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Introduction

The main characteristic of my work is the use of asymptotic methods com-
ing from general topology and the theory of limit sets to study problems in
Topological Transformation Groups, Operator Theory and Dynamical Sys-
tems. The present Habilitationsschrift is cumulative, in the sense that we
expose results from papers which has been recently submitted or accepted
for publication. We divided them in three categories. Namely, we present
some results from

• the theory of Topological Transformation Groups related to properly
discontinuous, proper and isometric actions.

• Operator Theory related to topologically transitive and locally topo-
logically transitive (J-class) operators, hypercyclic operators and dy-
namics of commuting tuples of matrices.

• the theory of Dynamical Systems related to analytic crossed products.

In what follows X will denote a Hausdorff locally compact space or a
(complex or real) Hilbert or Banach space andG will denote a locally compact
group acting on X or G will denote the semigroup of non-negative integers
generated by a continuous map or a bounded linear operator on X. For
x ∈ X the limit set L(x) is defined by

L(x) = {y ∈ X | there exists a divergent net{gi}i∈I in G such that {gix}i∈I
converges to y}

and the extended (prolongational) limit set J(x) is defined by

J(x) = {y ∈ X | there exist a divergent net{gi}i∈I in G and a net {xi}i∈I
in X converging to x such that {gixi}i∈I converges to y}.

So we can say that limit sets describe the limit behavior of an orbit and
generalized limit sets describe the asymptotic behavior of the orbits of nearby
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points to x ∈ X. In the cases we study the limit and the generalized limit
sets are closed and invariant sets.

Limit and extended limit sets have their roots in the Qualitative Theory
of Dynamical Systems when they are used mainly to describe the Lyapunov
and the asymptotic stability of an equilibrium point or, more generally, of a
compact minimal set. They, also, “encode” information which allows us to
connect the global structure of the underlying space with local properties.
Such an example are the parallelizable flows. In this case we assumed that
the extended limit sets are empty and as a consequence the underlying space
is equivariantly isomorphic to a cartesian product of the form R×S, where S
is global continuous section for the system. Using the same asymptotic topo-
logical methods as in the Qualitative Theory of Dynamical Systems and basic
properties of the structure of the underlying space (e.g. Hilbert space geom-
etry and the linearity of an operator or connectedness and local compactness
for the case of a topological space) we study several problems concerning the
dynamic behavior of the systems we investigate and the structure of the un-
derlying space. To make this more clear let us describe briefly the methods
and the tools we used to show the main results of the presentation at hand.
In Chapter 1 we give a characterization of proper actions in terms of the
geometry of the underlying space. A proper action has the property that all
the extended limit sets are empty. In [1] we showed that a locally compact
group G acts properly on a locally compact σ-compact metrizable space X if
and only if there exists a G-invariant proper (Heine-Borel) compatible met-
ric on X. The construction of such a metric is based on the existence of an
open fundamental set for a proper action (which is a basic tool in this the-
ory) and the use of special coverings of the space created by this set. Using
a similar approach in [11] we constructed a dynamic invariant for properly
discontinuous actions of non-compact groups on locally compact, connected
and paracompact spaces by looking the dynamic behavior of such an action
at infinity (i.e. by embedding such an action in a suitable zero-dimensional
compactification and looking at the cardinality of the remainder of our space
in it). Proper and isometric actions are closely related as we showed in [1]
but in general isometric actions are not proper. In [8] we studied the dy-
namic behavior of the action of the group of isometries of a locally compact
metric space. Since such an action is not necessarily proper the idea is to
look for “thick” (i.e. closed-open) invariant subsets of the underlying space
where the action behaves like a proper one. In Chapter 2 we deal mainly
with topologically transitive operators on Hilbert spaces. The notion of a
topologically transitive operator can be viewed as the opposite of the notion
of a proper action. Topologically transitive operators have the property that
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all the extended limit sets are the whole space in contrast with proper ac-
tions where all the extended limit sets are empty. In the main result in [6]
we used information of local nature (the generalized set of a cyclic vector
has non-empty interior) and we got, as a result, the global behavior of an
operator (that it is topologically transitive). Precisely, we showed that if x is
a cyclic vector for an operator T : X → X and the set J(x) has non-empty
interior then J(y) = X for every y ∈ X, hence T is topologically transitive.
This result gave us the idea to “localize” the notion of a topological tran-
sitive operator by introducing and studying a new class of operators called
locally topologically transitive or J-class operators. This class of operators is
characterized by the property that there exists a non-zero vector x ∈ X with
J(x) = X. The arguments we used in this work are quite similar to those we
used to study isometric actions plus the additional structure of linearity. In
Chapter 3 we present an answer we gave to a long standing question asked
by W. B. Arveson and K. B. Josephson in 1969 concerning the description
of the radical of the analytic crossed product of a classical dynamical sys-
tem in terms of the dynamic behavior of the system. The analytic crossed
product of a classical dynamical system is a non self adjoint algebra of op-
erators that characterizes the dynamical system. Two dynamical systems
are topologically conjugate if and only if the corresponding analytic crossed
products are isomorphic as algebras. The basic ideas in the proof of the main
theorem in [7] came again from the theory of topological dynamics. Firstly,
we showed that any monomial in the Jacobson radical has Fourier coefficient
that vanishes on the recurrent points of the dynamical system (a point is
called recurrent if x ∈ L(x)). And secondly, we showed that a monomial in
the Jacobson radical which has Fourier coefficient with support contained in
an open set of points with the property x /∈ J(x) generates a two-sided ideal
whose square is 0. Using this as the first step of a transfinite induction and
using a procedure similar to the one used to find the Birkhoff center of a dy-
namical system in the theory of topological dynamics (i.e. a procedure with
successively “peeling off” the parts of the dynamical system which x /∈ J(x))
we showed that the Jacobson radical consists of all elements with Fourier co-
efficients which vanish on the set of recurrent points of the dynamical system
and the zero Fourier coefficient is 0.

The structure of the present text has two parts. In the first part, we have
divided the results and the methods we used into three categories, Topological
Transformation Groups, Operator Theory and Dynamical Systems. In each
category we give a brief description of the results in specific chapters. The
second part consists of copies of the papers we analyze, again divided into
three categories. For the economy of space, since we have included copies of
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all papers at the second part, when we want to refer, e.g. to the reference [2]
in the paper [1] of the bibliography we will just write [1, reference 2].
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Chapter 1

Limit sets and asymptotic
methods in Topological
Transformation Groups

References for this chapter are the following papers put in the same order as
we present them in the following.

[1] H. Abels, G. Noskov and A. Manoussos, Proper actions and proper
invariant metrics, SFB preprint 08-011.

[11] A. Manoussos and P. Strantzalos, On embeddings of proper and
equicontinuous actions in zero-dimensional compactifications, SFB preprint
07-054, Trans. Amer. Math. Soc. 359 (2007), 5593-5609.

[10] A. Manoussos and P. Strantzalos, On the group of isometries on a
locally compact metric space, J. Lie Theory 13 (2003), 7-12.

[8] A. Manoussos, On the action of the group of isometries on a locally
compact metric space: closed-open partitions and closed orbits, SFB preprint
09-026.

[2] H. Abels and A. Manoussos, A group of isometries with non-closed
orbits, SFB preprint 09-064.

[9] A. Manoussos, The group of isometries of a locally compact metric
space with one end, SFB preprint 09-066.

One of the most important notions related to the limit and to the extended
limit sets in the theory of Topological Transformation Groups is the notion
of a proper action. Proper actions are characterized by the property J(x) =
L(x) = ∅ for every x ∈ X. In case G is a locally compact group we have
the usual definition: an action is proper if for every x, y ∈ X there exist
neighborhoods U and V of x and y, respectively, such that the set {g ∈
G | gU ∩ V ̸= ∅} has compact closure in G. The next interesting class of
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actions related to the limit and generalized limit sets is the class where J(x) =
L(x) holds for every x ∈ X but J(x) may not be empty. This class contains
the isometric actions.

In [1] we characterized proper actions in terms of the geometry of the
underlying space. Namely, we showed that a locally compact group G acts
properly on a locally compact σ-compact metrizable space X if and only
if there exists a G-invariant proper (Heine-Borel) compatible metric on X.
A few words concerning terminology. A σ-compact space is a topological
space that can be written as a countable union of compact sets. For locally
compact metrizable spaces this is equivalent to separability. By a proper (or
Heine-Borel) metric we mean a metric such that all balls of bounded radius
have compact closures. In other words the previous result says that we can
consider the group G, modulo the kernel of the action, as a closed subgroup
of the group of isometries of a locally compact σ-compact metrizable space.
Removing the assumption about metrizability forX we generalized the previ-
ous result as follows. If a locally compact group G acts properly on a locally
compact σ-compact space X then there is a family of G-invariant proper
continuous finite-valued pseudometrics which induces the topology of X. We
showed also a converse result: let X be a topological space and let D be a
family of proper continuous finite-valued pseudometrics on X, which induces
the topology of X. Let G be the group of all bijective maps X → X, leaving
every d ∈ D invariant. If we endow G with the compact-open topology then
G is a locally compact topological group and acts properly on X.

There is a remarkable invariant concerning the cardinality of the ends of
a locally compact and connected space with the “property Z” which admits
a proper action of a non-compact group. “Property Z” ia a certain technical
connectedness assumption: a space X has “property Z” if every compact
subset of X is contained in a compact and connected one, for instance every
locally compact connected and locally connected space has “property Z”.
When we say ends we mean the remainder of X in the end-point (Freuden-
thal) compactification εX of X. As it is proved in [11, reference 2] X has
at most two or infinitely many ends. In [11] we provided a tool for studying
properly discontinuous actions of non-compact groups on locally compact,
connected and paracompact spaces, by embedding such an action in a suit-
able zero-dimensional compactification (i.e. a compactification such that X
has compact totally disconnected remainder) of the underlying space with
pleasant properties. Precisely, given such an action we constructed a zero-
dimensional compactification µX of X which is the maximal (in the ordering
of zero-dimensional compactifications of X) with respect to the following
properties: (a) the action has a continuous extension on µX, (b) if µL de-
notes the set of the limit points of the orbits of the initial action in µX, the
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restricted action of G on µX \µL remains properly discontinuous, is equicon-
tinuous with respect to the uniformity induced on µX \µL by that of µX (so
all the information concerning the invariants is contained in the set µL) and
(c) the action is indivisible, i.e. if lim gix0 = e ∈ µL for some x0 ∈ µX \ µL
and a net {gi} in G, then lim giy = e for every x ∈ µX \ µL (so actually
there is a correspondence between divergent nets in G and limit points in
µL). As we showed by an example there is a locally compact, connected
and paracompact space not having the “property Z” for which our compact-
ification is different from the end point compactification. So, if X doesn’t
have the “property Z” εX may fail to have the above mentioned properties.
The construction of the compactification µX stated above relies on a new
construction: The action of G on µX is obtained by taking the initial ac-
tion as an equivariant inverse limit of properly discontinuous G-actions on
polyhedra, which are constructed via G-invariant locally finite open cover-
ings of X, generated by locally finite coverings of (always existing) suitable
fundamental sets of the initial action. As an application of the previously
mentioned construction we have that µL consists of at most two or infinitely
many points. Another result is that if X has the “property Z” then µX
coincides with the end point compactification εX of X. Finally, we gave an
application concerning the cardinality of the ends of X. To be more precise,
let X be a locally compact, connected and paracompact space, and G be a
non-compact group acting properly on X such that either G1, the connected
component of the neutral element of G, is non-compact, or G1 is compact
and G/G1 contains an infinite discrete subgroup. Then X has at most two
or infinitely many ends, and has at most two ends, if G1 is not compact.

Another important class of transformation groups is the class in which
J(x) = L(x) holds for every x ∈ X. As we mentioned before this class
contains the isometric actions. One of the first problems studied in this
direction was the problem of the local compactness of the group of isometries
and the way it acts on the underlying space. A classic result is the theorem
of D. van Dantzig and B. L. van der Waerden which says that the group G of
isometries of a connected, locally compact metric space X is locally compact
(with respect to the compact-open topology) and acts properly on X (via the
natural action (g, x) 7→ g(x) g ∈ G, x ∈ X). Combining this result with the
result mentioned before about the cardinality of the ends of the space we have
the following remarkable implication. For locally compact locally connected
and connected metric space (e.g. a finite dimensional manifold) with finitely
many but more than two ends the group of isometries is compact. In [10]
we generalized the results of D. van Dantzig and B. L. van der Waerden
for the case of a locally compact metric space which has quasi-compact (i.e.
compact but not necessarily Hausdorff) space of connected components (or
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quasi-components). In particular it is shown that the group of isometries of
X is locally compact but may fail to act properly on X even for the case
that X has only two connected components.

The paper [8] can be considered as a first step towards the study of
the natural action of the group of isometries G on a locally compact met-
ric space (X, d) without the assumption that G is a locally compact group.
We gave an answer to the following question: Assume that there is a pair
of points x, y ∈ X and a net {gi} in G such that gix → y. What can we
say about the convergence of {gi}? The answer is that the net {gi} (or a
subnet of it) converges pointwise on a closed open subset of X which con-
tains the pseudo-component of x. This result shows also “what is behind
the lines of the proofs” for all the already well known results when G is
locally compact and so, we can recover them using a unifying approach.
Moreover, it leads to a simple decomposition of X into closed-open invari-
ant disjoint sets that are related to various limit properties of the orbits in
X. More precisely, we showed that if G is locally compact and not com-
pact and CL = {x ∈ X |L(x) is not empty and compact}, NCL = {x ∈
X |L(x) is not compact} and P = {x ∈ X |L(x) is the empty set}, then the
sets CL,NCL and P are closed-open G-invariant disjoint, their union is X
and each one of them is a union of pseudo-components (for the definition of
a pseudo-component, introduced by S. Gao and A. S. Kechris, see [8, refer-
ence 8] and [8]). In case P is not empty we have a very interesting result
concerning its structure. If G is not compact and has compact space of con-
nected components (or the connected component of the identity of G is not
compact) then, P is homeomorphic to a product of the form Rn × M for
some n ∈ N where M is a closed subset of P . Actually one can take as n
the same n if we write the group G as a homeomorphic image of the product
Rn ×K where K is a maximal compact subgroup of G in Malcev-Iwasawa’s
decomposition theorem for G. We showed, also, that the sets CL,NCL and
P may coexist in any combination.

In [2, reference 3] S. Gao and A. S. Kechris asked the following question.
Let (X, d) be a locally compact complete metric space with finitely many
pseudo-components or connected components. Does its group of isometries
have closed orbits? This is the case if X is connected since then the group
of isometries acts properly by the result of van Dantzig and van der Waer-
den we mentioned above and hence all of its orbits are closed. The above
question arose in the following context. Suppose a locally compact group
with a countable base acts on a locally compact space with a countable base.
Then the action has locally closed orbits (i.e. orbits which are open in their
closures) if and only if there exists a Borel section for the action (see [2,
reference 4], [2, reference 2]) or, in other terminology, the corresponding or-
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bit equivalence relation is smooth. For isometric actions it is easy to see
that an orbit is locally closed if and only if it is closed. In this paper we
gave a negative answer to the question of Gao and Kechris. Our space is
a one-dimensional manifold with two connected components, one compact
isometric to S1, and one non-compact, the real line with a locally Euclidean
metric. It has a complete metric whose group of isometries has non-closed
dense orbits on the compact component. In the course of the construction
we gave an example of a 2-dimensional manifold with two connected compo-
nents one compact and one non-compact and a complete metric whose group
G of isometries also has non-closed dense orbits on the compact component.
The difference is that G contains a subgroup of index 2 which is isomorphic
to R. Finally in [9] we studied the action of the group of isometries G of a
locally compact metric space X with one end. Using technics we developed
in [8] , we showed that X has only finitely many pseudo-components exactly
one of which is not compact and G acts properly on this pseudo-component.
The complement of the non-compact component is a compact subset of X
and G may fail to act properly on it.

9
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Chapter 2

Operator Theory

In this chapter we present results from Operator Theory related to topolog-
ically transitive, locally topologically transitive operators (J-class), hyper-
cyclic operators and dynamics of commuting tuples of matrices. Before, we
present our results, and for our convenience, let us recall some definitions. A
topologically transitive operator is a bounded linear operator T on a Banach
space X such that J(x) = X for every x ∈ X or, in other words, for every
pair of non-empty open sets U, V of X there exists a positive integer n such
that T nU ∩ V ̸= ∅. A bounded linear operator on a separable Banach space
is hypercyclic if it has the property that L(x) = X for some non-zero vector
x ∈ X (i.e. the orbit of x is dense in X). Actually the existence of one
(non-zero) vector x ∈ X such that L(x) = X is enough to ensure that the set
of vectors with this property is a dense Gδ subset of X. Obviously in the case
of a hypercyclic operator T : X → X, the space X must be separable and
T is a topologically transitive operator. For separable spaces the converse is
also true: Birkhoff’s Transitivity Theorem says that a topologically transitive
operator on a separable Banach space is hypercyclic. In [6] we introduced
and studied a new class of operators called locally topologically transitive or
J-class operators. This class of operators is characterized by the property
that there exists a non-zero vector x ∈ X with J(x) = X, so, J-class opera-
tors can be viewed as a “localization” of the notion of topologically transitive
and hypercyclic operators.

References for this chapter are the following papers put in the same order
as we present them in the following.

[6] G. Costakis and A. Manoussos, J-class operators and hypercyclicity,
SFB preprint 07-028, to appear in J. Operator Theory.

[5] G. Costakis and A. Manoussos, J-class weighted shifts on the space of
bounded sequences of complex numbers, SFB preprint 07-029, Integral Equa-
tions Operator Theory 62 (2008), 149-158.
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[4] G. Costakis, D. Hadjiloucas and A. Manoussos, On the minimal num-
ber of matrices which form a locally hypercyclic, non-hypercyclic tuple, SFB
preprint 09-035, J. Math. Anal. Appl. 365 (2010), 229-237.

[3] G. Costakis, D. Hadjiloucas and A. Manoussos, Dynamics of tuples
of matrices, SFB preprint 08-032, Proc. Amer. Math. Soc. 137 (2009),
1025-1034.

The study of dynamics of linear operators is a rapidly growing research
area in Analysis and Geometry. In general we look for the dynamics created
by the iterates of a bounded linear operator T : X → X on a complex or real
Banach or Hilbert space X ore more generally on a Fréchet space X (that
is a locally convex topological vector space whose topology is defined by a
translation invariant complete metric). One of the first classes of operators
studied were the classes of topologically transitive and hypercyclic operators.
Some examples of hypercyclic operators are the following (a) the translation
operator Tα : H(C) → H(C) defined by Tα(f) = f(z +α), where z ∈ C, α is
a non-zero complex number and H(C) is the space of holomorphic functions
on C (G. D. Birkhoff 1929), (b) the differentiation operator on H(C) (G.
R. MacLane 1952) and (c) for every scalar λ of modulus greater than 1 the
operator λB on lp(N) for each 1 < p < +∞ where B is the backward shift on
lp(N) (S. Rolewicz 1969). Actually the hypercyclic operators in the previous
examples have also the additional property that the set of periodic points is
dense and they are chaotic (in the sense of R. L. Devaney).

In [6] we introduced and studied a new class of operators called locally
topologically transitive or J-class operators. Recall that an operator is called
J-class if there exists a non-zero vector x ∈ X with J(x) = X. The reason
we excluded the zero vector is to avoid certain trivialities, as for example
the multiples of the identity operator acting on a finite or infinite dimen-
sional space. This class can be viewed as a “localization” of the notion of
topologically transitive and hypercyclic operators. Hypercyclic and J-class
operators can occur only in infinite dimensional spaces. As it turns out this
new notion of operators although different from the notion of hypercyclic
operators shares some similarities with the behavior of hypercyclic opera-
tors. No compact, positive or normal operators can be J-class. We would
like to stress that some non-separable Banach spaces, like the space l∞(N)
of bounded sequences, supports J-class operators (in [6] we showed that the
operator λB for every scalar λ of modulus greater than 1 is J-class, where
B is the backward shift on l∞(N)), while it is known [6, reference 3] that the
space l∞(N) does not support topologically transitive operators. A connec-
tion between hypercyclic and J-class operators is given in the main theorem
of [6]. We showed that if x is a cyclic vector for an operator T : X → X
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and the set J(x) has non-empty interior then J(x) = X and, in addition, T
is hypercyclic without x being necessarily a hypercyclic vector (i.e a vector
with dense orbit). An important implication of this theorem is that it gives
the Bourdon-Feldman Theorem as a corollary. Bourdon-Feldman’s Theorem
[6, reference 11] says that somewhere dense orbits are everywhere dense and
plays an important role in the theory of hypercyclic operators. Finally we
showed that if T is a bilateral or a unilateral weighted shift on the space of
square summable sequences then T is hypercyclic if and only if T is a J-class
operator. At this point, we would like to mention that in a recent book of F.
Bayart and É. Matheron (Dynamics of linear operators, Cambridge Tracts
in Mathematics, 179. Cambridge University Press, Cambridge, 2009) which
is actually the first published book concerning dynamics of linear operators,
they referred to J-class operators and they used our asymptotic technics to
simplify lengthy proofs of old results.

In [5] we provided a characterization of J-class unilateral weighted shifts
on l∞(N) in terms of their weight sequences and we described the set of the
J-vectors (i.e. vectors x ∈ l∞(N) such that J(x) = l∞(N)). In contrast to
the previously mentioned result we showed that a bilateral weighted shift on
l∞(Z) cannot be a J-class operator. As we mentioned before, hypercyclic
and J-class operators can occur only in infinite dimensional spaces. This
is in contrast with the case of hypercyclic and J-class commuting tuples of
matrices. In [4] we extended the notion of a J-class operator to that of a J-
class tuple of operators. We then showed that the class of hypercyclic tuples
of operators forms a proper subclass to that of J-class tuples of operators.
What is rather remarkable is that in every finite dimensional vector space
over R or C, a pair of commuting matrices exists which forms a J-class non-
hypercyclic tuple. This comes in direct contrast to the case of hypercyclic
tuples where the minimal number of matrices required for hypercyclicity
is related to the dimension of the vector space. Finally in [4], as also in
[3], we gave some complementing results concerning hypercyclic and J-class
commuting pairs of matrices in diagonal or in upper triangular form.
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Chapter 3

Dynamical Systems

In this chapter we present an answer we gave to a long standing question
asked by W. B. Arveson and K. B. Josephson in 1969 concerning the problem
of the description of the radical of the analytic crossed product of a classical
dynamical system in terms of the dynamic behavior of the system. The
analytic crossed product of a classical dynamical system is a non self adjoint
algebra of operators that characterizes the dynamical system. Two dynamical
systems are topologically conjugate if and only if the corresponding analytic
crossed products are isomorphic as algebras. Reference for this chapter is
the following paper.

[7] A. P. Donsig, A. Katavolos and A. Manoussos, The Jacobson radical
for analytic crossed products, J. Funct. Anal. 187 (2001), 129-145.

