presentation of L(s, π × π(χ)) = L(s,Π ⊗ χ) in
this way, i.e. where L(s, π×π(χ)) denotes the GL2(A)×GL2(A) corresponding to the cuspidal automorphic
representation π = ⊗vπv of GL2(A) corresponding to our elliptic curve E/Q times the induced automorphic
representation π(χ) = ⊗vπ(χ)v of GL2(A) corresponding to our ring class character χ = ⊗wχw of A×K/K

×.
Here, using the notations and conventions introduced above, we deduce that the Eisenstein series appears
indirectly through in the inner Siegel theta-Eisenstein series defined by

(23)
Zχ′′(s, g; Φ) :=

∫
GO(V2)(Q)\GO(V2)(A)∼=A×K/K

×

θrψ0
(h, g; Φ)χ′′(y)|y|s− 1

2 dy.

Observe that this integral (23) is seen via the global theta correspondence (as described above) to be an
automorphic form on g ∈ GL2(A) ∼= GSp(W )(A). Writing 〈·, ·〉 to denote the inner product on the space
L2(GL2(Q)\GL2(A),1) of L2-automorphic forms on GL2(A) with trivial central character 1, we can thus
derive the corresponding integral presentations of our L-function,

L(s,Π⊗ χ) = 〈φ,Zχ′′(s, ∗; Φ)〉, L′(1/2,Π⊗ χ) = 〈φ,Z ′χ′′(1/2, ∗; Φ)〉.(24)

In the terminology of [52], this automorphic form Zχ(s, g; Φ) on g ∈ GL2(A) could be viewed as our “analytic
kernel function”. Putting this together with the discussion leading to (19), we derive the preliminary result.

Theorem 4.2. Let E be an elliptic curve defined over Q, parametrized by a cuspidal newform f ∈ Snew
2 (Γ0(N))

of weight 2, trivial character, and level N equal to the conductor of E, with π = ⊗vπv the correponding cus-
pidal automorphic representation of GL2(A). Let Π = ⊗wΠw denote the quadratic basechange Π = BCK/Q
of π to a cuspidal automorphic representation of GL2(AK), which exists by [36] and more generally [2]. Fix
ϕ = ⊗wϕw ∈ VΠ a pure tensor whose nonarchimedean local components are essential Whittaker vectors,
which we view as an automorphic form ϕ on g ∈ GL2(AK). Recall we consider the quadratic space (V, q)
with V = Q ⊕ Q ⊕ K with q(x, y, λ) = λλτ − xy, with (V2, q2) = (K,NK/Q) the subspace of signature
(1, 1) corresponding to the real quadratic field K. Let ϕ′′ denote the corresponding automorphic form on
h ∈ GO(V )(A) determined by (15) and (16). By Proposition 4.1, we can and do take this ϕ′′ to be a theta
lift ϑφ of an automorphic form φ on GSp2(A) corresponding to a pure tensor φ = ⊗vφv ∈ Vπ whose nonar-
chimedean local components are essential Whittaker vectors. By the discussion above, we can also view this ϕ′′

as an automorphic form on the orthogonal Shimura variety ShU (GO(V ), D±V ), where H = H(ϕ) = H(Π) de-
notes the compact open subgroup GO(V )(Af ) determined by the level of Π. Given χ = ⊗wχw any ring
class character of A×K/K

×, let us write χ′′ to denote the corresponding automorphic representation of

GO(V2)(Q)\GO(V2)(A) ∼= A×K/K
×. We then have for this setup the preliminary integral presentations

L′(1/2,Π⊗ χ) =
d

ds

∣∣∣∣
s=1/2

 ∫
GO(V2)(Q)\GO(V2)(A)

ϕ′′ (y)χ′′(y)|y|s− 1
2 dy

 =
d

ds

∣∣∣∣
s=1/2

〈φ,Zχ′′(s, ∗; Φ)〉.

Here again, 〈·, ·〉 denotes the inner product on L2(GL2(Q)\GL2(A),1), and Zχ′′(s, g; Φ) the automorphic
(Siegel theta-Eisenstein) generating series on g ∈ GL2(A) as defined in (23) above. Moreover, assuming our
ersatz Heegner Hypothesis 2.1, this integral presentation is not forced to vanish by the symmetric functional
equation (8) for L(s,Π ⊗ χ) – and conjecturally should account for some point on the Mordell-Weil group
E(K[c]), where K[c] denotes the ring class extension of K of conductor c equal to that of the ring class
character χ.

4.3.2. Comparison with the Rankin-Selberg integral presentation. Let us for the sake of completeness describe
the equivalent formula derived via the Rankin-Selberg integral presentation L(s,Π ⊗ χ) = L(s, π ⊗ π(χ)).
Recall that by the theory of Rankin-Selberg convolution (see e.g. [11, §3.8.2] or [37, (4.0.1)]), we have the
following well-known integral presentation for the L-function L(s, π × π(χ)). Given decomposable vectors
φ1 ∈ Vπ and φ2 ∈ Vπ(χ), let us for each of j = 1, 2 write Wφj to denote the corresponding Whittaker function
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defined on g ∈ GL2(A) by

Wφj (g) =

∫
A/Q

φj

((
1 x

1

)
g

)
ψ(−x)dx =

∫
N2(Q)\N2(A)

φj(ng)ψ(−n)dn.

Here, we fix ψ = ⊗vψv to be the standard additive character on A/Q ∼= N2(A)/N2(Q), writing N2 ⊂ GL2 to
denote the unipotent subgroup of upper triangular matrices. Fixing a suitable decomposable section f(s, g)

in the induced representation space Ind(| · |s− 1
2 , η−1| · | 12−s), we consider the corresponding Eisenstein series

E(s, g) =
∑

γ∈B(Q)\GL2(Q)

f(s, γg).

Here, we write B ⊂ GL2 to denote the Borel subgroup of upper triangular matrices. Let us also write
Z2 ⊂ GL2 to denote the centre. The theory of Rankin-Selberg convolution or unfolding gives us for any pure
tensors φ1 ∈ Vπ and φ2 ∈ Vπ(χ) the integral presentation

L(s, π × π(χ)) =

∫
GL2(Q)Z2(A)\GL2(A)

φ1(g)φ2(g)E(s, g)dg

=

∫
Z2(A)N2(A)\GL2(A)

Wφ1(g)Wφ2(g)f(s, g)δB(g)dg.

Here (as in [11, Proposition 3.8.3]), we write δB to denote the modular quasicharacter defined on B(A) or

rather on the subgroup T1(A) =

{(
t

1

)
: t ∈ A×

}
⊂ B(A) by

δB

((
t

1

))
= |t|.

Note that in this setting, we take φ = φ1 ∈ Vπ to be the pure tensor described above for our underlying
cuspidal automorphic representation π of GL2(A) corresponding to the elliptic curve E/Q, and the theta
series φ2 = θχ ∈ Vπ(χ) corresponding to the ring class character χ. Note that this theta series θχ(g) on
g ∈ GL2(A) can also be realized as the theta lifting from an orthogonal group GO(V2)(A),

θχ(g) =

∫
SO(V2)(Q)\ SO(V2)(A)

θrψ0
(σh, g; Φ)χ(σh)dσ

for h ∈ GO(V2)(A) chosen to have matching similitude factor ν(h) = det(g). See [37, §2.3, Theorem 2.3.3].
We omit details for brevity, however keep in mind that the preliminary formula (4.2) is equivalent to the
more familiar Rankin-Selberg integral presentation

(25) L′(1/2,Π⊗ χ) = L′(1/2, π × π(χ)) =
d

ds

∣∣∣∣
s=1/2

〈φ, θχE(s, ∗)〉,

where 〈·, ·〉 denotes the Petersson inner product on L2(GL2(Q)\GL2(A), η). We shall revisit this equivalent
abstract presentation (25) in classical terms in the discussion below, specifically in relating to arithmetic
theta liftings and automorphic Green functions in the style of Bruinier-Yang [8, §§2-4].

4.3.3. Subsequent abstract lifting via the Shimura-Shintani-Waldspurger pair (PGL2, S̃L2). Let us also for
the record explain how we could consider the following separate application of the theta correspondence,
namely the reinterpretation due to Waldspurger [47] of the Shimura/Shintani correspondence (see e.g. [42])
to make a similar formal substitution of the cuspidal automorphic form φ ∈ Vπ on GL2(A) in the discussion
above. We include this discussion only for completeness only, and do not use or pursue further in this work.

Let us now write V to denote the vector space of trace-zero matrices inM2(Q), equipped with the quadratic
form Q(v) = −det(v). Note that GL2(Q) acts on V by the rule g · v = gvg−1 for g ∈ GL2(Q) and v ∈ V.
As a well-known consequence, we can identify corresponding special orthogonal group SO(V) with the linear
group PGL2. In this way, we shall view our cuspidal automorphic form φ ∈ L2(GL2(Q)\GL2(A),1) as an
automorphic form on SO(V)(A) ∼= PGL2(A). Let us now consider the standard symplectic vector space
W = Q2 with skew symmetric pairing [·, ·], so that the corresponding isometry group Sp(W) is isomorphic
to SL2. We again consider the corresponding tensor product W0 = V ⊗QW, with form [[·, ·]] : W0×W0 → Q

given by the product [[v1 ⊗ w1, v2 ⊗ w2]] = Q(v1, v2) · [w1, w2]. Let us now write S̃p(W) ∼= S̃L2 to denote
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the two-fold metaplectic cover of Sp(W) ∼= SL2. We refer to the discussion in [20] for more background
about automorphic forms on this group. In this setting, the corresponding Weil representation ωψ0 factors

through this metaplectic cover, and can be seen as a genuine representation SO(V)(A)× S̃p(W)(A) on the
corresponding space of Schwartz functions S(W0(A)),

ωψ0 : SO(V)(A)× S̃p(W)(A) ∼= PGL2(A)× S̃L2(A) −→ S(W0(A)),

and we can consider for any decomposable Schwartz function Φ0 ∈ S(W0(A)) the corresponding theta kernel

θωψ0
(h, g; Φ0) =

∑
x∈W0(Q)

ωφ0
(h, g)Φ0(x).

Now, given φ̃ an automorphic form on g ∈ S̃p(W)(A) ∼= S̃L2(A), we consider the corresponding automor-
phic form defined on h ∈ SO(V)(A) ∼= PGL2(A) by the theta integral

ϑφ̃(h) = ϑφ̃(h; Φ0) =

∫
SL2(A)\S̃L2(A)

θωψ0
(h, g; Φ0)φ̃(g)dg.(26)

Here, we also write SL2(Q) to denote the full inverse image of SL2(Q) in S̃L2(A) (cf. [20]).

Proposition 4.3 (Realization of the cusp form φ ∈ Vπ on PGL2(A) as a Shimura theta lift from S̃L2(A)).
Write π = ⊗vπv again to denote our cuspidal automorphic representation of GL2(A). Let φ ∈ Vπ be any new
new vector, i.e. any pure tensor ϕ = ⊗vϕv ∈ Vπ whose nonarchimedean local components are each essential
Whittaker vectors, which we can and do view as a cuspidal automorphic form on GL2(A) with trivial central
character, and hence as a cuspidal automorphic form on the quotient PGL2(A). Assume that the central
value L(1/2, π ⊗ η) of the standard L-function of π twisted by the quadratic character η = ηK/Q associated

to the real quadratic field K does not vanish8. Then, there exists a genuine automorphic form φ̃ on S̃L2(A)
corresponding to modular form of weight 3/2 such that, as functions of h ∈ SO(V) ∼= PGL2(A), we have

φ(h) = ϑφ̃(h) = ϑφ̃(h; Φ0).

In this way, we can realize φ as a Shintani-Shimura-Waldspurger theta lift (26) from this form φ̃ on S̃L2(A).

Proof. That such a vector exists is a consequence of the existence of the Shimura correspondence shown
in [43], together with the representation theoretic interpretation given by Waldspurger [47]. Note that the
precise conditions required to ensure the nontriviality the corresponding central character of the genuine

metaplectic form φ̃ on S̃L2(A) corresponding to a modular form on weight 3/2 are determined precisely in
Waldspurger [48, Proposition], cf. also [38, Proposition 3.3]. �

8Hence, if we take for granted the conjecture of Birch and Swinnerton-Dyer (which is known for this special case), then we

assume that the Mordell-Weil group E(dK)(Q) of the quadratic twist E(dK) of E determined by the discriminant dK of the
character ηK/Q is finite. At the same time, in order to ensure that our standing condition on the root number ηK/Q(−N) of the

basechange L-function L?(E/K, 1) = L(s− 1/2, π)L(s− 1/2, π ⊗ ηKQ
) is met, we would also have to assume the vanishing of

the base L-function L?(E, s) = L(1/2, π) corresponding (via Birch-Swinnerton-Dyer) to the Mordell-Weil group E(Q) having

odd (positive) rank.
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Note that we can use this realization φ = ϑφ̃ in Proposition 4.2 above: Writing ζ = (g,±1) ∈ S̃L2(A) to

denote the metaplectic variable, and taking the extension to similitudes in the same way, we then derive
(27)
L(s,Π⊗ χ)

=

∫
SL2(Q)\ SL2(A)

φ(σg)

(∫
GO(V2)(Q)\GO(V2)(A)

θrψ0

((
y

1

)
, σg; Φ

)
χ(y)|y|s− 1

2 dy

)
dσ

=

∫
SL2(Q)\ SL2(A)

∫
SL2(Q)\S̃L2(A)

θωψ0
(σg, ζ; Φ0)φ̃(ζ)dζ

∫
GO(V2)(Q)\GO(V2)(A)

θrψ0

((
y

1

)
, σg; Φ

)
χ′′(y)|y|s− 1

2 dydσ

=

∫
SL2(Q)\ SL2(A)

∫
Sp(W)(Q)\S̃p(W)(A)

θωψ0
(σg, ζ; Φ0)φ̃(ζ)dζ

∫
GO(V2)(Q)\GO(V2)(A)

θrψ0

((
y

1

)
, σg; Φ

)
χ′′(y)|y|s− 1

2 dydσ.

Thus, in the notations of Propositions 4.2 and 4.3 above, we also derive the abstract integral presentation

L′(1/2,Π⊗ χ) =
d

ds

∣∣∣∣
s=1/2

〈ϑφ̃(∗,Φ0), Zχ′′(s, ∗,Φ)〉.(28)

To be clear, we use two subsequent theta liftings to derive this relation (28). First, we realize the cuspidal
automorphic form ϕ on GL2(AK) via its corresponding form ϕ′′ on GO(V )(A) as a theta lifting ϕ = ϕφ from
some cuspidal form φ ∈ Vπ on GL2(A) ∼= GSp2(W )(A) via the quadratic basechange lifting of Langlands-
Shintani. Viewing this φ in terms of its corresponding form on PGL2(A) ∼= SO(V)(A), and taking for granted
that the requisite nontriviality or existence conditions detailed in [48, Proposition] (cf. [38, Proposition 3.3])
are met, we can then realize the cuspidal form φ as a theta lifting ϑφ̃ from some genuine metaplectic form

φ̃ on S̃L2(A) via the Shimura-Shintani-Waldspurger correspondence.

4.4. Regularized theta lifts and automorphic Green’s functions. We now give a more arithmetic
treatment of the discussion above via regularized theta lifts following Borcherds [4], Kudla [32], and Bruinier-
Funke [7]. Here, we shall first describe the setup for arbitrary quadratic spaces of signature (n, 2) following
[33], although our main interest is the quadratic space (V, q) of signature (2, 2) introduced above9. That is, we
shall usually fix V = (V, q) to be the quadratic space of signature (2, 2) with vector space V = Q⊕Q⊕K,
and associated quadratic form q(x, y, λ) = λλτ − xy for x, y ∈ Q and λ ∈ K. Here again, λτ denotes
the image of λ ∈ K under the conjugation in K. We then describe the distinct setup of regularized theta
lifts for the anisotropic quadratic subspaces (V2, q2) of signature (1, 1) determined by the quadratic field
V2 = K with quadratic form q2(λ) = q|V2(λ) = NK/Q(λ) given by the norm NK/Q following [7] for our
subsequent calculations. More generally, given a ring class A ∈ Pic(Oc) with integral ideal representative
a (so that A = [a] ∈ Pic(Oc)), and writing aQ = a ⊗Z Q for the the corresponding vector space, we shall
later consider the corresponding quadratic spaces (VA, qA) of signature (2, 2) given by VA = aQ ⊕ Q ⊕ Q
and qA(x, y, λ) := Na−1NK/Q(λ)−xy, together with the quadratic subspaces (VA,2, qA,2) of signature (1, 1)

given by VA,2 = aQ and qA,2(λ) = Na−1NK/Q(λ).

4.4.1. Arithmetic automorphic forms. Let first explain how the vector ϕ′ defined above can be viewed as an
arithmetic automorphic form on the Shimura variety ShU (GSpinV , D

±
V ). We now take D = DV to be the

Grassmannian of oriented negative definite planes z ⊂ V (R) as in [32], and consider

ShU (GSpinV , D) = GSpinV (Q)\ (D ×GSpinV (Af )/U) .

Note that we could also take the Grassmannian D = D+
V instead to get the equivalent result (cf. [6, §2]). In

fact, we shall make this choice in a consistent way later. Let us also note that the Grassmannian D can be

9In fact, we could work more generally with (V, q) or (VA, qA) any rational quadratic space of signature (n, 2) with n ≥ 2

admitting a distinguished quadratic subspace (V2, q2) = (K,NK/Q(·)) or (VA,2, qA,2) = (aQ,Na−1NK/Q(·)) respectively.

For instance, we could just as well take (V, q) with V = K′ ⊕ K for K′ another real quadratic field, and quadratic form

q(λ′, λ) = NK′/Q(λ′) + NK/Q(λ), then consider the corresponding spin Shimura varietes. We restrict to the simplest possible

setting to keep the exposition as clear and explicit as possible.
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identificed with the open subset Q− of the quadric defined by

Q− = {w ∈ V (C) : (w,w) = 0, (w,w) > 0} /C× ⊂ P(V (C))

via the map sending z ∈ D to v1 − iv2 = w for v1, v2 a properly-oriented standard basis for D with
(v1, v1) = (v2, v2) = −1 and (v1, v2) = 0. We henceforth take this identification D = DV

∼= Q− for granted.
Fix a compact open subgroup U ⊂ GSpinV (Af ), which later we shall take to be that corresponding

to the level of the basechange form ϕ ∈ VΠ on GL2(AK). Fixing a connected component D+ of D, and
writing GSpinV (R)+ to denote the corresponding component of GSpinV (R), we have for some fixed set of
representatives hj ∈ GSpinV (Q)\GSpinV (Af )/U the decomposition

GSpinV (A) =
∐
j

GSpinV (Q) GSpinV (R)+hjU.(29)

This gives us the corresponding decomposition of the Shimura variety as

(30) ShU (GSpinV , D) =
∐
j

Xj , where Xj = Γj\D+ for Γj := GSpinV (Q) ∩
(
GSpinV (R)+hjUh

−1
j

)
.

