Angela Carnevale


Angela Carnevale
Fakultät für Mathematik
Universität Bielefeld
Postfach 100131
D-33501 Bielefeld

Phone: (+49) (0)521 106-5024
E-mail: angela.carnevale (at)


I am a postdoc at Bielefeld University working in Prof. Christopher Voll's group. I obtained my PhD in 2015 from the Università di Roma Tor Vergata; my advisor was Prof. Francesco Brenti. I got my diploma in 2011 from Università di Roma La Sapienza.

Research interests

My research is in the field of combinatorics, mostly enumerative combinatorics and permutation statistics.


Published or accepted for publication

  1. Proof of a conjecture of Klopsch-Voll on Weyl groups of type A, with F. Brenti, Trans. Amer. Math. Soc. 369 (2017), 7531-7547. (preprint)
  2. On some Euler-Mahonian distributions, Electron. J. Combin. 24, issue 3 (2017), Paper 27, 11 pages. (preprint)
  3. Odd length for even hyperoctahedral groups and signed generating functions, with F. Brenti, Disc. Math. 340 (2017), 2822-2833. (preprint)


  1. Orbit Dirichlet series and multiset permutations, with C. Voll (2016), 14 pages. (preprint)
  2. Signed generating functions for odd inversions on descent classes, with F. Brenti (2017), 15 pages. (preprint)
  3. Enumerating traceless matrices over compact discrete valuation rings, with S. Shechter and C. Voll (2017), 20 pages. (preprint)
  4. Odd length in Weyl groups, with F. Brenti (2017), 13 pages. (preprint)


  1. Corrispondenza di Springer e rappresentazioni irriducibili del gruppo simmetrico. Diploma thesis, Università di Roma - La Sapienza 2011.
  2. Odd Length for classical Weyl groups: proof of two conjectures and combinatorial properties. PhD thesis, Università di Roma - Tor Vergata 2015.


Wintersemester 2017/18

Ausgewählte Kapitel der Mathematik (eKVV)


Over the past years, I gave tutorials for the courses Geometria (Rome La Sapienza and Rome Tor Vergata), Mathematics (Roma Tor Vergata and LUISS Guido Carli), and Optimization, Optimization and Dynamics, Lineare Algebra 2, Analysis II (Bielefeld University).

last modified: October 6, 2017