There is a rich interplay between operator algebras and dynamical sys-
tems, going back to the founding work of F. J. Murray and J. von Neumann
in the 1930’s. Crossed product constructions continue to provide fundamen-
tal examples of von Neumann algebras and C∗-algebras as also remarkable
results in the theory of dynamical systems. Comparatively recently, W. B.
Arveson in 1967 introduced a non-selfadjoint crossed product construction,
called the analytic crossed product or the semi-crossed product, which has
the remarkable property of capturing all of the information about the dy-
namical system. By this we mean that two analytic crossed product algebras
are isomorphic as complex algebras if and only if the underlying dynamical
systems are topologically conjugate, i.e. there is a homeomorphism between
the spaces that intertwines the two actions. The construction of an ana-
lytic crossed product starts with a dynamical system, i.e. a locally compact
Hausdorff space X and a continuous, proper surjection ϕ : X → X. Con-
sider the algebra generated by C0(X) (i.e. the space of continuous functions
of X that vanish at infinity) and a symbol U , where U satisfies the rela-
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tion fU = U(f ◦ ϕ), f ∈ C0(X). The elements F of this algebra can be
viewed as noncommutative polynomials in U of the form F =

∑N
n=0 U

nfn,
fn ∈ C0(X), N ∈ N. Let us call this algebra A0. We formed the Ba-
nach Algebra l1(A0) by providing a norm to elements F as above by setting
∥F∥1 =

∑N
n=0 ∥fn∥C0(X) and then completing A0 in this norm. On the other

hand, we can define the class of covariant representations of A0 and complete
A0 in the resulting norm. Either approach yields the same analytic crossed
product C0(X) ×ϕ Z+. By a covariant representation of A0 we mean a ho-
momorphism π of A0 into the bounded operators of a Hilbert space, which is
a ∗-representation when restricted to C0(X), viewed as a subalgebra of A0,
and such that π(U) is an isometry. Let us denote an element of the analytic
crossed product by

∑+∞
n=0 U

nfn, fn ∈ C0(X) and let us call the sequence {fn}
the corresponding Fourier coefficients. A long standing question asked by W.
B. Arveson and K. B. Josephson in 1969 was to characterize the Jacobson
radical of the analytic crossed product in terms of the dynamic behavior of
the system. Recall that the Jacobson radical of an algebra is the intersection
of all primitive ideals, i.e. the intersection of kernels of all irreducible rep-
resentations of the algebra. If the Jacobson radical is zero then the algebra
is called semisimple. In [7] we solved this problem. We showed that the Ja-
cobson radical consists of all elements of the form

∑+∞
n=1 U

nfn such that each
Fourier coefficient fn vanishes on the set of recurrent points of the dynamical
system (a point x ∈ X is called recurrent if x ∈ L(x)). We generalized also
this result for the case of a multivariable dynamical system, that is a locally
compact Hausdorff space with a d-tuple of commuting proper surjections. In
this case we need a modification of the notion of a recurrent point (as also
a modification of the notion of the Birkhoff center of the dynamical system
we used in the case of one variable). Namely, let I ⊂ {1, 2, . . . , d}. A point
x ∈ X is called I-recurrent if there is a sequence {nk} ⊂ Nd such that the
i-th entry of nk+1 is greater than the i-th coordinate of nk for every i ∈ I
such that ϕnk

x → x. In this case the Jacobson radical is the closed ideal
generated by all monomials of the form Unf , n ̸= 0 where f vanishes on the
set of recurrent point corresponding to the support of n. Some interesting
corollaries of the previous results are the following: (a) The analytic crossed
product is semisimple if and only if it is semiprime and (b) The prime radi-
cal of the analytic crossed product coincides with the Jacobson radical if and
only if it is closed. Recall that the prime radical is the intersections of all
prime ideals and the algebra is called semiprime if the prime radical is zero
or, equivalently, if there are no (non-zero) nilpotent ideals.
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Proper actions and proper invariant metrics

H. Abels, A. Manoussos and G. Noskov ∗

Abstract

We show that if a (locally compact) group G acts properly on a locally com-
pact σ-compact space X then there is a family of G-invariant proper continuous
finite-valued pseudometrics which induces the topology of X. If X is furthermore
metrizable then G acts properly on X if and only if there exists a G-invariant proper
compatible metric on X.

Subject classification [2000]: Primary 37B05, 54H15; Secondary 54H20, 54D45.

Keywords: Proper action, group of isometries, proper metric, proper pseudometric,
Heine-Borel metric.

1 Introduction

We establish a close connection between proper group actions and groups of isometries.
There is an old result in this direction, proved in 1928 by van Dantzig and van der Waerden
It says that for a locally compact connected metric space (X, d) its group G = Iso(X, d)
of isometries is locally compact and acts properly. That the action is proper is no longer
true in general, if X is not connected, although G is sometimes still locally compact,
see [13]. Concerning properness of the action, Gao and Kechris [6] proved the following
result. If (X, d) is a proper metric space, then G (is locally compact and) acts properly
on X. Recall that a metric d on a space X is called proper if balls of bounded radius have
compact closures.

There is the following converse result. If a locally compact group G acts properly on a
locally compact σ-compact metrizable space X, then there is a compatible G-invariant
metric d on X [12]. In this paper we prove that under these hypotheses there is actually
a compatible G-invariant proper metric on X. We call a metric on a topological space

∗During this research the second and the third named authors were fully supported by the SFB 701
“Spektrale Strukturen und Topologische Methoden in der Mathematik” at the University of Bielefeld,
Germany. They are grateful for its generosity and hospitality. The paper was finished while the first
named author was staying at MSRI in Berkeley. He wishes to thank the MSRI for its hospitality and
support, as well as the SFB 701 for its support.
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compatible if induces its topology. Note that a proper metric space is σ-compact. For the
records, here is one version of our main result, namely the one for metrizable spaces (see
also theorem 4.2).

Theorem 1.1. Suppose the (locally compact) topological group G acts properly on the
metrizable locally compact σ-compact topological space X. Then there is a G-invariant
proper compatible metric on X.

These results raise the question if they generalize to the non-metrizable case. We give
a complete answer as follows. Recall that a pseudometric on X is a function d on X ×
X which has all the properties of a metric, except that its value may be ∞ and that
d(x, y) = 0 may not imply that x = y. For a precise definition see below definition 2.1.
A locally compact space is σ-compact if and only if has a proper finite-valued continuous
pseudometric, as is easily seen, see e.g. below, the proof of corollary 5.3. It then actually
has a family of such pseudometrics which induces the topology of X. The corresponding
statement for the equivariant situation is the following version of the main result of our
paper, namely for not necessarily metrizable spaces (see also theorem 4.1).

Theorem 1.2. Let G be a (locally compact) topological group which acts properly on a
locally compact σ-compact Hausdorff space X. Then there is a family of G-invariant
proper finite-valued continuous pseudometrics on X which induces the topology of X.

The connection of theorem 1.1 and theorem 1.2 is given by the following result. We are
in the case of theorem 1.1 iff there is a countable family as in theorem 1.2. For a precise
statement see corollary 4.4.

Note that continuity of the pseudometrics follows from the other properties, see remark
5.5.

This theorem may be considered as the converse of the following theorem, see below
theorem 3.1.

Theorem 1.3. Let X be a topological space and let D be a family of proper continuous
finite-valued pseudometrics on X, which induces the topology of X. Let G be the group of
all bijective maps X → X, leaving every d ∈ D invariant. Endow G with the compact–
open topology. Then G is a locally compact topological group and acts properly on X.

The main result of our paper has been proved already for the special case of a smooth
manifold. Namely Kankaanrinta proved in [9] that if a Lie group G acts properly and
smoothly on a smooth manifold M , then M admits a complete G-invariant Riemannian
metric. A consequence of our main result for the metrizable case is the following result
of Haagerup and Przybyszewska [7]: Every second countable locally compact group has a
left invariant compatible proper metric which generates its topology, see below corollary
9.5. Proper G–invariant metrics have been used in several fields of mathematics, see [8]
and [11]. For more information about related work, open questions and miscellaneous
remarks see the last chapter of this paper.
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2 Preliminaries

Pseudometrics

Definition 2.1. A pseudometric d on a set X is a function d : X × X → [0, +∞] which
fulfills for x, y, z ∈ X the following properties

i) d(x, x) = 0,

ii) d(x, y) = d(y, x),

iii) d(x, y) + d(y, z) ≥ d(x, z).

Thus, loosely speaking, a pseudometric is a metric except that its values may be +∞ and
d(x, y) = 0 does not imply x = y. A family D of pseudometrics on X induces a topology
on X, for which finite intersections of balls Bd(x, r) := {y ∈ X; d(x, y) < r} with x ∈ X,
d ∈ D and r ∈ [0,∞) form a basis. This topology is the coarsest topology for which
every d ∈ D is a continuous function on X × X. The topology of a topological space X
is induced by a family of pseudometrics if and only if X is completely regular, see [3, Ch.
X, §1.4 Theorem 1 and §1.5 Theorem 2]. A topological space X is called metrizable if its
topology is induced by an appropriately chosen metric d on X. Such a metric d on X is
then called a compatible metric.

From now on we will call a locally compact Hausdorff space simply a “space”, for short.
Recall that a space is called σ–compact if it can be written as a countable union of
compact subsets. A σ–compact space is metrizable if and only if it is second countable,
i.e., its topology has a countable base, see [3, Ch. IX, §2.9 Corollary].

A pseudometric d on a space X will be called proper if every ball of finite radius has
compact closure. A space X together with a compatible proper metric d will be called
a proper metric space. It is also called a Heine–Borel space by some authors and also
a finitely–compact space by others. Important examples of proper metric spaces are the
Euclidean spaces and the space Qp of rational p–adics with their usual metrics.

The topology of a space can be induced by a family of pseudometrics, since a space
(understood: locally compact Hausdorff) is completely regular. The topology of a σ–
compact space can be induced by a family of proper finite–valued pseudometrics (see
corollary 5.3). One of our main results, theorem 1.2, spells out for which actions there
is a family of invariant proper finite–valued pseudometrics inducing the topology, namely
the proper actions. And theorem 1.3 says that these are essentially the only ones for
which such a family exists.

Now let (X,D) be a space X together with a family D of pseudometrics inducing its
topology. A case of particular importance is when D consists of just one metric, which by
assumption induces the topology of X. Let G = Iso(X,D) be the group of isometries of
(X,D), that is the group of all bijections X → X leaving every d ∈ D invariant. Endow
G with the topology of pointwise convergence. Then G will be a topological group [3, Ch.
X, §3.5 Corollary]. On G there is also the topology of uniform convergence on compact
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subsets which is the same as the compact–open topology. In our case, these topologies
coincide with the topology of pointwise convergence, and the natural action of G on X is
continuous [3, Ch. X, §2.4 Theorem 1 and §3.4 Corollary 1]. We shall prove soon, that if
at least one of the pseudometrics d in D is proper then G is locally compact. In this case
the natural action of G on X is even proper. We will discuss this notion now.

Definition 2.2. A continuous map f : X → Y between spaces is called proper if one of
the following two equivalent conditions holds

i) f−1(K) is compact for every compact subset K of Y .

ii) f is a closed map and the inverse image of every singleton is compact.

Let G be a topological group. Suppose a continuous action of G on a space X is given.

Proposition 2.3. and Definition The following conditions are equivalent

i) The map G × X −→ X × X, (g, x) 7−→ (gx, x), is proper.

ii) For every pair A and B of compact subsets of X the transporter

GAB := {g ∈ G; gA ∩ B 6= ∅}

from A to B is compact.

iii) Whenever we have two nets (gi)i∈I in G and (xi)i∈I in X, for which both (xi)i∈I and
(gixi)i∈I converge, then the net (gi)i∈I has a convergent subnet.

The action of G on X is called proper if one of these conditions holds.

For a proof see [3, Ch. I, §10.2 Theorem 1 and Ch. III, §4.4 Proposition 7]. For more
information on proper group actions see the forthcoming book [1].

Note that if the action of G on X is proper, then G is locally compact, by ii). And if
furthermore X is σ–compact, then G is also σ–compact, by ii).

It is useful to rephrase the definition of properness in terms of limit sets. Let (xi)i∈I be a
net in the – not necessarily locally compact – topological space X. We say that the net
(xi)i∈I diverges and write xi −→

i∈I
∞, if the net (xi)i∈I has no convergent subnet. If X is

locally compact, a net (xi)i∈I in X diverges if and only if it converges to the additional
point ∞ of the one point (also called Alexandrov–) compactification of X.

Let again the topological group G act on the space X. For x ∈ X the limit set L(x) is
defined by

L(x) :={y; there exists a divergent net (gi)i∈I in G

such that (gix)i∈I converges to y}
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and the extended limit set J(x) is defined by

J(x) :={y; there exists a divergent net (gi)i∈I in G

and a net (xi)i∈I in Xconverging to x,

such that (gixi)i∈I converges to y}.

Thus, the action of G on X is proper if and only if the following condition holds:

iv) J(x) = ∅ for every x ∈ X,
since iv) is equivalent to iii). If furthermore D is a family of pseudometrics inducing
the topology of X and every g ∈ G leaves every d ∈ D invariant, then it is easy to
see that

v) L(x) = ∅ implies J(x) = ∅.

3 The group of isometries of a proper metric space

Let again X be a locally compact Hausdorff space, let D be a family of pseudometrics
inducing the topology of X and let G be the group of isometries of (X,D) with its natural
topology, as above.

Theorem 3.1. If at least one of the pseudometrics in D is proper then G is locally
compact and the natural action of G on X is proper.

The special case that D consists of just one metric is due to Gao and Kechris [6], as
follows.

Theorem 3.2. If (X, d) is a proper metric space then its group G of isometries is locally
compact and its natural action of G on X is proper.

Proof of theorem 3.1. It suffices to show that the natural action of G on X is proper.
To prove this we will show that the limit set L(x) is empty for every x ∈ X. Thus let
(gi)i∈I be a net in G for which (gix)i∈I converges to a point, say y, in X. We have to show
that the net (gi)i∈I has a convergent subnet. We may assume that gix is contained in the
relatively compact ball Bd(y, r) for every i ∈ I, where d is a proper pseudometric in D
and r > 0. We will use the Arzela–Ascoli theorem. Let z ∈ X. The points giz, i ∈ I, are
contained in the ball Bd(z, R), where R = r+d(x, z). Thus the set {giz; i ∈ I} is relatively
compact for every z ∈ X. The family of maps {gi; i ∈ I} is uniformly equicontinuous,
being a subset of the uniformly equicontinuous family G of maps from X to X. It follows
from the Arzela–Ascoli theorem that the net (gi)i∈I has a subnet (gj)j∈J which converges
uniformly on compact subsets to a map g. Clearly, g leaves every d ∈ D invariant. To
see that g is actually invertible look at the net (g−1

j )j∈J . We have g−1
j y ∈ Bd(x, r) and

hence g−1
j z ∈ Bd(z, R

′) where R′ = r + d(x, z). Then the net (g−1
j )j∈J has a subnet which

converges uniformly on compact subsets to a map f . It then follows that f and g are
inverse of each other.
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Remark 3.3. The sets K(E) := {x ∈ X ; Ex is relatively compact}, where
E ⊂ Iso(X, d) played a crucial role in [13] where it is proved that they are open–closed
subsets of X. In the case of a proper metric space (X, d) the set K(E) is either the empty
set or the whole space X as shown in the proof of Theorem 3.1. Using Bourbaki [3, Ch.
X, Exercise 13, p. 323] we may also show that sets K(E) are open-closed subsets of X but
we must be careful! Even in the legendary “Topologie Générale” of Bourbaki there is at
least one mistake! Precisely in the aforementioned Exercise 13 of Ch. X, p. 323, part d)
it is said that if E is a uniformly equicontinuous family of homeomorphisms of a locally
compact uniform space X then K(E) is a closed subset of X. This is not true if E is not
a subset of a uniformly equicontinuous group of homeomorphisms of X as we can easily
see by the following counterexample.

Counterexample 3.4. Let

X =

∞
⋃

k=1

{(x, y) ; x =
1

k
, y ≥ 0} ∪ {(x, y) ; x = 0, y > 0}

be endowed with the Euclidean metric. Consider the family E = {fn} of selfmaps of X
defined by fn(x, y) = (x, y

n
). The family E consists of uniformly equicontinuous homeo-

morphisms of X and K(E) =
⋃∞

k=1{(x, y) ; x = 1
k
, y ≥ 0} as can be easily checked. Hence

the set K(E) is not closed in X.

4 Proper invariant metrics and pseudometrics, out-

line of the proof

The main results of our paper are the following converses of theorems 3.1 and 3.2. Again,
X is a space, i.e., a locally compact Hausdorff space and G is a Hausdorff topological
group. Suppose we are given a continuous action of G on X.

Theorem 4.1. Suppose X is σ–compact. If the action of G on X is proper then there
is a family D of proper finite–valued G–invariant pseudometrics on X, which induces the
topology of X.

Theorem 4.2. Suppose X is σ–compact. If the action of G on X is proper and X is
metrizable, then there is a compatible G–invariant proper metric d on X.

Remark 4.3. If the action is proper, it is easy to see that the kernel of the action K :=
{g ∈ G ; gx = x for every x ∈ X} is compact and the action map induces an isomorphism
of topological groups of G/K onto a closed subgroup of Iso(X,D), resp. Iso(X, d). We
thus have a complete correspondence between proper actions and isometry groups of proper
metrics or pseudometrics.

Corollary 4.4. Suppose X is σ–compact and G acts properly on X. Then the following
properties of X are equivalent

a) X is metrizable.
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b) There is a compatible G–invariant proper metric on X.

c) There is a countable family of finite–valued pseudo–metrics on X, which induces the
topology of X.

d) There is a countable family of proper finite–valued G–invariant pseudometrics on
X, which induces the topology of X.

Proof. a) =⇒ b) by theorem 4.2, b) =⇒ d) and d) =⇒ c) are trivial, c) =⇒ a) is a well
known theorem of topology [3, Ch. IX, §2.4 Corollary 1] whose proof is similar to the
argument in the last paragraph of the proof of lemma 8.10 a).

The proof of theorems 4.1 and 4.2 will occupy most of the remainder of the paper. Let
us briefly describe the plan of the proof. We describe the plan for the case of a family of
pseudometrics, the proof for the metrizable case simplifies at some points.

1. We first construct a family D of pseudometrics on X, with values in [0,1] which
induces the topology of X, see section 5.

2. Next we show how to make every d ∈ D G–invariant, see section 6.

3. Then we make every d ∈ D orbitwise proper, see section 7.

4. These steps are fairly routine. We then present our main tool, namely the “mea-
suring stick construction”. Imagine a family of measuring sticks given by distances
of closely neighboring points. We then define a pseudometric d on X by taking
for x, y in X as d(x, y) the infimum of all measurements along sequences of points
x = x0, . . . , xn = y such that the distance of any two adjacent points is given by
measuring sticks. For a precise definition, actually several equivalent ones, see sec-
tion 8. It turns out that we then get for an appropriate family of measuring sticks
a proper pseudometric. The disadvantage of this construction is that there may be
points which cannot be connected by sequences as above. Equivalently, there may
be points x, y with d(x, y) = ∞.

5. We then use our “bridge construction”, see section 9. Think of pairs of points
with d(x, y) < ∞ as lying on the same island. Thus what we call an island is an
equivalence class of the equivalence relation defined as x ∼ y iff d(x, y) < ∞. We
connect (some of) these islands by bridges and attribute (high) weights to these
bridges. We then define a new pseudometric similarly as above using the already
defined pseudometric on the islands and the weights of bridges. We thus obtain a
proper pseudometric with finite values and actually a whole family of such, which
induces the topology of X. All these constructions are done in a G–invariant way,
so that the resulting pseudometrics are G–invariant.

7



5 A compatible metric and proper pseudometrics

Again, by a space we mean a locally compact Hausdorff space. Recall the following basic
metrization result, see [3, Ch. IX, §2.9 Corollary].

Theorem 5.1. For a space X the following properties are equivalent

a) X is second countable, i.e., its topology has a countable base.

b) The one–point compactification X of X is metrizable.

c) X is metrizable and σ–compact.

If a space is metrizable we may assume that the metric d inducing the topology has values
in [0,1]. We just have to replace d by d1 with d1(x, y) := d(x,y)

1+d(x,y)
.

For the general case of a not necessarily metrizable σ–compact space — and for later use
— we need the following easy lemma, whose proof is left to the reader.

Lemma 5.2. A space X is σ–compact if and only if there is a proper continuous function
f : X −→ [0,∞).

Corollary 5.3. On every σ–compact space X there is a family D of proper finite–valued
pseudometrics inducing the topology of X.

Proof. Let D0 be the family of pseudometrics on X of the form

df(x, y) := |f(x) − f(y)|

for x, y ∈ X, where f : X −→ R is a continuous function. Then D0 induces the topology
of X. Here we do not use that X is σ–compact. But in the next step we do. If X is
σ–compact let D be the family D := {d + df ; d ∈ D0}, where f : X −→ R is proper
and continuous. Then D induces the topology of X and consists of proper finite–valued
pseudometrics.

The same trick yields the following corollary.

Corollary 5.4. The following properties of a space X are equivalent.

a) X has a compatible proper metric.

b) X is metrizable and σ–compact.

c) X is metrizable and separable.

d) X is second countable.

Remark 5.5. Note the if a pseudometric d belongs to a family of pseudometrics inducing
the topology of X then d is continuous. Since then Bd(x, r) is a neighborhood of x for
every x ∈ X and every r > 0, and hence the function y 7−→ d(x, y) is continuous at x for
every x ∈ X, which easily implies that d is continuous by the triangle inequality.
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6 Making the metrics or pseudometrics G–invariant

Now suppose X is a space, G is a Hausdorff topological group and a proper continuous
action of G on X is given.

Step 2. If X is σ–compact, then there is a family of G–invariant continuous finite–valued
pseudometrics inducing the topology of X. If X is furthermore metrizable then there is a
compatible G–invariant metric on X.

We present two proofs.

The first one is due to Koszul [12] and uses the concept of a fundamental set, a concept we
will need again, later on. The second one uses the notion of an equicontinuous action on
the one–point compactification of X. Unfortunately, in the process we loose the property
that our (pseudo–)metrics are proper.

Definition 6.1. A subset F of X is called a fundamental set for the action of G on X if
the following two conditions hold.

a) GF = X

b) GKF has compact closure for every compact subset K of X.

Concerning b), recall the definition of the transporter GAB = {g ∈ G ; g A∩B 6= ∅} from
A to B. Note that only proper actions can have a fundamental set, since a) implies that

GAB ⊂ G−1
BF · GAF

and hence GAB is relatively compact if A and B are compact, by b), and then GAB is
actually compact, by continuity of the action. There is the following converse, see [12].

Proposition 6.2. If X is σ–compact, then there is an open fundamental set for every
proper action.

Step 2, 1st proof. Let F be an open fundamental set for the action of G on X. Let d be a
continuous finite–valued pseudometric on X. Let d′ be the supremum of all pseudometrics
on X with the property that d′ | F × F ≤ d and d′ | (X r F ) × (X r F ) = 0. Explicitly,
let r be the function on X with rd(x) = d(x, X r F ) := inf{d(x, y) ; y ∈ X r F}. Then

d′(x, y) = min{d(x, y) , rd(x) + rd(y)}.

Note that for every x ∈ F there is a neighborhood of x where d and d′ coincide. The
function d′ is a finite–valued continuous pseudometric and the function G −→ R, g 7−→
d′(gx, gy) is continuous and has compact support, namely contained in G{x,y},F . Define

d′′(x, y) =

∫

G

d′(gx, gy)dg

9



where dg is a right invariant Haar measure on G. Then d′′ is a G–invariant pseudometric on
X. The pseudometric d′′ is actually a metric if d is a metric. Furthermore d′′ is continuous
for every d ∈ D, by a uniform equicontinuity argument for functions on compact spaces.
Thus the family D′′ = {d′′ ; d ∈ D} induces a weaker topology than D. The two
topologies are actually equal since for every neighborhood V of x ∈ X there are a compact
neighborhood V1 of x in X and a compact neighborhood U1 of e in G such that U1V1 ⊂ V
and U1(X r V ) ⊂ X r V1 and hence

d′′(x, y) ≥ d′(x, X r V1) ·

∫

U1

dg

for every y ∈ X r V , which implies our claim for x ∈ F and hence for every x by
G–invariance of the two topologies.

2nd proof. This proof is based on the notion of an equicontinuous group action. Consider
the one point compactification X = X ∪{∞}. The action of G on X extends to an action
of G on X by defining g(∞) = ∞ for every g ∈ G. The extended action is continuous.
Let D be a family of pseudometrics on X which induces the topology of X. Without
further assumptions on X we can take the family {df ; f : X → [0, 1] continuous}, see the
proof of corollary 5.3. If X is metrizable, we can take D to consist of just one element.
This is the case if and only if X is metrizable and σ–compact, see theorem 5.1. In any
case, define for d ∈ D and x, y ∈ X

d′(x, y) := sup
g∈G

d(gx, gy),

and set D′ = {d′ ; d ∈ D}. We claim that D′ induces the topology of X. Obviously, the
topology induced by D′ is finer than the topology of X, since d′ ≥ d and D induces the
topology of X.