Let LD denote the restriction of D ∼= Q− of the tautological or universal bundle on P(V (C)). The natural
action of V (C) on GO(V )(R) induces one of LD on GSpinV (R)+. Hence, there is a holomorphic line bundle

L := GSpinV (Q)\ (LD ×GSpinV (Af )/U) −→ ShU (GSpinV , D).

In fact, this bundle L is known by work of Harris [24] to have a canonical model over Q. After restriction to
one of components Γj\D+ in (30), it has the form Γj\LD. We can define a hermitian metric hL on L by

hL(w1, w2) :=
1

2
· (w1, w2).

This metric is invariant under the action by GO(V )(R), and hence descends to L.
Fix a Witt decomposition

V (R) = V0 + R · e+ R · f

with e and f chosen so that (e, e) = (f, f) = 0 and (e, f) = 1, and

C = {y ∈ V0 : (y, y) < 0}
its negative cone. We can then identify the Grassmannian D ∼= Q− with the corresponding tube domain

H := {z ∈ V0(C) : =(z0) ∈ C} ∼= H2

via the map H −→ V (C) sending z 7−→ w(z) := z + e − q(z)f composed with the projection to Q−. The
map z 7→ w(z) can be viewed as a nowhere vanishing section of LD, whose norm we define to be

||w(z)|| = −1

2
· (w(z), w(z)) = −(y, y) =: |y|2.

Moreover, given h ∈ GO(V )(R) or h ∈ GSpinV (R), we have an automorphy factor

j : GSpinV (R)×D −→ C×.

defined by

h · w(z) = w(hz) · j(h, z).

In this way, the holomorphic sections of L⊗k for any integer k ∈ Z can be interpreted as those holomorphic
functions Ψ : D×GSpinV (Af ) −→ C on z ∈ D and h ∈ GSpin(Af ) satisfying the transformation properties

• Ψ(z, hu) = Ψ(z, h) for all u ∈ U ,
• Ψ(γz, γh) = j(γ, z)k ·Ψ(z, h) for all γ ∈ GSpinV (Q).

We define the norm of a section (z, h)→ Ψ(z, h) · w(z)⊗k to be

||Ψ(z, h)||2 = |Ψ(z, h)|2 · |y|2k,
we refer to this as the Petersson norm of the holomorphic section Ψ. Note that under the isomorphism
(30), such a section Ψ corresponds to the collection {Ψ(·, hj)}j of holomorphic functions on D+ which
are holomorphic of weight k on the corresponding Γj . The latter forms have a classical interpretation as
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modular forms corresponding to congruence subgroups of lattices Λ ⊂ V , and correspond to holomorphic
Hilbert modular forms of parallel weight k in this setting (see e.g. the discussion [6, § 2.7], as recalled below).

4.4.2. Regularized theta lifts for quadratic spaces of signature (2, 2). Let us now take (V, q) to be any rational
quadratic space of signature (2, 2), although the discussion that follows carries over more generally for any
quadratic space of signature (n, 2). We outline the construction due to Borcherds [4] of sections of twists
of L⊗k using the theta correspondence for the reductive dual pair (GO(V ),Sp(W )), following the adelic
description given by Kudla [32].

Given a hyperplane z ∈ D = DV , let prz : V (R) −→ z denote the corresponding projection, whose kernel
defines the orthogonal complement z⊥ := ker(prz). Given a vector x ∈ V (R), let us then define

R(x, z) := − (prx(x),prz(x)) = |(x,w(z))|2 · |y|2.
Using this definition, we can associate to a plane z ∈ D = DV and vector x ∈ V (R) a majorant

(x, x)z := (x, x) + 2 ·R(x, z).

Writing C∞(D) to denote the space of smooth functions on the Grassmannian D = D−V , we now use this
majorant as follows to define a Gaussian function Φ∞ ∈ S(V (R))⊗ C∞(D) by the rule

Φ∞(x, z) := exp (−π · (x, x)z) .

It is easy to deduce that

Φ∞(hx, hz) = Φ∞(x, z) for all h ∈ SO(V )(R).

Recall that we write ψ0 = ⊗vψ0,v to denote the standard additive character of A/Q, with rψ0
= ⊗vrψ0,v

the corresponding Weil representation

rψ0 : SO(V )(A)× Sp(W )(A) ∼= SL2(A) −→ S(V (A)),

as well as its extension to the similitude group

R(A) := {(h, g) ∈ GO(V )(A)×GSp(W )(A) : ν(h) = det(g)} ⊂ GO(V )(A)×GL2(A).

Note that in this setting where dim(V ) = 4 is even, the Weil representation rψ0
factors through Sp(W)

rather than its metaplectic cover S̃p(W). The action of Sp(W )(A) ∼= SL2(A) on S(W(A)) commutes with
that of SO(V )(A). Let us write rψ0

(h)Φ(x) = Φ(h−1x) for h ∈ SO(V )(A) and Φ ∈ S(W(A)) to denote the
former action. We now make the following modification to the definition of the corresponding theta kernel
θrψ0

defined above. Let us for a given hyperplane z ∈ D, hf ∈ SO(V )(Af ) and g ∈ Sp(W )(A) ∼= SL2(A)

write θ?rψ0
to denote the linear functional on Φf ∈ S(W(Af )) defined by

(31)

Φf 7−→ θ?rψ0
(z, hf , g; Φf ) :=

∑
x∈W(Q)

rψ0(g) (Φ∞(·, z)⊗ rψ0(hf )Φf ) (x)

=
∑

x∈W(Q)

rψ0(1, g) (Φ∞(·, z)⊗ rψ0(hf , 1)Φf ) (x).

Note that this functional (31) can be thought of as an arithmetic modification of the theta kernel θrψ0
(h, g; Φ)

for a decomposable Schwartz function in S(W(A)) as introduced above. To be more precise (cf. [8, (2.3)]),
fixing a base hyperplane z0 ∈ D and an element hz ∈ GSpinV (R) so that hzz0 = z, we have the relation

θ?rψ0
(z, hf , g; Φf ) := θrψ0

(hfhz, g; Φ∞(·, z)⊗ Φf (·)) .(32)

It is easy to see that this is automorphic for the special orthogonal group: For all γ ∈ SO(V )(Q), we have

θ?rψ0
(γz, γhf , g; Φf ) = θ?rψ0

(z, hf , g; Φf ).

By Poisson summation (see [50], [32, (1.22)]), we can also deduce that the functional is automorphic for the
symplectic group Sp(W ) ∼= SL2: For all γ ∈ SL2(Q), we have

θ?rψ0
(z, hf , γg; Φf ) = θ?rψ0

(z, hf , g; Φf ).

Using properties of the Weil representation rψ0
, we see that for any h′f ∈ SO(V )(Af ) and any g′ ∈ SL2(A),

θ?rψ0
(z, hfh

′
f , gg

′; Φf ) = θ?rψ0
(z, hf , g; rψ0(h′f , g

′)Φf ).(33)
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In this way, we see that for any compact open subgroup U ⊂ GSpinV (Af ) and decomposable U -invariant
Schwartz function Φ ∈ S(W(Af ))U , the functional

(z, hf ) 7−→ θ?rψ0
(z, hf , g; Φf )

on (z, hf ) ∈ D×GSpinV (Af ) descends to a function on the corresponding Shimura variety ShU (GSpinV , D).
Although it is not holomorphic in the variable z ∈ D, we obtain in this way a function

θ?rψ0
: ShU (GSpinV , D)× SL2(Q)\SL2(A) −→

(
S(W(Af ))U

)∨
.

Extending to similitudes as in the discussion above, we also obtain a function

θ?rψ0
: ShU (GSpinV , D)×GL2(Q)\GL2(A) −→

(
S(W(Af ))U

)∨
.

As explained in [32, §1], we can view the Gaussian Φ∞ as an eigenfunction for the action of the maximal
compact subgroup SO2(R) ⊂ SL2(R), which for any k∞ ∈ SO2(R), z ∈ D, and h ∈ GSpinV (A) satisfies

rψ0
(k∞)Φ∞(x, z) = Φ∞(x, z).

Using the transformation property (33), we can then deduce that for all k∞ in the maximal compact subgroup

SO2(R) of SL2(R) and all k in the maximal compact subgroup K = SL2(Ẑ) of SL2(Af ), we have that

θ?rψ0
(z, hf , gk∞k; Φf ) = (rψ0

(k)∨)
−1 · θ?rψ0

(z, hf , g; Φf ),(34)

where rψ0
(k)∨ denotes the action of K on the space S(W(Af ))K dual to its action on S(W(Af ))K. In

particular, this theta kernel θ?rψ0
in the setting of quadratic spaces of signature (2, 2) as we consider has

weight zero under the action of the maximal compact subgroup SO2(R) ⊂ SL2(R).
Suppose now that we fix any function

φ : SL2(Q)\ SL2(A) −→ S(W(Af ))U

which for each g ∈ SL2(A), k∞ ∈ SO2(R), and k ∈ K satisfies the transformation property

φ(gkk∞) = rψ0(k)−1 · φ(g).

It is then easy to check that the C-linear pairing {·, ·} defined as a function on g ∈ SL2(A) by the rule{
φ(g), θ?rψ0

(z, hf , g)
}

:= θ?rψ0
(z, hf , g;φ(g))

is both left SL2(Q)-invariant and right K SO2(R)-invariant. We can then consider the regularized theta lift

ϑ?φ(z, hf ) :=

∫ ?

SL2(Q)\ SL2(A)

{
φ(g), θ?rψ0

(z, hf , g)
}
dg =

∫ ?

SL2(Q)\ SL2(A)

θ?rψ0
(z, hf , g;φ(g))dg,(35)

as well as its extension to similitudes as described above, both as functions on (z, h) ∈ ShU (GSpinV , D).
Here, the notation

∫ ?
denotes the regularization, which is obtained after using the Iwasawa decomposition

by taking a limit over truncated fundamental domains (as described e.g.in [32, §§1-2], [8, § 4], and [4]). To
describe these regularized theta integrals

∫ ?
in (35) more explicitly, we first give semiclassical translation of

the setup (cf. [32, §1]). Recall (see e.g. [21, Proposition 4.4.4] or [19]) that after fixing a standard fundamental
domain F = {τ = u + iv ∈ H : |<(τ)| ≤ 1/2, ττ ≥ 1} for the action of SL2(Z) on H, each adelic matrix
g ∈ SL2(A) can be expressed uniquely as a product

g = γ ·
(

1 u
1

)
·
(
v

1
2

v−
1
2

)
· k(36)

for some γ ∈ SL2(Q), τ = u + iv ∈ F , and k ∈ SO2(R). Taking the decomposition (36) for granted, let us
define for a given g ∈ SL2(A) the corresponding matrix

gτ :=

(
1 u

1

)(
v

1
2

v−
1
2

)
.
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Similarly, fixing a standard fundamental domain G = {τ = u+ iv : 0 ≤ |<(τ)| ≤ 1/2, ττ ≥ 1} for the action
of GL2(Z) on GL2(R), each element g ∈ GL2(A) can be decomposed uniquely as as a product of matrices

g = γ ·
(

1 u
1

)
·
(
v

1

)
· k(37)

for some γ ∈ GL2(Q), τ = u + iv ∈ G, and k ∈ O2(R). Taking such a decomposition (37) for granted, we
also define for a given g ∈ GL2(A) define the corresponding archimedean mirabolic matrix

gτ :=

(
1 u

1

)(
v

1

)
.

Given a weight-zero L2-automorphic form φ0 on SL2(Q)\ SL2(A) or more generally GL2(Q)\GL2(A), we
shall write f0(τ) := φ0(gτ ) to denote the corresponding weight-zero automorphic form on τ = u+ iv ∈ H.

Suppose now that (ρ,V) is a representation of the maximal compact subgroup K = SL2(Ẑ) ⊂ SL2(Af ),
and that φ0 : SL2(Q)\SL2(A) −→ V is a weight-zero automorphic form for which the transformation law
φ0(gk∞k) = ρ(k)φ0(g) holds for all g ∈ SL2(A), k ∈ K, and k∞ ∈ SO2(R). Then, writing kγ ∈ K for a given
matrix γ ∈ SL2(Z) to denote the unique lifting kγ ∈ K (determined by the diagonal embedding10), it is easy
to check (see e.g. [32, Lemma 1.1]) that the weight-zero automorphic function defined by f0(τ) := φ0(gτ )
satisfies the following transformation law: For all γ ∈ SL2(Z), we have that f(γ(τ)) = ρ(kγ)f(τ). Note
that we can proceed in the same way for the more general setting with φ0 a weight-zero automorphic
form φ0 : GL2(Q)\GL2(A) −→ V satisfying φ0(gk∞k) = ρ(k)φ0(g) for all g ∈ GL2(A) and k ∈ K,

where K = GL2(Ẑ) ⊂ GL2(Af ) denotes the maximal compact subgroup, and k∞ ∈ O2(R). Thus, the
corresponding weight-zero automorphic form defined by f0(τ) = φ0(gτ ) satisfies the transformation law
f0(γ(τ)) = ρ(kγ)f0(τ) for all γ ∈ GL2(A), with kτ the unique lift to K via the diagonal embedding. Let
us also note that we have a bijective correspondence between these vector-valued automorphic forms and
scalar-valued automorphic forms as shown in [53, Theorem 4.15]; we shall return to this later. Taking for
granted these correspondences, the regularized theta integral (35) can be written in semiclassical terms as

(38)

ϑ?φ0
(z, hf ) = ϑ?f0

(z, hf ) =

∫ ?

SL2(Z)\H

{
f0(τ), θ?rψ0

(z, hf , gτ )
} dudy

v2

=

∫ ?

SL2(Z)\H
θ?rψ0

(z, hf , gτ ; f0(τ))
dudv

v2
.

Here, the regularized integral
∫ ?

is defined more precisely as the limit over partial integrals∫ ?

SL2(Z)\H

{
f0(τ), θ?rψ0

(z, hf , gτ )
} dudy

v2
= lim−→

T

∫
FT

{
f0(τ), θ?rψ0

(z, hf , gτ )
} dudy

v2

= lim−→
T

∫
FT

θ?rψ0
(z, hf , gτ ; f0(τ))

dudv

v2
,

where each FT denotes the truncated fundamental domain defined by

FT := {τ = u+ it ∈ H : |u| ≤ 1/2, ττ ≥ 1, and v ≤ T} .

Let us now take Λ ⊂ V to be an even lattice (cf. [8, §2], [32, §1]), with Λ# the corresponding dual lattice,

and SΛ ⊂ S(W(Af )) the subspace of Schwartz functions with support on Λ̂# := Λ#⊗ Ẑ which are constant

on cosets of Λ̂ := Λ⊗ Ẑ. Note that this space SΛ admits a basis of characteristic functions 1µ+Λ̂ of the form

SΛ =
⊕

µ∈Λ#/Λ

C · 1µ+Λ̂ ⊂ S(W(Af )),(39)

and also that it is stable under the action of our fixed compact open subgroup U ⊂ GSpinV (Af ) through
the Weil representation rψ0 : SO(V )(A) × SL2(A) −→ S(W(A)). Note as well that the space of Schwartz
functions S(W(Af )) can be written as a direct limit of such subspaces S(W(Af )) = lim−→Λ

SΛ. Given f0

an SΛ-valued weight-zero automorphic form on H as above, hence determined its corresponding SΛ-valued

10So that γkγ is identified uniquely as an element of SL2(Q)
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weight-zero automorphic form φ0 on SL2(A), which we shall assume is meromorphic at the cusp, let us first
decompose f0 into components with respect to the basis (39) as

f0(τ) =
∑

µ∈Λ#/Λ

f0,µ(τ) · 1µ+Λ̂.

We then write the Fourier series expansion of each component f0,µ(τ) as

f0,µ(τ) =
∑
m∈Q

cf0
(m,µ)e(mτ) =

∑
m∈Q

cf0
(m,µ) exp(2πi ·mτ).

As explained in [32], we can then write the pairing {·, ·} more explicitly as{
f0(τ), θ?rψ0

(z, hf , gτ )
}

=
∑

µ∈Λ#/Λ

f0,µ(τ)θ?rψ0
(z, hf , gτ ; f0(τ)).

We can now give the following explicit description of the theorems of Borcherds [4, Theorem 13.3] following
[32, §1] for the setting we consider here.

Theorem 4.4 (Borcherds). Let φ0 : SL2(Q)\ SL2(A) −→ SΛ be an SΛ-valued L2-automorphic form of weight
0 on SL2(A), with corresponding modular form f0(τ) = φ0(gτ ) determined by the unique decomposition (36)
above. Assume f0 is weakly holomorphic. Then for (z, h) ∈ D ×GSpinV (Af ), the regularized theta integral

ϑ?f0
(z, h) =

∫ ?

SL2(Z)\H

{
f0(τ), θ?rψ0

(z, h, gτ )
} dudv

v2

=

∫ ?

SL2(Z)\H
θ?rψ0

(z, h, gτ ; f0(τ))
dudv

v2

= lim−→
T

∫
FT

θ?rψ0
(z, h, gτ ; f0(τ))

dudv

v2

is equivalent to the expression

ϑ?f0
(z, h) = −2 log |Ψf0(z, h)|2 − cf0(0, 0) · (2 log |y|+ log(2π) + Γ′(1))

for some meromorphic modular form Ψf0
on (z, h) ∈ D × GSpinV (Af ) of weight k = 1

2cf0
(0, 0) ∈ Z.

More precisely, for some choice of unitary character ξ of GSpinV (Q), this latter function satisfies for each
γ ∈ GSpinV (Q) the transformation property Ψf0(γz, γh) = ξ(γ) · j(γ, z)k ·Ψf0(z, h) for j(γ, z) the standard
automorphy factor of weight k. In other words, the function Ψf0(z, h) determines a meromorphic section of
the twisted line bundle L⊗k ⊗ Vξ, where Vξ denotes the flat bundle determined by the character ξ.

The divisor Z(f0) of Ψ2
f0

describing the logarithmic singularity of ϑ?f0
is also determined by Borcherds [4].

This leads to the more general characterization of the regularized theta lift ϑ?f0
(z, h) attached to any harmonic

weak Maass form f0 of weight 0 as an automorphic Green’s function for this divisor Z(f0) shown by Bruinier
(see [8, Theorem 4.2]). To describe this in more detail, we first introduce certain special cycles and analytic
divisors on ShU (GSpinV , D). Here, we follow the discussion Kudla [32] (cf. [31]), which we note applies to
any codimension. Let us also write h rather than hf to denote a generic element of GSpinV (Af ) to simplify
notation. Given a vector x ∈ V (Q) with q(x) > 0, let Vx := x⊥ ⊂ V denote the orthogonal complement,
and Dx = {z ∈ D : x ⊥ z} the corresponding sub-Grassmannian. Let us also write GSpinV,x(Af ) to denote
the stabilizer in GSpinV (Af ) of x, which we can and do identify as GSpinV,x(Af ) ∼= GSpinVx(Af ). We then
have a natural map defined on h ∈ GSpinV (Af ) by

(40)
GSpinV,x(Q)\Dx ×GSpinV,x(Af )/

(
GSpinV,x(Af ) ∩ hUh−1

)
−→ ShU (GSpinV , D)

[z, h1] 7−→ [z, h1h].