Concerning the converse, consider the following property. The action of G on X is called
pointwise equicontinuous with respect to D if for every x ∈ X, d ∈ D and ǫ > 0 there is a
neighborhood U of x such that for y ∈ U we have d(gx, gy) < ǫ for every g ∈ G. Clearly,
if this holds the topology defined by D′ is weaker than the topology of X and our claim
is proved. It thus remains to show

Lemma 6.3. Let X be a space and let G be a topological group acting properly on X. Let
D be a family of pseudometrics on X inducing the topology of X. Then G acts pointwise
equicontinuously on X with respect to D.

Proof. Arguing by contradiction, assume that there are d ∈ D, x ∈ X, ǫ > 0 and a net
(xi)i∈I in X converging to x and a net (gi)i∈I in G such that d(gix, gixi) ≥ ǫ for every
i ∈ I. It follows that gi −→ ∞, since otherwise the net (gi)i∈I has a convergent subnet, say
(gj)j∈J converging to g ∈ G. Then gjx −→

j∈J
gx and gjxj −→

j∈J
gx contradicting d(gix, gixi) ≥

ǫ for every i ∈ I. It follows next that gixi −→
i∈I

∞, since otherwise there would be a subnet

(gjxj)j∈J converging to a point of X, which implies that there would be a convergent
subnet of (gj)j∈J , by properness of the action. Thus gixi −→

i∈I
∞ and gi −→

i∈I
∞, which
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implies gix −→
i∈I

∞, again by properness of the action. But then d(gix, gixi) −→
i∈I

0, since

d is continuous on X. This contradicts our assumption and finishes the proof.

Remark 6.4. The 2nd proof shows step 2 for the metrizable case only under the additional
assumption that X is metrizable, i.e., that X is metrizable and σ–compact. This is enough
for our main results, though, because there all spaces are σ–compact.

Remark 6.5. The pseudometrics we obtain by these proofs are not proper, in general.
This is clear for the second proof. For the first proof, even if we start from a proper
(pseudo–) metric d, we obtain in case that the orbit space G\X is compact – so F is
relatively compact – that d′′ has an upper bound.

Remark 6.6. One could rephrase the notion of pointwise equicontinuity in terms of
the unique uniformity on the compact space X. We chose here to use the language of
pseudometrics since proper (pseudo–) metrics are our final goal.

7 Orbitwise proper metrics and pseudometrics

If G acts on X we denote by π : X −→ G\X the natural map to the orbit space. We will
call a pseudometric d on X orbitwise proper if π (Bd(x, r)) has compact closure for every
x ∈ X and 0 < r < ∞. Again, we assume the notation and hypotheses of the last section.

Step 3. If X is σ–compact there is a family of G–invariant orbitwise proper finite–valued
pseudometrics on X inducing the topology of X. If X is furthermore metrizable there is
a G–invariant orbitwise proper compatible metric on X.

Proof. If X is a space with a proper action, then the orbit space G\X is Hausdorff as
well, see [3]. Clearly, G\X is locally compact. If furthermore X is σ–compact, so is
G\X. So there is a proper continuous function f : G\X → [0,∞), see lemma 5.2. The
pseudometric d′ := df◦π on X defined by

d′(x, y) = |fπ(x) − fπ(y)|

for x, y ∈ X is orbitwise proper, continuous and G–invariant. Hence if D is a family
of finite–valued G–invariant pseudometrics on X inducing the topology of X, so is D′ =
{d+d′ ; d ∈ D} and furthermore every pseudometric of this family is orbitwise proper.

8 The measuring stick construction

We first present our measuring stick construction in three equivalent ways. We then give a
sufficient condition under which the resulting pseudometric is proper. This will be applied
to our situation and yields step 4 of our proof.

11



8.1. Let X be a set, let d be a pseudometric on X and let U be a covering of X. We then
define a new pseudometric d′ = d′(d,U) on X depending on d and U as follows: d′ is the
supremum of all pseudometrics d′′ on X with the property that d′′|U × U ≤ d|U × U for
every U ∈ U .

8.2. We think of pairs (x, y) of points lying in one U ∈ U as measuring sticks or sticks, for
short. A sequence x = x0, x1, . . . , xn = y of points in X, such that any two consecutive
points form a stick, will be called a stick path from x to y of length n and d–length
∑n

i=1 d(xi−1, xi). We claim that d′(x, y) is the infimum of d–lengths of all stick paths from
x to y. Since on one hand defining d′ in this way clearly gives a pseudometric on X and
d′|U × U ≤ d|U × U . And, on the other hand, for every pseudometric d′′ with the two
properties above we have that d′′(x, y) is at most equal to the d–length of any stick path
from x to y, because for every stick path x = x0, x1, . . . , xn = y we have

d′′(x, y) ≤
n

∑

i=1

d′′(xi−1, xi) ≤
n

∑

i=1

d(xi−1, xi).

We thus obtain the following properties of d′ = d′(d,U)

a) d′ ≥ d

b) d′|U × U = d|U × U

c) If d is finite–valued on every U ∈ U then d(x, y) < ∞ if and only if there is a stick
path from x to y.

8.3. An alternative way to describe this construction is the following: Let ΓU be the
following graph. The vertices of ΓU are the points of X and the edges of ΓU are the
sticks, i.e., the pairs (x, y) contained in one U ∈ U . So the graph ΓU is closely related
to the nerve of the covering U . To every edge (x, y) of ΓU we can associate the weight
d(x, y). Then for points x, y in X the pseudometric d′(x, y) is the graph distance of the
corresponding vertices of this weighted graph.

Let us now return to the case we are interested in. Thus, let X be a σ–compact space with
a proper action of a locally compact topological group G. Let F be an open fundamental
set for G in X. We consider the covering U by the translates of F , so U = {gF ; g ∈ G}.
We apply the measuring stick construction for an appropriate pseudometric d and show
that the resulting pseudometric d′ is proper, but may be infinite–valued. We do this first
for the case that the orbit space G\X is compact and then for the general case. We
shall need an auxiliary result about Lebesgue numbers of our covering, see below lemma
8.5.The problem of infinite values of d′ will be dealt with in the next section. The method
will be the “bridge construction”.

We start with a well known result, for which we include a proof for the convenience of
the reader.

Lemma 8.4. If the orbit space G\X is compact then every fundamental set is relatively
compact. Conversely, if G\X is compact then every relatively compact subset F of X with
the property that GF = X is a fundamental set for G in X.
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Proof. The second claim is clear, since property b) of a fundamental set follows imme-
diately from the hypothesis that the action of G on X is proper, see proposition and
definition 2.3 ii). To prove the first claim choose a compact neighborhood Ux for every
point x ∈ X. A finite number of the π(Ux), x ∈ X, cover G\X, where π is the nat-
ural map π : X −→ G\X, which is known to be an open map. Let us say G\X =
π(Ux1

)∪ · · · ∪π(Uxn
), so X = GUx1

∪ · · · ∪GUxn
. Hence A ⊂ GUx1

,AUx1
∪ · · · ∪GUxn ,AUxn

for every subset A of X. For A = F the subsets GUxi
,F of G are relatively compact, by

property b) of a fundamental set, see definition 6.1. Hence F is relatively compact.

A family D of pseudometrics is called saturated if d1, d2 ∈ D implies sup(d1, d2) ∈ D.

Lemma 8.5. Let D be a saturated family of G–invariant pseudometrics inducing the
topology of X. Suppose the orbit space G\X is compact. Then there is a pseudometric
d ∈ D and a positive number ǫ such that for every x ∈ X the ball Bd(x, ǫ) is contained in
one translate of F .

A number ǫ with this property is called a Lebesgue number for the covering {gF ; g ∈ G}
with respect to d.

Proof. By G–invariance, it suffices to show this for points x ∈ F . Since F is compact,
it is covered by a finite number of gF , say F ⊂ g1F ∪ · · · ∪ gnF . Recall that F is
supposed to be open. The set of balls Bd(x, r), d ∈ D, x ∈ X, r > 0, form a base of
the topology of X, not only their finite intersections, since D is saturated. Thus there is
for every x ∈ F a pseudometric dx ∈ D and a radius rx such that Bdx

(x, rx) is contained
in one translate of F , since F is open. A finite number of balls Bdx

(

x, rx

2

)

cover F , say

those for x = x1, . . . , xn. Thus for every y ∈ F there is an xi, i = 1, . . . , n, such that
y ∈ Bdxi

(

xi,
rxi

2

)

and hence Bdxi

(

y,
rxi

2

)

⊂ Bdxi
(xi, rxi

) is contained in one translate of F .
Hence our claim holds for d = sup(dx1

, . . . , dxn
) ∈ D and ǫ = inf(rx1

, . . . , rxn
).

Now let again U = {gF ; g ∈ G} and for a G–invariant pseudometric d on X let
d′ = d′(d, U) be the pseudometric obtained by the measuring stick construction.

Proposition 8.6. Suppose the orbit space G\X is compact. Let d be a continuous G–
invariant pseudometric on X, for which there is a Lebesgue number for U . Then d′ is
a proper pseudometric, i.e., Bd′(x, R) is relatively compact for every x ∈ X and every
R < ∞.

Proof. We may assume that x ∈ F , by G–invariance. Then y ∈ Bd′(x, R) if and only if
there is a stick path x = x0, x1, . . . , xn = y with d–length

∑n

i=1 d(xi−1, xi) < R. We may
assume that no three consecutive points xi−1, xi, xi+1 of our stick path are contained in
one translate of F , because otherwise we can leave out xi from our stick path and obtain
a stick path of not greater d–length. Let ǫ be the Lebesgue number for U with respect to
d. It follows that d(xi−1, xi)+ d(xi, xi+1) ≥ ǫ for every i = 1, . . . , n− 1, because otherwise
xi−1, xi, xi+1 are contained in one translate of F . We thus obtain the following upper
bound for the length n of our stick path:

n <
2R

ε
+ 1.
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Thus, let N ∈ N ∪ {0} and let BN be the set of points y ∈ X for which there is a stick
path of length N starting at a point x ∈ F and ending at y. We have to show that BN

is relatively compact for every N ∈ N ∪ {0}. For N = 0 we have BN = F . If y ∈ BN+1

there is a point y′ ∈ BN such that (y′, y) is a stick, say {y′, y} ⊂ g F . Then y′ ∈ BN ∩ g F
and hence g ∈ GF,BN

= GB−1

N
,F . This subset of G is relatively compact by induction and

property b) of a fundamental set. Thus y ∈ g F ⊂ GF,BN
F , hence BN+1 ⊂ GF,BN

F and
so BN+1 is relatively compact.

This yields step 4 of our proof for the case that the orbit space is compact. For the general
case we need one pseudometric d for which there is a Lebesgue number for every subset
of X of the form π−1(K) where K is a compact subset of G\X. Here we have to suppose
that the orbit space is σ–compact.

Before we proceed to do this we need to figure out where d′ is finite. Let F and U be
as above. We do not suppose that the orbit space is compact. Let d be a G–invariant
pseudometric on X for which d|F × F has finite values. Let the symbol “∼” denote the
smallest G–invariant equivalence relation on X for which F is contained in one equivalence
class. Recall that GFF = {g ∈ G; gF ∩ F 6= ∅}. Let G0 be the subgroup of G generated
by GFF .

Lemma 8.7. Let x and y be points of X. The following properties of the pair (x, y) are
equivalent

a) d′(x, y) < ∞.

b) There is a stick path from x to y.

c) x ∼ y.

d) The vertices x and y of the graph ΓU belong to the same connected component of
ΓU .

e) If x ∈ g F and y ∈ h F then g−1h ∈ G0.

The equivalence classes will be called islands from now on.

Proof. a)⇐⇒b) was noted above, and b)⇐⇒d) and b)⇐⇒c) follow immediately from the
definitions.
b) =⇒ e). Let x ∈ g F and y ∈ h F and let (x, y) be a stick, say {x, y} ⊂ k F for some
k ∈ G. Then g−1k ∈ GFF and h−1k ∈ GFF hence g−1h ∈ G0. The claim b)⇐⇒e) follows
now by induction on the length of the stick path.

e) =⇒ c). Let Y be an equivalence class of ∼. Thus, if one point of a translate g F of
F is contained in Y then g F is contained in Y . By the same argument applied to g k F
with k ∈ GFF it then follows that g GFFF ⊂ Y , hence g · GFF · GFF F ⊂ Y , etc. So
g G0 F ⊂ Y if g F ∩ Y 6= ∅, which proves our claim.

Corollary 8.8. The map g G0 7−→ g G0 F establishes a bijection between the set G/G0 of
left cosets of G0 in G and the set of islands in X.
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Corollary 8.9. If G\X is σ–compact, so are F , GF,F , G0 and every island.

Proof. If K is a compact subset of G\X, then so is FK := F ∩ π−1(K) = π−1(K) ∩ F , by
lemma 8.4, and hence also GFK ,FK

, since the action of G on X is proper and continuous.
It follows that if G\X is σ–compact, so are F , GF ,F , the subgroup G1 of G generated by

GF,F and G1F . It thus remains to be shown that G0 = G1 and G0F = G0F . But clearly

GFF = GFF since F is open, hence GFF ⊂ G−1
FF

·GFF , by the formula following definition

6.1, and thus GF,F ⊂ G0 and hence G1 = G0. Furthermore F ⊂ G−1
FF

F , by 6.1 a), and

hence G0F = G0F .

We come back to the Lebesgue number and show properness of d′ for the case that the
orbit space is σ–compact. This accomplishes step 4 of our plan in section 4. Note that at
this point we do not need that X is σ–compact, only that the orbit space is σ–compact.

Lemma 8.10. Suppose the orbit space G\X is σ–compact.

a) Then there is a continuous orbitwise proper G–invariant pseudometric d on X with
the following properties: d is finite–valued on every island and for every compact
subset K of G\X there is a Lebesgue number for the covering U|π−1(K) of the
G–space π−1(K) with respect to the restriction of d to π−1(K).

b) If d is as in a) then d′ is proper, which means that the ball Bd′(x, R) has compact
closure for every x ∈ X and every 0 < R < ∞.

Proof. a) Let Kn, n ∈ N, be a sequence of compact subsets of G\X such that
⋃∞

n=1 Kn =

G\X and Kn ⊂
◦

Kn+1 for every n ∈ N. Put Xn = π−1(Kn). Then Xn is a closed G–
invariant subset of X on which G acts properly with compact orbit space Kn. The set
Fn := F ∩Xn is an open fundamental set for G in Xn, hence relatively compact in Xn and
in X. So there is a continuous orbitwise proper G–invariant finite–valued pseudometric
dn on X such that there is a Lebesgue number for the covering {gFn; g ∈ G} of Xn with
respect to the pseudometric dn restricted to Xn. Note that dn is defined and finite–valued
on all of X. To see the existence of such a dn, we apply lemma 8.5 to the family d|Xn×Xn

where d runs through a saturated family of finite–valued G–invariant pseudometrics on
X inducing the topology of X, which we may assume to be orbitwise proper, by Step 3
in section 7.

Let Y be the island G0F containing F . We use here the notation of lemma 8.7 and its
corollaries. Since Y is σ–compact, there is a family Ln, n ∈ N, of compact subsets of Y

such that
⋃∞

n=1 Ln = Y and Ln ⊂
◦

Ln+1. We may assume that dn|Ln ×Ln has values ≤ 1,
by rescaling. Now define

d(x, y) =

{

Σ 1
2n dn(x, y) if x ∼ y

∞ otherwise.

Then d is G–invariant continuous orbitwise proper pseudometric on X, which is finite–
valued on Y ×Y and hence on every island. There is a Lebesgue number for the covering
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{g Fn ; g ∈ G} of Xn with respect to d, since there is one for dn and d ≥ 1
2n dn. Here we

think of d and dn as restricted to Xn × Xn. This implies our claim under a).

b) Islands are of the form g G0 F , hence open, since F is supposed to be open. It follows
that they are also closed. Again, let Y = G0F be the island containing F . Let Bd′(x, R),
x ∈ X, 0 < R < ∞, be a ball for the pseudometric d′ and let B be its closure. We have
to show that B is compact. We know that K := π(B) is compact, since d is orbitwise
proper and hence so is d′, since d′ ≥ d by 8.2 a). We may assume that x ∈ F and hence
Bd′(x, R) ⊂ Y and thus B ⊂ Y .

The subgroup G0 of G is open since generated by the open subset GFF . It follows that
G0 is a closed subgroup of G. Then the action of G0 on Y is proper, since the restricted
action of G0 on X is proper and Y is a closed G0–invariant subset of X. And F is an
open fundamental set for G0 in Y . Let Z = Y ∩ π−1(K). This is a closed G0–invariant
subset of Y and FZ := Z ∩F = F ∩ π−1(K) is an open fundamental set for G0 in Z. The
orbit space G0\Z is compact; it can be identified with K. So we can apply proposition
8.6 to the G0–space Z, the pseudometric d|Z ×Z and the covering UZ := {gFZ ; g ∈ G0}
to obtain that the resulting stick path pseudometric d′′ := d′(d|Z × Z,UZ) is proper. It
remains to see that Bd′′(x, R) = Bd′(x, R). Clearly d′′(x, y) < R implies d′(x, y) < R, by
looking at the stick paths for UZ . Conversely, if d′(x, y) < R then there is a stick path
x = x0, x1, . . . , xn = y for U with Σd(xi−1, xi) < R. Then all the xi are in Bd′(x, R) ⊂ Y
and π(xi) ∈ K, hence xi ∈ Z and every pair xi−1, xi is contained in some translate gF of
F . But then g ∈ G0, by 8.7 e), and so {g−1xi−1, g

−1xi} is contained in F and in Z, hence
in FZ . Thus our stick path is also a stick path for UZ in Z and thus d′′(x, y) < R.

9 Bridges

Again, let X be a σ–compact space and let the locally compact group G act properly on
X. Note that then G is σ–compact as well, since if X is the union of countably many
compact subsets Kn then G is the union of the countably many sets GKn,Kn

which are
compact since the action of G on X is both proper and continuous. Let us again fix an
open fundamental set F for G in X. Then, using the notation of the last section, G0 is an
open subgroup of G and hence G/G0 is a countable discrete space. We can thus choose
a finite or infinite sequence of elements gn, n = 0, 1, . . . , such that G is the union of the
disjoint cosets gnG0. We may assume that g0 is the identity element. Let S be the set of
indices, so S = N∪{0} or S = {0, 1, . . . , N} for some N ∈ N∪{0}. Thus G =

⋃

n∈S gnG0

and hence X is the union of the disjoint subsets gnG0F , n ∈ S, by corollary 8.8. Recall
that the sets of the form g G0F are called islands. Consequently we define a bridge to be
a 2–point subset of X of the form {gx, ggnx} with g ∈ G, n ∈ S, n 6= 0, and x ∈ F . Note
that gx and ggnx are always on different islands since n 6= 0. But the representation of a
bridge in the form above may not be unique. Now suppose a G–invariant pseudometric
d on X is given. We then define the bridge path pseudometric dB on X as the supremum
of all pseudometrics d′′ with the following two properties.

9.1. a) For every island Y in X we have d′′|Y × Y ≤ d|Y × Y .
b) d′′(gx, ggnx) ≤ n for g ∈ G, n ∈ S and x ∈ F .
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There is an alternative description of dB in terms of paths. Let us define the length of a
bridge {y, z} as the smallest number n ∈ S such that {y, z} = {gx, ggnx} for some g ∈ G
and x ∈ F . Thus, the length of a bridge is always an integer ≥ 1. Let us call a sequence of
points x = x0, x1, . . . , xn = y a bridge path of length n from x to y if any two consecutive
points either lie on a common island or form a bridge, i.e., for every i = 1, . . . , n there is
either an island Y such that {xi−1, xi} ⊂ Y or {xi−1, xi} is a bridge. Define the d–length
of such a bridge path as

∑n

i=1 di where di = d(xi−1, xi) if {xi−1, xi} is on one island or, if
{xi−1, xi} is a bridge, then let di be the length of this bridge.

9.2. dB(x, y) is the infimum of d–lengths of all bridge paths from x to y.

Proof. The pseudometric d′′ defined by the statement of 9.2 has the properties 9.1 a) and
b). Conversely, if d′′ is a pseudometric with the properties 9.1 a) and b), then d′′(x, y)
is at most equal to the d–length of any bridge path from x to y, cf. the similar proof in
8.2.

Proposition 9.3. Properties of dB

a) dB is G–invariant.

b) dB is finite–valued if d|Y × Y is finite–valued for one (equivalently every) island Y .

c) If x is a point of the island Y , then the balls Bd(x, r)∩Y and BdB
(x, r) coincide for

r < 1.

d) If d is continuous, so is dB.

e) Suppose d is continuous, proper and, for every island Y , has finite values on Y ×Y .
Then dB is continuous, proper and finite–valued (everywhere).

Proof. a) follows from our construction.

b) follows from the fact that dB is G–invariant and every island can be reached from
F by a bridge.

c) follows from 9.2 and the fact that every bridge has length ≥ 1.

d) A pseudometric is continuous if it is continuous near the diagonal, by the triangle
inequality. So d) follows from c).

e) is the main point of these properties. It remains to be shown that dB is proper
if d is proper, continuous and on every island finite–valued. Thus let x ∈ X and
0 < R < ∞. We have to show that BdB

(x, R) has compact closure. For a point
y ∈ X we have dB(x, y) < R if there is a bridge path x = x0, . . . , xn = y with
d–length Σdi < R. We may assume that three consecutive points xi−1, xi, xi+1 of
our bridge path are not on a common island, since otherwise we could leave out xi

without increasing the d–length of our path, by the triangle inequality for d. So our
path has at least n+1

2
bridges, all of length ≥ 1. We thus have an upper bound for
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the length n of our bridge path, namely n ≤ 2R + 1. Furthermore, every bridge
in our path has length at most R and every step di = d(xi−1, xi) on one island has
length at most R. It thus suffices to prove the following two claims.

a) If K is a compact subset of X, then Bd(K, R) = {y ∈ X ; d(x, y) < R} has
compact closure.

b) If K is a compact subset of X, then the set B(K, R) := {z ∈ X; there is a
bridge {y, z} from a point y ∈ K to z of length ≤ R} has compact closure.

Proof of a). K is contained in a finite union of islands, since K is compact and the islands
are open and disjoint and form a cover of X. It thus suffices to prove our claim for the
case that K is contained in one island, say Y . Let x be a point of K. Then the function
y 7−→ d(x, y) is continuous and finite–valued on Y , hence has a finite maximum on K, so
K ⊂ Bd(x, r) for some 0 < r < ∞. Then Bd(K, R) ⊂ Bd(x, r + R), which has compact
closure by hypothesis. This shows our claim.

Proof of b). The bridges {y, z} starting from a point of K and having length ≤ R are
of the form {gx, ggnx} with x ∈ F and n ≤ R, and either gx ∈ K or ggnx ∈ K. Hence
g ∈ GFK or g ∈ GgnF,K = GFK · g−1

n and hence the endpoint z of our bridge is of the form
z = ggnx ∈ GFKgnK in the first case or of the form z = gx ∈ GFKg−1

n K in the second
case, thus every endpoint z of such a bridge is contained in the relatively compact set
⋃

n≤R GFKg±1
n K, as was to be shown.

9.4. We are now ready to finish the proof of our main theorems 1.1 and 1.2. Let X be
a σ–compact Hausdorff space and suppose the locally compact topological group G acts
properly on X. We have shown that then there is a family of continuous G–invariant
pseudometrics on X inducing the topology of X, see step 2 in chapter 6, which we may
furthermore assume to be finite–valued and orbitwise proper, by step 3 in chapter 7. Then
the stick construction of chapter 8 gave us a pseudometric, which is continuous, proper
and on every island finite–valued, namely the pseudometric d′ of lemma 8.10. Continuity
of d′ follows from property 8.2 b) and finiteness on islands from lemma 8.7. If we use this
pseudometric in the bridge construction of chapter 9 then the resulting pseudometric dB is
continuous, finite–valued and proper. If now D is a family of G–invariant pseudometrics
inducing the topology of X – we know that such a family exists, by step 2 in chapter
6 – then the family {sup(d, dB) ; d ∈ D} has all the properties we want in theorem 1.2
(theorem 4.1). If X is furthermore metrizable, then there is a compatible G–invariant
metric d on X, by step 2 in chapter 6. Again, there is a pseudometric dB which is
continuous, proper, finite–valued and G–invariant. Then the metric sup(d, dB) has all
these properties, too, and is furthermore a compatible metric. This proves theorem 1.1
(theorem 4.2).

Let us point out the following corollary, due to Haagerup and Przybyszewska [7].

Corollary 9.5. Every second countable locally compact group has a left invariant com-
patible proper metric.
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Proof. The underlying space of such a group G is metrizable and σ–compact, by corollary
5.4. The action of G on itself by left translations is obviously proper, so there is a
compatible left invariant proper metric on G, by theorem 1.1.

As a special case we obtain the following old result of Busemann [4].

Corollary 9.6. The group of isometries of a proper metric space admits a compatible left
invariant proper metric.

Proof. The group G of isometries of a proper metric space is locally compact and Haus-
dorff, see theorem 3.2, and second countable, see [3, Ch. X, §3.3 Corollary], which implies
our claim by the previous corollary.

10 Concluding remarks

In this chapter we discuss applications and related work, mention open questions and
make other remarks.

10.1. In the non–equivariant context, i.e., if we consider just the topological space X
without any group action, it is well known that a σ–compact locally compact metrizable
space has a compatible proper metric, see corollary 5.4. More precisely, in [14] it is proved
that if d is a complete metric on such a space X then there is a proper metric on X which
is locally identical with d, i.e., for every point x ∈ X there is a neighborhood of x where
the two metrics coincide. Note that in our construction the metric is not changed locally
in steps 4 and 5 of chapter 4. Thus in the situation of theorem 1.1 if d is a compatible
G–invariant metric on X which is orbitwise proper then there is a G–invariant compatible
proper metric on X which is locally identical with d. One may thus ask the following
question: Suppose, in the situation of theorem 1.1, we are given a G–invariant complete
compatible metric on X. Is there a G–invariant proper (compatible) metric on X which
is locally identical with d?

10.2. Given an isometric action of a group G on a σ–compact locally compact metric space
X with metric d, it is not true in general that there is a compatible proper metric dp for
which the action of G is isometric. For an example let X = {(x, y) ∈ R2; x = 0 or x = 1}
endowed with the metric d = min{dE, 1} where dE is the Euclidean metric ofR2 restricted
to X. Let G be the group of isometries of (X, d). There is no compatible proper metric dp

on X for which G acts isometrically, for the following reason. The group H of isometries
of (X, dp), endowed with the compact open topology, acts properly, hence the isotropy
group H(0,0) of the point (0, 0) is compact and hence has compact orbits. On the other
hand, let G(0,0) be the isotropy group of the point (0, 0) in G. The orbit G(0,0)(1, 0) of
(1, 0) is {1} × R and is not relatively compact in X. So G is not contained in H . The
point of the example is that the action of G is not proper, no matter which topology we
put on G.
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10.3. Let us consider the following question. Under which conditions is it true that given
a compatible metric d on a locally compact σ–compact space X there is a compatible
proper metric dp with the same group of isometries? A sufficient condition was given by
Janos [8], namely if (X, d) is a connected uniformly locally compact metric space.

10.4. Note that if we have a closed subgroup G of the group of isometries of a proper
metric space (X, d) then it is not true in general that there is a metric d1 on X for which
G is the precise group of isometries. E.g., the space X = R of real numbers with the
Euclidean metric has the group G = R as a closed subgroup of its group of isometries.
But for every G–invariant metric d1 on X we have d1(x, 0) = d1(0,−x), hence the group
of isometries of d1 contains the reflections of R and is thus strictly larger than R.

10.5. Given a proper action of a locally compact topological group G on a locally compact
metrizable space X, one can ask if there is a G–invariant metric. This is known to be
equivalent to G\X being paracompact [12], [1], [2]. The answer is positive in many cases,
see [1], [2]. If X is no longer locally compact, the answer is known to be negative if
the action is Bourbaki–proper, see [1], but again unknown in general for Palais–proper
actions.

10.6. Our theorem 1.1 has potential applications for the Novikov conjecture. Namely, let
G be a locally compact second countable group and let µ be a Haar measure on G. Then,
using a proper left invariant compatible metric on G, Haagerup and Przybyszewska have
proved in [7] that there is a proper affine isometric action of G on some separable strictly
convex reflexive Banach space. Kasparov and Yu have recently proved that the Novikov
conjecture holds for every discrete countable group which has a uniform embedding into
a uniformly convex Banach space, see [10]
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ON THE ACTION OF THE GROUP OF ISOMETRIES

ON A LOCALLY COMPACT METRIC SPACE:

CLOSED-OPEN PARTITIONS AND CLOSED ORBITS

ANTONIOS MANOUSSOS

Abstract. In the present work we study the dynamic behavior
of the orbits of the natural action of the group G of isometries on a
locally compact metric space X using suitable closed-open subsets
of X . Precisely, we study the dynamic behavior of an orbit even in
cases where G is not locally compact with respect to the compact-
open topology. In case G is locally compact we decompose the
space X into closed-open invariant disjoint sets that are related
to various limit behaviors of the orbits. We also provide a simple
example of a locally compact separable and complete metric space
X with discrete group of isometries G such that the natural action
of G on X has closed and non-closed orbits.

1. Introduction

The group of isometries and their actions play an important role in
many branches of Mathematics (especially in Geometry). This class of
actions is rich, as a recent result of Abels, Noskov and the author in
[2] shows. In [2] it is shown that if Y is a locally compact σ-compact
metrizable space then a locally compact group Γ acts properly on Y if
and only if there exists a Γ-invariant proper compatible metric on Y
(recall that a metric on Y is called proper or Heine-Borel if every ball
has compact closure in Y ). So, in this case, we can consider such a
group as a closed subgroup of the group of isometries of a proper met-
ric space (modulo the kernel of the action). The first result concerning
the local compactness of the group of isometries of a locally compact
metric space is the van Dantzig - van der Waerden theorem in 1928 (see
[7] and [10, Theorem 4.7]) which says that the group G of isometries of

2000 Mathematics Subject Classification. Primary 37B05; Secondary 54H20.
Key words and phrases. Isometries, closed-open partitions, closed orbits, pseudo-

components.
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2 ANTONIOS MANOUSSOS

a connected, locally compact metric space X is locally compact (with
respect to the compact-open topology) and acts properly on X. In [12]
(see also [14]) this result is generalized for the case of a locally compact
metric space which has quasi-compact (i.e. compact but not necessar-
ily Hausdorff) space of connected components (or quasi-components).
In particular it is shown that the group of isometries of X is locally
compact but may fail to act properly on X even for the case that X has
only two connected components. A crucial point in obtaining this re-
sult is making use of suitable closed-open subsets of X (for more details
see the next section). At the same time Gao and Kechris in [8, Theo-
rem 5.4 and Corollary 6.2] (see also [6]) showed a stronger result: that
the group of isometries G of a locally compact separable metric space
X with finitely many pseudo-components (which are also closed-open
subsets of X, see [8, Proposition 5.3]) is locally compact and in case X
is locally compact, separable and pseudo-connected then G acts prop-
erly on X (for definitions and more details see [8, p. 32] and Section 3
below). Important examples of locally compact, separable and pseudo-
connected spaces are the proper (Heine-Borel) spaces. Comparing the
results of [12] and [8] we would like to mention that the assumption
about the quasi-compactness of the space of connected components of
X in [12] is purely topological hence the result in [12] applies to any
metric that induces the topology of X. Obviously the assumption in [8]
about finitely many pseudo-components depends on the choice of the
metric on X but the result is stronger since a locally compact metric
space with quasi-compact space of connected components has finitely
many pseudo-components.

The purpose of this paper is to show that the closed-open subsets of
X used in [12] and [8] also give information for the space X and the
dynamic behavior of the orbits of the natural action of G on X, even
for the case that G is not a locally compact group. In what follows, X
will denote a locally compact metric space with a fixed metric d and
G := Iso(X, d) will denote the group of (surjective) isometries of X
endowed with the compact-open topology. The natural action of G on
X is the action with (g, x) 7→ g(x), g ∈ G, x ∈ X. The main results in
this work are stated below:

In Section 3 (see Propositions 3.1 and Corollary 3.4 below) we show
the following:

Proposition. Let x, y ∈ X and a net {gi} in G with gix → y. Then
there exist a subnet {gj} of {gi}, a closed-open subset A of X that
contains x and a map f : A → X which preserves the distance such
that gj → f pointwise on A, f(x) = y and f(A) is an open subset of X.
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The same result also holds if we replace A with the pseudo-component
Cx that contains x. In this case f(Cx) = Cf(x).

The previous proposition gives as corollaries the van Dantzig - van
der Waerden theorem (see Corollary 3.2 below) and the results of Gao
and Kechris in [8, Theorem 5.4 and Corollary 6.2] (see Corollary 3.5
below). In Section 4 we give some applications in case G is locally
compact and there exist closed orbits for the action of G on X. We
also give a simple example of a locally compact separable and complete
metric space with a discrete group of isometries such that the natural
action of G on X has closed and non-closed orbits (see Example 4.4
below). In Section 5 we show that the closed-open subsets of X used
in [12] leads to a decomposition of the space X into closed-open G-
invariant disjoint sets that are related to the limit behavior of the
orbits (see Theorem 5.1 below): Let

L(x) = {y ∈ X | there exists a net {gi} in G

with gi → ∞ and lim gix = y},

denote the limit set of x ∈ X, where gi → ∞ means that the net {gi}
has no cluster point in G.

Theorem. Assume that G is locally compact and not compact and let

CL = {x ∈ X |L(x) is not empty and compact},

NCL = {x ∈ X |L(x) is not compact} and

P = {x ∈ X |L(x) is the empty set}.

Then the sets CL, NCL and P are closed-open G-invariant disjoint,
their union is X and each one of them is a union of pseudo-components.

2. Preliminaries

A continuous action of a topological group Γ on a topological space
Y is a continuous map Γ×Y → Y with (g, x) 7→ gx, g ∈ Γ, x ∈ Y such
that (1, x) 7→ x, for every x ∈ Y where 1 denotes the unit element of
Γ, and h(gx) = (hg)x for every h, g ∈ Γ and x ∈ Y . For U ⊆ Y let
ΓU denote the set {gx | g ∈ Γ, x ∈ U}. Especially, if U = {x} then the
set Γx := Γ{x} is called the orbit of x ∈ Y under Γ. If ΓU = U we
say that U is Γ-invariant. The subgroup Γx := {g ∈ Γ | gx = x} of Γ is
called the isotropy group of x ∈ Y .

In what follows, X will denote a locally compact metric space with a
fixed metric d and G := Iso(X, d) will denote the group of (surjective)
isometries of X endowed with the compact-open topology. The natural
action of G on X is the action with (g, x) 7→ g(x), g ∈ G, x ∈ X.
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If we endow G with the topology of pointwise convergence then G
is a topological group (see [5, Ch. X, §3.5 Corollary]). On G there
is also the topology of uniform convergence on compact subsets which
is the same as the compact–open topology. In the case of a group
of isometries these topologies coincide with the topology of pointwise
convergence, and the natural action of G on X with (g, x) 7→ g(x) is
continuous (see [5, Ch. X, §2.4 Theorem 1 and §3.4 Corollary 1]).

We recall that in [4, Ch. III, §4.1 Definition 1] a continuous action
of a topological group Γ on a topological space Y is said to be proper
(or Bourbaki proper) if the map

Γ × Y → Y × Y with (g, x) 7→ (x, gx), for g ∈ Γ and x ∈ Y

is proper, i.e. it is continuous, closed and the inverse image of a single-
ton is a compact set.

To simplify the proofs we shall use the following equivalent definition
for properness: a continuous action is proper if the extended limit sets
J(x) are empty for every x ∈ Y , where

J(x) = {y ∈ Y | there exist nets {xi} in Y and {gi} in Γ

with gi → ∞, limxi = x and lim gixi = y},

where gi → ∞ means that the net {gi} has no cluster point in G. It is
easy to see that in the special case of actions by isometries J(x) = L(x)
holds for every x ∈ Y , where

L(x) = {y ∈ Y | there exists a net {gi} in Γ

with gi → ∞ and lim gix = y},

denotes the limit set of x ∈ Y under the action of Γ on Y . Hence
an action by isometries is proper if and only if L(x) is the empty set
for every x ∈ Y . The limit and the generalized limit sets for locally
compact spaces and groups are closed and Γ-invariant (see [3]). The
following example shows that even in case that X has two connected
components the action of G on X may not be proper (see also [14]).

Example 2.1. Let X = L1 ∪ L2 ⊂ R2 where L1 = {(0, t) | t ∈ R} and
L2 = {(2, t) | t ∈ R}. We consider the metric d = min{dE, 1} where dE

is the usual Euclidean metric on R2. With this metric X is a locally
compact separable space. Since for a point x ∈ X (actually for every
x ∈ X) the isotropy group Gx contains an isomorphic copy of the reals
the action of G on X is not proper.

Let F be a subset of G. We define K(F ) to be the set

K(F ) := {x ∈ X | the set Fx has compact closure in X}.
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These sets played a crucial role in [12] where it is shown that they are
closed-open subsets of X (see [12, Lemma 3.1], [14]). Actually we can
find the same definition and result in Bourbaki (see [5, Ch. X, Exercise
13, p. 323]) but as we mentioned in [2] there is a mistake in part d) of
this exercise (for a counterexample see [2] or [11]).

3. The general case

In this section the only assumption is that X is locally compact with-
out assuming the same for G. We study the following problem: Assume
that there is a pair of points x, y ∈ X and a net {gi | i ∈ I} in G such
that gix → y. What can we say about the convergence of {gi}?

Proposition 3.1. Let x, y ∈ X and a net {gi | i ∈ I} in G with gix →
y. Then there exist a subnet {gj | j ∈ J} of {gi | i ∈ I}, a closed-open
subset A of X that contains x and a map f : A → X which preserves
the distance such that gj → f pointwise on A, f(x) = y and f(A)
is an open subset of X. Moreover, if {gi} is a sequence and X is a
second countable space (in which case the limit sets can be described
using sequences) then f(A) is closed.

Proof. Since d(x, g−1
i y) = d(gix, y) → 0 it follows that g−1

i y → x. By
the local compactness of X there exists an index i0 ∈ I such that, if
F := {gi | i ≥ i0} then x ∈ K(F ) and y ∈ K(F−1), where F−1 :=
{g−1

i | i ≥ i0}. Set A := K(F ). By [12, Lemma 3.1] A is a closed-open
subset of X. If gi|A denotes the restriction of each gi on A, then the
Arzela-Ascoli theorem implies that the set {gi|A : A → X | i ≥ i0} has
compact closure in C(A, X) (this the set of all continuous maps from
A to X). Thus, there exists a subnet {gj | j ∈ J} of {gi | i ∈ I} and a
map f : A → X with f(x) = y which preserves the distance such that
gj → f pointwise on A. We show that f(A) is open: Let z ∈ f(A).
That is, there is w ∈ A such that f(w) = z. It is enough to show
that if {zl} ⊂ X is a net such that zl → z then zl ∈ A eventually for
every l. Since w ∈ A then gjw → f(w) = z. Hence g−1

j z → w. As
before there exists an index j0 such that, if F1 := {gj | j ≥ j0} then
w ∈ K(F1) and z ∈ K(F−1

1 ). Again by the Arzela-Ascoli theorem
there exist a subnet {gk} of {gj} and a map h : K(F−1

1 ) → X which
preserves the distance such that g−1

k → h pointwise on K(F−1
1 ) and

h(z) = w. Since K(F−1
1 ) is open and z ∈ K(F−1

1 ) we may assume that
zl ∈ K(F−1

1 ) eventually for every l. Hence h(zl) → h(z) = w ∈ A
as l → ∞ and for each l, g−1

k zl → h(zl) as k → ∞. Therefore
h(zl) ∈ A eventually for every l. Fix a point h(zl) ∈ A. Then
gk(h(zl)) → f(h(zl)). Thus d(zl, f(h(zl))) ≤ d(gkg

−1
k zl, gkh(zl)) +
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d(gkh(zl), f(h(zl))) = d(g−1
k zl, h(zl)) + d(gkh(zl), f(h(zl))) → 0 as k →

∞. Hence zl = f(h(zl)) ∈ A eventually for every l.
Note that up to this point we have only used the property that the

sets K(F ) are open. If {gi | i ∈ N} is a sequence we can set F2 :=
{gi | i ∈ N} and A := K(F2). Then A is a non-empty closed-open
subset of X and, as before, there exists a subsequence {gin |n ∈ N} of
{gi} (here we use that X is second countable) and a map f : A → X
with f(x) = y which preserves the distance such that gin → f pointwise
on A. We will use now the property that the sets K(F ) are closed to
show that f(A) is also a closed subset of X. If we set F3 := {gin |n ∈
N} then it is easy to verify that f(A) ⊆ K(F−1

3 ) and there exist a
subsequence {ginl

| l ∈ N} of {gin} and a map h : K(F−1
3 ) → X which

preserves the distance such that g−1
in

l

→ h pointwise on K(F−1
3 ). Take

a sequence {f(ak) | k ∈ N}, ak ∈ A such that f(ak) → b for some
b ∈ X. We will show that b ∈ f(A). Fix k ∈ N. Since f(A) ⊆ K(F−1

3 )
and K(F−1

3 ) is closed then f(ak) ∈ K(F−1
3 ), g−1

in
l

f(ak) → h(f(ak))

as l → ∞ and b ∈ K(F−1
3 ). The latter implies that g−1

inl

b → h(b).

Note that d(g−1
in

l

b, h(b)) = d(b, ginl
h(b)) → 0 so ginl

h(b) → b. We will

show that h(b) ∈ A and gin
l
h(b) → f(h(b)), hence b = f(h(b)) ∈

f(A) and the proof is finished. Indeed, observe that d(g−1
inl

f(ak), ak) =

d(f(ak), gin
l
ak) → 0 as l → ∞. Therefore h(f(ak)) = ak. Thus ak =

h(f(ak)) → h(b) as k → ∞. But ak ∈ A and A is a closed subset of X
hence h(b) ∈ A. So gin

l
h(b) → f(h(b)). �

Note that f(A) may not be G-invariant, see for instance Example
2.1. As an application of Proposition 3.1 we can prove the van Dantzig
- van der Waerden theorem in a short and elegant way comparing to
the proof in the original work of van Dantzig and van der Waerden [7]
or to the lengthy one in [10, Theorem 4.7, pp. 46–49]:

Corollary 3.2. (The van Dantzig - van der Waerden theorem) The
group G of isometries of a connected, locally compact metric space X
is locally compact (with respect to the compact-open topology) and G
acts properly on X.

Proof. It is enough to show that G acts properly on X (i.e. L(x) = ∅ for
every x ∈ X, see Section 2) because in this case for every pair of points
x, y ∈ X there exist open neighborhoods Ux, Uy of x, y respectively
such that the set {g ∈ G | gUx ∩ Uy 6= ∅} has compact closure in G
(see e.g. [3]). Let x, y ∈ X and a net {gi} in G such that gix → y.
Proposition 3.1 implies that there exist a subnet {gj} of {gi}, a closed-
open subset A of X and a map f : A → X which preserves the distance
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such that gj → f pointwise on A. Since X is connected it follows that
A = X. Note that d(x, g−1

i y) = d(gix, y) → 0 hence we can repeat
the same procedure as before and find a subnet {gk} of {gi} and maps
f, h : X → X which preserve the distance such that gk → f and
g−1

k → h pointwise on X. Obviously h is the inverse of f . This shows
that f ∈ G. Hence, L(x) = ∅ and since x ∈ X was arbitrary the action
is proper. �

A question which arises from Proposition 3.1 is whether there is any
difference if one replaces A with the pseudo-component that contains
the point x ∈ X. We answer this question in the affirmative in Corol-
lary 3.4. Before we present these result we need some formulation that
we can also find in [8, p. 32]:

An important notion in the definition of the pseudo-component of a
point x ∈ X is the radius of compactness ρ(x) of x:

ρ(x) := sup{ r > 0 | the open ball B(x, r) has compact closure}

where B(x, r) denotes the open ball centered at x ∈ X with radius
r > 0. It is easy to see that if g ∈ G then ρ(gx) = ρ(x). We define
an equivalence relation E on X as follows: Firstly we define a directed
graph R on X by

xRy if and only if d(x, y) < ρ(x).

Let R∗ be the transitive closure of R, i.e.

xR∗y if and only if for some u0 = x, u1, . . . , un = y

we have uiRui+1 for every i < n. Finally, define the following equiva-
lence relation E on X

xEy if and only if x = y or (xR∗y and yR∗x).

We call the E-equivalence class of x ∈ X the pseudo-component of x,
and we denote it by Cx. We call X pseudo-connected if it has only one
pseudo-component. It follows that pseudo-components are closed-open
subsets of X (see [8, Proposition 5.3]). An immediate consequence of
the definitions is that gCx = Cgx for every g ∈ G.

The following example shows that in many cases the closed-open set
A in Proposition 3.1 may contain strictly the pseudo-component that
contains the point x ∈ X.

Example 3.3. Let X = L1 ∪ L2 ∪ L3 ⊂ R2 where L1 = {(0, t) | t ∈
R}, L2 = {(2, t) | t ∈ R} and L3 = {(4, t) | t ∈ R} endowed with the
metric d = min{dE, 1} where dE is the usual Euclidean metric on R2.
With this metric X is a locally compact separable and complete metric
space with finitely many pseudo-components. Let x := (0, 0) and let
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gn : X → X, n ∈ N with gn(t, a) = (t, a) if a = 0 or 2 and t ∈ R and
gn(4, t) = (4, t + n), t ∈ R. Obviously gnx = x for every n ∈ N, the
map gn restricted to L1 ∪L2 is the identity and the pseudo-component
Cx of x is the set L1. Hence, if we take as A := L1∪L2 then A contains
strictly Cx.

Corollary 3.4. Assume that X is locally compact (perhaps with in-
finitely many pseudo-components). Let x, y ∈ X and a net {gi} in G
such that gix → y. Then there exist a subnet {gj} of {gi} and a map
f : Cx → X which preserves the distance such that gj → f pointwise
on Cx, f(x) = y and f(Cx) = Cf(x).

Proof. With a slight modification of the technical Lemma 5.5 in [8]
in order to use nets instead of sequences we have the following: Let
x, y ∈ X and {gi} be a net in G with gix → y. Then for F := {gi} the
set F (z) has compact closure in X for every z ∈ Cx. For A := K(F )
Proposition 3.1 implies that there exist a subnet {gj} of {gi} and a map
f : Cx → X which preserves the distance such that gj → f pointwise
on Cx and f(x) = y. Since g−1

j f(x) → x then there exist a subnet {gk}
of {gj} and a map h : Cf(x) → X which preserves the distance such that
g−1

k → h pointwise on Cf(x) and h(y) = x. Take a point z ∈ Cx. Since
gkz → f(z) and the pseudo-component Cf(x) is a closed-open subset
of X then f(z) ∈ Cf(x) (so f(Cx) ⊆ Cf(x)) and gkz ∈ Cf(x) eventually
for every k. Hence z = g−1

k (gkz) → h(f(z)). In the same way we can
deduce that f(h(w)) = w for every w ∈ Cf(x), thus f(Cx) = Cf(x). �

As an implication of the previous corollary we can take the results
of Gao and Kechris [8, Theorem 5.4 and Corollary 6.2]:

Corollary 3.5. (The Gao - Kechris theorem) The isometry group of a
locally compact metric space with only finitely many pseudo-components
is locally compact. In case X is locally compact and pseudo-connected
then G acts properly on X.