Definition 4.5. Given x ∈ V (Q) with q(x) > 0 and h ∈ GSpinV (Af ), let

Z(x, h) = Z(x, h, U)

denote the image of the corresponding map (40). Here, we drop the fixed compact open subgroup U ⊂
GSpinV (Af ) from the notation when the context is clear.
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This image Z(x, h) = Z(x, h, U) determines a special cycle ShU (GSpinV , D), and is known to be rational
over Q. As explained in [32, §1] and [31], these special cycles satisfy many nice properties, including com-
patibility with Hecke operators. To illustrate a couple of these relevant properties before going on, let is for
a given positive rational number m ∈ Q>0 write Ωm to denote the corresponding quadric

Ωm(Q) = {x ∈ V : q(x) = m} .

If Ωm(Q) is not the empty set, in which case we fix a point x0 ∈ Ωm(Q), the corresponding finite adelic
points Ωm(Af ) determine a closed subgroup of V (Af ). Given Φ ∈ S(W(Af ))U , we then write

supp(Φ) ∩ Ωm(Af ) =
∐
r

U · ζ−1
r · x0(41)

for some finite set of representatives ζr ∈ GSpinV (Af ). We then define from this decomposition (41) the
corresponding analytic divisor

Z(m,Φ, U) :=
∑
r

Φ(ζ−1
r · x0)Z(x0, ζr, U).(42)

If U ′ ⊂ U is an inclusion of compact open subgroups of GSpinV (Af ) and

pr : ShU ′(GSpinV , D) −→ ShU (GSpinV , D)

the corresponding covering of Shimura varieties, we have the projection formula

pr∗ Z(m,Φ, U) = Z(m,Φ, U ′).

Hence, the analytic divisor is defined on full Shimura variety Sh(GSpinV , D) = lim←−U Sh(GSpinV , D), and so

we are justified in dropping the reference to the compact open subgroup from the notation altogether. We
can also consider the right multiplication by h ∈ GSpinV (Af ), which determines a morphism

[h] : ShU (GSpinV , D) −→ ShhUh−1(GSpinV , D).

This morphism [h] is defined over Q, and its pushforward [h]∗ satisfies the relation

[h]∗ : Z(m,Φ, U) −→ Z(m, rψ0
(h)Φ, hUh−1), where rψ0

(h)Φ(x) = Φ(h−1x).

In this way, we can deduce that these analytic divisors are compatible with Hecke operators on Sh(GSpin, D).
Moreover, with respect to the decomposition (30) above, the result of [31, Proposition 5.3] (cf. also [32, §1])
shows that the analytic divisor Z(m,Φ, U) decomposes as

Z(m,Φ, U) =
∑
j

Zj(m,Φ, U),

where for each factor j we write

Zj(m,Φ, U) =
∑

x∈Ωm(Q) mod Γj

Φ(h−1
j x) prj(Dx) for prj : D+ −→ Γj\D+ the natural projection.

Writing Φ∨(x) = Φ(−x), these analytic divisors also satisfy the functional equations Z(m,Φ, U) = Z(m,Φ∨, U).

Theorem 4.6 (Borcherds/Bruinier). Given f0 ∈ M !
0,Λ any weakly holomorphic form of weight zero and

representation rφ0,Λ with Fourier expansion

f0(τ) =
∑

µ∈Λ#/Λ

∑
m∈Q
m�−∞

cf0(m,µ)e(mτ),

the regularized theta lift ϑ?f0
is smooth on ShU (GSpinV , D)\Z(f0), where Z(f0) is the divisor defined by

Z(f0) = div
(
Ψ2
f0

)
=

∑
µ∈Λ#/Λ

∑
m∈Q>0

cf0(−m,µ)Z(m,1µ+L̂, U).
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More generally, given f0 = f+
0 + f−0 ∈ H0,Λ any harmonic weak Maass form of weight 0 and represen-

tation rφ0,Λ the regularized theta lift ϑ?f0
determines a smooth function on ShU (GSpin, D) with logarithmic

singularity along the divisor −2Z(f0), where

Z(f0) :=
∑

µ∈Λ#/Λ

∑
m∈Q>0

c+f0
(−m,µ)Z(m,1µ+L̂, U)

depends only on the holomorphic part f+
0 . The (1, 1)-form ddcϑ?f0

= −(2πi)−1∂∂ϑ?f0
can be continued to

a smooth function on all of ShU (GSpinV , D), and writing δZ(f0) to denote the Dirac current, we have the
Green current equation ddc[ϑ?f0

] + δZ(f0) = [ddcϑ?f0
]. Writing ∆z to denote the invariant Laplacian operator

on D (normalized as in [5] and [8, Theorem 4.2]), we have that ∆zϑ
?
f0

= 2 · cf0
(0, 0).

Proof. See [4, Theorem 13.3], as well as the descriptions in [32, Theorem 1.3] and [8, Theorem 4.2]. �

Theorem 4.6 can be used to show that ϑ?f0
is the automorphic Green’s function for the divisor Z(f0):

Theorem 4.7 (Bruinier). Let G : ShU (GSpinV , D)\Z(f0) −→ R be any smooth function such that:

(i) G has logarithmic singularities along −2Z(f0),

(ii) ∆zG is a constant,

(iii) G ∈ L1+ε(ShU (GSpinV , D), dµ) for some ε > 0, where dµ denotes the measure on ShU (GSpinV , D)
induced from some choice of Haar measure on GSpin(A).

Then, this function G – which defines the Green’s function for the divisor Z(f0) – differs from ϑ?f0
by a

constant. In other words, the regularized theta lift ϑ?f0
constructed from any harmonic weak Maass form f0

of weight zero is the automorphic Green’s function GZ(f0) for the divisor Z(f0).

Proof. See [8, Theorems 4.2 and 4.3], as well as [7, Theorem 1.5]. As explained in [8, Theorem 4.3] and more
generally [5, Corollary 4.22, cf. Theorem 4.23], the difference G(z, h)− ϑ?f0

(z, h) can be viewed as a smooth

subharmonic function on the complex manifold ShU (GSpinV , D) which is contained in the Hilbert space
L1+ε(ShU (GSpinV , D), dµ). It then follows from a theorem of Yau [51] that such a function is constant. �

Remark on generality. Note that the work of Borcherds [4] applies to any rational quadratic spaces (V, q)
of signature (p, r), with D = DV the corresponding symmetric space of oriented r-planes. The special case of
(n, 2) corresponding to hermitian symmetric spaces is better-known because of its applications to cycles on
orthogonal Shimura varieties. The general setup is explained also in [7], with relation to the construction of
Kudla-Millson [35]. In general, we have the identification D ∼= SO(V )(R)/K for K ⊂ SO(V )(R) the maximal
compact subgroup. Given an r-plane z ∈ DV , we have a majorant ( , )z defined on x ∈ V (R) by

(x, x)z = (xz⊥ , xz⊥)− (xz, xz).

Here, we decompose x as x = xz +xz⊥ according to the orthogonal decomposition z⊕z⊥ = V (R), and write
( , ) to denote the bilinear form associated to q. Given a vector x ∈ V (R), we write Dx = {z ∈ D : z ⊥ x} to
denote the corresponding subsymmetric space, with SO(V )(R)x ⊂ SO(V )(R) the corresponding stabilizer
subgroup. Fixing a compact open subgroup Γ ⊂ SO(V )(R), we consider the corresponding intersection
Γx = Γ ∩ SO(V )(R)x. Given an even lattice Λ ⊂ V and any element x ∈ Λ# the quotient

Z(x) = Γx\Dx −→ Γ\D

determines a general relative cycle. For µ ∈ Λ#/Λ and m ∈ Q, the group Γ acts on the set Λµ,m :=
{x ∈ Λ + µ, q(x) = m} with finitely many orbits, giving rise to the so-called composite cycle

Z(µ,m) =
∑

x∈Γ\Λµ,m

Z(x).

As explained in [7, §4-6], we can replace the Gaussian Φ∞ in our discussion above with a certain Schwartz
function ψ = ψKM following the construction of Kudla-Millson [35]. By [35, Proposition 5.6, cf. Theorems 6.1
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and 6.2], the corresponding regularized theta lift ϑ?f0
(z, h) – defined as above for z ∈ D and h ∈ GSpinV (Af )

– converges to a smooth function on D with singularities along

Z(f0) =
∑

µ∈Λ#/Λ

∑
m∈Q>0

c+f0
(−m,µ)Z(µ,m).

These singularities are described in greater detail in [7, Proposition 5.6], with relations between the corre-
sponding Borcherds and Kudla-Millson lifts in [7, Theorems 6.1 and 6.2].

4.4.3. Choice of vector-valued input form. Henceforth, we shall choose f0 = f0,η,A to be a harmonic weak
Maass form of weight 0 and representation rψ0,ΛA = rψ0,−ΛA , similar to the analogous setting of Bruinier-
Yang [8] (where the corresponding harmonic weak Maass form has weight k = 1−n/2). We shall also assume

henceforth that this f0 has integral principal part, so c+f0
(−m,µ) ∈ Z for all m ≥ 0 and µ ∈ Λ#

A/Λ. As

explained in [8, Theorem 4.2], we know that for the corresponding analytic divisor

Z(f0,η,A) =
∑

µ∈Λ#
A/ΛA

∑
m∈Q
m>0

c+f0,η,A
(−m,µ)Z(m,µ),

the corresponding regularized theta lift ϑ?f0,η,A
determines a smooth function on

ShUA(GSpinVA , DVA)\Z(f0,η,A) ⊂ ShU (GSpinV , DV )

with logarithmic singularities along −2 logZ(f0,η,A). Again, (1, 1)-form ddcϑ?f0,η,A
= −(2πi)−1∂∂ϑ?f0,η,A

can

be continued to a smooth function on the ambient Shimura variety, we have the Green current equation

ddc[ϑ?f0,η,A
] + δZ(f0,η,A) = [ddcϑ?f0,η,A

].

The regularized theta lift ϑ?f0,η,A
is moreover an eigenfunction for the Laplacian operator ∆z, with eigenvalue

∆zϑ
?
f0,η,A

= 2 · c+f0,η,A
(0, 0).(43)

For our subsequent applications to integral presentations of L′(1/2,Π⊗ χ) = L′(1/2, π × π(χ)), we shall
also assume that for each class A ∈ Pic(Oc), the harmonic weak Maass form f0,η,A ∈ H0,ρΛA

is chosen

so that the corresponding cuspidal form gA,η = ξ0(f0,η,A) ∈ S2,ρΛA
is the canonical lift in the sense of

Theorem 4.9 below of the twisted eigenform f ⊗ η. Here again, f ∈ S2(Γ0(N)) denotes the scalar-valued
eigenform parametrizing an elliptic curve E/Q, and η = ηK/Q =

(
dK
·
)

the even Dirichlet character associated
to our fixed real quadratic field K/Q of discriminant dK . Putting together the description of the Fourier
series expansion from Theorem 4.9, we deduce that this this f0,η,A must be cuspidal, and hence by (43)
that the corresponding regularized theta lift ϑ?f0,η,A

is annihilated by ∆z, and hence determines a Laplacian

eigenvector of eigenvalue 0.
To describe this choice in more detail, we first give some more details about harmonic weak Maass forms

in general. Hence, we now say more about the choice of L2-automorphic form φ0 and corresponding form f0

on H for the construction above implicit in the abstract theta lifting of Proposition 4.2. Let us thus revert
to the more general setting of a quadratic space (V, q) of signature (2, 2). Recall we write rψ0 to denote the
Weil representation rψ0 : SO(V )(A)× SL2(A) −→ S(W(A)), as well as its extension to similitudes. Given a

matrix γ ∈ SL2(Z), we write kγ ∈ SL2(Ẑ) to denote the image (cf. [8, (2.1)] and [32, § 1]11).
Suppose first that k ∈ Z is any integer weight; we shall later specialize to the case of k = 0 as above. Again,

we fix a lattice Λ ⊂ V , and consider the corresponding subspace of Schwartz functions SΛ ⊂ S(W(Af )) as
in (39) above. We consider SΛ-valued harmonic weak Maass forms, defined more generally as follows. Let
(ρΛ,V) be the conjugate Weil representation on SΛ, that is ρΛ(γ) = rψ0,Λ(kγ) = rψ0,−Λ(gγ) for γ ∈ SL2(Z)

and kγ ∈ S̃L2(Z) (cf. [8, (2.7)]). Let us also write |k,ρΛ
to denote the Petersson weight k operator with respect

to ρΛ, defined on a function f on Γ\H by the rule

f |k,ρΛ
(γ(τ)) = (cτ + d)k · ρΛ(γ) · f(τ) for all γ =

(
a b
c d

)
∈ Γ.

11i.e. noting that we do not have to work with metaplectic covers here as our quadratic space (V, q) has signature (2, n) with
n = 2 even.
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Let us also write ∆k to denote the hyperbolic Laplacian of weight k, defined for τ = u+ iv ∈ H by

∆k := −v2

(
∂2

∂u2
+

∂2

∂v2

)
+ ik

(
∂

∂u
+ i

∂

∂v

)
.

Note that this Laplacian can be expressed in terms of the respective weight k Maass weight raising and
lowering operators Rk and Lk as −∆k = Lk+2Rk + k = Rk−2Lk, where

Rk = 2i · ∂
∂τ

+ k · v−1(44)

denotes the Maass weight raising operator of weight k (which raises the weight by 2), and

Lk = −2iv2 · ∂
∂τ

(45)

denotes the Maass lowering operator (which lowers the weight by 2).

Definition 4.8. Fix an integer k ≤ 1, and a lattice Λ ⊂ V with corresponding subspace SΛ ⊂ S(W(A))). A
twice differentiable function f : H −→ SΛ is a harmonic weak Maass form of weight k with respect to SL2(Z)
and representation ρΛ if:

(i) The function is invariant under the Petersson weight-k operator: f |k,ρΛγ = f for all γ ∈ Γ.

(ii) There exists an SΛ-valued Fourier polynomial

Pf (τ) =
∑

µ∈Λ#/Λ

∑
m≤0

c+f (µ,m)e(mτ)1µ+Λ̂

such that f(τ) = Pf (τ) +O(e−εv) as v = =(τ)→∞ for some ε > 0.

(iii) The function is harmonic of weight k, i.e. ∆kf = 0.

We write Hk,ρΛ
for the vector space of such functions, and call the polynomial Pf (τ) the principal part of

f . In the special case where we take the representation ρΛ to be the Weil representation rψ0,Λ, we shall
sometimes write Hk,Λ = Hk,ρΛ for simplicity.

Recall that the Fourier series expansion of any weak harmonic Maass form f ∈ Hk,ρΛ decomposes uniquely
as the sum f(τ) = f+(τ) + f−(τ), where

f+(τ) :=
∑

µ∈Λ#/Λ

∑
m∈Q
m�−∞

c+f (m,µ)e(mτ)1µ+Λ̂

is the holomorphic part, and

f−(τ) :=
∑

µ∈Λ#/Λ

∑
m∈Q
m<0

c−f (m,µ)Wk(2πmv)e(mτ)1µ+Λ̂,

for Wk(a) :=
∫∞

2a
e−tt−kdt = Γ(1− k, 2|a|) for a < 0 is the non-holomorphic part. We consider the subspace

M !
k,ρΛ
⊂ Hk,ρΛ of such weakly holomorphic forms, these being meromorphic modular functions whose poles

are supported at the cusps. As explained in [8, §3], there is an antilinear differential operator ξk taking Hk,ρΛ

to the space S2−k,ρΛ
of holomorphic forms of weight 2−k with respect to Γ and ρΛ, these forms being defined

in the analogous way with f = f+ for each f ∈ S2−k,ρΛ
. This operator ξk can be defined explicitly via the

Maass lowering operator as follows. We have an exact sequence of vector spaces

0 −−−−→ M !
k,ρΛ

−−−−→ Hk,ρΛ

ξk−−−−→ S2−k,ρΛ
−−−−→ 0,(46)

where ξk : Hk,ρΛ
−→ Sk−2,ρΛ

is defined by

f(τ) 7→ ξkf(τ) := vk−2Lkf(τ).
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Note that the natural inner product 〈〈·, ·〉〉 here induces a bilinear pairing

{·, ·} : M2−k,ρΛ
×Hk,ρΛ

−→ C, {g, f} := 〈〈g, ξk(f)〉〉.
To be clear, using conventions as in [8, § 3.1], given g ∈M2−k,ρΛ

with Fourier series expansion

g(τ) =
∑

µ∈Λ#/Λ

∑
m≥0

cg(µ,m)e(mτ),

the pairing against a harmonic weak Maass form f ∈ Hk,ρΛ
with expansion as described above is given by

{g, f} = 〈ξk(f), g〉 =
∑

µ∈Λ#/Λ

∑
m≤0

c+f (µ,m)cg(µ,−m).

This in particular implies that {g, f} depends only on the principal part Pf (τ) of f . It is also simple to
deduce from the exactness of (46) that this pairing {·, ·} between S2−k,ρΛ

and Hk,ρΛ
/M !

k,ρΛ
is nondegenerate.

Moreover, given a harmonic weak Maass form f ∈ Hk,ρΛ
with constant principal part Pf (τ), it is not hard

to deduce that f must be a holomorphic modular form f ∈Mk,ρΛ
(see [8, Lemma 3.3]).

Finally, we have the following relation to scalar-valued forms for the setting we consider here (cf. [8, §3]).
Here, we are interested in working later with a vector-valued modular form gη of weight 2 and level Γ0(dKN)
corresponding to the twist fη = f ⊗ η ∈ S2(Γ0(dKN)) by the quadratic Dirichlet character η = ηK/Q of our
initial weight 2 cusp form f ∈ Snew

2 (Γ0(N)), and hence describe only this case. Such a lifting is known to
exist, and more precisely we have the following.

Theorem 4.9. Let us keep the setup described above with (V, q) a quadratic space of signature (2, 2), and
Λ ⊂ V any lattice associated to the compact open subgroup of GSpinV (Af ) giving the level of the cuspidal
automorphic basechange representation Π = BCK/Q(π) = BCK/Q(π(f)), where π = π(f) denotes the cuspi-
dal automorphic representation of GL2(Af ) corresponding to our initial cusp form f ∈ Snew

2 (Γ0(N)). Let us
write the Fourier series expansion of this latter cusp form as

f(τ) =
∑
m≥1

af (m)e(mτ).

Let us also also write η to denote the extension of the quadratic Dirichlet character η = ηK/Q to a character
of Γ0(dKN), with fη = f ⊗ η ∈ S2(Γ0(dKN)) the cusp form with Fourier expansion

fη(τ) = (f ⊗ η)(τ) =
∑
m≥1

af (m)η(m)e(mτ).

There exists an SΛ-valued modular form gη of weight 2, determined canonically as the lifting of fη defined
in [53], whose Fourier series expansion is given by

gη(τ) =
∑

µ∈Λ#/Λ

gη,µ(τ)1µ+Λ̂, where gη,µ(τ) =
∑
m∈Q

m≡dKNq(µ) mod (dKN)

af (m)η(m)s(m)e

(
mτ

dKN

)
.

Here, s(m) denotes the function defined on each class m mod dKN by s(m) = 2Ω(m,dKN), where Ω(m, dKN)
denotes the number of divisors of the greatest common divisor (m, dKN).