Proof. Let C1, C2, . . . , Cn denote the pseudo-components of X and take
points x1 ∈ C1, x2 ∈ C2, . . . , xn ∈ Cn and open balls B(xm, r) ⊆ Cm,
m = 1, 2, . . . , n, r > 0 such that all B(xm, r) have compact closures. We

will show that the set V :=

n⋂
m=1

{g ∈ G | gxm ∈ B(xm, r)} is an (open)

neighborhood of the identity in G with compact closure. Indeed take
a net {gi} ⊆ V . Since each B(xm, r) has compact closure there exist a
subnet {gj} of {gi} and points y1 ∈ C1, y2 ∈ C2, . . . , yn ∈ Cn such that
gjxm → ym, as j → ∞, for every m = 1, 2, . . . , n. Corollary 3.4 implies
that there exist a subnet {gl} of {gj} and maps fm : Cm → Cm which
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preserve the distance such that gl → fm on Cm and fm(Cm) = Cm

for all m. This shows that {gk} converges to a surjection of X which
actually gives that {gk} converges to an isometry of X.

Assume that X is pseudo-connected. In order to show that G acts
properly on X it is enough to show that the limit set L(x) is empty
for every x ∈ X (see Section 2). Let x, y ∈ X and a net {gi} in G such
that gix → y. Corollary 3.4 implies that there exist a subnet {gj} of
{gi} and a map f : Cx → X which preserves the distance such that
gj → f pointwise on Cx, f(x) = y and f(Cx) = Cf(x). Since X is
pseudo-connected then Cx = Cf(x) = X. Hence f ∈ G thus L(x) is
empty. �

Remark 3.6. Note that in Corollary 3.5 we do not require that X is
separable like in [8, Theorem 5.4 and Corollary 6.2]. This is not a real
improvement since we can show that a locally compact metric space X
with countably many pseudo-components is separable. For a proof we
can imitate the proof of Lemma 3 in [10, Appendix 2] (actually this is
a result of Sierpinski, see [13]): We define a relation S on X by xSy
if and only if there exist separable open balls B(x, r1) and B(y, r2)
with y ∈ B(x, r1) and x ∈ B(y, r2). For every A ⊆ X we denote
by SA := {y ∈ X | ySx for some x ∈ A}. If A = {x} is a singleton
we write Sx instead of S{x}. Set Sn+1x := SSnx for every n ∈ N

and U(x) :=
+∞⋃
n=1

Snx. Then by [10, Lemma 3 in Appendix 2] each

U(x) is a separable closed-open subset of X and if U(x) ∩ U(y) 6= ∅
then U(x) = U(y). By construction every U(x) contains the pseudo-
component of x ∈ X. Therefore X is separable.

Remark 3.7. Proposition 3.1 and Corollary 3.4 point out a natural
generalization of the notion of properness for locally compact metric
spaces with groups of isometries which are not closed in the space of all
continuous selfmaps of X endowed with the compact-open topology: In
particular, it will be interesting to study actions with the property “if
x, y ∈ X and there is a net {gi} in G such that gix → y then there exist
a subnet {gj} of {gi} and a map f : X → X not necessarily surjective,
which preserves the distance and such that gi → f pointwise on X”.
That is, let’s say, if gi → ∞ then this happens in a “strong” way.

4. Closed orbits

In this section we assume that both X and G are locally compact and
we will discuss some implications of the existence of closed orbits. In
the previous section we saw that if there is a pair of points x, y ∈ X and
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a net {gi} in G such that gix → y then there exist a subnet {gj} of {gi},
a closed-open subset A of X that contains x and a map f : A → X
which preserves the distance such that gj → f pointwise on A, f(x) = y
and f(A) is an open subset of X. A question which arises naturally is:
When is the map f a restriction of some element of G on A? An answer
can be given using the following general proposition but before we see
that we need again some formulation: Given a continuous action of a
locally compact group Γ on a locally compact space Y we can define a
homomorphism φ : Γ → H(Y ) with φ(g)(x) := gx, g ∈ Γ, x ∈ Y where
H(Y ) denotes the group of homeomorphisms of Y endowed with the
compact-open topology. This homomorphism is always continuous (see
e.g. [3] or [15, Lemma 10.4 (c)]). If g|A denotes the restriction of g ∈ Γ
on a subset A of Y we define φ : Γ → C(A, Y ) with φ(g)(x) := gx,
g ∈ Γ, x ∈ A where C(A, Y ) denotes the space of all continuous maps
from A to Y endowed with the compact-open topology. Note that φ is
a continuous map.

Proposition 4.1. Let Y be a locally compact space, A be an open or
closed subset of Y and Γ be a locally compact σ-compact group which
acts continuously on Y . If there exists a point x ∈ A with closed orbit
such that φ(Γx) is closed in C(A, Y ) then φ(Γ) is closed in C(A, Y ).

Proof. Since Γ is locally compact and σ-compact and Γ(x) is closed
in Y , the map ϕ : Γ/Γx → Γ(x) with ϕ(gΓx) := Γx, g ∈ Γ is a
homeomorphism (see [15, Theorem 10.10 (c)]). Let {gi | i ∈ I} be a
net in Γ such that φ(gi) → h for some h ∈ C(A, Y ). Since the orbit
Γ(x) is closed, there exists γ ∈ Γ such that γx = h(x) so giΓx → γΓx.
The quotient map Γ → Γ/Γx is open and Γ is locally compact hence
there exist an open neighborhood V of v with compact closure and
nets {fi} in V , {vi} in Γx such that gi = fivi eventually for every
i ∈ I. Thus, there exist a subnet {fj} of the net {fi} and f ∈ Γ such
that fj → f . The set A is locally compact, hence the composition
map T : C(Y, Y ) × C(A, Y ) → C(A, Y ) with T (f1, f2) = f1 ◦ f2, f1 ∈
C(Y, Y ), f2 ∈ C(A, Y ) is continuous (see [15, Lemma 9.4 (c)]). Thus,
φ(vj) = φ(f−1

j ) ◦ φ(gj) → φ(f−1) ◦ h. Since φ(Γx) is closed in C(A, Y )

there exists g ∈ Γx such that φ(f−1)◦h = φ(g) from which follows that
h = φ(fg). Hence φ(Γ) is closed in C(A, Y ). �

Note that in our case, if X is a second countable locally compact
metric space with locally compact group of isometries G then G is
σ-compact (see [5, Ch. X, §3.3 Corollary]). Following the proof of
the previous proposition, if x, y ∈ Y and {gi} is a net in Γ such that
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gix → y then gi = fivi for some nets {fi} in a compact subset of Γ and
{vi} in Γx, so we have the following:

Corollary 4.2. Let Y be a locally compact space and Γ be a locally
compact σ-compact group which acts continuously on Y . If x is a point
of Y with closed orbit then the limit set L(x) is not empty if and only
if the isotropy group Γx of x is not compact.

If we assume that X is second countable (hence separable) and com-
plete and its group of isometries G is locally compact then G is second
countable (see [5, Ch. X, §3.3 Corollary]). So, in this case, both X
and G are Polish spaces. In [9] Glimm showed that for the case of an
action of a locally compact separable group on a locally compact sep-
arable space the existence of a Borel section (or selection) is actually
equivalent to the fact that each orbit is locally closed. Recall that a
subset S of a topological space Y is called a section (or selection) for a
continuous action of a topological group Γ on Y if S meets every orbit
in exactly one point. In our case if x, y is a pair of points of X and
{gi} is a net in G such that gix → y then g−1

i y → x, since gi preserves
the metric. Thus, for isometric actions, locally closed orbits are closed
and vice versa. A question which arises naturally is the following:

Question 4.3. If X and G are locally compact do there exist always
closed orbits?

Note that we are considering the full group of isometries of X because
if we ask the same question for the action of a closed subgroup of G on
X then the answer is negative (see [11]). The following simple example
shows that the answer is also negative for the action of G on X:

Example 4.4. Let X = R ∪ Q ⊂ R2 where R = {(t, 0) | t ∈ R}
and Q = {(q, 1) | q ∈ Q}. For every pair of points w1 = (x1, y1),
w2 = (x2, y2) ∈ X define

d(w1, w2) :=

 |x1 − x2|, if w1, w2 ∈ R
|x1 − x2| + 1, if only one of w1, w2 is not in R
|x1 − x2| + 2, if w1, w2 ∈ Q.

It is easy to verify that d is a metric on X and X with this metric is a
locally compact, separable and complete space. The group of isometries
G is generated by the horizontal translations by rationals and by the
horizontal reflections with centers of the form (x, y) ∈ X with x ∈ Q

(if we want to have only translations we may take Q := {(q, 1) | q ∈
Q +

√
2 N}). Hence G is a discrete group (so it is locally compact). If

w = (x, 1) ∈ Q then the orbit G(w) = Q and if w = (x, 0) ∈ R then the
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orbit G(w) = {(x, 0) ∈ R | x ∈ Q} so it is not closed in X. Moreover if
w ∈ Q then L(x) = ∅ and if w ∈ R then x ∈ L(x) = R.

In this direction Gao and Kechris in [8, p. 35] asked the following
question which still remains open:

Question 4.5. (Gao - Kechris) Let (X, d) be a locally compact com-
plete metric space with finitely many pseudo-components (or connected
components). Is it true that the action of G := Iso(X, d) on X has
closed orbits?

Based on this we ask the following question.

Question 4.6. Let (X, d) be a locally compact and complete metric
with only two connected components, one compact and one not com-
pact. If the action of G := Iso(X, d) on the non-compact component
is proper is it true that the orbits of points in the compact component
are closed?

The last question is of great interest in case of a metric space having
only one end in its Freudenthal (end-point) compactification.

As we saw in Example 4.4 the set of points of X with closed orbits
may not be the whole space X, so it is natural to ask the following:

Question 4.7. Let X be a locally compact metric space. Is the set of
points of X with closed orbits closed or open? Does it contain entire
pseudo-components?

In the following example we give (a partial) negative answer to this
question. Namely the set of points of X with closed orbits may not be
open or may not contains entire pseudo-components:

Example 4.8. This example is based on the same idea as Example
4.4. Let X = D ∪ S ⊂ R2 where D is the closed unit disk and S is an
orbit of a point on a circle with center the origin and radius 2 under an
irrational rotation 2e2πa, a /∈ Q. The distance of two points in the unit
disk is the usual Euclidean one. To measure the distance from a point
of x ∈ S to a point of y ∈ D we firstly move on the radius connecting
x with the origin until we meet the circle with center the origin and
radius the distance from y to the origin. Then we move on this circle
in the shortest way until we meet the point y. In a similar way we
measure the distance of two points x, y ∈ S: Firstly we move on the
radius connecting x with the origin until we meet the unit circle and
then we move on this circle and follow back the radius connecting y
with the origin in the shortest way until we meet the point y. The space
X endowed with this metric is locally compact, separable and complete
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and its group of isometries G is discrete (hence locally compact) like
in Example 4.4. Moreover, all the points of the closed unit disk except
the origin do not have closed orbits and the origin is a fixed point. The
action of G on S is proper and the orbits coincide with S. Note that the
pseudo-component (and the connected component) that contains the
origin is the closed unit disk hence the set of points of X with closed
orbit is not closed and does not contain entire pseudo-components.

The only thing that remains to be clarified is whether the set of
points of a space X with closed orbits is a closed subset of X. In this
direction we know that if there is a pair of points x, y ∈ X and a net
{gi} in G such that gix → y then, by Corollary 3.4, there exist a subnet
{gj} of {gi} and a map f : Cx → X which preserves the distance such
that gj → f pointwise on Cx. So, if X is separable then by Proposition
4.1, we know that if there exists some point z ∈ Cx such that φ(Γz) is
closed in C(Cx, X) then φ(Γ) is closed in C(Cx, X). From this we can
deduce that the set of points of X with closed orbits is closed. The
general question remains open as well as the following generalized one:

Question 4.9. Is there any locally compact, separable and complete
metric space such that G is locally compact and every orbit is not
closed?

5. Closed-open G-invariant partitions

In [12, Theorem] we showed that in case X has quasi-compact (i.e.
compact but not necessarily Hausdorff) space of connected components
(or quasi-components) the group G is locally compact. This is an
application of the fact that the sets K(F ), defined in Section 2, are
closed and open. In this section we will see another application of this
property of K(F ) concerning the structure of X. We will show that if
G is locally compact then there is a decomposition of X into closed-
open G-invariant sets that are related to various limit behaviors of the
orbits: To be more precise, let

CL = {x ∈ X |L(x) is not empty and compact},

NCL = {x ∈ X |L(x) is not compact} and

P = {x ∈ X |L(x) is the empty set}.

Theorem 5.1. Let (X, d) be a locally compact metric space and G :=
Iso(X, d) the group of isometries of X. Assume that G is locally com-
pact and not compact. Then

(i) The closure of each orbit is a minimal set.
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(ii) If the closure of an orbit is compact then it is stable. Hence
each x ∈ CL has a stable orbit closure.

(iii) The sets CL, NCL and P are closed-open G-invariant disjoint,
their union is X and each one of them is a union of pseudo-
components.

Proof. (i) Recall that a non-empty G-invariant closed subset A of X is
called minimal if it has no G-invariant closed proper subsets. Equiv-
alently, A = G(x) for every x ∈ A. Let y ∈ X and x ∈ G(y).

Obviously G(x) ⊆ G(y) and there exists a sequence {gn} in G such

that gny → x. Since d(gny, x) = d(y, g−1
n x) it follows that y ∈ G(x),

thus G(y) ⊆ G(x). Note also that since L(y) is a G-invariant closed

subset of X then whenever L(y) 6= ∅ we have that L(y) = G(y).

So, if G is not compact then CL = {x ∈ X | G(x) is compact} and

NCL = {x ∈ X | G(x) is not compact and L(x) 6= ∅}.

(ii) Assume that G(x) is compact for some x ∈ X. We will show

that G(x) is stable, that is, for every open set U ⊆ X with G(x) ⊆ U

there exists a G-invariant open set V such that G(x) ⊆ V ⊆ U . Since

X is locally compact and G(x) is compact then G(x) has a neighbor-
hood base consisting of compact sets, let’s say W (see [4, Ch. I, §9.7
Proposition 10]). There is a natural direction defined on W: W1 ≤ W2

if and only if W2 ⊆ W1 for W1, W2 ∈ W. We argue by contradic-
tion: Assume that for every W ∈ W there exist xw ∈ W and a point
gw ∈ G such that gwxw /∈ U . It is not hard to see that there exist a
point y ∈ G(x) and a subnet {xi} of the net {xw |w ∈ W} such that

xi → y. Since giy ∈ G(x) and G(x) is compact there exist a subnet

{gjy} of {giy} and a point z ∈ G(x) such that gjy → z. Note that
d(gjxj , z) ≤ d(gjxj , gjy) + d(gjy, z) = d(xj, y) + d(gjy, z) → 0 which is
a contradiction since we have assumed that gixi /∈ U for every index i.

(iii) Obviously the sets CL, NCL and P are G-invariant, disjoint
and their union is X. Item (i) implies that CL = K(G) hence, by [12,
Lemma 3.1], CL is closed and open. Since J(x) = L(x) for every x ∈ X
(because we have an action by isometries, see Section 2), P = {x ∈
X | J(x) = ∅}. Take a point x in the complement of P . Then J(x) 6= ∅

and since J(x) = L(x) we have that J(x) = L(x) = G(x). Hence
X \P = {x ∈ X | x ∈ J(x)} and it is well known (see e.g. [3]) that this
is a closed subset of X, so P is open. We claim that P is also closed.
Let {xn |n ∈ N} be a sequence of points of P such that xn → x for some
x ∈ X. We argue by contradiction: If x /∈ P then x ∈ J(x) = L(x)
hence there exists a net {gi | i ∈ I} in G with gi → ∞ and gix → x. Fix
a positive real number r > 0 such that the ball centered at x with radius
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2r has compact closure and fix also a point xn0
such that d(xn0

, x) < r.
Note that d(gixn0

, x) ≤ d(gixn0
, gix) + d(gix, x) = d(xn0

, x) + d(gix, x).
Since gix → x the net {gixn0

| i ∈ I} is eventually in the open ball
B(x, 2r) hence it has a convergent subnet. This implies that L(xn0

) 6= ∅
(since gi → ∞) thus xn0

/∈ P which is a contradiction.
In Corollary 3.4 we saw that if x, y ∈ X and {gi} is a net in G

such that gix → y then there exist a subnet {gj} of {gi} and a map
f : Cx → X which preserves the distance such that gj → f pointwise
on Cx. This shows that the set P is a union of pseudo-components. If
we work as in the proof of Corollary 3.4 and take F := G then it easy
to see that the set CL has also the same property. �

A question which arises from the previous theorem is the following:
Can the sets CL, NCL and P may coexist in any combination? We
answer this question in the affirmative using the following simple ex-
amples. Note that the Arzela-Ascoli theorem implies that CL = X if
and only if the group G is compact. If X is connected the van Dantzig
- van der Waerden theorem implies that P = X and in Example 2.1
we have that NCL = X.

Example 5.2. (CL 6= ∅, NCL 6= ∅ and P = ∅). Let X = {(0, 0)} ∪
L1 ∪ L2 ⊂ R2 where L1 = {(2, t) | t ∈ R} and L2 = {(4, t) | t ∈ R}. We
consider the metric d = min{dE, 1} where dE is the usual Euclidean
metric on R2. As in Example 2.1 it is easy to see that CL = {(0, 0)},
NCL = L1 ∪ L2 and P = ∅.

Example 5.3. (CL 6= ∅, NCL = ∅ and P 6= ∅). If we take X =
{(0, 0)} ∪ L1, where L1 = {(2, t) | t ∈ R}, and the metric as in the
previous example then CL = {(0, 0)}, NCL = ∅ and P = L1.

Example 5.4. (CL = ∅, NCL 6= ∅ and P 6= ∅). In Example 4.4 we
have that CL = ∅, NCL = R and P = Q.

Example 5.5. (CL 6= ∅, NCL 6= ∅ and P 6= ∅). This example is
a modification of the Example 4.4. Firstly we replace the metric d
in Example 4.4 by the bounded metric d′ = d

1+d
(note that d′ and d

give the same group of isometries). Then we add the point (3, 0) to X
and finally we endow the set Y := X ∪ {(3, 0)} with a new metric d∗

requiring that d∗|X×X = d′|X×X and d∗((3, 0), w) = 1 for every w ∈ X.
If G denotes the group of isometries of Y with respect to d∗ it is easy
to see that CL = {(3, 0)}, NCL = R and P = Q.

In case P is not empty we have a very interesting result concerning
its structure. This result is an application of a theorem of Abels in [1].
Namely, in [1], Abels proved that if a non-compact locally compact
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group G with compact space of connected components acts properly
on a locally compact space Y such that the orbit space G\Y is para-
compact then Y is homeomorphic to a product of the form Rn ×M for
some n ∈ N where M is a closed subset of X. Actually n is the same
n if we write the group G as a homeomorphic image of the product
Rn ×K where K is a maximal compact subgroup of G in the Malcev-
Iwasawa’s decomposition theorem for G (see [15, Theorem 32.5]). If
we apply this theorem to our case we have the following:

Proposition 5.6. Let (X, d) be a locally compact metric space and
G := Iso(X, d) the group of isometries of X. Assume that G is locally
compact, not compact with compact space of connected components (or
the connected component of the identity of G is not compact). Then P ,
if it is not empty, it is homeomorphic to a product of the form Rn ×M
for some n ∈ N where M is a closed subset of P .

Proof. The proof is an immediate consequence of the previous men-
tioned theorem of Abels in [1] taking into account that if G1 denotes
the connected component of the identity of G then G1 is a closed sub-
group of G. Hence G1 acts properly on P and the orbit space G1\X is
metrizable (see [3]). �

Remark 5.7. As a final remark we would like to point out that the re-
sults of this paper also hold for the natural action of a locally compact,
pointwise equicontinuous group of homeomorphisms Γ on a locally com-
pact uniform space Y .
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A GROUP OF ISOMETRIES WITH NON-CLOSED
ORBITS

H. ABELS AND A. MANOUSSOS

Abstract. In this note we give an example of a one-dimensional
manifold with two connected components and a complete metric
whose group of isometries has an orbit which is not closed. This
answers a question of S. Gao and A. S. Kechris.

1. Preliminaries and the construction of the example

In [3, p. 35] S. Gao and A. S. Kechris asked the following question.
Let (X, d) be a locally compact complete metric space with finitely
many pseudo-components or connected components. Does its group
of isometries have closed orbits? This is the case if X is connected
since then the group of isometries acts properly by an old result of van
Dantzig and van der Waerden [1] and hence all of its orbits are closed.
The above question arose in the following context. Suppose a locally
compact group with a countable base acts on a locally compact space
with a countable base. Then the action has locally closed orbits (i.e.
orbits which are open in their closures) if and only if there exists a Borel
section for the action (see [4], [2]) or, in other terminology, the corre-
sponding orbit equivalence relation is smooth. For isometric actions it
is easy to see that an orbit is locally closed if and only if it is closed. In
this note we give a negative answer to the question of Gao and Kechris.
Our space is a one-dimensional manifold with two connected compo-
nents, one compact isometric to S1, and one non-compact, the real line
with a locally Euclidean metric. It has a complete metric whose group
of isometries has non-closed dense orbits on the compact component.
In the course of the construction we give an example of a 2-dimensional
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manifold with two connected components one compact and one non-
compact and a complete metric whose group G of isometries also has
non-closed dense orbits on the compact component. The difference is
that G contains a subgroup of index 2 which is isomorphic to R.

Let (Y, d1) be a metric space. Later on Y will be a torus with a flat
Riemannian metric. Let Z = Y ∪ (Y × R). We fix two positive real
numbers R and M . We endow Z with the following metric d depending
on R and M .

d(y1, y2) = d1(y1, y2)

d((y1, t1), (y2, t2)) = d1(y1, y2) + min(|t1 − t2|,M)

d(y1, (y2, t2)) = d((y2, t2), y1) = d(y1, y2) +R,

for y1, y2 ∈ Y and t1, t2 ∈ R. It is easy to check that d is a metric on
Z if 2R ≥ M . The metric space Z has the following properties

1.1. a) For a given point (y, r) ∈ Y × R there is a unique point in Y
which is closest to (y, r), namely y.

b) Given a point y ∈ Y the set of points in Y × R which are closest
to y is the line {y} × R.

c) For every point (y, r) ∈ Y ×R and every y′ ∈ Y there is a unique
point on the line {y′} × R which is closest to (y, r), namely (y′, r).

d) Let gY be an isometry of Y and let gR be an isometry of the
Euclidean line R. Define a map g = g(gY , gR) : Z → Z by g|Y := gY
and g(y, r) = (gY (y), gR(r)) for (y, r) ∈ Y × R. Then g is an isometry
of Z.

e) Every isometry of Z is of the form given in d) if Y is compact.

Proof. a) through d) are easily checked. To prove e) let g be an isometry
of Z. Then g(Y ) = Y and g(Y ×R) = Y ×R, since Y is compact and
Y × R consists of non-compact components. Then gY := g|Y is an
isometry of Y . The map g(gY , id)

−1 ◦ g, where id denotes the identity
map, is an isometry of Z which fixes Y , hence maps every line {y}×R
to itself, by b). Let hy : R → R be defined by g(y, t) = (y, hy(t)). Then
hy is an isometry of the Euclidean line R for every y ∈ Y and all the
hy’s are the same, by c), say hy = gR. Thus g = (gY , gR). �

1.2. Let now Y be a 2-dimensional torus with a flat Riemannian metric.
Y is also an abelian Lie group whose composition we write as multipli-
cation. Every translation Lx of Y , Lx(y) = x · y, is an isometry. Let
g(t), t ∈ R, be a dense one parameter subgroup of Y . Let H ⊂ Y × R
be its graph, H = {(g(t), t) ; t ∈ R}. Our example is X = Y ∪H with
the metric induced from Z = Y ∪ (Y × R).
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1.3. a) If gR is an isometry of the Euclidean line R then there is a
unique isometry g of X such that g(y, t) ∈ Y × {gR(t)}. If gR is the
translation by a, so gR = La with La(t) = t+a, then g is the restriction
of g(Lg(a), La) to X. If gR is the reflection at O, gR = −1, then g is the
restriction of g(inv ,−1) to X, where inv : Y → Y , inv(y) = y−1. The
reflection in a ∈ R is the composition L−2a ◦ (−1) = −1 ◦ L2a.

b) Every isometry of X is of the form in a). It follows that the
group of isometries of X has dense non-closed orbits on Y and the
other component H is one orbit.

c) H is locally isometric to the real line with the Euclidean metric,

actually d((g(t), t), (g(s), s)) = (1+∥•
g(0)∥) |t−s| for small |t−s|, where

•
g(0) is the tangent of the one-parameter group g(t), t ∈ R, and ∥ · ∥
is the norm on the tangent space of Y at the identity element derived
from the Riemannian tensor.

Proof. c) follows from the definition of the metric d on Y ×R. The maps
given in a) are isometries of Z and map X to X, hence are isometries
of X. To prove the uniqueness claim in a) it suffices to prove it for
gR = id . But then g is the identity on the image of the one-parameter
group g(t), t ∈ R, by 1.1 a) and hence on all of Y . Hence g has the
form given by 1.1 d). To show b) it suffices to show that every isometry
h of H is of the form given in a). This follows from c). �
1.4 Remark. In our example the space has dimension 2 and the group
of orientation preserving isometries is of index 2 in the group of all
isometries and is isomorphic to R. We can reduce the dimension of our
space to 1 to obtain a group of isometries with closed orbits on the
non-compact component, which is diffeomorphic and locally isometric
to R, and non-closed dense orbits on the compact component, which
isometric to S1. The example is as follows. Take a one-dimensional
subtorus Y1 of Y containing the identity element of Y . Define X1 =
Y1 ∪H ⊂ Y ∪H. Then the group of isometries of Y1 consists of those
maps ga = g(Lg(a), La) restricted to Y1 with g(a) ∈ Y1, and of the maps
g(inv ◦ Lg(2a),−1 ◦ La) restricted to Y1 with g(2a) ∈ Y1. The proof
follows from the proof of 1.3.
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THE GROUP OF ISOMETRIES OF A LOCALLY
COMPACT METRIC SPACE WITH ONE END

ANTONIOS MANOUSSOS

Abstract. In this note we study the dynamics of the action of
the group of isometries G of a locally compact metric space (X, d)
with one end. Using the notion of pseudo-components introduced
by S. Gao and A. S. Kechris we show that X has only finitely
many pseudo-components exactly one of which is not compact and
G acts properly on this pseudo-component. The complement of
the non-compact component is a compact subset of X and G may
fail to act properly on it.

1. Preliminaries and the main result

The idea to study the dynamics of the action of the group of isome-
tries G of a locally compact metric space (X, d) with one end, using the
notion of pseudo-components introduced by S. Gao and A. S. Kechris
in [2], came from a paper of E. Michael [6]. In this paper he introduced
the notion of a J-space, i.e. a topological space with the property
that whenever {A,B} is a closed cover of X with A ∩ B compact,
then A or B is compact. In terms of compactifications locally compact
non-compact J-spaces are characterized by the property that their end-
point compactification coincides with their one-point compactification
(see [6, Proposition 6.2], [7, Theorem 6]). Recall that the Freudenthal
or end-point compactification of a locally compact non-compact space
X is the maximal zero-dimensional compactification of X. By zero-
dimensional compactification of X we here mean a compactification Y
of X such that Y \X has a base of closed-open sets (see [5], [7]). From
the topological point of view locally compact spaces with one end are
something very general since the product of two non-compact locally
compact connected spaces is a space with one end (see [7, Proposition
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8], [6, Proposition 2.5]), so it is rather surprising that the dynamics
of the action of the group of isometries G of a locally compact metric
space (X, d) with one end has a certain structure as our main result
shows.

Theorem 1.1. Let (X, d) be a locally compact metric space with one
end and let G be its group of isometries. Then

(i) X has finitely many pseudo-components exactly one of which is
not compact and G is locally compact.

(ii) Let P be the non-compact pseudo-component. Then G acts
properly on P , X \ P is a compact subset of X and G may
fail to act properly on it.

Recall that the action ofG onX is the mapG×X → X with (g, x) 7→
g(x), g ∈ G, x ∈ X and it is proper if and only if the limit sets L(x) =
{y ∈ X | there exists a net {gi} in G with gi → ∞ and lim gix = y}
are empty for every x ∈ X, where gi → ∞ means that the net
{gi} has no cluster point in G (see [4]). A few words about pseudo-
components. They were introduced by S. Gao and A. S. Kechris in
[2] and we used them in [4] to study the dynamics of the action of
the group of isometries of a locally compact metric space. For the
convenience of the reader we repeat what a pseudo-component is. For
each point x ∈ X we define the radius of compactness ρ(x) of x as
ρ(x) := sup{ r > 0 | B(x, r) has compact closure} where B(x, r) de-
notes the open ball centered at x ∈ X with radius r > 0. We define
next an equivalence relation E on X as follows: Firstly we define a
directed graph R on X by xRy if and only if d(x, y) < ρ(x). Let
R∗ be the transitive closure of R, i.e. xR∗y if and only if for some
u0 = x, u1, . . . , un = y we have uiRui+1 for every i < n. Finally, we
define the following equivalence relation E on X: xEy if and only if
x = y or (xR∗y and yR∗x). We call the E-equivalence class of x ∈ X
the pseudo-component of x, and we denote it by Cx. It follows that
pseudo-components are closed-open subsets of X, see [2, Proposition
5.3] and gCx = Cgx for every g ∈ G.

Before we give the proof of Theorem 1.1 we need some results that
may be of independent interest.

Lemma 1.2. Let X be non-compact J-space and let A = {Ai, i ∈ I}
be a partition of X with closed-open non-empty sets. Then A con-
tains only finitely many sets exactly one of which is not compact; its
complement is a compact subset of X.

Proof. We show firstly that there exists a set inA which is not compact.
We argue by contradiction. Assume that every set B ∈ A is compact.
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Then A contains infinitely many distinct sets because otherwise X
must be a compact space. Let {Bn, n ∈ N} ⊂ A with Bn ̸= Bk for
n ̸= k (i.e. Bn∩Bk = ∅) and choose xn ∈ Bn. Obviously the sequences
{x2n−1}, {x2n} have no limit points in X since A is an open partition

of X. The sets D =:
+∞∪
n=1

B2n−1 and X \D are open (since X \D is a

union of elements of A) and disjoint so they form a closed partition of
X. Hence, one of them must be compact. Therefore, at least one of the
sequences {x2n−1}, {x2n} has a limit point which is a contradiction.

Fix a non-compact P ∈ A. Since P is a closed-open subset of X
then {P,X \ P} is a closed partition of X. Hence P or X \ P must
be compact. But P is non-compact so X \ P is compact. If K ∈ A
with K ̸= P then K ⊂ X \ P . Therefore, K is compact. Moreover A
contains finitely many sets, since X \P is compact and A is a partition
of X with closed-open non-empty sets. �

The previous lemma makes X a second countable space (i.e. X has
a countable base):

Proposition 1.3. A metrizable locally compact J-space has a countable
base.

Proof. We follow the proof of Lemma 3 in [3, Appendix 2] (actually
this is a result of Sierpinski, see [8]). We define a relation S on X by
xSy if an only if there exist separable open balls B(x, r1) and B(y, r2)
with y ∈ B(x, r1) and x ∈ B(y, r2). For every A ⊆ X we denote by
SA := {y ∈ X | ySx for some x ∈ A}. If A = {x} is a singleton we
write Sx instead of S{x}. Set Sn+1x := SSnx for every n ∈ N and

U(x) :=
+∞∪
n=1

Snx. Then, by [3, Lemma 3 in Appendix 2], each U(x)

is a separable closed-open subset of X and if U(x) ∩ U(y) ̸= ∅ then
U(x) = U(y). Lemma 1.2 implies that we have finitely many of these
sets, hence X is separable so it is second countable. �
Proof of Theorem 1.1. Since every pseudo-component is a closed-open
subset of X we can apply Lemma 1.2 for the family of the pseudo-
components of X. Hence, X has finitely many pseudo-components
exactly one of which, say P , is not compact and its complement X \P
is a compact subset of X. Take any g ∈ G. Then gP is a non-
compact pseudo-component hence gP = P . This shows that P is
G-invariant. Then G is locally compact, since X has finitely many
pseudo-components (see [2, Corollary 6.2]). We shall show that G acts
properly on P . Assume that there are points x, y ∈ P and a sequence
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{gn} in G with gnx → y. We can use sequences in the definition of limit
sets because X has a countable base. Let {P,C1, C2, . . . , Ck} be an
enumeration of the pseudo-components of X. Each pseudo-component
Ci, i = 1, . . . , k is compact. Choose points xi ∈ Ci, i = 1, . . . , k. Since
X \ P is compact we may assume that there exist points yi ∈ X \ P ,
i = 1, . . . , k and a subsequence {gnl

} of {gn} such that gnl
xi → yi for

every i = 1, . . . , k. By Corollary 3.4 in [4] there is a subsequence of
{gnm} of {gn} and a map f : X → X which preserves the distance such
that gnmx → f pointwise on X (we may find a subsequence instead
of a subnet because X has a countable base). Then g−1

n y → x ∈ P ,
since d(g−1

n y, x) = d(y, gnx). Repeating the previous arguments we
conclude that there exists a map h : X → X such that g−1

n → h
pointwise on X and h preserves the distance. Obviously h is the inverse
map of f , hence f ∈ G and G acts properly on P . The group G
may fail to act properly on X \ P . As an example we may take as
X = P ∪ S ⊂ R3, where P is the plane {(x, y, 0)) | x, y ∈ R} and S
is the circle {(x, y, 2) |x2 + y2 = 1}. We endow X with the metric
d = min{dE, 1}, where dE is the usual Euclidean metric on R3. Then
the action of G on S is not proper, since for a point x ∈ S the isotropy
group Gx := {g ∈ G | gx = x} is not compact. �
Remark 1.4. If G does not act properly on X \ P one may ask if the
orbits on X \P are closed or if the isotropy groups of points x ∈ X \P
are non-compact (see also Question 4.6 in [4]). The answer is negative
in general. As an example we may consider the example in [1]. In this
paper we constructed a one-dimensional manifold with two connected
components, one compact isometric to S1, and one non-compact, the
real line with a locally Euclidean metric. It has a complete metric
whose group of isometries has non-closed dense orbits on the compact
component. We can regard the real line as a distorted helix with a
locally Euclidean metric. The problem is that this manifold has two
ends. But this is not really a problem. Following the same arguments
as in [1] we can replace the distorted helix by a small distorted helix-like
stripe and have a space with one end and two connected components,
one compact isometric to S1, and one non-compact with a locally Eu-
clidean metric so that the group of isometries has non-closed dense
orbits on the compact component.
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J-CLASS OPERATORS AND HYPERCYCLICITY

GEORGE COSTAKIS AND ANTONIOS MANOUSSOS

Abstract. The purpose of the present work is to treat a new
notion related to linear dynamics, which can be viewed as a “lo-
calization” of the notion of hypercyclicity. In particular, let T be
a bounded linear operator acting on a Banach space X and let x
be a non-zero vector in X such that for every open neighborhood
U ⊂ X of x and every non-empty open set V ⊂ X there exists
a positive integer n such that TnU ∩ V ̸= ∅. In this case T will
be called a J-class operator. We investigate the class of operators
satisfying the above property and provide various examples. It is
worthwhile to mention that many results from the theory of hyper-
cyclic operators have their analogues in this setting. For example
we establish results related to the Bourdon-Feldman theorem and
we characterize the J-class weighted shifts. We would also like to
stress that even some non-separable Banach spaces which do not
support topologically transitive operators, as for example l∞(N),
do admit J-class operators.

1. INTRODUCTION

Let X be a complex (or real) Banach space. In the rest of the paper
the symbol T stands for a bounded linear operator acting on X. We
first fix some notation. Consider any subset C of X. The symbols
Co, C and ∂C denote the interior, the closure and the boundary of
C respectively. The symbol Orb(T,C) denotes the orbit of C under
T , i.e. Orb(T,C) = {T nx : x ∈ C, n = 0, 1, 2, . . .}. If C = {x} is
a singleton and the orbit Orb(T, x) is dense in X, the operator T is
called hypercyclic and the vector x is a hypercyclic vector for T . If C =
{λx : λ ∈ C} = Cx and the set Orb(T,C) is dense in X, the operator
T is called supercyclic and the vector x is a supercyclic vector for T . A
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nice source of examples and properties of hypercyclic and supercyclic
operators is the survey article [18], see also some recent survey articles
[30], [19], [24], [8], [15], [20] and the recent book [2]. Observe that
in case the operator T is hypercyclic the underlying Banach space X
should be separable. Then it is well known and easy to show that an
operator T : X → X is hypercyclic if and only if for every pair of
non-empty open sets U, V of X there exists a positive integer n such
that T n(U) ∩ V ̸= ∅. The purpose of this paper is twofold. Firstly we
somehow “localize” the notion of hypercyclicity by introducing certain
sets, which we call J-sets. The notion of J-sets is well known in the
theory of topological dynamics, see [6]. Roughly speaking, if x is a
vector in X and T an operator, then the corresponding J-set of x
under T describes the asymptotic behavior of all vectors nearby x. To
be precise for a given vector x ∈ X we define

J(x) = {y ∈ X : there exist a strictly increasing sequence of positive

integers {kn} and a sequence {xn} ⊂ X such thatxn → x and

T knxn → y}.

Secondly we try to develop a systematic study of operators whose J-
set under some vector is the whole space. As it turns out this new class
of operators although different from the class of hypercyclic operators,
shares some similarities with the behavior of hypercyclic operators. In
fact it is not difficult to see that if T is hypercyclic then J(x) = X
for every x ∈ X. On the other hand we provide examples of operators
T such that J(x) = X for some vector x ∈ X but T fails to be hy-
percyclic and in general T need not be even multi-cyclic. This should
be compared with the results of Feldman in [16] where he shows that
a countably hypercyclic operator need not be multi-cyclic. We would
like to stress that some non-separable Banach spaces, such as the space
l∞(N) of bounded sequences, support J-class operators, (see Proposi-
tion 5.2), while it is known that the space l∞(N) does not support
topologically transitive operators, see [3].

The paper is organized as follows. In section 2 we define the J-
sets and we examine some basic properties of these sets. In section
3 we investigate the relation between hypercyclicity and J-sets. In
particular we show that T : X → X is hypercyclic if and only if there
exists a cyclic vector x ∈ X such that J(x) = X. Recall that a vector
x is cyclic for T if the linear span of the orbit Orb(T, x) is dense in X.
The main result of section 4 is a generalization of a theorem due to
Bourdon and Feldman, see [11]. Namely, we show that if x is a cyclic
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vector for an operator T : X → X and the set J(x) has non-empty
interior then J(x) = X and, in addition, T is hypercyclic. In section
5 we introduce the notion of J-class operator and we establish some of
its properties. We also present examples of J-class operators which are
not hypercyclic. On the other hand, we show that if T is a bilateral or
a unilateral weighted shift on the space of square summable sequences
then T is hypercyclic if and only if T is a J-class operator. Finally, in
section 6 we give a list of open problems.

2. PRELIMINARIES AND BASIC NOTIONS

If one wants to work on general non-separable Banach spaces and
in order to investigate the dynamical behavior of the iterates of T ,
the suitable substitute of hypercyclicity is the following well known
notion of topological transitivity which is frequently used in dynamical
systems.

Definition 2.1. An operator T : X → X is called topologically tran-
sitive if for every pair of open sets U, V of X there exists a positive
integer n such that T nU ∩ V ̸= ∅.

Definition 2.2. Let T : X → X be an operator. For every x ∈ X the
sets

L(x) = {y ∈ X : there exists a strictly increasing sequence

of positive integers {kn} such that T knx → y}
and

J(x) = {y ∈ X : there exist a strictly increasing sequence of positive

integers {kn} and a sequence {xn} ⊂ X such thatxn → x and

T knxn → y}

denote the limit set and the extended (prolongational) limit set of x
under T respectively. In case T is invertible and for every x ∈ X the
sets L+(x), J+(x) (L−(x), J−(x)) denote the limit set and the extended
limit set of x under T (T−1).

Remark 2.3. An equivalent definition of J(x) is the following.

J(x) = {y ∈ X : for every pair of neighborhoodsU, V ofx, y

respectively, there exists a positive integern,

such thatT nU ∩ V ̸= ∅}.

Observe now that T is topologically transitive if and only if J(x) = X
for every x ∈ X.
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Definition 2.4. Let T : X → X be an operator. A vector x is called
periodic for T if there exists a positive integer n such that T nx = x.

The proof of the following lemma can be found in [12].

Lemma 2.5. Let T : X → X be an operator and {xn}, {yn} be two
sequences in X such that xn → x and yn → y for some x, y ∈ X. If
yn ∈ J(xn) for every n = 1, 2, . . ., then y ∈ J(x).

Proposition 2.6. For all x ∈ X the sets L(x), J(x) are closed and
T -invariant.

Proof. It is an immediate consequence of the previous lemma. �
Remark 2.7. Note that the set J(x) is not always invariant under the
operation T−1 even in the case T is surjective. For example consider
the operator T = 1

2
B where B is the backward shift operator on l2(N),

the space of square summable sequences. Since ∥T∥ = 1
2
it follows

that L(x) = J(x) = {0} for every x ∈ l2(N). For any non-zero vector
y ∈ KerT we have Ty = 0 ∈ J(x) and y ∈ X \ J(x). However, if T is
invertible it is easy to verify the following.

Proposition 2.8. Let T : X → X be an invertible operator. Then
T−1J(x) = J(x) for every x ∈ X.

Proof. By Proposition 2.6 it follows that J(x) ⊂ T−1J(x). Take y ∈
T−1J(x). There are a strictly increasing sequence {kn} of positive
integers and a sequence {xn} ⊂ X so that xn → x and T knxn → Ty,
hence T kn−1xn → y. �
Proposition 2.9. Let T : X → X be an invertible operator and x, y ∈
X. Then y ∈ J+(x) if and only if x ∈ J−(y).

Proof. If y ∈ J+(x) there exist a strictly increasing sequence {kn} of
positive integers and a sequence {xn} ⊂ X such that xn → x and
T knxn → y. Then T−kn(T knxn) = xn → x, hence x ∈ J−(y). �
Proposition 2.10. Let T : X → X be an operator. If T is power
bounded then J(x) = L(x) for every x ∈ X.

Proof. Since T is power bounded there exists a positive numberM such
that ∥T n∥ ≤ M for every positive integer n. Fix a vector x ∈ X. If
J(x) = ∅ there is nothing to prove. Therefore assume that J(x) ̸= ∅.
Since the inclusion L(x) ⊂ J(x) is always true, it suffices to show that
J(x) ⊂ L(x). Take y ∈ J(x). There exist a strictly increasing sequence
{kn} of positive integers and a sequence {xn} ⊂ X such that xn → x
and T knxn → y. Then we have ∥T knx − y∥ ≤ ∥T knx − T knxn∥ +
∥T knxn− y∥ ≤ M∥x−xn∥+ ∥T knxn− y∥ and letting n goes to infinity
to the above inequality, we get that y ∈ L(x). �
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Lemma 2.11. Let T : X → X be an operator. If J(x) = X for some
non-zero vector x ∈ X then J(λx) = X for every λ ∈ C.

Proof. For λ ∈ C \ {0} it is easy to see that J(λx) = X. It remains to
show that J(0) = X. Fix a sequence of non-zero complex numbers {λn}
converging to 0 and take y ∈ J(x). Then y ∈ J(λnx) for every n and
since λn → 0, Lemma 2.5 implies that y ∈ J(0). Hence J(0) = X. �
Proposition 2.12. Let T : X → X be an operator. Define the set
A = {x ∈ X : J(x) = X}. Then A is a closed, connected and T (A) ⊂
A.

Proof. The T -invariance follows immediately from the T -invariance of
J(x). By Lemma 2.5 we conclude that A is closed. Let x ∈ A. Lemma
2.11 implies that for every λ ∈ C, J(0) = J(λx) = X, hence A is
connected. �

3. A CHARACTERIZATION OF HYPERCYCLIC
OPERATORS THROUGH J-SETS

The following characterization of hypercyclic operators appears more
or less in [18]. However we sketch the proof for the purpose of com-
pleteness.

Theorem 3.1. Let T : X → X be an operator acting on a separable
Banach space X. The following are equivalent.

(i) T is hypercyclic;
(ii) For every x ∈ X it holds that J(x) = X;
(iii) The set A = {x ∈ X : J(x) = X} is dense in X;
(iv) The set A = {x ∈ X : J(x) = X} has non-empty interior.

Proof. We first prove that (i) implies (ii). Let x, y ∈ X. Since the
set of hypercyclic vectors is Gδ and dense in X there exist a sequence
{xn} of hypercyclic vectors and a strictly increasing sequence {kn} of
positive integers such that xn → x and T knxn → y as n → ∞. Hence
y ∈ J(x). That (ii) implies (iii) is trivial. A consequence of Lemma
2.5 is that (iii) gives (ii). Next we show that (iv) implies (ii). Fix
x ∈ Ao and consider y ∈ X arbitrary. Then y ∈ J(x) = X, hence
there exist a sequence {xn} ⊂ X and a strictly increasing sequence
{kn} of positive integers such that xn → x and T knxn → y. Since
x ∈ Ao without loss of generality we may assume that xn ∈ A for every
n. Moreover A is T -invariant, hence T knxn ∈ A for every n. Since
T knxn → y and A is closed we conclude that y ∈ A. Let us now prove
that (ii) implies (i). Fix {xj} a countable dense set of X. Define the
sets E(j, s, n) = {x ∈ X : ∥T nx−xj∥ < 1

s
} for every j, s = 1, 2, . . . and
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every n = 0, 1, 2, . . . . In view of Baire’s Category Theorem and the
well known set theoretical description of hypercyclic vectors through
the sets E(j, s, n), it suffices to show that the set

∪∞
n=0 E(j, s, n) is

dense in X for every j, s. Indeed, let y ∈ X, ϵ > 0, j, s be given. Since
J(y) = X, there exist x ∈ X and n ∈ N such that ∥x − y∥ < ϵ and
∥T nx− xj∥ < 1/s. �

The following lemma -see also Corollary 3.4- which is of great im-
portance in the present paper, gives information about the spectrum
of the adjoint T ∗ of an operator T : X → X provided there is a vector
x ∈ X whose extended limit set J(x) has non-empty interior. The
corresponding result for hypercyclic operators has been proven by P.
Bourdon in [9].

Lemma 3.2. Let T : X → X be an operator acting on a complex or
real Banach space X. Suppose there exists a vector x ∈ X such that
J(x) has non-empty interior and x is cyclic for T . Then for every non-
zero polynomial P the operator P (T ) has dense range. In particular the
point spectrum σp(T

∗) of T ∗ (the adjoint operator of T ) is empty, i.e.
σp(T

∗) = ∅.