Proof. This is a special case of [53, Theorem 4.15], adapted to match the setup of [8, p. 639, Lemma 3.1].
Note that we identify the nebentype character η2 with the principal character of Γ0(dKN). �

4.4.4. The Siegel-Weil formula, and a vector-valued variant. Let us now record some special cases of the
Siegel-Weil formula for our later calculations of averages of regularized theta lifts over the quadratic subspaces
V2 ⊂ V and VA,2 ⊂ VA. We now take (V, q) to be any quadratic space over Q with signature (2, 2) and
underlying vector space V = Q ⊗ Q ⊕ K, as described above. We shall also consider the signature (1, 1)

subspace (V2, q2) given by the real quadratic field V2 = K = Q(
√
d) with restriction q2 = q|V2

of the quadratic
form, i.e. which for us will always be of the form c ·N(·) for some integer c ≥ 1, where N = NK/Q : K −→
Q, λ 7→ λλτ denotes the norm homomorphism. We first review the Siegel-Weil formula abstractly following
[32, Theorem 4.1] and [8, Theorem 2.1]. We then give a more arithmetic description of the vector-valued
Siegel theta and Eisenstein series that appear after taking averages over the subspaces V2, in preparation for
our subsequent calculations.
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More generally, we consider the subspaces (Vj , qj) for j = 1, 2 defined by V1 = Q ⊕ Q with q1 = q|V1

and V2 = K with q2 = q|V2 . Moreover, to treat all cases in this discussion uniformly, let us also write
(V0, q0) = (V, q), so that (Vj , qj) for j = 0, 1, 2 refers to any of the three quadratic spaces (V0, q0) = (V, q),
(V1, q1) = (Q ⊕Q, q1), or (V2, q2) = (K, q2). Write rψ0,j : SO(Vj)(A) × SL2(A) −→ S(W|Vj ) to denote the
corresponding restriction of the Weil representation rψ0

: SO(V )(A) × SL2(A) −→ S(W), and θrψ0,j
the

corresponding theta kernel defined on h ∈ SO(Vj)(A), g ∈ SL2(A) and Φ ∈ S(W|Vj ) by

θψ0,j(h, g; Φ) =
∑

x∈W|Vj (Q)

rψ0,j(h, g)Φ(x).

We also consider the associated Langlands Eisenstein series as follows. Let χVj denote the idele class
character of Q defined on x ∈ A×/Q× by the formula χVj (x) = (x, det(Vj))A, where (·, ·)A denotes the
Hilbert symbol on A, and det(Vj) the Gram determinant. Writing s ∈ C to denote a complex parameter,
let I(s, χVj ) denote the corresponding principal series representation of SL2(A) given by right translation.
Writing s0 = dim(Vj)/2− 1 = 0, there is an SL2(A)-intertwining representation

λ : S(W|Vj ) −→ I(0, χVj ), λ(Φ)(g) := (rψ0,j(g)Φ)(0).

Recall that a section Φ(s) ∈ I(s, χVj ) is said to be standard if its restriction to the maximal compact subgroup
K SO2(R) of SL2(A) does not depend on the complex parameter s ∈ C. As explained in [8, § 2.1], using the
Iwasawa decomposition

SL2(A) = N2(A)M2(A)K SO2(R),(47)

we deduce that λ(Φ)(g) ∈ I(0, χVj ) has a unique extension to a standard section λ(Φ, s) ∈ I(s, χVj ) for
which λ(Φ, 0) = λ(Φ). Given any standard section ϕ ∈ I(s, χVj ), and writing P ⊂ SL2 to denote the
standard parabolic subgroup, we then consider the Eisenstein series defined on g ∈ SL2(A) by

Erψ0,j
(g, s;ϕ) =

∑
γ∈P (Q)\ SL2(Q)

ϕ(γg, s).

We can now state the following special case of the Siegel-Weil formula in this setting.

Theorem 4.10 (Siegel Weil). Let (Vj , qj) for j = 0, 1, 2 denote any of the quadratic spaces introduced above.
We have for any g ∈ SL2(A) the average formula

κ ·
∫

SO(Vj)(Q)\ SO(Vj)(A)

θψ0,j(h, g; Φ)dh = Erψ0,j
(g, s0, λ(Φ)),

where

κ =

{
1 if dim(Vj) > 2

2 if dim(Vj) ≤ 2
and s0 = s0(Vj) =

dim(Vj)

2
− 1.

Moreover, the Eisenstein series Erψ0,j
(g, s, λ(Φ)) in each case j = 0, 1, 2 is holomorphic at s = s0.

Proof. See [32, Theorem 4.1], and more generally [34, § I.4]. �

Let us now consider the following more explicit version of Theorem 4.10. Here, we shall give a more precise
formula by describing the theta kernel θrψ0,j

and Langlands Eisenstein series Erψ0,j
in terms of vector-valued

modular forms as follows. As explained in [8, § 2.1], given any integer weight k ∈ Z there is a unique section
σk∞ = σk∞(s) ∈ I∞(s, χVj ) for which

σk∞(n(n)m(a)k(θ), s) = χVj (a)|a|s+1 exp(ikθ)(48)

with respect to the Iwasawa decomposition (47), i.e. with coordinates

n(b) =

(
1 b

1

)
∈ N2(A), m(a) =

(
a

1
2

a−
1
2

)
∈M2(A), k(θ) =

(
cos θ − sin θ
sin θ cos θ

)
∈ SO2(R).

We deduce from our definition of the Gaussian function Φ∞ ∈ S(W(R)|Vj )⊗ C∞(D±) above that

λ∞(Φ∞(·, z)) = σ
p(Vj)−q(Vj)

2∞ (0) = σ0
∞(0),(49)
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where (p(Vj), q(Vj)) denotes the signature of the quadratic space Vj . Let us remark that each of the quadratic
spaces Vj we consider here leads to looking at an Eisenstein series of weight k = k(Vj) = (p(Vj)−q(Vj))/2 = 0.

Given any even lattice Λj ⊂ Vj , and writing λf to denote the finite component of the standard section
λ(Φ) = λ(Φ, s) ∈ I(s, χVj ) described above, we consider the corresponding SΛj -valued Eisenstein series of
weight k defined on τ = u+ iv ∈ H and s ∈ C by

EΛj (τ, s; k) = EΛj ,rψ0,j
(τ, s, k) := v

k
2

∑
µ∈Λ#

j /Λj

Erψ0,j
(gτ , s;σ

k
∞ ⊗ λf (1µ+Λ̂j

)) · 1µ+Λ̂j
.

We also consider the SΛj -valued theta kernel defined on τ = u+ iv ∈ H, z ∈ D±, and hf ∈ GO(Vj)(A) by

θΛj (τ, z, h) = θΛj ,rψ0,j
(τ, z, hf ) =

∑
µ∈Λ#

j /Λj

θ?rψ0,j
(z, hf , gτ ; 1µ+Λ̂j

) · 1µ+Λ̂j
.(50)

Corollary 4.11 (Siegel-Weil for SΛj -valued forms). We have the identification of functions of τ ∈ H:

κ ·
∫

SO(Vj)(Q)\ SO(Vj)(A)

θΛj (τ, z, hf ) = EΛj (τ, s0, k) = EΛj (τ, s0(Vj); k(Vj)).

Here again, s0 = s0(Vj) := dim(Vj)/2− 1, and k = k(Vj) := (p(Vj)− q(Vj))/2.

Proof. Cf. [8, Proposition 2.2], and note that we deduce this from Theorem 4.10 with (48) and (49). �

4.4.5. Eisenstein series and Maass weight-raising operators. As preparation for our later calculations, let
us also give the following more classical descriptions of the Eisenstein series appearing in the Siegel-Weil
theorem above, with relations to the Maass raising and lowering operators Rk, Lk introduced above. Here,
we take for granted the definition of the matrix gτ for τ = u + iv ∈ H in the unique decomposition (36)
above via the Iwasawa decomposition for SL2(A), also as described above in (47). We then consider

γ · gτ = n(β) ·m(α) · k(θ) for γ =

(
a b
c d

)
, β ∈ R, α ∈ R×, k(θ) ∈ SO2(R).

Direct calculations show that

α = v
1
2 · |cτ + d|−1, exp(iθ) =

cτ + d

|cτ + d|
,

so that substituting into (47) gives

σk∞(γgτ , s) = v
s
2 + 1

2 (cτ + d)−k|cτ + d|k−s−1.

Hence, writing Γ∞ = P (Q) ∩ Γ for Γ = SL2(Z) as above, we find that

E(gτ , s;σ
k
∞ ⊗ λf (1µ+Λ̂j

)) =
∑

γ∈Γ∞\Γ

(cτ + d)−k
v
s
2 + 1

2

|cτ + d|s+1−k · λf (1µ+Λ̂j
)(γ)

=
∑

γ∈Γ∞\Γ

(cτ + d)−k
v
s
2 + 1

2

|cτ + d|s+1−k · 〈1µ+Λ̂j
, (r−1

ψ0,j
(γ)10+Λ̂j

)〉,

where 〈·, ·〉 here denotes the L2 inner product on SΛj . In this way, we find that the vector-valued Eisenstein
series we considered above can be written classically as

EΛj (τ, s; k) =
∑

γ∈Γ∞\Γ

[
=(τ)

(s+1−k)
2

] ∣∣∣∣
k,ρΛj

γ,(51)

where |k,ρΛj
again denotes the Petersson weight-k slash operator for ρΛj .

Recall that we defined the Maass weight raising and lowering operators Rk and Lk in (44) and (45) above.
These operators raise and lower respectively the weights of the these Eisenstein by two. To be more precise,

37



it is easy to check from the definitions that

LkEΛj (τ, s; k) =
1

2
· (s+ 1− k) · EΛj (τ, s; k − 2),

RkEΛj (τ, s; k) =
1

2
· (s+ 1 + k) · EΛj (τ, s : k + 2).

We refer to [32, Proposition 2.7] and [8, Lemma 2.3] for more details, but note that these works consider
distinct setups where the Eisenstein series are always incoherent (in the sense of Kudla [32]). Here, we have
for the Eisenstein series corresponding to our signature (1, 1) subspace V2 that

(52) L2EΛ2(τ, s; 2) =
1

2
· (s− 1) · EΛ2(τ, s; 0).

Observe that the Eisenstein series EΛ2
(τ, s; 0) is holomorphic at s = s0 = s0(V2) := dim(V2)/2 − 1 = 0

thanks to Siegel-Weil, Theorem 4.10 (cf. Corollary 4.11). It follows that at s = 0, we have the identity

L2EΛ2
(τ, 0; 2) = −1

2
· EΛ2

(τ, 0; 0).

Hence, taking the first derivative with respect to s on each side of (52) to get

L2E
′
Λ2

(τ, s; 2) =
1

2
(s− 1)E′Λ2

(τ, s; 0)− 1

2
E′Λ2

(τ, s; 0),

which after evaluating at s = 0 gives

L2E
′
Λ2

(τ, 0; 2) = −1

2
· EΛ2(τ, 0; 0)− 1

2
· E′Λ2

(τ, 0; 0).

and hence

(53) −2L2E
′
Λ2

(τ, 0; 2) = EΛ2
(τ, 0; 0) + E′Λ2

(τ, 0; 0).

Writing (53) in terms of differential forms as in [8, Lemma 2.3], we then find that

−2L2E
′
Λ2

(τ, 0; 2)dµ(τ) = 2∂
(
E′Λ2

(τ, 0; 2)
)

=
(
EΛ2

(τ, 0; 0) + E′Λ2
(τ, 0; 0)

)
dµ(τ)

and hence

(54) EΛ2(τ, 0; 0)dµ(τ) = −2∂
(
E′Λ2

(τ, 0; 2)dτ
)
− E′Λ2

(τ, 0; 0)dµ(τ).

Here, we write dµ(τ) = dudv
v2 for τ = u+ iv ∈ H.

Let us now consider the Fourier series expansion of the Eisenstein series

E′Λ2
(τ, s; 2) =

∑
µ∈Λ#

2 /Λ2

∑
m∈Q

AΛ2
(s, µ,m, v)e(mτ) · 1µ+Λ̂2

.

We alter the discussion given in [32, Proposition 2.7] (cf. [8, § 2.2]) for this subspace V2 of signature (1, 1) as
follows. That is, we apply the discussion of [32, Proposition 2.7] to each of the derivative Eisenstein series
to deduce that the Laurent series expansions of each the Fourier coefficients around s = s0 = 0 has the form

AΛ2
(s, µ,m, v) = bΛ2

(µ,m, v)(s− s0) +O
(
(s− s0)2

)
= bΛ2

(µ,m, v)s+O(s2).(55)

It follows that we have the expansion

(56)
E′Λ2

(τ, 0; 2) =
∑

µ∈Λ#
2 /Λ2

∑
m∈Q

bΛ2(µ,m, v)e(mτ) · 1µ+Λ̂2
.

Let us for future reference define the coefficients

κΛ2(µ,m) =

{
limv→∞ bΛ2

(µ,m, v) if µ 6= 0 or m 6= 0

limv→∞ bΛ2
(µ,m, v)− log(v) if µ = 0 and m = 0.

(57)

Note that these limits are shown to exist by the argument of Kudla [32, Theorem 2.12]. Let us define from
these coefficients the SΛ2

-valued periodic function EΛ2
(τ) on τ = u+ iv ∈ H by the expansion

EΛ2
(τ) :=

∑
µ∈Λ#

2 /Λ2

∑
m∈Q

κΛ2
(µ,m)e(mτ)1µ+Λ̂2

.(58)
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Remark Observe (cf. [8, Remark 2.4, (3.5)]) that we can view this form EΛ2(τ) defined by the Fourier series
expansion (58) as the holomorphic part of the Maass form defined by E′Λ2

(τ, 0; 2),

EΛ2
(τ) = E′+Λ2

(τ, 0; 2).

4.4.6. Eisenstein series associated to the signature (1,1) subspaces (V2, q2). Let us now say more about the
Eisenstein series associated to the lattices ΛA,2 ⊂ V2. Again, we fix a class A ∈ Pic(Oc), where Oc = Z+cOK
is the Z-order of K of conductor c (equal to that of our chosen ring class character χ). Let a ⊂ OK be any
integral representative, so that [a] = A ∈ Pic(Oc). Starting with the ambient lattices ΛA ⊂ VA and Λ ⊂ V ,
we consider the signature (1,1) sublattices defined by ΛA,2 = a ⊂ VA,2 and Λ2 = OK ⊂ V2.

Writing dK to denote the different of K, with

d−1
K = {λ ∈ K : Tr(λOK) ∈ Z} =

{(
1√
d

)
if d ≡ 1 mod 4

1
2Z +

√
d

2d Z if d ≡ 2, 3 mod 4

the inverse different, we then have the identifications a# ∼= d−1
K ∩ a and

Λ#
A,2/ΛA,2

∼= (d−1
K ∩ ΛA,2)/ΛA,2.

Writing dK again to denote the discriminant of K,

dK =

{
d if d ≡ 1 mod 4

4d if d ≡ 2, 3 mod 4,

recall that we write η = ηK/Q to denote corresponding Dirichlet character. Here, we have χV2
= η. Writing

Λ(s, η) = |d| s2 ΓR(s+ 1)L(s, η), ΓR(s) := π−
s
2 Γ
(s

2

)
to denote its corresponding completed L-function, we defined the completed Eisenstein series

E?Λ2
(τ, s) := Λ(s+ 1, η)EΛ2

(τ, s).

Proposition 4.12. The Eisenstein series E?Λ2
(τ, s) has a meromorphic continuation to all s ∈ C, and

satisfies the symmetric functional equation E?Λ2
(τ, s) = E?Λ2

(τ,−s). Consequently, the Eisenstein series
E?ΛA,2(τ, s) := Λ(s + 1, η)EΛA,2(τ, s) associated to each sublattice ΛA,2 has a meromorphic continuation

to all s ∈ C, and satisfies the symmetric functional equation E?ΛA,2(τ, s) = EΛA,2(τ,−s).

Proof. See [8, Proposition 2.5]. We deduce this in the same way from the Langlands functional equation

E(g, s;σ) = E(g,−s,M(s)σ) for each of the summands E(g, s, σ) = E(τ, s, σ
k(V2)
∞ ⊗ λf (1µ + Λ̂2)). Note

however the sign change in switching from the imaginary to the real quadratic case. That is, the sign is
determined by the root number τ(η)|D|− 1

2 of the completed Dirichlet L-series Λ(s, η). Moreover, we can
deduce this in a more direct way (than [8, Proposition 2.5]) from the Langlands functional equation. This is
because the Eisenstein series we consider here is not incoherent, but rather the naturally-appearing Eisenstein
series defined from the local data at each place v ≤ ∞. �

4.4.7. Summation along anisotropic quadratic subspaces of signature (1, 1). Let (V, q) be the quadratic space
of signature (2, 2) with underlying vector space V = Q ⊕ Q ⊕ K. Again, we consider the subspaces Vj of
signature (1, 1) introduced above for j = 1, 2, with induced quadratic forms qj = q|Vj . We fix even lattices
Λj ⊂ Vj for each of these spaces. Here, we alter the general discussion given in [33, § 2], [5], and [8, § 4] to
calculate the regularized theta lifts ϑ?f0

(z, h) defined above. In particular, we shall link the values of these

regularized theta lifts along the geodesic corresponding to subspace (V2, q2) to central (derivative) values
of some related Rankin-Selberg L-function. Let us note that we do not meet incoherent Eisenstein series
in this setup, and moreover that we derive an integral presentation for the sum of a central value plus a
central derivative value. Hence, the integral presentation is something of a deviation from the style of Kudla’s
programme, as well as the analogous formula for the CM case derived by Bruinier-Yang [8, Theorem 4.7].

Let DV = D+
V be the Grassmannian of oriented hyperplanes z ⊂ V (R) with q|Z > 0. Hence, the subspace

V2 ⊂ V gives rise to a pair of points in the corresponding subgrassmannian zV2
∈ D+

V2
. Again, we consider
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GSpinV2
as a subgroup of GSpinV acting trivially on V1. Fixing a compact open subgroup U ⊂ GSpinV (Af )

as above, let U2 := U ∩GSpinV2
(Af ). We then consider the geodesic

Z(V2) := GSpinV2
(Q)\{zV2

} ×GSpinV2
(Af )/U2(59)

on the corresponding Shimura variety

ShU (GSpinV , D
+
V ) := GSpinV (Q)\D+

V ×GSpinV (Af )/U.

Note that for our calculations, we count each point (zV2 , h) ∈ Z(V2) with multiplicity 2
#(GSpinV2

(Q)∩U2) .

Given a point (zV2
, h) ∈ Z(V2) and a harmonic weak Maass form f0 ∈ H0,ρΛ2

, we now compute the

regularized theta lift ϑ?f0
(zV2

, h) defined above, and then the sum over the “geodesic” subset Z(V2),

ϑ?f0
(Z(V2)) :=

∑
(zV2

,h)∈Z(V2)

ϑ?f0
(zV2

, h).