Proof. Assume first that X is a complex Banach space. Since P (T ) can
be decomposed in the form P (T ) = α(T−λ1I)(T−λ2I) . . . (T−λkI) for
some α, λi ∈ C, i = 1, . . . , k, where I stands for the identity operator, it
suffices to show that T−λI has dense range for any λ ∈ C. If not, there
exists a non-zero linear functional x∗ such that x∗((T −λI)(x)) = 0 for
every x ∈ X. The last implies that x∗(T nx) = λnx∗(x) for every x ∈ X
and every n non-negative integer. Take y in the interior of J(x). Then
there exist a sequence {xn} ⊂ X and a strictly increasing sequence
{kn} of positive integers such that xn → x and T knxn → y as n → +∞.
Suppose first that |λ| < 1. Observe that x∗(T knxn) = λknx∗(xn) and
letting n → +∞ we arrive at x∗(y) = 0. Since the functional x∗ is
zero on an open subset of X must be identically zero on X, which is
a contradiction. Working for |λ| = 1 as before, it is easy to show that
for every y in the interior of J(x), x∗(y) = µx∗(x) for some µ ∈ C
with |µ| = 1, which is again a contradiction since x∗ is surjective.
Finally we deal with the case |λ| > 1. At this part of the proof we shall
use the hypothesis that x is cyclic. Letting n tend to infinity in the
relation x∗(xn) =

1
λkn x

∗(T knxn), it is plain that x∗(x) = 0 and therefore
x∗(T nx) = 0 for every n non-negative integer. The last implies that
x∗(P (T )x) = 0 for every P non-zero polynomial and since x is cyclic the
linear functional x∗ vanishes everywhere, which gives a contradiction.
It remains to handle the real case. For that it suffices to consider
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the case where P is an irreducible and monic polynomial of the form
P (t) = t2 − 2Re(w)t + |w|2 for some non-real complex number w.
Assume that P (T ) does not have dense range. Then there exists a non-
zero x∗ ∈ Ker(P (T )∗). Following the proof of the main result in [5],
there exists a real 2×2 matrix A such that JAt((x∗(Tx), x∗(x))t) = R2,
where the symbol At stands for the transpose of A. By Proposition 5.5
(which holds in the real case as well) we get x∗(Tx) = x∗(x) = 0. The
last implies that x∗(Q(T )x) = 0 for every real polynomial Q. Since x is
cyclic we conclude that x∗ = 0 which is a contradiction. This completes
the proof of the lemma. �
Theorem 3.3. Let T : X → X be an operator acting on a separable
Banach space X. Then T is hypercyclic if and only if there exists a
cyclic vector x ∈ X for T such that J(x) = X.

Proof. We need only to prove that if x ∈ X is a cyclic vector for T
and J(x) = X then T is hypercyclic. Take any non-zero polynomial
P . It is easy to check that P (T )(J(x)) ⊂ J(P (T )x). By the previous
lemma it follows that P (T ) has dense range and since J(x) = X we

conclude that X = P (T )(X) ⊂ J(P (T )x). Therefore J(P (T )x) = X
for every non-zero polynomial P . The fact that x is a cyclic vector it
now implies that there exists a dense set D in X so that J(y) = X for
every y ∈ D. Hence, in view of Theorem 3.1, T is hypercyclic. �
Corollary 3.4. Let T : X → X be an operator. Suppose there exists
a vector x ∈ X such that J(x) has non-empty interior. Then for every
λ ∈ C with |λ| ≤ 1 the operator T − λI has dense range.

Proof. See the proof of Lemma 3.2. �
Remark 3.5. At this point we would like to comment on Theorem 3.3.
First of all under the hypothesis that x is a cyclic vector for T and
J(x) = X one cannot get a stronger conclusion than T is hypercyclic.
In particular it is not true in general that x is a hypercyclic vector. To
see this, take T = 2B where B is the backward shift operator acting on
the space of square summable sequences l2(N) over C. In [14] Feldman
showed that for a given positive number ϵ there exists a vector x ∈ l2(N)
such that the set Orb(2B, x) is ϵ-dense in l2(N) (this means that for
every y ∈ l2(N) there exists a positive integer n such that T nx is ϵ-
close to y), but x is not hypercyclic for 2B. It is straightforward to
check that x is supercyclic for 2B and hence it is cyclic. In addition
J(x) = l2(N) since 2B is hypercyclic (see Theorem 3.1).

Remark 3.6. Let us now show that the hypothesis x is cyclic in Theorem
3.3 cannot be omitted. Let B : l2(N) → l2(N) be the backward shift



8 GEORGE COSTAKIS AND ANTONIOS MANOUSSOS

operator. Consider the operator T = 2I ⊕ 2B : C⊕ l2(N) → C⊕ l2(N),
where I is the identity operator acting on C. It is obvious that 2I⊕2B
is not a hypercyclic operator. However we shall show that for every
hypercyclic vector y ∈ l2(N) for 2B it holds that J(0⊕ y) = C⊕ l2(N).
Therefore there exist (non-cyclic) non-zero vectors x ∈ C⊕ l2(N) with
J(x) = C ⊕ l2(N) and T is not hypercyclic. Indeed, fix a hypercyclic
vector y ∈ l2(N) for 2B and let λ ∈ C, w ∈ l2(N). There exists a strictly
increasing sequence of positive integers {kn} such that T kny → w.
Define xn = λ

2kn
⊕ y. Then xn → 0 ⊕ y and T knxn → λ ⊕ w. Hence,

J(0⊕ y) = C⊕ l2(N).

4. AN EXTENSION OF BOURDON-FELDMAN’S
THEOREM

In this section we establish an extension of the following striking
result due to Bourdon and Feldman [11]: if X is a separable Banach
space, T : X → X an operator and for some vector x ∈ X the orbit
Orb(T, x) is somewhere dense then Orb(T, x) = X. This theorem was
an answer to a question raised by Peris in [26]. We shall prove the
following theorem.

Theorem 4.1. Let x be a cyclic vector for T . If J(x)o ̸= ∅ then
J(x) = X.

In order to prove Theorem 4.1 we follow the steps of the proof of
Bourdon-Feldman’s theorem. Of course there are some extra techni-
calities which have to be taken care since the orbit Orb(T, x) of x under
T is replaced by the extended limit set J(x) of x.

Lemma 4.2. If for some non-zero polynomial P the operator P (T )
has dense range and x is a cyclic vector for T then P (T )x is cyclic for
T .

Proof. Take P (T )y for some y ∈ X. Since x is cyclic there is a
sequence of polynomials {Qn} such that Qn(T )x → y. Therefore,
Qn(T )(P (T )x) → P (T )y. �

Lemma 4.3. Assume that x is a cyclic vector for T and J(x) has
non-empty interior. Then the set X \ J(x)o is T -invariant.

Proof. We argue by contradiction. Let y ∈ X \ J(x)o be such that
Ty ∈ J(x)o. By the continuity of T we may assume that y /∈ J(x).
Moreover, since x is cyclic we may find a non-zero polynomial P (T )
such that P (T )x ∈ X \ J(x)o and TP (T )x ∈ J(x)o. Hence, there
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exist a sequence {xn} ⊂ X and a strictly increasing sequence of pos-
itive integers {kn} such that xn → x and T knxn → TP (T )x. Tak-
ing any polynomial Q we get Q(T )xn → Q(T )x and T knQ(T )xn =
Q(T )(T knxn) → Q(T )TP (T )x. So it follows that P (T )TQ(T )x ∈
J(Q(T )x) for every polynomial Q. But J(Q(T )x) ⊂ J(TQ(T )x), hence
we get P (T )TQ(T )x ∈ J(TQ(T )x) for every polynomial Q. By Lem-
mata 3.2 and 4.2, Tx is a cyclic vector for T , hence there exists a se-
quence of the form {Qn(T )x}, for some non-zero polynomials Qn, such
that TQn(T )x → x. Therefore it follows that P (T )TQn(T )x → P (T )x.
Observe that P (T )TQn(T )x ∈ J(TQn(T )x) and using Lemma 2.5 it
follows that P (T )x ∈ J(x) which is a contradiction. �
Lemma 4.4. Assume that x is a cyclic vector for T and J(x) has
non-empty interior. Suppose that Q(T )x ∈ X \J(x) for some non-zero
polynomial Q. Then Q(T )(J(x)) ⊂ X \ J(x)o.
Proof. Let y ∈ J(x). There exist a sequence {xn} ⊂ X and a strictly
increasing sequence of positive integers {kn} such that xn → x and
T knxn → y. SinceX\J(x) is an open set we may assume thatQ(T )xn ∈
X \ J(x) for every n and thus Q(T )xn ∈ X \ J(x)o. By Lemma 4.3
the set X \ J(x)o is T -invariant, therefore T knQ(T )x = Q(T )T knxn ∈
X \ J(x)o. Now it is plain that Q(T )y ∈ X \ J(x)o. �
Lemma 4.5. Assume that x is a cyclic vector for T , J(x) has non-
empty interior and let P be any non zero polynomial. Then P (T )x /∈
∂(J(x)o).

Proof. In view of Lemma 4.4 let us define the set

A = {Q : Q is a polynomial andQ(T )x ∈ X \ J(x)}.
Note that the set {Qx : Q ∈ A} is dense in X \ J(x)o. We argue
by contradiction. Suppose there exists a non-zero polynomial P so
that P (T )x ∈ ∂(J(x)o). The inclusion ∂(J(x)o) ⊂ ∂J(x) gives that
P (T )x ∈ ∂(X \ J(x)). We will prove that P (T )(J(x)o) ⊂ X \ J(x)o.
Since x is a cyclic vector and J(x)o is open, it is enough to show that:
if S(T )x ∈ J(x)o for some non-zero polynomial S then P (T )S(T )x ∈
X \ J(x)o. We have P (T )x ∈ ∂(X \ J(x)). Therefore there exists
a sequence {Qn(T )x} such that Qn ∈ A and Qn(T )x → P (T )x.
Hence Lemma 4.4 yields that Qn(T )S(T )x ∈ X \ J(x)o. So, we get
Qn(T )S(T )x → P (T )S(T )x and P (T )S(T )x ∈ X \ J(x)o. Consider
the set D := J(x)o

∪
{Q(T )x : Q ∈ A} which is dense in X. By

Lemma 3.2, P (T )D is dense in X. Since P (T )x ∈ J(x), Lemma 4.4
implies that Q(T )P (T )x ∈ X \ J(x)o for every Q ∈ A. Hence

P (T )D = P (T )(J(x)o)
∪

{P (T )Q(T )x : Q ∈ A} ⊂ X \ J(x)o,
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which is a contradiction. �
Proof of Theorem 4.1 The set {P (T )x : P is a non-zero polynomial}
is dense and connected. Assume that J(x) ̸= X. So we can find a
non-zero polynomial P such that P (T )x ∈ ∂(J(x)o). This contradicts
Lemma 4.5. �
Corollary 4.6. Let T : X → X be an operator. If there exists a cyclic
vector x ∈ X for T such that J(x) has non-empty interior then T is
hypercyclic.

Proof. The proof follows by combining Theorems 3.3 and 4.1. �
Corollary 4.7 (Bourdon-Feldman’s theorem). Let T : X → X be an
operator. If for some vector x ∈ X the orbit Orb(T, x) is somewhere
dense then it is everywhere dense.

Proof. It is easy to see that x is a cyclic vector for T . Since Orb(T, x)
is somewhere dense, it follows that L(x)o ̸= ∅. Note that L(x) ⊂
J(x). Hence Theorem 4.1 implies that J(x) = X. The set Orb(T, x)
has non-empty interior so we can find a positive integer l such that
T lx ∈ Orb(T, x)

o
. Since J(x) = X and J(x) ⊂ J(T lx) we arrive at

J(T lx) = X. So it is enough to prove that Orb(T, x) = J(T lx). Let
y ∈ J(T lx). There exist a sequence {xn} ⊂ X and a strictly increasing
sequence of positive integers {kn} such that xn → T lx and T knxn → y.

Observing that T lx ∈ Orb(T, x)
o
, without loss of generality we may

assume that xn ∈ Orb(T, x)
o
for every n. Moreover Orb(T, x) is T -

invariant, hence T knxn ∈ Orb(T, x) for every n. Since T knxn → y we

conclude that y ∈ Orb(T, x). �
Corollary 4.8. Let T : X → X be an operator. Suppose there exist a
vector x ∈ X and a polynomial P such that P (T )x is a cyclic vector
for T . If the set J(x) has non-empty interior then T is hypercyclic.

Proof. Since P (T )x is a cyclic vector for T it is obvious that x is a cyclic
vector for T . Using the hypothesis that the set J(x) has non-empty
interior, Corollary 4.6 implies the desired result. �
Remark 4.9. The conclusion of Corollary 4.6 does not hold in general
if x is a cyclic vector for T and J(P (T )x) = X for some polynomial P .
To see that, consider the spaceX = C⊕l2(N) and let B : l2(N) → l2(N)
be the backward shift operator. Define the operator T = 2I ⊕ 3B :
X → X, where I denotes the identity operator acting on C. Take any
hypercyclic vector y for 3B and define x = 1⊕ y. Then x is cyclic for
T (in fact x is supercyclic for T ) and obviously T is not hypercyclic.
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In fact it holds that J(x) = ∅. Consider the polynomial P (z) = z − 2.
Then P (T )x = 0⊕P (3B)y. Since y is hypercyclic for 3B, by a classical
result due to Bourdon [9], the vector P (3B)x is hypercyclic for 3B as
well. Then using a similar argument as in Remark 3.6 we conclude
that J(P (T )x) = J(0⊕ P (3B)y) = X. In particular, the above shows
that, if T is cyclic and J(x) = X for some vector x ∈ X then T is not
hypercyclic in general. On the other hand, we have the following.

Corollary 4.10. Let T : X → X be an operator. Suppose P is a
non-zero polynomial such that P (T ) has dense range. If x is a cyclic
vector for T , P (T )x ̸= 0 and J(P (T )x)o ̸= ∅ then T is hypercyclic.

Proof. Lemma 4.2 implies that P (T )x is a cyclic vector for T . Since
J(P (T )x)o ̸= ∅, Corollary 4.6 implies that T is hypercyclic. �

5. J-CLASS OPERATORS

Definition 5.1. An operator T : X → X will be called a J-class
operator provided there exists a non-zero vector x ∈ X so that the
extended limit set of x under T (see Definition 2.2) is the whole space,
i.e. J(x) = X. In this case x will be called a J-class vector for T .

The reason we exclude the extended limit set of the zero vector is to
avoid certain trivialities, as for example the multiples of the identity
operator acting on finite or infinite dimensional spaces. To explain
briefly, for any positive integer n consider the operator λI : Cn →
Cn, where λ is a complex number of modulus greater than 1 and I is
the identity operator. It is then easy to check that JλI(0) = X and
JλI(x) ̸= Cn for every x ∈ Cn \ {0}. However, the extended limit
set of the zero vector plays an important role in checking whether an
operator T : X → X -acting on a Banach space X- supports non-zero
vectors x with JT (x) = X, see Proposition 5.9. Let us also point out
that from the examples we presented in section 3, see Remark 3.6, it
clearly follows that this new class of operators does not coincide with
the class of hypercyclic operators.

Let us turn our attention to non-separable Banach spaces. Obviously
a non-separable Banach space cannot support hypercyclic operators.
However, it is known that topologically transitive operators may ex-
ist in non-separable Banach spaces, see for instance [7]. On the other
hand in [3], Bermúdez and Kalton showed that the non-separable Ba-
nach space l∞(N) of bounded sequences over C does not support topo-
logically transitive operators. Below we prove that the Banach space
l∞(N) supports J-class operators.
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Proposition 5.2. Let B : l∞(N) → l∞(N) be the backward shift where
l∞(N) is the Banach space of bounded sequences over C, endowed with
the usual supremum norm. Then for every |λ| > 1, λB is a J-class
operator. In fact we have the following complete characterization of the
set of J-class vectors. For every |λ| > 1 it holds that

{x ∈ l∞(N) : JλB(x) = l∞(N)} = c0(N),

where c0(N) = {x = (xn)n∈N ∈ l∞(N) : limn→+∞ xn = 0}.

Proof. Fix |λ| > 1. Let us first show that if x is a vector in l∞(N)
with finite support then JλB(x) = l∞(N). For simplicity let us assume
that x = e1 = (1, 0, 0, . . .). Take any y = (y1, y2, . . .) ∈ l∞(N). De-
fine xn = (1, 0, . . . , 0, y1

λn ,
y2
λn , . . .) where 0’s are taken up to the n-th

coordinate. Obviously xn ∈ l∞(N) and it is straightforward to check
that xn → e1 and (λB)nxn = y for all n. Hence, JλB(e1) = l∞(N).
Since the closure of the set consisting of all the vectors with finite
support is c0(N), an application of Lemma 2.5 gives that c0(N) is
contained in {x ∈ l∞(N) : JλB(x) = l∞(N)}. It remains to show
the converse implication. Suppose that JλB(x) = l∞(N) for some
non-zero vector x = (x1, x2, . . .) ∈ l∞(N). Then there exist a se-
quence yn = (yn1, yn2, . . .), n = 1, 2, . . . in l∞(N) and a strictly in-
creasing sequence of positive integers {kn} such that yn → x and
(λB)knyn → 0. Consider ϵ > 0. There exists a positive integer n0

such that ∥yn−x∥ < ϵ and ∥(λB)knyn∥ = |λ|kn supm≥kn+1 |ynm| < ϵ for
every n ≥ n0. Hence for every m ≥ kn0 + 1 and since |λ| > 1 it holds
that |xm| ≤ ∥yn0 − x∥ + |yn0m| < 2ϵ. The last implies that x ∈ c0(N)
and this completes the proof. �

Remark 5.3. The previous proof actually yields that for every |λ| > 1,
JλB(x) = l∞(N) if and only if 0 ∈ JλB(x).

Next we show that certain operators, such as positive, compact, hy-
ponormal and operators acting on finite dimensional spaces cannot be
J-class operators. It is well known that the above mentioned classes of
operators are disjoint from the class of hypercyclic operators, see [23],
[10].

Proposition 5.4. (i) Let X be an infinite dimensional separable
Banach space and T : X → X be an operator. If T is compact
then it is not a J-class operator.

(ii) Let H be an infinite dimensional separable Hilbert space and
T : H → H be an operator. If T is positive or hyponormal then
it is not a J-class operator.
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Proof. Let us prove assertion (i). Suppose first that T is compact. If
T is a J-class operator, there exists a non-zero vector x ∈ X so that
J(x) = X. It is clear that there exists a bounded set C ⊂ X such that
the set Orb(T,C) is dense in X. Then according to Proposition 4.4 in
[16] no component of the spectrum, σ(T ), of T can be contained in the
open unit disk. However, for compact operators the singleton {0} is
always a component of the spectrum and this gives a contradiction.

We proceed with the proof of the second statement. Suppose now
that T is hyponormal. If T is a J-class operator, there exists a non-zero
vector h ∈ H so that J(h) = H. Therefore there exists a bounded set
C ⊂ H which is bounded away from zero (since h ̸= 0) such that the
set Orb(T,C) is dense in X. The last contradicts Theorem 5.10 in [16].
The case of a positive operator is an easy exercise and is left to the
reader. �

Below we prove that any operator acting on a finite dimensional
space cannot be J-class operator.

Proposition 5.5. Fix any positive integer l and let A : Cl → Cl be a
linear map. Then A is not a J-class operator. In fact J(x)o = ∅ for
every x ∈ Cl \ {0}.

Proof. By the Jordan’s canonical form theorem for A we may assume
that A is a Jordan block with eigenvalue λ ∈ C. Assume on the
contrary that there exists a non-zero vector x ∈ Cl with coordinates
z1, . . . , zl such that J(x)o = ∅. If {xn} ∈ Cl is such that xn → x
and zn1, . . . , znl be the corresponding coordinates to xn then the m-th
coordinate of Anxn equals to

l−m∑
k=0

(
n
k

)
λn−kzn(m+k).

If |λ| < 1 then J(x) = {0}. It remains to consider the case |λ| ≥
1. Suppose zl ̸= 0. Then, for every strictly increasing sequence of
positive integers {kn} the possible limit points of the sequence {λknznl}
are: either ∞ in case |λ| > 1 or a subset of the circumference {z ∈
C : |z| = |zl|} in case |λ| = 1. This leads to a contradiction since
J(x)o ̸= ∅. Therefore, the last coordinate zl of the non-zero vector
x ∈ Cl should be 0. In case |λ| = 1 and since zl = 0 the only limit
point of {λknznl} is 0 for every strictly increasing sequence of positive
integers {kn}. So J(x)o ⊂ Cl−1 × {0}, a contradiction. Assume now
that |λ| > 1. For the convenience of the reader we give the proof
in the case l = 3. Take y = (y1, y2, y3) ∈ J(x). There exist a strictly
increasing sequence {kn} of positive integers and a sequence {xn} ⊂ C3



14 GEORGE COSTAKIS AND ANTONIOS MANOUSSOS

such that xn = (xn1, xn2, xn3) → (z1, z2, 0) = x and Aknxn → y. Let
yn = (yn1, yn2, yn3) = Aknxn. Hence we have

yn3 = λknxn1 + knλ
kn−1xn2 +

kn(kn−1)
2

λkn−2xn3

yn2 = λknxn2 + knλ
kn−1xn3

yn1 = λknxn3.

Since yn3 = λknxn3 → y3 then kn(kn − 1)xn3 → 0. From yn2 → y2 we

get yn2

kn
= λkn

k2n
knxn2 + λkn−1xn3 → 0. Using the fact that λknxn3 → y3

it follows that the sequence {λkn

k2n
knxn2} converges to a finite complex

number, hence knxn2 → 0. The last implies xn2 → 0, therefore z2 = 0.
We have xn1 =

yn3

λkn − 1
λ
knxn2 − 1

2
λ2kn(kn − 1)xn3. Observing that each

one term on the right hand side in the previous equality goes to 0,
since yn3 → y3, we arrive at z1 = 0. Therefore x = 0 which is a
contradiction. �

Remark 5.6. The previous result does not hold in general if we remove
the hypothesis that A is linear even if the dimension of the space is 1. It
is well known that the function f : (0, 1) → (0, 1) with f(x) = 4x(1−x)
is chaotic, see [13]. Consider any homeomorphism g : (0, 1) → R. Take
h = gfg−1 : R → R. Then it is obvious that there is a Gδ and dense
set of points with dense orbits in R. Applying Theorem 3.1 (observe
that this corollary holds without the assumption of linearity for T ) we
get that J(x) = R, for every x ∈ R.

It is well known, see [22], that if T is a hypercyclic and invertible
operator, its inverse T−1 is hypercyclic. On the other hand, as we show
below, the previously mentioned result fails for J-class operators.

Proposition 5.7. There exists an invertible J-class operator T acting
on a Banach space X so that its inverse T−1 is not a J-class operator.

Proof. Take any hypercyclic invertible operator S acting on a Banach
space Y and consider the operator T = λIC ⊕ S : C⊕ Y → C⊕ Y , for
any fixed complex number λ with |λ| > 1. Then, arguing as in Remark
3.6 it is easy to show that T is a J-class operator. However its inverse
T−1 = λ−1IC ⊕ S−1 is not a J-class operator since |λ−1| < 1. �

Salas in [28] answering a question of D. Herrero constructed a hy-
percyclic operator T on a Hilbert space such that its adjoint T ∗ is also
hypercyclic but T⊕T ∗ is not hypercyclic. In fact the following (unpub-
lished) result of Deddens holds: suppose T is an operator, acting on a
complex Hilbert space, whose matrix with respect to some orthonormal
basis, consists entirely of real entries. Then T ⊕ T ∗ is not cyclic. A
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proof of Deddens result can be found in the expository paper [30]. Re-
cently, Montes and Shkarin, see [25], extended Deddens’ result to the
general setting of Banach space operators. Hence it is natural to ask
if there exists an operator T such that T ⊕ T ∗ is a J-class operator.
Below we show that this is not the case.

Proposition 5.8. Let T be an operator acting on a Hilbert space H.
Then T ⊕ T ∗ is not a J-class operator.

Proof. We argue by contradiction, so assume that T ⊕ T ∗ is a J-class
operator. Hence there exist vectors x, y ∈ H such that J(x⊕y) = H⊕H
and x⊕ y ̸= 0.

Case I : suppose that one of the vectors x, y is zero. Without loss of
generality assume x = 0. Then there exist sequences {xn}, {yn} ⊂ H
and a strictly increasing sequence of positive integers {kn} such that
xn → x = 0, yn → y, T knxn → y and T ∗knyn → x = 0. Taking limits
to the following equality < T knxn, yn >=< xn, T

∗knyn > we get that
∥y∥ = ∥x∥ = 0 and hence y = 0. Therefore x ⊕ y = 0, which yields a
contradiction.