Fix a Tamagawa measure on SO(V2)(A) for which vol(SO(V2)(R)) = 1 and vol (SO(V2)(Q)\ SO(V2)(A)) = 2.
Fix a Haar measure on A×f with the property that vol(Z×p ) = 1 for each finite place p, and vol(A×f /Q

×) = 1/2.

We obtain from these choices a Haar measure on GSpinV2
(Af ) via the short exact sequence

1 −→ A×f −→ GSpinV2
(Af ) −→ SO(V2)(Af )→ 1.

Lemma 4.13. Let U ⊂ GSpinV (Af ) be any compact open subgroup, and U2 = U ∩GSpinV2
(Af ). Then,

ϑ?f0
(Z(V2)) =

2

vol(U2)
·
∫

SO(V2)(Q)\ SO(V2)(A)

ϑ?f0
(zV2 , h)dh.

Proof. As in [8, Lemma 4.5], we use the general result of [40, Lemma 2.13] applied to the specific functions
B(h) = ϑ?f0

(zV2
, h) and B(h) = 1. This general result [40, Lemma 2.13] implies that for B(h) any function

on GSpinV2
(A) which (i) depends only on the image of h in SO(V2)(Af ), (ii) is left GSpinV2

(Q)-invariant,
and (iii) is right invariant under the compact open subgroup U2, we have the relation∫

SO(V2)(Q)\ SO(V2)(A)

B(h)dh = vol(U2) ·
∑

h∈GSpinV2
(Q)\GSpinV2

(A)/U2

B(h).

Here, the sum on the right hand side is finite. In this way, we compute the sum over the subset Z(V2) as

ϑ?f0
(Z(V2)) =

2

#(GSpinV2
(Q) ∩ U2)

∑
zV2
∈supp(Z(V2))

ϑ?f0
(zV2

, 1)

=
2

vol(U2)
·
∫

SO(V2)(Q)\ SO(V2)(A)

ϑ?f0
(zV2

, h)dh.

�

Let us now consider the even lattice Λ = Λ1⊕Λ2 ⊂ V with its corresponding SΛ-valued Siegel theta series
θΛ(τ, z, h) defined on z ∈ D+

V , h ∈ GSpinV (Af ), and τ = u+ iv ∈ H by

θΛ(τ, z, h) = θΛ,rψ0
(τ, z, h) =

∑
µ∈Λ#/Λ

θ?rψ0
(z, h, gτ ; 1µ) · 1µ.

Again, it is not hard to see ([8, (3.3), Lemma 3.1]) that we have the decomposition of theta series

θΛ = θΛ1⊕Λ2 = θΛ1 ⊗ θΛ2 ,

and more specifically for this setup with (zV2 , h) ∈ Z(V2) and τ = u+ iv ∈ H the decomposition

θΛ(zV2
, τ) = θΛ1

(τ)⊗ θΛ2
(τ, zV2

, h) = θΛ1
(τ, 1, 1)⊗ θΛ2

(τ, zV2
, h).(60)

That is, for the Grassmannian variable zV = (zV1
, zV2

) ∈ D+
V (with each zVj the projection to D+

Vj
), any

τ = u+ iv ∈ H, and h ∈ GSpin(V )(Af ), we have the decomposition

θΛ(τ, zV , 1) = θΛ1
(τ, zV1

, 1)⊗ θΛ2
(τ, zV2

, h).
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Since we fix first variable zV1 = 1 to be trivial, we suppress this from the notation henceforth. Let us also fix
an SΛ-valued harmonic weak Maass form f0 ∈ H0,Λ, as described above, with decomposition f0 = f+

0 + f−0
into holomorphic part f+

0 and non-holomorphic part f−0 . Let us write A0 to denote the constant coefficient

A0 = CT
(
〈〈f+

0 (τ), θΛ1
(τ)⊗ 1Λ2

〉〉
)
.

Lemma 4.14. We have for each (zV2
, h) ∈ Z(V2) that

ϑ?f0
(zV2

, h) = lim
T→∞

(∫
FT
〈〈f0(τ), θΛ1

(τ)⊗ θΛ2
(zV2

, h, τ)〉〉dµ(τ)−A0 log(T )

)
.

Proof. Cf. [8, Lemma 4.5]. Opening the definition of ϑ?f0
(zV2

, h), we first decompose f0 = f+
0 + f−0 into its

holomorphic and nonholomorphic parts, and split the integral accordingly

ϑ?f0
(zV2

;h) = lim
T→∞

∫
FT
〈〈f0(τ), θΛ(zV2

, h, τ)〉〉dµ(τ)

= lim
T→∞

∫
FT
〈〈f+

0 (τ), θΛ(zV2
, h, τ)〉〉dµ(τ) + lim

T→∞

∫
FT
〈〈f−0 (τ), θΛ(zV2

, h, τ)〉〉dµ(τ).

Using the fact that the initial Siegel theta series θΛ(τ, zV2
, h) ∈M0,Λ is holomorphic, we can also argue as in

[8, Lemma 4.5] that the second integral is absolutely convergent due to the rapid decay of f−0 (τ). We then
use the argument of [32, Proposition 2.5] to deduce that the first integral in this latter expression equals

lim
T→∞

∫
FT
〈〈f+

0 (τ), θΛ(zV2 , h, τ)〉〉dµ(τ) = lim
T→∞

[∫
FT
〈〈f+

0 (τ), θΛ(zV2 , h, τ)〉〉dµ(τ)−A0 log(T )

]
,

which after decomposing the Siegel theta series θΛ(τ, zV2
, h) = θΛ1

(τ)⊗ θΛ2
(τ, zV2

, 1) gives

lim
T→∞

∫
FT
〈〈f+

0 (τ), θΛ(zV2 , h, τ)〉〉dµ(τ) = lim
T→∞

[∫
FT
〈〈f+

0 (τ), θΛ1(τ)⊗ θΛ2(τ, zV2 , 1)〉〉dµ(τ)−A0 log(T )

]
.

We then deduce the result in the same way as [8, Lemma 4.5]. �

Corollary 4.15. Using the Siegel-Weil formula of Theorem 4.10 and Corollary 4.11, we have that

ϑ?f0
(Z(V2)) =

1

vol(U2)
· lim
T→∞

(∫
FT
〈〈f0(τ), θΛ1(τ)⊗ EΛ2(τ, 0; 0)〉〉dµ(τ)−A0 log(T )

)
.

Proof. We expand the definition using Lemmas 4.13 and 4.14, switch the order of summation, then use
Corollary 4.11 (with κ = 2) to evaluate the inner integral over θΛ2(zV2 , h). In this way, we compute

ϑ?f0
(Z(V2))

=
2

vol(U2)
·
∫

SO(V2)(Q)\ SO(V2)(A)

ϑ?f0
(zV2 , h)dh

=
2

vol(U2)
·
∫

SO(V2)(Q)\ SO(V2)(A)

lim
T→∞

(∫
FT
〈〈f0(τ), θΛ1

(τ)⊗ θΛ2
(zV2

, h, τ)〉〉dµ(τ)−A0 log(T )

)
dh

=
2

vol(U2)
· lim
T→∞

(∫
FT
〈〈f0(τ), θΛ1

(τ)⊗

(∫
SO(V2)(Q)\ SO(V2)(Af )

θΛ2
(zV2

, h, τ)dh

)
〉〉dµ(τ)−A0 log(T )

)

=
1

vol(U2)
· lim
T→∞

(∫
FT
〈〈f0(τ), θΛ1

(τ)⊗ EΛ2
(τ, 0; 0)〉〉dµ(τ)−A0 log(T )

)
.

�

Given g ∈ S2,Λ a cuspidal holomorphic modular form of weight 2 and representation rφ0,Λ, let us now
consider the Rankin-Selberg L-function given by the integral presentation

L(s, g, V2) := 〈g(τ), θΛ1(·)⊗ EΛ2(τ, s; 2)〉 =

∫
F

〈〈g(τ), θΛ1(τ)⊗ EΛ2(τ, s, 2)〉〉v2dµ(τ).

We shall take g = ξ0(f0), and write L′(s, g, V ) = d
dsL(s, g, V ) to denote the derivative with respect to s.

Recall that we write EΛ2
(τ) by the Fourier expansion (58), with coefficients defined in (57).
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Theorem 4.16. Writing EΛ2(τ) = E+
Λ2

(τ, 0; 2) for the holomorphic part of E′Λ2
(τ, 0; 2), we obtain

ϑ?f0
(Z(V2)) =

1

vol(U2)
·
(
CT

(
〈〈f+

0 (τ), θΛ1
(τ)⊗ EΛ2

(τ)〉〉
)

+ L(0, ξ0(f0), V2)− L′(0, ξ0(f0), V2)
)
.

Proof. We derive a variation of [8, Theorem 4.7]. Here, Lemma 4.13, Lemma 4.14, and Corollary 4.15 imply

ϑ?f0
(Z(V2)) =

1

vol(U2)
· lim
T→∞

(IT (f0)−A0 log(T )) ,(61)

where

IT (f0) :=

∫
FT
〈〈f0(τ), θΛ1(τ)⊗ EΛ2(τ, 0; 0)〉〉dµ(τ).

Using the identity (54) for the non-incoherent Eisenstein series EΛ2
(τ, s, 0) at s = 0, we deduce that

(62)

IT (f0) =

∫
FT
〈〈f0(τ), θΛ1

(τ)⊗ EΛ2
(τ, 0; 0)〉〉dµ(τ)

= −2

∫
FT

〈〈f0(τ), θΛ1(τ)⊗ ∂
(
E′Λ2

(τ, 0; 2)
)
dτ〉〉 −

∫
FT

〈〈f0(τ), θΛ1(τ)⊗ E′Λ2
(τ, 0; 0)dµ(τ)〉〉

= −2

∫
FT

d〈〈f0(τ), θΛ1
(τ)⊗ E′Λ2

(τ, 0; 2)dτ〉〉+ 2

∫
FT

〈〈∂f0(τ), θΛ1
(τ)⊗

(
E′Λ2

(τ, 0; 2)
)
dτ〉〉

−
∫
FT

〈〈f0(τ), θΛ1
(τ)⊗ E′Λ2

(τ, 0; 0)dµ(τ)〉〉

To compute the first integral on the right hand side of (62), we apply Stokes’ theorem to find

(63)

− 2

∫
FT

〈〈f0(τ), θΛ1
(τ)⊗ ∂

(
E′Λ2

(τ, 0; 2)
)
dτ〉〉 = −2

∫
FT

d〈〈f0(τ), θΛ1
(τ)⊗ E′Λ2

(τ, 0; 2)dτ〉〉

= −2

∫
∂FT
〈〈f0(τ), θΛ1

(τ)⊗ E′Λ2
(τ, 0; 2)dτ〉〉 = −2

∫ iT+1

τ=iT

〈〈f0(τ), θΛ1
(τ)⊗ E′Λ2

(τ, 0; 2)〉〉dτ.

To compute the second integral on the right hand side of (62), we use the relation of differential forms

∂(f0(τ)dτ) = −v2ξ0(f0)(τ)dµ(τ) = −L0f0(τ)dµ(τ)

to deduce that

(64) 2

∫
FT

〈〈∂f0(τ), θΛ1
(τ)⊗ E′Λ2

(τ, 0; 2)dτ〉〉 = −2

∫
FT

〈〈ξ0(f0)(τ), θΛ1
(τ)⊗ E′Λ2

(τ, 0; 2)〉〉v2dµ(τ).

To compute the third integral on the right hand side of (62), recall that we have the relation

2L2EΛ2(τ, s; 2) = (s− 1) · EΛ2(τ, s; 0)(65)

and hence

E′Λ2
(τ, 0; 0) = −2L2E

′
Λ2

(τ, 0; 2) + EΛ2
(τ, 0; 0).

We then find after substitution that∫
FT

〈〈f0(τ), θΛ1
(τ)⊗ E′Λ2

(τ, 0; 0)dµ(τ)〉〉

= −2

∫
FT

〈〈f0(τ), θΛ1(τ)⊗ L2E
′
Λ2

(τ, 0; 2)dµ(τ)〉〉+

∫
FT

〈〈f0(τ), θΛ1(τ)⊗ EΛ2(τ, 0; 0)dµ(τ)〉〉.

Applying the relation

L2 = −2iv2 ∂

∂τ
= L0; ξ0(f0)(τ) = v−2L0f0(τ) =⇒ L0f0(τ) = L2f0(τ) = v2ξ0(f0)(τ)(66)
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to the first integral in this latter expression, we find that

− 2

∫
FT

〈〈f0(τ), θΛ1
(τ)⊗ L2E

′
Λ2

(τ, 0; 2)dµ(τ)〉〉 = −2

∫
FT

〈〈L0f0(τ), θΛ1
(τ)⊗ E′Λ2

(τ, 0; 2)〉〉dµ(τ)

= −2

∫
FT

〈〈ξ0(f0)(τ), θΛ1
(τ)⊗ E′Λ2

(τ, 0; 2)〉〉v2dµ(τ),

and hence∫
FT

〈〈f0(τ), θΛ1(τ)⊗ E′Λ2
(τ, 0; 0)dµ(τ)〉〉

= −2

∫
FT

〈〈ξ0(f0)(τ), θΛ1
(τ)⊗ E′Λ2

(τ, 0; 2)〉〉v2dµ(τ) +

∫
FT

〈〈f0(τ), θΛ1
(τ)⊗ EΛ2

(τ, 0; 0)dµ(τ)〉〉.

Now, to evaluate the second integral in this latter expression, recall that we have

EΛ2(τ, 0; 0) = −2L2EΛ2(τ, 0; 2)(67)

so that

(68)

∫
FT

〈〈f0(τ), θΛ1(τ)⊗ EΛ2(τ, 0; 0)dµ(τ)〉〉 = −2

∫
FT

〈〈f0(τ), θΛ1(τ)⊗ L2EΛ2(τ, 0; 2)dµ(τ)〉〉

= −2

∫
FT

〈〈L0f0(τ), θΛ1
(τ)⊗ EΛ2

(τ, 0; 2)〉〉dµ(τ)

= −2

∫
FT

〈〈ξ0(f0)(τ), θΛ1(τ)⊗ EΛ2(τ, 0; 2)〉〉v2dµ(τ)

and hence

(69)

−
∫
FT

〈〈f0(τ), θΛ1
(τ)⊗ E′Λ2

(τ, 0; 0)dµ(τ)〉〉

= 2

∫
FT

〈〈f0(τ), θΛ1
(τ)⊗ L2E

′
Λ2

(τ, 0; 2)〉〉dµ(τ) + 2

∫
FT
〈〈f0(τ), θΛ1

(τ)⊗ L2EΛ2
(τ, 0; 2)〉〉dµ(τ)

= 2

∫
FT

〈〈ξ0(f0)(τ), θΛ1
(τ)⊗ E′Λ2

(τ, 0; 2)〉〉v2dµ(τ) + 2

∫
FT

〈〈ξ0(f0)(τ), θΛ1
(τ)⊗ EΛ2

(τ, 0; 2)〉〉v2dµ(τ).

Substituting the expressions for the first integral (63), the second integral (64), and the third integral (69)
into (62), we obtain
(70)

IT (f0) = 2

iT+1∫
t=iT

〈〈f0(τ), θΛ1(τ)⊗ E′Λ2
(τ, 0; 2)dτ〉〉 − 2

∫
FT
〈〈ξ0(f0), θΛ1

(τ)⊗ E′Λ2
(τ, 0; 2)〉〉v2dµ(τ)

+ 2

∫
FT
〈〈ξ0(f0), θΛ1

(τ)⊗ E′Λ2
(τ, 0; 2)〉〉v2dµ(τ) + 2

∫
FT
〈〈ξ0(f0), θΛ1

(τ)⊗ EΛ2
(τ, 0; 2)〉〉v2dµ(τ).

Inserting (70) back into the initial formula (61) then gives us the preliminary formula

(71)

ϑ?f0
(Z(V2)) =

1

vol(U2)
· lim
T→∞

2

∫ iT+1

τ=iT

〈〈f0(τ), θΛ1
(τ)⊗ E′Λ2

(τ, 0; 2)〉〉dτ −A0 log(T )

− 1

vol(U2)
· lim
T→∞

2

∫
FT
〈〈ξ0(f0), θΛ1

(τ)⊗ EΛ2
(τ, 0; 2)〉〉v2dµ(τ).
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Now, we argue as in Ehlen [17, Theorem 3.5, (3.12)] that we may replace the f0(τ) in the first integral on
the right of (70) with its holomorphic part f+

0 (τ), as the remaining non-holomorphic part f−0 (τ) is rapidly
decreasing as v →∞. To be clear, let us write the Fourier series expansion as

〈〈f−0 (τ), θΛ1(τ, 1, 1)⊗ E′Λ2
(τ, 0; 2)〉〉 =

∑
n∈Z

a(n, v)e(nτ).

Expanding the integral, opening the Fourier series expansion, then using the orthogonality of additive char-
acters on the torus R/Z ∼= [0, 1] to evaluate, we find that

iT+1∫
iT

〈〈f−0 (τ), θΛ1(τ, 1, 1)⊗ E′Λ2
(τ, 0; 2)〉〉 =

∫ 1

0

〈〈f−0 (u+ iT ), θΛ1(u+ iT, 1, 1)⊗ E′Λ2
(u+ iT, 0; 2)〉〉du

=
∑
n∈Z

a(n, iT )e(inT )

∫ 1

0

e(nu)du = a(0, iT )

=
∑

µ∈Λ#/Λ

∑
m∈Q>0

c−f0
(µ,−m)W0(−2πmv)cg(µ,m, v),

where we write cg(m,µ, v) to denote the Fourier series coefficients of g(τ) = θΛ1(τ, 1)⊗E′Λ2
(τ, 0; 2). Noting

that the Fourier series expansion of the specialized Siegel theta function θΛ1
(τ, 1, 1) is determined by

θΛ1(τ, 1, 1) =
∑

µ∈Λ#
1 /Λ1

θΛ1,µ(τ)1µ =
∑

µ∈Λ#
1 /Λ1

 ∑
λ∈Λ1+µ

e(q1(λ)τ)

1µ,

we can use standard bounds for the Whittaker coefficients in the Fourier series expansion of f−0 (τ) to deduce
that for some integer M > 0 and some constant C > 0, we have for each m ≥M the bounds

c−f0
(µ,−m)W0(−2πmv)cg(µ,m, v) = O

(
e−mCv

)
.

We deduce from this that for some constants c, C > 0, we have the upper bound

|a(0, iT )| ≤ c · e−CT

(1− e−CT )
,

from which it follows that

lim
T→∞

|a(0, iT )| = 0.

This justifies our claim that we may replace the f0(τ) in the first integral on the right of (70) by its
holomorphic part f+

0 (τ). Writing δ?,? to denote the Kronecker delta function, and using the Fourier expansion

E′Λ2
(τ, 0; 2) =

∑
µ∈Λ#

2 /Λ2

∑
m∈Q

bΛ2(µ,m, v)e(mτ)1µ+Λ̂2

as in (56), we deduce from the expansion (58) of EΛ2
(τ) = E+′

Λ2
(τ, 0; 2) and Lemma 4.14 that

lim
T→∞

(∫ iT+1

τ=iT

〈〈f0(τ), θΛ1
(τ)⊗ E′Λ2

(τ, 0; 2)〉〉dτ −A0 log(T )

)

= lim
T→∞

(∫ iT+1

τ=iT

〈〈f+
0 (τ), θΛ1

(τ)⊗ E′Λ2
(τ, 0; 2)〉〉dτ −A0 log(T )

)

= lim
T→∞

∫
FT
〈〈f+

0 (τ), θΛ1
(τ)⊗

∑
µ∈Λ#

2 /Λ2

∑
m∈Q

(bΛ2
(µ,m, v)− δµ,0 · δm,0 log(v)) e(mτ)1µ+Λ̂2

〉〉dτ


= CT

(
〈〈f+

0 (τ), θΛ1
(τ)⊗ EΛ2

(τ)〉〉
)
.
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After substitution into (71), we then derive the formula

(72)

ϑ?f0
(Z(V2))

=
1

vol(U2)
·
(

CT
(
〈〈f+

0 (τ), θΛ1(τ)⊗ EΛ2(τ)〉〉
)
− lim
T→∞

∫
FT
〈〈ξ0(f0), θΛ1(τ)⊗ EΛ2(τ, 0; 2)〉〉v2dµ(τ)

)
.

To evaluate (72) further, we use the weight raising operator R0 as follows. Recall we have the relation

R0EΛ2
(τ, s; 0) =

1

2
(s+ 1)EΛ2

(τ, s; 2)(73)

and hence

R0E
′
Λ(τ, s; 0) =

1

2
(s+ 1)E′Λ2

(τ, 0; 2) +
1

2
EΛ2

(τ, 0; 2),

which after taking the value at s = 0 gives us

R0EΛ(τ, 0; 0) =
1

2
E′Λ2

(τ, 0; 2) +
1

2
EΛ2(τ, 0; 2).(74)

Using this identity in (72), we evaluate

lim
T→∞

∫
FT

〈〈ξ0(f0)(τ), θΛ1
(τ)⊗ EΛ2

(τ, 0, 2)〉〉v2dµ(τ)

= 2 lim
T→∞

∫
FT

〈〈ξ0(f0)(τ), θΛ1(τ)⊗R0EΛ2(τ, 0, 0)〉〉v2dµ(τ)− L′(ξ0(f0), V2, 0),

which after taking (73) at s = 0 to evaluate

R0EΛ2
(τ, s; 0) =

1

2
EΛ2

(τ, 0; 2)

in the first integral gives us
(75)

lim
T→∞

∫
FT

〈〈ξ0(f0)(τ), θΛ1
(τ)⊗ EΛ2

(τ, 0, 2)〉〉v2dµ(τ)

= lim
T→∞

∫
FT

〈〈ξ0(f0)(τ), θΛ1
(τ)⊗ EΛ2

(τ, 0, 2)〉〉v2dµ(τ)− L′(ξ0(f0), V2, 0) = L(ξ0(f0), V2, 0)− L′(ξ0(f0), V2, 0).

Substituting back into (72), we then derive the claimed formula. �

4.4.8. Application to the central derivative value L′(1/2,Π⊗ χ). Let us now finally explain how we can use
these calculations to derive a formula analogous to the preliminary integral presentation of Proposition 4.2
above for the central derivative value L′(1/2,Π⊗ χ) via the classical Rankin-Selberg integral presentation.

Recall that we write η = ⊗vηv to denote the idele class character of Q associated to the quadratic extension
K/Q, which we can and do identify with its corresponding Dirichlet character η = ηK/Q. Recall as well that
Π = BCK/Q(π) denotes the quadratic basechange of our cuspidal automorphic representation π = ⊗vπv of
GL2(A) corresponding to our elliptic curve E/Q to a cuspidal automorphic representation of GL2(AK). As
a consequence of the theory of cyclic basechange, we then have an equivalence of the GL2(AK)×GL1(AK)-
automorphic L-function L(s,Π⊗ χ) with the GL2(A)×GL2(A) Rankin-Selberg L-function L(s, π × π(χ)),
i.e. L(s,Π⊗ χ) = L(s, π × π(χ)). Let us now consider the following classical integral representations of the
Rankin-Selberg L-functions relevant to the discussion above.

To describe this setup in classical terms, recall that we write

f(τ) = fE(τ) =
∑
m≥1

af (m)e(mτ) ∈ Snew
2 (Γ0(N)), τ = u+ iv ∈ H
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to denote the cuspidal newform of weight 2 associated to the elliptic curve E/Q. Recall that we fix a ring
class character χ of some conductor c ∈ Z≥1 of K. Hence, χ = ⊗xχw is a character of the class group

Pic(Oc) = A×K/K
×
∞K

×Ô×c , Ô×c =
∏
w<∞

O×c,w

of the Z-order Oc = Z + cOK of conductor c in K. We consider the corresponding Hecke theta series defined
by the twisted linear combination (see e.g. [23, (5.4)])

θ(χ)(τ) =
∑

A∈Pic(Oc)

χ(A)θA(τ),(76)

where each of the nonholomorphic partial theta series θA(τ) is defined explicitly following the classical
definitions. We have the classical Rankin-Selberg presentation

L(s− 1/2, π × π(χ)) = L(s, f × θ(χ)) =
∑

A∈Pic(Oc)

χ(A)L(s, f × θA),

given as a twisted linear combination of the (completed) partial L-functions (cf. e.g. [23, § IV (0.1), p. 271])

(77)

L(s, f × θA) := 〈f, θAE(·, s)〉 =
Γ(s− 1)

(4π)s−1
· L(2s− 1, η) ·

∑
m≥1

af (m)rA(m)m−s

=
Γ(s− 1)

(4π)s−1
· L(2s− 1, η) · 1

w

∑
λ∈a

[a]=A∈Pic(Oc)

af (N(λ))N(λ)−s

associated to each class A ∈ Pic(Oc), where w denotes the number of automorphs of the corresponding
binary quadratic form qA(x, y) after restriction to a certain fundamental domain, and rA(m) denotes the
function counting the number of ideals of norm m in the class A.

Now, note that we can also consider the quadratic twist f ⊗ η = fE ⊗ ηK/Q just as well for these integral

presentations. That is, keeping in mind that η2 = 1 as η is a quadratic character, we consider the cusp form

(f ⊗ η)(τ) = fE ⊗ ηK/Q(τ) =
∑
m≥1

af (m)η(m)e(mτ) ∈ Snew
2 (Γ0(dKN)), τ = u+ iv ∈ H.

We can then also consider the Rankin-Selberg L-function

L(s− 1/2, (π ⊗ η)× π(χ)) = L(s, (f ⊗ η)× θ(χ)) =
∑

A∈Pic(Oc)

χ(A)L(s, f ⊗ η × θA),

where each partial Rankin-Selberg L-series L(s, (f ⊗ η)× θA) is given by the corresponding expansion

L(s, (f ⊗ η)× θA) := 〈f ⊗ η, θAE(∗, s)〉 =
Γ(s− 1)

(4π)s−1
· L(2s− 1, η) ·

∑
m≥1

af (m)η(m)rA(m)m−s

=
Γ(s− 1)

(4π)s−1
· L(2s− 1, η) · 1

w

∑
λ∈a

[a]=A∈Pic(Oc)

af (N(λ))η(N(λ))N(λ)−s

=
Γ(s− 1)

(4π)s−1
· L(2s− 1, η) · 1

w

∑
λ∈a

[a]=A∈Pic(Oc)

af (N(λ))N(λ)−s.

Lemma 4.17. We have the equivalent Rankin-Selberg integral presentations

L(s, π × π(χ)) = L(s+ 1/2, f × θ(χ)) = L(s+ 1/2, (f ⊗ η)× θ(χ)) = L(s, (π ⊗ η)× π(χ))

for the basechange L-function L(s,Π⊗ χ) = L(s,BCK/Q⊗χ).

Proof. In classical terms, this can be seen by inspection the expansions of each of the partial Rankin-Selberg
L-functions. In representation theoretic terms, let us consider the basechange Π′ = BCK/Q(π ⊗ χ) of the
cuspidal automorphic representation π×η of GL2(A) to GL2(AK), whose corresponding L-function L(s,Π′)
then decomposes as L(s,Π′) = L(s, π ⊗ η)L(s, π ⊗ η2) = L(s, π ⊗ η)L(s, π). Here again, we use that the
quadratic character η has order 2 to deduce that L(s,Π′) = L(s, π ⊗ η)L(s, π) = L(s,Π). Hence, we deduce
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that the equivalent L-functions L(s,Π⊗χ) = L(s,Π′⊗χ) have the same Rankin-Selberg integral presentation
L(s, π × π(χ)) = L(s, (π ⊗ η)× π(χ)). �

Now, recall that we have the relation described in Theorem 4.9 between scalar-valued modular forms such
as f ⊗ η and θA and their vector-valued analogues. To fix ideas, let us for each class A ∈ Pic(Oc) fix an
integral ideal representative a ⊂ OK as in the expansions above. We then consider for each class A ∈ Pic(Oc)
the corresponding quadratic space (VA, qA) defined by

VA := Q⊕Q⊕ aQ, qA(x, y, λ) :=
N(λ)

Na
− xy =

λλτ

Na
− xy.

We consider the subspaces (VA,j , qA,j) VA,1 = Q ⊗Q with qA,1 = qA|VA,1 and VA,2 = K with qA,2 = qA|V2
.

We also consider the lattice ΛA as above, determined by the compact open subgroup UA = UA(Π) of
GSpinVA(Qf ) corresponding to the level of the basechange representation Π = BCK/Q(π), with sublattices
ΛA,1 = ΛA ∩ VA,1 and ΛA,2 = ΛA ∩ VA,2. Note that these can be described in terms of the rational splitting
V = VA,1 ⊕ VA,2 as in [8, (4.12)]. Using the bijection shown in [53, Theorem 4.15] (Theorem 4.9), we can
associate to the quadratic twist f ⊗η ∈ Snew

2 (Γ0(dKN)) an SΛA -valued modular form gη of weight 2. We can
also associate to the partial theta series θA(τ) an SΛA,2 -valued Eisenstein series of weight two by the discussion
above. To be clear, applying the Siegel-Weil formula as described in Theorem 4.10 and Corollary 4.11 to the
theta series associated to ΛA,2 gives the value at s0 = 0 of a corresponding Eisenstein series EΛA,2(τ, s, 0)
of weight zero. This in turn gives rise to the uniquely-determined Eisenstein series EΛA,2(τ, s; 2) related to
EΛA,2(τ, s; 0) via the identities (53) and (54) above,

L2E
′
ΛA,2(τ, 0; 2) =

1

2
· EΛA,2(τ, 0; 0)− 1

2
· EΛA,2(τ, 0; 0).

Recall as well that we consider the (partial) Rankin-Selberg L-functions given by the Petersson inner products

L(s, gη, VA,2) := 〈gη(·), θΛA,1(·)⊗ EΛA,2(·, s; 2)〉 = 〈gη(τ), θΛ1
(τ)⊗ EΛA,2(τ, s; 2)〉.

Let us for the sake of comparison also define the completed version of this latter L-series, i.e. with respect
to the completed Eisenstein series E?Λ2

(τ, s; 2) introduced above:

L?(s, gη, VA,2) := 〈gη(·), θΛA,1(·)⊗ E?ΛA,2(·, s; 2)〉 = 〈gη(τ), θΛ1(τ)⊗ E?ΛA,2(τ, s; 2)〉.

Corollary 4.18. We have in the setup described the equivalent presentations

L(s,Π⊗ χ) =
∑

A∈Pic(Oc)

χ(A)L(s+ 1/2, f ⊗ η × θA) =
∑

A∈Pic(Oc)

χ(A)L?(2s− 1, gη, VA,2).

In particular, we have that

L′(1/2,Π⊗ χ) =
∑

A∈Pic(Oc)

χ(A)L′(1, f ⊗ η × θA) =
∑

A∈Pic(Oc)

χ(A)L?′(0, gη, VA,2).

Proof. As explained in [8, §4, (4.24)] (with notations for Fourier coefficients as described above), each partial
Rankin-Selberg product L(s, gη, VA,2) has the Dirichlet series expansion

L(s, gη, VA,2) =
Γ
(
s+2

2

)
(4π)

s+2
2

∑
µ∈Λ#

A,1/ΛA,1

∑
m∈Q>0

cgη (µ,m)cθΛA,1 (µ,m)m−( s+2
2 ).

We then deduce that we have for each class A ∈ Pic(Oc) the relation L?(2s − 2, gη, VA,2) = L(s, fη × θA)
(cf. [23, § IV (0.1), p. 271]). The stated relations then follow as a formal consequence, with the analytic
continuation and functional equations determined by the underlying Eisenstein series. �

Theorem 4.19 (Twisted linear combinations of regularized theta integrals). Let us retain the setup above,
with f = fE ∈ Snew

2 (Γ0(N)) the cuspidal eigenform parametrizing our elliptic curve E/Q, π the corresponding
cuspidal automorphic representation of GL2(A), and Π = BCK/Q(π) its quadratic basechange lifting to a
cuspidal automorphic representation of GL2(AK). Let us also assume that the ersatz Heegner Hypothesis 2.1
holds. Let χ be any ring class character of the real quadratic field K of conductor c coprime to dKN . Let
f0,η,A ∈ H0,ρΛA

for each class A ∈ Pic(Oc) denote the harmonic weak Maass form of weight zero with image
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ξ0(f0,η,A) = gη,A ∈ S2,ρΛA
where gη,A denotes the lifting our our quadratic twist f ⊗ η ∈ Snew

2 (Γ0(dKN)) the

space vector-valued forms S2,ρΛA
as described in Theorem 4.9 above. Then, we have the formula

L′(1/2,Π⊗ χ)

L(1, η)

=
∑

A∈Pic(Oc)

χ(A)
(

CT
(
〈〈f+

0,η,A(τ), θΛA,1(τ)⊗ EΛA,2(τ)〉〉
)
− vol(UA,2) · ϑ?f0,η,A

(Z(VA,2))
)
.

Here, for each class A ∈ Pic(Oc), we write UA,2 := U ∩GSpinVA,2(Af ) as in Lemma 4.13 above.

Proof. Formally, this is a consequence of Lemma 4.17 and Corollary 4.18 after applying Theorem 4.16 to
each of the partial Rankin-Selberg L-series L(s, gη, VA,2) = L(s, ξ0(f0,η,A), VA,2), which together imply that∑
A∈Pic(Oc)

χ(A) · vol(UA,2) · ϑ?f0,η,A
(Z(V2,A))

=
∑

A∈Pic(Oc)

χ(A) ·
(

CT
(
〈〈f+

0,η,A(τ), θΛA,1(τ)⊗ EΛA,2(τ)〉〉
)

+ L(0, ξ0(f0,η,A, VA,2))− L′(0, ξ0(f0,η,A), VA,2)
)
.

It is then easy to identify the second term in this latter expression in terms of the central derivative value
L′(1/2,Π ⊗ χ) via Corollary 4.18. Let us thus consider the first term, which according to the expansions
implied by Theorem 4.9 and the discussions in [8, §§ 4-5] can be evaluated as

(78)

∑
A∈Pic(Oc)

χ(A) CT
(
〈〈f+

0,η,A(τ), θΛA,1(τ)⊗ EΛA,2(τ)〉〉
)

=
∑

A∈Pic(Oc)

χ(A) CT


∑

µ1∈Λ
#
A,1

/ΛA,1

µ2∈Λ
#
A,2

/ΛA,2

µ1+µ2≡µ mod ΛA

f+
0,A,µ(τ)θΛA,1,µ1(τ)⊗ EΛA,2,µ2(τ)



=
∑

A∈Pic(Oc)

χ(A)


∑

µ1∈Λ
#
A,1

/ΛA,1

µ2∈Λ
#
A,2

/ΛA,2

µ1+µ2≡µ mod ΛA

∑
m,m2∈Q≥0,m1∈Q

m1+m2=m

c+f0,η,A
(−m,µ)cθΛA,1 (m1, µ1)κΛA,2(m2, µ2)

 .

Note that the analogous constant term for the CM setting is the subject of [8, Conjectures 5.1 and 5.2], and
that this has now been improved in important special cases by [1, Theorem A]. �

Now, recall that the Dirichlet analytic class number formula gives us the following classical arithmetic
description of the value L(1, η). Writing dK again to denote the fundamental discriminant associated to

K = Q(
√
d), let hK = # Pic(OK) denote the class number, and εK = 1

2 (t+ u
√
dK) for the smallest solution

t, u > 0 (with u minimal) to Pell’s equation t2 − dKu2 = 4. We can then express the formula derived above
for the central derivative value L′(1/2,Π⊗ χ) in terms of Dirichlet’s analytic class number formula

L(1, η) =
log εK · hK√

dK
.(79)

Corollary 4.20. We have that

L′(1/2,Π⊗ χ) = L′(1/2, π × π(χ)) = L′(1, f × θ(χ)) = L?,′(E/K,χ, 1)

=

√
dK

log εK · hK

∑
A∈Pic(Oc)

χ(A)
(

CT
(
〈〈f+

0,η,A(τ), θΛA,1(τ)⊗ EΛA,2(τ)〉〉
)
− vol(UA,2) · ϑ?f0,η,A

(Z(VA,2))
)
.
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Moreover, if we assume the ersatz Heegner hypothesis (Hypothesis 2.1) that the inert level N+ is the squarefree
product of an odd number of primes, then this central derivative value is not forced by the functional equation
(8) to vanish identically.

Proof. This simply restates Theorem 4.19 in terms of the Dirichlet analytic class number formula (79). �

5. Classical description

We now describe the central derivative value formulae of Theorem 4.2, Theorem 4.19, and Corollary 4.7 in
more classical terms, i.e. in terms of geodesic cycles of Hilbert modular surfaces. Our discussion here parallels
that of Popa [37, §6] for the distinct setting of central values L(1/2,Π⊗χ) = L(1/2, π×π(χ)) = L(E/K,χ, 1)
(when Hypothesis 2.1 fails) given in terms of geodesic cycles on the modular curve X0(N). Here, we shall
follow [6] and also [11] for the relevant background on Hilbert modular forms.

5.1. Hilbert modular forms and varieties. Recall that any pure tensor ϕ = ⊗wϕw ∈ VΠ of the type
we consider above, which we can and do view as an automorphic form on GL2(AK), corresponds to a
Hilbert modular form f = f(ϕ) of parallel weight 2 and trivial central character over K for some congruence
subgroup Γ = Γ(ϕ) of the Hilbert modular group SL2(OK), as can be determined explicitly using strong
approximation for GL2(AK) with the Iwasawa decomposition for GL2(K∞) ∼= GL2(R)2. To be more precise,
let us first recall the following constructions of a Hilbert Hecke-Maass eigenform g = g(ϕ) and a holomorphic
Hilbert modular form f = f(ϕ) associated to our chosen ϕ ∈ VΠ. We then explain to associate to ϕ′ a Siegel
modular form F = F (ϕ′) of weight 2 and trivial central character associated to the corresponding congruence
subgroup Γ for the orthogonal group O(Λ) of the lattice Λ = Z⊕ Z⊕OK in V = Q⊕Q⊕K.

5.1.1. Strong approximation for GL2(AK). Let us write C(OK) to denote the ideal class group of OK , which
recall can be described adelically via the identification

A×K/K
×
∞K

×Ô×K = A×K/K
×
∞K

×
∏
w<∞

O×Kw ∼= C(OK).(80)

We can therefore fix a set ∆ of idele representatives ζ ∈ A×K for this class group C(OK). Let us for each

ζ ∈ A×K write zζ ∈ Z2(AK) ∼= A×K to denote the corresponding diagonal matrix in the centre Z2 ⊂ GL2,
i.e. with respect to the natural identification

A×K
∼= Z2(AK), ζ 7−→ hζ :=

(
ζ

ζ

)
.

Let us also write U ⊂ GL2(AK) to denote the maximal compact subgroup,

U =
∏
w≤∞

= O2(K∞) ·
∏
w<∞

GL2(OKw).

Now, observe that we may view GL2(K) GL2(K∞)U as a subgroup of GL2(AK), and moreover that the
determinant map det : GL2(AK) −→ A×K allows us to derive from (80) an isomorphism

GL2(AK)/GL2(K) ·GL2(K∞) · U ∼= C(OK)

and from this the strong approximation decomposition for GL2(AK)

GL2(AK)/GL2(K) ·GL2(K∞) · U ∼=
∐
ζ∈∆

GL2(K) ·GL2(K∞) · hζ · U.(81)

5.1.2. Unique decomposition of GL2(AK) via Iwasawa decomposition for GL2(K∞). Let us now write P2 to
denote the mirabolic subgroup of GL2, which is given explicitly on adelic points by

P2(AK) =

{(
y x

1

)
: y ∈ A×K , x ∈ AK

}
⊂ GL2(AK).

In particular, fixing i =
√
−1, we have the natural identification

P2(K∞) ∼= H2,

(
y∞ x∞

1

)
7−→ x∞ + iy∞(82)

of P2(K∞) ∼= P2(R) with the two-fold upper-half plane H2.
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We shall consider the Iwasawa decomposition for GL2(K∞) (cf. [21, § 4.1], [19]),

GL2(K∞) = P2(K∞) · Z2(K∞) ·O2(K∞),

which via the strong approximation decomposition (81) allows us the decompose GL2(AK) accordingly as

GL2(AK) =
∐
ζ∈∆

GL2(K) · P2(K∞) · Z2(K∞) · hζ · U.(83)

Now if we fix a fundamental domain for the action of GL2(OK) on GL2(K∞), then (83) allows us to
express each matrix g ∈ GL2(AK) uniquely accordingly as follows (cf. [21, Proposition 4.12.1], [19]). Let
us fix a standard fundamental domain G for the action of the Hilbert modular group SL2(OK) on H2, see
e.g. [46, § I.3]. Roughly, this can be given by a product G =

∐
ζ∈∆Dζ of Siegel domains Dζ indexed by

equivalence classes of cusps ζ for P1(K), where each domain Dζ can be thought of loosely as a translate or
subregion of the standard fundamental domain D = {z = x+ iy ∈ H : |<(z)| ≤ 1/2, zz ≥ 1} for the action of
SL2(Z) on H. We can then construct from G a fundamental domain F for the action of GL2(OK) of GL(K∞)
after using the elementary matrix identity(

−1
1

)(
y∞ x∞

1

)(
−1

1

)
=

(
y∞ −x∞

1

)
to deduce that this fundamental domain F will be “one half” of the fundamental domain G in the archimedean
adele variable. In this way, we can deduce that any g ∈ GL2(AK) can be decomposed uniquely as

g =
∐
ζ∈∆

γ ·
(
y∞ x∞

1

)
·
(
r∞

r∞

)
· hζ · u ∈ GL2(AK)(84)

for γ ∈ GL2(K), r∞ ∈ K×∞,+ totally positive, u ∈ U , and x∞ + iy∞ ∈ H2 contained strictly within the
chosen fundamental domain F . Again, we refer to the relevant discussions in [21, §4] and [19] (for instance)
for more details on this unique decomposition.

5.1.3. Hecke-Maass and holomorphic Hilbert modular eigenforms associated to ϕ ∈ VΠ. We can use the
unique decomposition (84) to construct from our automorphic form ϕ on g ∈ GL2(AK) a Hecke-Maass
eigenform g = g(ϕ) and corresponding holomorphic Hilbert form f = f(ϕ) as follows. Here again, we refer
to the relevant discussions in [21, Proposition 4.12.1-13] and [19] for more details. In brief, we can consider
the archimedean component O2(K∞) of the maximal compact subgroup U ⊂ GL2(AK) in the Iwasawa
decomposition and (84) more precisely as follows. Let us for each ϑ = (ϑj)

2
j=1 ∈ (R/2πZ)2 write

u(ϑ) =

(
cosϑ sinϑ
− sinϑ cosϑ

)
∈ O2(K∞) ∼= O2(R)2.

We can then write the u ∈ U in the unique decomposition (84) more explicitly with u = u(ϑ)uf , where

u(ϑ) =

(
cosϑ sinϑ
− sinϑ cosϑ

)
∈ O2(K∞), uf ∈ Uf :=

∏
w<∞

GL2(OKw).

Essentially, we can use this more precise version of the unique decomposition (84) of g ∈ GL2(AK) to
construct from any Hecke-Maass eigenform form g : H2 −→ C of a given weight k = (k1, k2), level Γ, and
trivial central character (say) its corresponding lifting g̃ defined by the rule g̃(g) := (g|k)(x∞+iy∞), where |k
denotes the corresponding weight operator. In this way, our chosen pure tensor ϕ ∈ VΠ, viewed as a cuspidal
automorphic form on GL2(AK) of parallel weight 2 (so (k1, k2) = (2, 2)) and trivial central character gives
rise to a vector-valued Hecke-Maass cusp form g = g(ϕ) determined by the assignment

ϕ(g) = g|(2,2)(x∞ + iy∞).(85)

Writing | · | to denote the idele norm, we can also define the corresponding holomorphic Hilbert modular
form f = f(ϕ) of parallel weight 2 on x∞+ iy∞ ∈ H2 ∼= P2(K∞) ∼= GL2(K∞)/O2(K∞) ·K×∞ via the relation

f(x∞ + iy∞) = |y∞| · g(x∞ + iy∞).(86)
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5.1.4. Hilbert modular varieties associated to the orthogonal group. Consider the lattice Λ = Z⊕Z⊕OK in
V = Q⊕Q⊕K; we have a natural identification of the corresponding spin group SpinΛ with SL2(OK),

SpinΛ
∼= SL2(OK),(87)

and can identify finite-index subgroups via the fixed isomorphism (87) accordingly. More precisely, let

SO(Λ) = {σ ∈ Aut(Λ) : q(σ(γ)) = q(γ) ∀γ ∈ Λ, det(σ) = 1}

denote the corresponding orthogonal group, and SO+(V )(R) ⊂ SO(V )(R) the subgroup of elements whose
spinor norm is given by the determinant (see [6, § 2.4]). Any finite index subgroup Γ ⊂ SO(Λ)∩SO(V )+(R)
can be identified via the isomorphism (87) as a finite index subgroup of the modular group SL2(OK).
Conversely, any finite index subgroup Γ ⊂ SL2(OK) can be identified with one of SO(Λ) ∩ SO(V )+(R) in
this way, and we shall use the notation Γ interchangeably to denote each subgroup.

Let us now consider modular forms for the orthogonal group SO(V ) according to [6, §2.5]. Hence, we fix
a finite index subgroup Γ ⊂ SO(Λ) ∩ SO(V )+(R), and consider the Hilbert modular variety defined by the
quotient Y (Γ) = Γ\H2. We first give some background on realizations of the rational quadratic space (V, q)
via the Grassmannian, projective, and tube domain models following [6, § 2.4]. Put V (R) = V ⊗Q R, and
let U∞ ⊂ SO(V )(R) denote the maximal compact subgroup. The quotient SO(V )(R)/U∞ is known to be a
hermitian symmetric space (as (V, q) has signature (2, 2)), and again we write (·, ·) : V × V → Q to denote
the hermitian form defined on v1, v2 ∈ V by the bilinear form (v1, v2) = q(v1 + v2)− q(v1)− q(v2).

The Grassmannian model. Let us first describe the Grassmannian model of SO(V )(R). Recall12 that we
consider the Grassmannian DV = D+

V of positive definite 2-dimensional subspaces W ⊂ V (R):

D+
V = {W ⊂ V (R) : dim(W ) = 2, q|W > 0} .

By Witt’s theorem, D+
V acts transitively on SO(V )(R). Moreover, given a subspace W0 ∈ D+

V , the corre-
sponding stabilizer is the maximal compact subgroup:

StabD+
V

(W0) = U∞ ⊂ SO(V )(R).

We can then view D+
V
∼= SO(V )(R)/U∞ = SO(V )(R)/ StabD+

V
(W0) as a realization of the hermitian sym-

metric space SO(V )(R)/U∞. This description has the advantage of abstract simplicity, but at the same time
hides the complex structure.

The projective model. To illustrate the complex structure, we now describe the projective model of
SO(V ). We consider the complexification V (C) = V ⊗Q C, as well as the corresponding projective space

P(V (C)) = (V (C)\{0}) /C×.

We can then consider the zero quadric defined by

N := {[Z] ∈ P(V (C)) : (Z,Z) = 0} .

This zero quadric N ⊂ V (C) determines a closed algebraic subvariety. Moreover, the subset K defined by

K :=
{

[Z] ∈ P(V (C)) : (Z,Z) = 0, (Z,Z) > 0
}
⊂ N

determines a complex manifold of dimension 2 having two connected components which we denote by K±. As
explained in [6, § 2.4], the group SO(V )(R) acts transitively on K, with SO(V )+(R) ⊂ SO(V )(R) preserving
these connected components K±, and with the the complement SO(V )(R)\ SO(V )+(R) interchanging them.
Let us now fix one of these connected components, K+ ⊂ K say. Given Z ∈ V (C), let us write the corre-
sponding decomposition into real and imaginary parts in the usual way as Z = X + iY for X,Y ∈ V (R). It
is then simply to see ([6, Lemma 2.17]) that we have a real analytic isomorphism

K+ ∼= D+
V , [Z] = [X + iY ] 7−→ RX + RY.

This description has the advantage of revealing the complex structure, although it is not in general a direct
analogue of the standard hermitian symmetric space H for SL2(R).

12Here, to be consistent with [6, § 2.7], we do not assume that the subspaces are oriented.
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The tube domain model. Finally, let us describe the tube domain model. Here, we fix a nonzero isotropic
vector e1 ∈ V , together with any vector e2 ∈ V for which (e1, e2) = 1. We then consider the rational subspace
W ⊂ V defined by W := V ∩

(
e⊥1 ∩ e⊥2

)
⊂ V . Hence, W is a Lorentian space of type (1, 1), and we have the

decomposition V = W ⊕Qe1 ⊕Qe2. We can then consider the corresponding tube domain H defined by

H = {Z ∈W (C) : q(=(Z)) > 0} ⊂W (C).

As explained for [6, Lemma 2.18], we have a biholomorphic map

H −→ K, Z 7−→ [(Z, 1,−q(Z)− q(e2))].(88)

As well, the domain H ⊂ W (C) ∼= C2 has two connected components H± corresponding to the two cases
of positive norm vectors in W (R), and we write H+ to denote the component which is mapped to our fixed
connected component K+ of K under (88). This can be viewed in a natural way as a generalization of the
generalized upper-half plane, with SO(V )+(R) acting transitively on H+. Moreover, in the case we consider
here, there is a natural isomorphism H+ ∼= H2.

Now recall that we fix a finite volume subgroup Γ ⊂ SO(Λ) ∩ SO(V )+(R). Let us now consider the
corresponding quotient Y (Γ) = Γ\H+ ∼= Γ\H2. Hence, Y (Γ) is a normal complex space, compact if and only
if the underlying space V is anisotropic – which is not the case here. We shall thus consider the Baily-Borel
compactification X(Γ) of Y (Γ), which we describe briefly as follows. The quotient Y (Γ) can be compactified
by adding certain rational boundary components. These boundary components are easiest to describe in the
projective model K+, where they arise as boundary points of K+ ⊂ N corresponding to nontrivial isotropic
subspaces F of V (R). In this description, an isotropic line L ⊂ V (R) represents a “special” boundary point
of K, and all other isotropic subspaces F ⊂ V (R) determine “generic” boundary points. The set consisting of
special boundary points is called the “zero dimensional” boundary components, while those corresponding to
two-dimensional isotropic subspaces of V (R) as the “one dimensional” boundary components. As explained
in [6, Lemma 2.20], there is a bijective correspondence between the boundary components of K+ ⊂ N and
the nonzero isotropic subspaces F ⊂ V (R) (of matching dimensions), and moreover the boundary of K+ can
be identified with the disjoint union of its boundary components in this sense. Now, a boundary component
of K+ is said to be rational if its corresponding nonzero isotropic subspace F ⊂ V (R) is defined over Q.

Definition 5.1. Let (K+)? denote the union of K+ with the disjoint union of rational boundary components
of K+ corresponding to nonzero isotropic subspaces F ⊂ V (R) defined over Q.

Now, the rational orthogonal subgroup SO(V )(Q) ∩ SO(V )+(R) acts on (K+)?. It follows that we can
consider the action of any finite index subgroup Γ ⊂ SO(Λ) ∩ SO(V )+(R) on (K+)?. In this direction, we
can now describe the following well-known compactification result.

Theorem 5.2 (Baily-Borel). Let Γ ⊂ SO(Λ)∩SO(V )+(R) be any finite index subgroup. The quotient X(Γ)
defined by X(Γ) = (K+)?/Γ is a compact Hausdorff space (in the Baily-Borel topology), and admits a natural
complex structure as a normal complex space. In particular, X(Γ) determines a projective algebraic variety.

This so-called Hilbert modular variety X(Γ) associated to the subgroup Γ ⊂ SO(Λ)∩SO(V )+(R) also has
a canonical model defined over some number field. Note that this is a surface in our setting.

5.1.5. Modular forms associated to the Hilbert modular variety. We also have a natural notion of modular
forms here. To define this precisely, we consider the cone over K+ defined by

K̃+ :=
{
Z ∈ V (C)\C : [Z] ∈ K+

}
Definition 5.3. Fix a finite index subgroup Γ ⊂ SO(Λ) ∩ SO(V )+(R), an integer k ∈ Z, and a character ξ

pf Γ. A modular form of weight k and character ξ of Γ is a meromorphic function F : K̃+ → C such that:

(i) F is homogeneous of degree k: F (cZ) = c−kF (z) for all c ∈ C×,

(ii) F is “invariant under Γ” in the sense that F (γZ) = ξ(γ)F (Z) for all γ ∈ Γ,
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(iii) F is meromorphic at the boundary13.

Now, is it apparent from the identifications (87) and H+ ∼= H2 that we have a natural identification
and any modular form F of weight k and character ξ on a congruence subgroup Γ ⊂ SO(Λ) ∩ SO(V )+(R)
with a (uniquely-determined) Hilbert modular form f = f(F ) of parallel weight (k, k) and character ξ
on the corresponding finite index subgroup Γ ⊂ SL2(OK). Conversely, to any such Hilbert modular form
f of parallel integer weight (k, k) and character ξ on a finite index subgroup Γ ⊂ SL2(OK), there is a
uniquely-determined modular form F = F (f) of weight k and character ξ on the corresponding finite index
subgroup Γ ⊂ SO(Λ)∩ SO(V )+(R). We refer to the discussion in [6, § 2.7] for a more precise account of the
identifications. In what follows, we let F = F (ϕ) = F (f(ϕ)) denote the modular form for Γ corresponding
to the holomorphic Hilbert modular form f = f(ϕ) of parallel weight 2 and trivial central character on
the congruence subgroup Γ ⊂ SL2(OK) corresponding to the level of the cuspidal automorphic basechange
representation Π of GL2(AK), as described by the relation (86) above.

5.1.6. Summary. Our elliptic curve E/Q with corresponding cuspidal automorphic representation π = ⊗vπv
of GL2(A) gives rise to the following cuspidal automorphic forms and cuspidal Hilbert modular forms:

ϕ ∈ VΠ automorphic form on GL2(AK)
(15)−−−−→ ϕ′′ automorphic form on SO(V )(A)y y

f = f(ϕ) Hilbert modular form on Γ
(87)−−−−→ F = F (ϕ) modular form on X(Γ).

(89)

Here, viewing our pure tensor ϕ ∈ VΠ as an automorphic form on GL2(AK) as we may, and according to the
discussion above as an automorphic form ϕ′′ on SO(V )(A) via the isomorphism (15) with the exact sequence
(16) (cf. (13) and (14)), f = f(ϕ) denotes the corresponding Hilbert modular form of parallel weight 2 and
trivial central character on the associated congruence subgroup Γ = Γ(ϕ) of SL2(OK) (determined by Π).
Writing Γ again to denote the congruence subgroup of O(Λ)∩O(V )+(R) under the fixed isomorphism (87),
F = F (ϕ) denotes the modular form of weight 2 and trivial central character on Γ corresponding to this
Hilbert modular form f = f(ϕ).

5.2. Geodesic formulae. We now give more explicit, classical interpretations of Theorem 4.2, Theorem
4.19, and Corollary 4.7 above. Here, we shall take for granted the discussion above leading to the description
(89) of the various realizations of the basechange pure tensor ϕ ∈ VΠ.

5.2.1. Interpretations of (18) and (19). Let us first describe the following more explicit variants in terms of
the underlying Hilbert modular surface X(Γ) = Γ\(K+)? ∼= Γ\(H2)?. Hence, recall from the setup above
that we fix the quadratic space (V, q) with V = Q⊕Q⊕K and quadratic form q(x, y, λ) := NK/Q(λ)− xy.

Writing D+
V to denote the Grassmannian of oriented positive definite hyperplanes in V (R), and taking

U ⊂ GO(V )(Af ) to be the compact oven subgroup determined by that of GL2(AK,f ) corresponding to the
representation Π = BCK/Q(π) (via (15)), we consider the corresponding orthogonal Shimura variety

ShU (GO(V ), D+
V ) = GO(V )(Q)\

(
D+
V ×GO(V )(Af )/U

)
,

which is equivalent to non-compact Hilbert modular surface Y (Γ) introduced above, where Γ denotes the
congruence subgroup of SL2(OK) corresponding to the intersection Γ = GO(Λ)∩U introduced above. In fact
(cf. [32, (1.2)]), fixing a component DV

∼= K+ ∼= H2 of D+
V , we can use the strong approximation theorem

(81) for GL2(AK) with the accidental isomorphism (15) to deduce that for elements ζj ∈ GO(V )(Af )

corresponding to representatives of the class group AK/K
×
∞K

×Ô×K of K, we have the decomposition

GO(V )(A) =

hK∐
j=1

GO(V )(Q) GO(V )+(R)ζjU,

13In general, by the Koecher principle, this condition is always satisfied when the Witt index of V (i.e. the dimension of the
maximal isotropic subspace of V ) is less than 2.
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so that

ShU (GO(V ), DV ) = Y (Γ) =
∐
j

Γj\DV , where Γj = GO(V )(Q) ∩
(
GO(V )+(R)ζjUζ

−1
j

)
.

The compactification X(Γ) is then given according to the description above for each of the Hilbert modular
surfaces Xj := Γj\DV

∼= Γj\H2. In this way, we see explicitly how our automorphic form ϕ on g ∈ GL2(AK)
gives rise via the accidental isomorphism (15) to a modular form F = F (ϕ) of weight two on the orthogonal
Shimura variety ShU (GO(V ), D+

V ), and also to a Hilbert modular form f = f(ϕ) of parallel weight two on
the compactified modular surface X(Γ). Note that for any complex variable s ∈ C, we can also consider
the automorphic form defined on g ∈ GL2(AK) by ϕ(g)|det(g)|s−1/2, writing Fs = Fs(ϕ) to denote the
corresponding automorphic form on ShU (GO(V ), D+

V ), and also fs = fs(ϕ) the corresponding form on X(Γ).
Let us again for each class A ∈ Pic(Oc) fix an integral representative a ⊂ OK , which we can and do

identify as an idele representative. We then consider the quadratic subspace (VA, qA) with VA = Q⊕Q⊕ a,
and quadratic form qA(x, y, λ) = N(λ)Na−1 − xy = λλτNa−1 − xy. We argue that there is a natural
identification GO(V ) ∼= GO(VA) of algebraic groups over Q. Moreover, taking VA,2 to be the subspace
VA,2 = a with quadratic form qA,2(λ) = N(λ)Na−1, we argue that we may view GO(VA,2) as a subgroup of
GO(V ) in the natural way. Again, we consider the corresponding “geodesic” subset

Z(VA,2) := GO(VA,2)(Q)\{z±VA,2} ×GO(VA,2)(Af )/UA,2, UA,2 := UA ∩GO(VA,2)(Af )

of the Hilbert modular surface ShU (GO(V ), D+
V ). Since we take the conductor c of the order Oc ⊂ OK to

be coprime to the level N of the eigenform f ∈ Snew
2 (Γ0(N)), we argue that any ring class character χ

of conductor c of A×K/K
× ∼= GO(V2)(A)/GO(V2)(Q) can be viewed as a right U2-invariant automorphic

from on GO(V2)(Q)\GO(V2)(Af ) (cf. [37, §2.3]). We also argue that vol(U2) = vol(UA,2) for each class
A ∈ Pic(Oc). Using the result of [40, Lemma 2.13] again, we see after a decomposition of the integral over
A×K/K

× that the integral expression (19) can be described more explicitly as

(90)

L′(1/2,Π⊗ χ) =
d

ds

∣∣∣∣
s=1/2

 ∫
GO(V2)(Q)\GO(V2)(A)

ϕ′′ (y)χ′′(y)|y|s− 1
2 dy


=

d

ds

∣∣∣∣
s=1/2

vol(U2)
∑

h∈GO(V2)(Q)\GO(V2)(A)/U2

ϕ′′ (h)χ′′(h)|h|s− 1
2


= vol(U2)

∑
A∈Pic(Oc)

[a]=A

χ(A)
∑

(zVA,2 ,hA)∈Z(VA,2)

d

ds

∣∣∣∣
s=1/2

Fs
(
(zVA,2 , hA)

)

for Fs on the orthogonal Shimura variety ShU (GO(V ), D+
V ) = Y (Γ), and similarly

(91) L′(1/2,Π⊗ χ) = vol(U2)
∑

A∈Pic(Oc)
[a]=A

χ(A)
∑

(zVA,2 ,hA)∈Z(VA,2)

d

ds

∣∣∣∣
s=1/2

fs
(
(zVA,2 , hA)

)

for the Hilbert modular form fs on Γ = Γ(ϕ) ⊂ SL2(OK).

5.2.2. Interpretations of Theorem 4.2, Theorem 4.19 and Corollary 4.7. In view of the expressions (90) and
(91), we see that the abstract characterization of the form ϕ′′ on GO(V )(A) corresponding to ϕ as a theta
lift in Theorem 4.2 can be realized explicitly in terms of regularized theta liftings via Theorem 4.19 and 4.7
above, which also allows us to recover the Rankin-Selberg integral presentation. To restate these results in
more explicit terms as in (90) and (91), we have the following result.
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Corollary 5.4. Assume Hypothesis 2.1. Then, we have by Theorem 4.19 and Corollary 4.7 above that

L′(1/2,Π⊗ χ) = vol(U2)
∑

A∈Pic(Oc)
[a]=A

χ(A)
∑

(zVA,2 ,hA)∈Z(VA,2)

d

ds

∣∣∣∣
s=1/2

fs
(
(zVA,2 , hA)

)

=

√
dK

log εK · hK

∑
A∈Pic(Oc)
A=[a]

χ(A)

CT
(
〈〈f+

0,η,A(τ), θΛA,1 ⊗ EΛA,2(τ)〉〉
)
− vol(UA,2)

∑
(zVA,2 ,hA)∈Z(VA,2)

ϑ?f0,η,A
(zVA,2 , hA)

 .

6. Relation to the conjecture of Birch and Swinnerton-Dyer

Let us now consider Theorem 4.19 from the point of view of the refined conjecture of Birch and Swinnerton-
Dyer, comparing with the Gross-Zagier formula [23]. To date, there is no known or conjectural construction
of points on the corresponding elliptic curve E(K[c]) or modular curve X0(N)(K[c]) analogous to Heeg-
ner points14, where K[c] denotes the ring class extension of conductor c of the real quadratic field K.
We can consider the implications for arithmetic terms in the refined Birch and Swinnerton-Dyer formula
for L?′(E/K,χ, 1) here, in the style of the comparison given in Popa [37, §6.4]. Here, we first interpret
our formula crudely in terms of homology groups of the Shimura varieties ShU (GO(V ), D+

V ) = Y (Γ) and

ShU (GSpinV , D
+
V ). Taking for granted the refined conjecture of Birch and Swinnerton-Dyer for E(K[c]))

in this setting – particularly for the case of rank one corresponding to Hypothesis 2.1 – we shall then de-
rive “automorphic” interpretations of the corresponding Tate-Shafarevich group X(E/K[c]) and regulator
Reg(E/K[c]). We also derive an unconditional result in special cases to illustrate surprising connections here.

6.1. Expressions in terms of geodesic homology classes. Let us first note that the formulae (90) and
(91) can be viewed crudely in terms of homology classes as follows. Given a class A ∈ Pic(Oc), let us write ΨA

to denote the class in either of the homology groups H1(Y (Γ),Z) ⊂ H1(X(Γ),Z) or H1(ShU (GO(V ), D+
V ),Z)

determined by the locus of “geodesic points” determined by the symmetric subspace D+
V2

(which can be

defined via restriction hyperplanes in D+
V ), and again consider the “geodesic” subset

Z(VA,2) = GO(VA,2)(Q)\{z±VA,2} ×GO(VA,2)(A)/ (U ∩GO(V )(Af )) .

We can then consider the C-valued 1-cycles defined by the linear combinations

αχ =
∑

A∈Pic(Oc)

χ(A) · deg(VA,2) ·ΨA ∈ H1(X(Γ),Z)⊗C

and

βχ =
∑

A∈Pic(Oc)

χ(A) · deg(VA,2) ·ΨA ∈ H1(ShU (GO(V ), D+
V ),Z)⊗C,

which allow us to represent (90) and (91) respectively (formally) as

L′(1/2,Π⊗ χ) =

∫
αχ

d

ds

∣∣∣∣
s=1/2

Fs(92)

and

L′(1/2,Π⊗ χ) =

∫
βχ

d

ds

∣∣∣∣
s=1/2

fs(93)

Remark Note that the forms Fs and fs here – corresponding to the automorphic form on g ∈ GL2(AK)
defined by ϕ(g)|det(g)|s−1/2 – should have interpretations as images under weight raising and lowering
operators analogous15 to those defined above for vector-valued forms above. Note as well that these forms Fs
and fs associated to the Hilbert modular surface X(Γ) should have a more direct relation to the Mordell-Weil
group E(K) by the modularity theorem of Freitas-Le Hung-Siksek [18], although one does not expect to have
any analogue of the modular parametrization ϕ : X0(N) −→ E here.

14There is however a p-adic construction due to Darmon [15].
15The theory of Maass weight raising and lowering operators is not yet well-understood for Hilbert modular forms.
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6.2. Comparison with the refined conjecture of Birch and Swinnerton-Dyer. Finally, we consider
these descriptions of the central derivative values L′(1/2,Π ⊗ χ) = L?′(E/K,χ, 1). Here again, we fix χ a
primitive ring class character of some conductor c ≥ 1 prime to dKN , and view this as a character of the
class group Pic(Oc). Recall that the reciprocity map of class field theory gives us an isomorphism

Pic(Oc) := A×K/K
×
∞K

×Ô×c −→ Gal(K[c]/K),

where K[c] is (by definition) the ring class extension of conductor c of K. Recall as well that by the theory of
cyclic basechange of [36] and more generally [2] with Artin formalism, we can write the completed Hasse-Weil
L-function L?(E/K[c], s) of E basechanged to K[c]/K as the product

(94)

L?(E/K[c], s) =
∏

χ∈Pic(Oc)∨∼=Gal(K[c]/K)∨

L?(E/K,χ, s)

=
∏

χ∈Pic(Oc)∨∼=Gal(K[c]/K)∨

L(s− 1/2,Π⊗ χ)

=
∏

χ∈Pic(Oc)∨∼=Gal(K[c]/K)∨

L(s− 1/2,BCK/Q(π)⊗ χ)

=
∏

χ∈Pic(Oc)∨∼=Gal(K[c]/K)∨

L(s− 1/2, π × π(χ))

=
∏

χ∈Pic(Oc)∨∼=Gal(K[c]/K)∨

L(s, f × θ(χ)).

Here, we use all of the same conventions and definitions as established above, and will continue to use
these without extra comment. Writing ords=s0 as usual to denote the order of vanishing at a given complex
argument s0 ∈ C, it then follows as a formal consequence of (94) that we have the relation(s)

(95) ords=1 L
?(E/K[c], s) =

∑
χ∈Pic(Oc)∨∼=Gal(K[c]/K)∨

ords=1/2 L(s,Π⊗ χ),

so that the conjecture of Birch and Swinnerton-Dyer predicts the rank equivalence

(96) rkZE(K[c]) = ords=1 L
?(E/K[c], s) =

∑
χ∈Pic(Oc)∨∼=Gal(K[c]/K)∨

ords=1/2 L(s,Π⊗ χ).

Let us now assume Hypothesis 2.1, so that for each ring class character χ on the right hand side of (96),
we know by the symmetric functional equation (8) that ords=1/2 L(s,Π⊗χ) ≥ 1. Let us also assume for the
moment that the rank equality predicted by the conjecture of Birch and Swinnerton-Dyer holds, so that

rkZE(K[c]) ≥ h(Oc) := # Pic(Oc) = # Gal(K[c]/K).(97)

Let rE(K[c]) ≥ h(Oc) denote the Mordell-Weil rank of E over the ring class extension K[c] of conductor c
over K. The refined conjecture of Birch and Swinnerton-Dyer predicts that the leading term in the Taylor
series expansion around L(rE(K[c]))(E/K[c], s) around s = 1 is given by the following formula. Let XE(K[c])
denote the Tate-Shafarevich group of E over K[c],

XE(K[c]) = ker

(
H1(K,E) −→

∏
w

H1(Kw, E)

)
,

which we shall assume is known to be finite. Let RE(K[c]) denote the regulator of E over K[c]. Hence, fixing

a basis (ej)
rE(K[c])
j=1 of E(K[c])/E(K[c])tors, and writing [·, ·] to denote the Néron-Tate height pairing,

RE(K[c]) = det ([ei, ej ])i,j .

Let us also write TE(K[c]) to denote the product over local Tamagawa factors, so

TE(K[c]) =
∏
ν<∞

primes of OK[c]

[E(K[c]ν) : E0(K[c]ν)] ·
∣∣∣∣ ωω∗ν

∣∣∣∣
ν

,
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where ω = ωE is a fixed invariant differential for E/K[c], and each ω∗ν the Néron differential at ν. The refined
conjecture of Birch and Swinnerton-Dyer then predicts that the Taylor series expansion of L(rE(K[c])))(E/K[c], s)
around s = 1 has leading term given by the analytic-class-number-like formula

(98)

#XE(K[c]) ·RE(K[c]) · TE(K[c])√
dK ·#E(K[c])2

tors

·
∏
µ|∞

µ:K[c]→R
realplaces

∫
E(K[c]µ)

|ω| ·
∏
σ|∞

σ,σ:K[c]→C
pairs of complex places

ω ∧ ω.

Let us first assume for simplicity that the class number is one: h(Oc) = hK = 1. Then, assuming the
conjecture of Birch and Swinnerton-Dyer (97) and (98), we derive via Theorem 4.19, Corollary 4.7, and the
relations (92) and (93) the (conditional) identifications

L?′(E/K, 1) = L′(1/2,Π) = L′(1/2,Π⊗ 1) =

∫
α1

d

ds

∣∣∣∣
s=1/2

Fs =

∫
β1

d

ds

∣∣∣∣
s=1/2

fs

=
#XE(K) ·RE(K) · TE(K)√

dK ·#E(K)2
tors

·
∏
µ|∞

µ:K→R

∫
E(Kµ)

|ω|

=

√
dK

log εK

CT
(
〈〈f+

0,η,OK (τ), θ+
LOK,1

⊗ ELOK,2(τ)〉〉
)
− vol(UOK ,2)

∑
(z±VOK,2

,h)∈Z(VOK,2)

ϑ?f0,η,OK
(z±VOK,2

, h)


This suggests that the regulator RE(K) = [e??, e??] should be given by the formula
(99)
RE(K) = [e??, e??]

=

#E(K)2
tors

CT
(
〈〈f+

0,η,OK (τ), θ+
LOK,1

⊗ ELOK,2(τ)〉〉
)
− vol(UOK ,2)

∑
(z±VOK,2

,h)∈Z(VOK,2)

ϑ?f0,η,OK
(z±VOK,2

, h)


log εK ·#XE(K) · TE(K) ·

∏
µ|∞

µ:K→R

∫
E(Kµ)

|ω|
.

Similarly, the cardinality #XE(K) of Tate-Shafarevich group XE(K) should be given by the formula
(100)
#XE(K)

=

#E(K)2
tors

CT
(
〈〈f+

0,η,OK (τ), θ+
LOK,1

⊗ ELOK,2(τ)〉〉
)
− vol(UOK ,2)

∑
(z±VOK,2

,h)∈Z(VOK,2)

ϑ?f0,η,OK
(z±VOK,2

, h)


log εK ·RE(K) · TE(K) ·

∏
µ|∞

µ:K→R

∫
E(Kµ)

|ω|
.

Note that we can also derive similar albeit more intricate conditional arithmetic expressions for #XE(K[c])
and RE(K[c]) in the more general setting where hK ≥ 1, e.g. after specializing our main result to the
principal character χ = χ0 of the class group of K, and summing over classes. We leave the details as an
exercise to the reader. Finally, we can also establish the following unconditional result.

Theorem 6.1. Assume that ords=1 L
?(E/K, 1) = 1, so that either L?(E, 1) = L(1/2, π) or the quadratic

twist L?(E(dK), 1) = L(1/2, π ⊗ η) vanishes. Let us also assume that E has semistable reduction so that its
conductor N is squarefree, with N coprime to the discriminant dK of K, and for each prime p ≥ 5:

• The residual Galois representations E[p] and E(dK)[p] attached to E and E(dK) are irreducible,
• There exists a prime divisor l || N distinct from p where the residual representation E[p] is ramified,

and a prime divisor q || NdK distinct from p where the residual representation E(dK)[p] is ramified.
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Writing [e, e] to denote the regulator of either E or E(dk) according to which factor vanishes, we have the
following unconditional identity, up to powers of 2 and 3:

#XE(Q) ·#XE(dK )(Q) · [e, e] · TE(Q) · TE(dK )(Q)

#E(Q)2
tors ·#E(dk)(Q)2

tors

·
∫
E(R)

|ωE | ·
∫
E(dK )(R)

|ωE(dk) |

=

√
dK

log εK

∑
A∈Pic(OK)

CT
(
〈〈f+

0,η,A(τ), θLA,1 ⊗ ELA,2(τ)〉〉
)
− vol(UA,2)

∑
(z±VA,2

,h)∈Z(VA,2)

ϑ?f0,η,A
(z±VA,2 , h)

 .

Proof. Assuming as we do that ords=1 L
?(E/K, 1) = 1, we deduce from the Artin formalism that

L?′(E/K, 1) = L?′(E/K,1, 1) = L?′(E, 1)L?(E(dK), 1) + L?′(E(dK), 1)L(E, 1),

or equivalently that

L′(1/2,Π) = L′(1/2,Π⊗ 1) = L′(1/2, π)L(1/2, π ⊗ η) + L′(1/2, π ⊗ η)L(1/2, π),

where precisely one of the summands on the right hand side in each version does not vanish. Note that we
can take for granted the refined conjecture of Birch and Swinnerton-Dyer (98) for the nonvanishing summand
up to powers of 2 and 3 by our hypotheses, using the combined works of Kato [28], Kolyvagin [29], Rohrlich
[39], and Skinner-Urban [44] with Burungale-Skinner-Tian [9] (cf. [9], [13], [45]) for the analytic rank zero
oart, together with the work of Jetchev-Skinner-Wan [27] or Zhang [54] for the analytic rank one part. We
refer to the summary given in [9, Theorem 3.10] for the current status of these deductions confirming the
p-part of the conjectural Birch-Swinnerton-Dyer formula via Iwasawa-Greenberg main conjectures. Applying
(98) to each factor, we can then deduce unconditionally that we have the refined product formula

L?′(E/K, 1) = L?′(E/K,1, 1) = L′(1/2,Π⊗ 1)

=
#XE(Q) ·#XE(dK )(Q) · [e, e] · TE(Q) · TE(dK )(Q)

#E(Q)2
tors ·#E(dk)(Q)2

tors

·
∫
E(R)

|ωE | ·
∫
E(dK )(R)

|ωE(dk) |.

The stated identity then follows from Theorem 4.19 and Corollary 4.7. �
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[27] D. Jetchev, C. Skinner, and X. Wan, The Birch and Swinnerton-Dyer formula for elliptic curves of analytic rank one,
Camb. J. Math. 5 no. 3 (2017), 369-434.

[28] K. Kato p-adic Hodge theory and values of zeta functions of modular forms, Astérisque 295 (2004), 117-290.
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59


	1. Introduction
	2. Review of equivalent L-functions and their functional equations
	3. Eulerian integral presentations
	4. Connection to spin groups and orthogonal groups
	4.1. An accidental isomorphism
	4.2. Relations to spin and orthogonal Shimura varieties
	4.3. Realization of the basechange form as a theta lifting
	4.4. Regularized theta lifts and automorphic Green's functions

	5. Classical description
	5.1. Hilbert modular forms and varieties
	5.2. Geodesic formulae

	6. Relation to the conjecture of Birch and Swinnerton-Dyer
	6.1. Expressions in terms of geodesic homology classes
	6.2. Comparison with the refined conjecture of Birch and Swinnerton-Dyer

	References