Case II : suppose that x ̸= 0 and y ̸= 0. Let us show first that
J(λx⊕µy) = H⊕H for every λ, µ ∈ C\{0}. Indeed, fix λ, µ ∈ C\{0}.
Take any z, w ∈ H. Since J(x ⊕ y) = H ⊕ H, there exist sequences
{xn}, {yn} ⊂ H and a strictly increasing sequence of positive integers
{kn} such that xn → x, yn → y, T knxn → λ−1z and T ∗knyn → µ−1w.
The last implies that z⊕w ∈ J(λx⊕µy), hence J(λx⊕µy) = H ⊕H.
With no loss of generality we may assume that ∥x∥ ̸= ∥y∥ (because
if ∥x∥ = ∥y∥, by multiplying with a suitable λ ∈ C \ {0} we have
∥λx∥ ̸= ∥y∥ and J(λx ⊕ y) = H ⊕H). Then we proceed as in Case I
and arrive at a contradiction. The details are left to the reader. �

Below we establish that, for a quite large class of operators, an oper-
ator T is a J-class operator if and only if J(0) = X. What we need to
assume is that there exists at least one non-zero vector having “regular”
orbit under T .

Proposition 5.9. Let T : X → X be an operator on a Banach space
X.

(i) For every positive integer m it holds that JT (0) = JTm(0).
(ii) Suppose that z is a non-zero periodic point for T . Then the

following are equivalent.
(1) T is a J-class operator;
(2) J(0) = X;
(3) J(z) = X.
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(iii) Suppose there exist a non-zero vector z ∈ X, a vector w ∈ X
and a sequence {zn} ⊂ X such that zn → z and T nzn → w.
Then the following are equivalent.
(1) T is a J-class operator;
(2) J(0) = X;
(3) J(z) = X.
In particular, this statement holds for operators with non triv-

ial kernel or for operators having at least one non-zero fixed
point.

Proof. Let us first show item (i). Fix any positive integer m and let
y ∈ JT (0). There exist a strictly increasing sequence of positive integers
{kn} and a sequence {xn} in X such that xn → 0 and T knxn → y.
Then for every n there exist non-negative integers ln, ρn with ρn ∈
{0, 1, . . . ,m − 1} such that kn = lnm + ρn. Hence without loss of
generality we may assume that there is ρ ∈ {0, 1, . . . ,m− 1} such that
kn = lnm + ρ for every n. The last implies that Tmln(T ρxn) → y and
T ρxn → 0 as n → ∞. Hence JT (0) ⊂ JTm(0). The converse inclusion
is obvious. Let us show assertion (ii). That (1) implies (2) is an
immediate consequence of Lemma 2.11. We shall prove that (2) gives
(3). Suppose that N is the period of the periodic point z. Fix w ∈ X.
Assertion (i) yields that JTN (0) = X. Hence there exist a strictly
increasing sequence of positive integers {mn} and a sequence {yn} in
X such that yn → 0 and TNmnyn → w − z. It follows that yn + z → z
and TNmn(yn+z) → w, from which we conclude that JT (z) = X. This
proves assertion (ii). We proceed with the proof of assertion (iii). It
only remains to show that (2) implies (3). Take any y ∈ X. There
exist a sequence {xn} ⊂ X and a strictly increasing sequence {kn} of
positive integers such that xn → 0 and T knxn → y−w. Our hypothesis
implies that xn+ zkn → z and T kn(xn+ zkn) → y. Hence y ∈ J(z). �

In the following proposition we provide a construction of J-class
operators which are not hypercyclic.

Proposition 5.10. Let X be a Banach space and let Y be a separable
Banach space. Consider an operator S : X → X so that σ(S) ⊂ {λ :
|λ| > 1}. Let also T : Y → Y be a hypercyclic operator. Then

(i) S ⊕ T : X ⊕ Y → X ⊕ Y is a J-class operator but not a
hypercyclic operator and

(ii) the set {x ⊕ y : x ∈ X, y ∈ Y such that J(x ⊕ y) = X ⊕ Y }
forms an infinite dimensional closed subspace of X ⊕ Y and in
particular

{x⊕ y : x ∈ X, y ∈ Y such that J(x⊕ y) = X ⊕ Y } = {0} ⊕ Y.
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Proof. We first prove assertion (i). That S ⊕ T is not a hypercyclic
operator is an immediate consequence of the fact that σ(S) ⊂ {λ :
|λ| > 1}. Let us now prove that S ⊕ T is a J-class operator. Fix
any hypercyclic vector y ∈ Y for T . We shall show that J(0 ⊕ y) =
X ⊕ Y . Take x ∈ X and w ∈ Y . Since σ(S) ⊂ {λ : |λ| > 1} it
follows that S is invertible and σ(S−1) ⊂ {λ : |λ| < 1}. Hence the
spectral radius formula implies that ∥S−n∥ → 0. Therefore S−nx → 0.
Since y is hypercyclic for T there exists a strictly increasing sequence
of positive integers {kn} such that T kny → w. Observe now that
(S⊕T )kn(S−knx⊕ y) = x⊕T kny → x⊕w and S−knx⊕ y → 0⊕ y. We
proceed with the proof of (ii). Fix any hypercyclic vector y ∈ Y for T .
From the proof of (i) we get J(0⊕y) = X⊕Y . Since for every positive
integer n the vector T ny is hypercyclic for T , by the same reasoning as
above we have that J(0⊕ T ny) = X ⊕ Y . Using Lemma 2.5 and that
y is hypercyclic for T we conclude that J(0 ⊕ w) = X ⊕ Y for every
w ∈ Y . To finish the proof, it suffices to show that if x ∈ X \ {0}
then for every w ∈ Y , J(x⊕ w) ̸= X. In particular we will show that
J(x ⊕ w) = ∅. Suppose there exists h ∈ J+(x) = J(x) (see Definition
2.2). Propositions 2.9 and 2.10 imply that x ∈ J−(h) = L−(h) (since
S−1 is power bounded). On the other hand ∥S−n∥ → 0 and therefore
x ∈ L−(h) = {0}, which is a contradiction. �

Let us point out that Proposition 5.10 shows that the cyclicity as-
sumption is indeed necessary in Corollary 4.8 and Lemma 3.2. We next
provide some information on the spectrum of a J-class operator. Recall
that if T is hypercyclic then every component of the spectrum σ(T )
intersects the unit circle, see [23]. Although the spectrum of a J-class
operator intersects the unit circle ∂D, see Proposition 5.12 below, it
may admits components not intersecting ∂D. For instance consider the
J-class operator 2B ⊕ 3I, where B is the backward shift on l2(N) and
I is the identity operator on C.
Proposition 5.11. Let T : X → X be an operator on a complex
Banach space X. If r(T ) < 1, where r(T ) denotes the spectral radius
of T , or σ(T ) ⊂ {λ : |λ| > 1} then T is not a J-class operator.

Proof. If r(T ) < 1 then we have ∥T n∥ → 0. Hence T is not a J-class
operator. If σ(T ) ⊂ {λ : |λ| > 1} the conclusion follows by the proof
of Proposition 5.10. �
Proposition 5.12. Let X be a complex Banach space. If T : X → X
is a J-class operator, it holds that σ(T ) ∩ ∂D ̸= ∅.
Proof. Assume, on the contrary, that σ(T ) ∩ ∂D = ∅. Then we have
σ(T ) = σ1 ∪ σ2 where σ1 = {λ ∈ σ(T ) : |λ| < 1} and σ2 = {λ ∈
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σ(T ) : |λ| > 1}. If at least one of the sets σ1, σ2 is empty, we reach
a contradiction because of Proposition 5.11. Assume now that both
σ1, σ2 are non-empty. Applying Riesz decomposition theorem, see [27],
there exist invariant subspaces X1, X2 of X under T such that X =
X1 ⊕ X2 and σ(Ti) = σi, i = 1, 2, where Ti denotes the restriction of
T to Xi, i = 1, 2. It follows that T = T1 ⊕ T2 and since T is J-class
it is easy to show that at least one of T1, T2 is a J-class operator. By
Proposition 5.11 we arrive again at a contradiction. �

Proposition 5.13. Let T : l2(N) → l2(N) be a unilateral backward
weighted shift with positive weight sequence {αn} and consider a vector
x = (x1, x2, . . .) ∈ l2(N). The following are equivalent.

(i) T is hypercyclic;
(ii) J(x) = l2(N);
(iii) J(x)o ̸= ∅.

Proof. It only remains to prove that (iii) implies (i). Suppose J(x)o ̸=
∅. Then there exists a vector y = (y1, y2, . . .) ∈ J(x) such that y1 ̸=
0. Hence we may find a strictly increasing sequence {kn} of positive
integers and a sequence {zn} in l2(N), zn = (zn1, zn2, . . .), such that
zn → x and T knzn → y. We have

|(T knzn)1 − y1| =

∣∣∣∣∣
(

kn∏
i=1

αi

)
zn(kn+1) − y1

∣∣∣∣∣→ 0.

Observe that |zn(kn+1)| ≤ |zn(kn+1)−xkn+1|+|xkn+1| ≤ ∥zn−x∥+|xkn+1|.
The above inequality implies zn(kn+1) → 0 and since y1 ̸= 0 we arrive

at
∏kn

i=1 αi → +∞. By Salas’ characterization of hypercyclic unilateral
weighted shifts, see [29], it follows that T is hypercyclic. �

Remark 5.14. We would also like to mention that (ii) implies (i) in the
previous proposition, is an immediate consequence of Proposition 5.3
in [16]. Let us stress that in case T is a unilateral backward weighted
shift on l2(N), the condition J(0) = l2(N) implies that T is hypercyclic.
For a characterization of J-class unilateral weighted shifts on l∞(N) in
terms of their weight sequence see [12].

Proposition 5.15. Let T : l2(Z) → l2(Z) be a bilateral backward
weighted shift with positive weight sequence {αn} and consider a non-
zero vector x = (xn)n∈Z in l2(Z). The following are equivalent.

(i) T is hypercyclic;
(ii) J(x) = l2(Z);
(iii) J(x)o ̸= ∅.
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Proof. It suffices to show that (iii) implies (i). In view of Salas’ The-
orem 2.1 in [29], we shall prove that there exists a strictly increas-
ing sequence {kn} of positive integers such that for any integer q,∏kn

i=1 αi+q → +∞ and
∏kn−1

i=0 αq−i → 0. Since x is a non-zero vector,
there exists an integer m such that xm ̸= 0. Without loss of generality
we may assume that m is positive. Suppose J(x)o ̸= ∅. Then there
exists a vector y = (yn)n∈Z in l2(Z) such that y1 ̸= 0. Hence we may
find a strictly increasing sequence {kn} of positive integers and a se-
quence {zn} in l2(Z), zn = (znl)l∈Z, such that zn → x and T knzn → y.
For simplicity reasons we assume that q = 0. Arguing as in the proof
of Proposition 5.13 we get that

∏kn
i=1 αi → +∞. On the other hand

observe that

|(T knzn)m−kn − ym−kn| =

∣∣∣∣∣
(

m∏
i=0

αi

)(
kn−m+1∏

i=1

α−i

)
znm − ym−kn

∣∣∣∣∣→ 0.

Since xm ̸= 0 there exists a positive integer n0 such that |znm| ≥ |xm|
2

for every n ≥ n0. We also have (T knzn)m−kn → 0. The above imply

that
∏kn−1

i=0 α−i → 0. �

6. OPEN PROBLEMS

Below we give a list of open problems.

Problem 1.
Let T : X → X be an operator on an infinite dimensional Banach

space X. Suppose there exists a vector x ∈ X such that J(x)o ̸= ∅. Is
it true that J(x) = X?

Ansari [1] and Bernal [4] gave a positive answer to Rolewicz’ ques-
tion if every separable and infinite dimensional Banach space supports
a hypercyclic operator. Observe that we showed that the non-separable
Banach space l∞(N) admits a J-class operator, while on the other hand
Bermúdez and Kalton [3] showed that l∞(N) does not support topo-
logically transitive operators. Hence it is natural to raise the following
question.

Problem 2.
Does every non-separable and infinite dimensional Banach space sup-

port a J-class operator?

D. Herrero in [21] established a spectral description of the closure of
the set of hypercyclic operators acting on an infinite dimensional and
separable Hilbert space. Below we ask a similar question for J-class
operators.
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Problem 3.
Is there a spectral description of the closure of the set of J-class

operators acting on a separable and infinite dimensional Hilbert space?

Problem 4.
Let X be a separable and infinite dimensional Banach space and

T : X → X be an operator. Suppose that J(x)o ̸= ∅ for every x ∈ X.
Does it follow that T is hypercyclic?

Grivaux in [17] showed that every operator on a complex infinite
dimensional Hilbert space can be written as a sum of two hypercyclic
operators. We consider the following

Problem 5.
Is it true that any operator on l∞(N) can be written as a sum of two

J-class operators?
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In this paper we extend the notion of a locally hypercyclic operator to that of a locally
hypercyclic tuple of operators. We then show that the class of hypercyclic tuples of
operators forms a proper subclass to that of locally hypercyclic tuples of operators. What
is rather remarkable is that in every finite dimensional vector space over R or C, a pair of
commuting matrices exists which forms a locally hypercyclic, non-hypercyclic tuple. This
comes in direct contrast to the case of hypercyclic tuples where the minimal number of
matrices required for hypercyclicity is related to the dimension of the vector space. In
this direction we prove that the minimal number of diagonal matrices required to form a
hypercyclic tuple on R

n is n + 1, thus complementing a recent result due to Feldman.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Locally hypercyclic (or J -class) operators form a class of linear operators which possess certain dynamic properties. These
were introduced and studied in [5]. The notion of a locally hypercyclic operator can be viewed as a “localization” of the
notion of hypercyclic operator. For a comprehensive study and account of results on hypercyclic operators we refer to the
book [1] by Bayart and Matheron.

Hypercyclic tuples of operators were introduced and studied by Feldman in [6–8], see also [12]. An n-tuple of operators is
a finite sequence of length n of commuting continuous linear operators T1, T2, . . . , Tn acting on a locally convex topological
vector space X . The tuple (T1, T2, . . . , Tn) is hypercyclic if there exists a vector x ∈ X such that the set

{
T k1
1 T k2

2 . . . T kn
n x: k1,k2, . . . ,kn ∈ N ∪ {0}}

is dense in X . The tuple (T1, T2, . . . , Tn) is topologically transitive if for every pair (U , V ) of non-empty open sets in X there
exist k1,k2, . . . ,kn ∈ N ∪ {0} such that T k1

1 T k2
2 . . . T kn

n (U ) ∩ V �= ∅. If X is separable it is easy to show that (T1, T2, . . . , Tn)
is topologically transitive if and only if (T1, T2, . . . , Tn) is hypercyclic. Following Feldman [8], we denote the semigroup
generated by the tuple T = (T1, T2, . . . , Tn) by FT = {T k1

1 T k2
2 . . . T kn

n : ki ∈ N ∪ {0}} and the orbit of x under the tuple T
by Orb(T , x) = {Sx: S ∈ FT }. Furthermore, we denote by HC((T1, T2, . . . , Tn)) the set of hypercyclic vectors for the tuple
(T1, T2, . . . , Tn).
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In this article we extend the notion of a locally hypercyclic operator (locally topologically transitive) to that of a locally
hypercyclic tuple (locally topologically transitive tuple) of operators as follows. For x ∈ X we define the extended limit set
J (T1,T2,...,Tn)(x) to be the set of y ∈ X for which there exist a sequence of vectors {xm} with xm → x and sequences of

non-negative integers {k( j)
m : m ∈ N} for j = 1,2, . . . ,n with

k(1)
m + k(2)

m + · · · + k(n)
m → +∞ (1.1)

such that

T k(1)
m

1 T k(2)
m

2 . . . T k(n)
m

n xm → y.

Note that condition (1.1) is equivalent to having at least one of the sequences {k( j)
m : m ∈ N} for j = 1,2, . . . ,n containing a

strictly increasing subsequence tending to +∞. This is in accordance with the well-known definition of J -sets in topological
dynamics, see [9]. In Section 2 we provide an explanation as to why condition (1.1) is reasonable. The tuple (T1, T2, . . . , Tn)
is locally topologically transitive if there exists x ∈ X \ {0} such that J (T1,T2,...,Tn)(x) = X . Using simple arguments it is easy
to show the following equivalence. J (T1,T2,...,Tn)(x) = X if and only if for every open neighborhood Ux of x and every non-

empty open set V there exist k1,k2, . . . ,kn ∈ N ∪ {0} such that T k1
1 T k2

2 . . . T kn
n (Ux) ∩ V �= ∅. In the case when X is separable

and there exists x ∈ X \ {0} such that J (T1,T2,...,Tn)(x) = X , the tuple (T1, T2, . . . , Tn) will be called locally hypercyclic.
In a finite dimensional space over R or C, no linear operator can be hypercyclic (see [13]) or locally hypercyclic (see

[5]). However, it was shown recently by Feldman in [8] that the situation for tuples of linear operators in finite dimensional
spaces over R or C is quite different. There, it was shown that there exist hypercyclic (n + 1)-tuples of diagonal matrices
on Cn and that no n-tuple of diagonal matrices is hypercyclic. We complement this result by showing that the minimal
number of diagonal matrices required to form a hypercyclic tuple in Rn is n + 1. We also mention at this point that in [3]
it is proved that non-diagonal hypercyclic n-tuples exist on Rn , answering a question of Feldman.

In the present work we make a first attempt towards studying locally hypercyclic tuples of linear operators on finite
dimensional vector spaces over R or C. We show that if a tuple of linear operators is hypercyclic then it is locally hypercyclic
(see Section 2). We then proceed to show that in the finite dimensional setting, the class of hypercyclic tuples of operators
forms a proper subclass of the class of locally hypercyclic tuples of operators. What is rather surprising is the fact that
the minimal number of matrices required to construct a locally hypercyclic tuple in any finite dimensional space over R

or C is 2. This comes in direct contrast to the class of hypercyclic tuples where the minimal number of matrices required
depends on the dimension of the vector space. Examples of diagonal pairs of matrices as well as pairs of upper triangular
non-diagonal matrices and matrices in Jordan form which are locally hypercyclic but not hypercyclic are constructed. We
mention that some of our constructions can be directly generalized to the infinite dimensional case, see Section 4.

2. Basic properties of locally hypercyclic tuples of operators

Let us first comment on the condition (1.1) in the definition of a locally hypercyclic tuple. This comes as an extension to
the definition of a locally hypercyclic operator given in [5]. Recall that a hypercyclic operator T : X → X is locally hypercyclic
and furthermore J T (x) = X for every x ∈ X . In the definition of a locally hypercyclic tuple, one may have been inclined to
demand that k( j)

m → +∞ for every j = 1,2, . . . ,n. However this would lead to a situation where the class of hypercyclic
tuples would not form a subclass of the locally hypercyclic tuples. To clarify this issue, we give an example. Take any
hypercyclic operator T : X → X and consider the tuple (T ,0) where 0 : X → X is the zero operator defined by 0(x) = 0
for every x ∈ X . Obviously, this is a hypercyclic tuple (Orb(0, x) = {x,0}). On the other hand, for every pair of sequences of
integers {nk}, {mk} with nk,mk → +∞ and for every sequence of vectors xk tending to some vector x we have Tnk0mk xk → 0
and so (T ,0) would not be a locally hypercyclic pair.

Let us now proceed by stating some basic facts which will be used in showing that the class of hypercyclic tuples is
contained in the class of locally hypercyclic tuples.

Lemma 2.1. If x ∈ HC((T1, T2, . . . , Tn)) then J (T1,T2,...,Tn)(x) = X.

Proof. Let y ∈ X , ε > 0 and m ∈ N. Since the set Orb(T , x) is dense in X it follows that the set{
T k1
1 T k2

2 . . . T kn
n x: k1 + k2 + · · · + kn >m

}
is dense in X (only a finite number of vectors is omitted from the orbit Orb(T , x)). Hence, there exist (k1,k2, . . . ,kn) ∈ Nn

with k1 + k2 + · · · + kn >m such that∥∥T k1
1 T k2

2 . . . T kn
n x− y

∥∥ < ε. �
The proof of the following lemma is an immediate variation of the proof of Lemma 2.5 in [4].

Lemma 2.2. If {xm}, {ym} are two sequences in X such that xm → x and yn → y for some x, y ∈ X and ym ∈ J (T1,T2,...,Tn)(xm) for
every m ∈ N then y ∈ J (T1,T2,...,Tn)(x).
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Lemma 2.3. For all x ∈ X the set J (T1,T2,...,Tn)(x) is closed and T j invariant for every j = 1,2, . . . ,n.

Proof. This is an easy consequence of Lemma 2.2. �
Proposition 2.4. (T1, T2, . . . , Tn) is hypercyclic if and only if it is locally hypercyclic and J (T1,T2,...,Tn)(x) = X for every x ∈ X.

Proof. Assume first that (T1, T2, . . . , Tn) is hypercyclic. By Lemma 2.1 it follows that (T1, T2, . . . , Tn) is locally hyper-
cyclic. Denote by A the set of vectors {x ∈ X: J (T1,T2,...,Tn)(x) = X}. By Lemma 2.1 we have HC((T1, T2, . . . , Tn)) ⊂ A. Since
HC((T1, T2, . . . , Tn)) is dense (see [8]) and A is closed by Lemma 2.2, it is plain that A = X . For the converse implication let
us consider x ∈ X . Since J (T1,T2,...,Tn)(x) = X then for every open neighborhood Ux of x and every non-empty open set V

there exist k1,k2, . . . ,kn ∈ N ∪ {0} such that T k1
1 T k2

2 . . . T kn
n (Ux) ∩ V �= ∅. Therefore (T1, T2, . . . , Tn) is topologically transitive

and since X is separable it follows that (T1, T2, . . . , Tn) is hypercyclic. �
3. Locally hypercyclic pairs of diagonal matrices which are not hypercyclic

In [8], Feldman showed that there exist (n + 1)-tuples of diagonal matrices on Cn and that there are no hypercyclic
n-tuples of diagonalizable matrices on Cn . In the same paper, Feldman went a step further to show that no n-tuple of
diagonal matrices on Rn is hypercyclic while, on the other hand, there exists an (n + 1)-tuple of diagonal matrices on Rn

that has a dense orbit in (R+)n . We complement the last result by showing that there is an (n + 1)-tuple of diagonal
matrices on Rn which is hypercyclic. Throughout the rest of the paper for a vector u in Rn or Cn we will be denoting by ut

the transpose of u.

Theorem 3.1. For every n ∈ N there exists an (n + 1)-tuple of diagonal matrices on Rn which is hypercyclic.

Proof. Choose negative real numbers a1,a2, . . . ,an such that the numbers

1,a1,a2, . . . ,an

are linearly independent over Q. By Kronecker’s theorem (see Theorem 442 in [10]) the set{
(ka1 + s1,ka2 + s2, . . . ,kan + sn)

t : k, s1, . . . , sn ∈ N ∪ {0}}
is dense in Rn . The continuity of the map f :Rn → Rn defined by f (x1, x2, . . . , xn) = (ex1 , ex2 , . . . , exn ) implies that the set{((

ea1
)k
es1 ,

(
ea2

)k
es2 , . . . ,

(
ean

)k
esn

)t
: k, s1, . . . , sn ∈ N ∪ {0}}

is dense in (R+)n . An easy argument (see for example the proof of Lemma 2.6 in [3]) shows that the set⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

(ea1)k(−√
e )s1

(ea2)k(−√
e )s2

...

(ean )k(−√
e )sn

⎞
⎟⎟⎟⎠ : k, s1, . . . , sn ∈ N ∪ {0}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

is dense in Rn . Let

1 =

⎛
⎜⎜⎝

1
1
...

1

⎞
⎟⎟⎠ , A =

⎛
⎜⎜⎝

ea1

ea2
. . .

ean

⎞
⎟⎟⎠ ,

B1 =

⎛
⎜⎜⎝

−√
e

1
. . .

1

⎞
⎟⎟⎠ , . . . , Bn =

⎛
⎜⎜⎝

1
1

. . .

−√
e

⎞
⎟⎟⎠ .

Then the set{
AkBs1

1 . . . Bsn
n 1: k, s1, . . . , sn ∈ N ∪ {0}}

is dense in Rn , which implies that the (n + 1)-tuple (A, B1, . . . , Bn) of diagonal matrices is hypercyclic. �
All of the results mentioned at the beginning of this section as well as the one proved above show that the length of

a hypercyclic tuple of diagonal matrices depends on the dimension of the space. It comes as a surprise that this is not the
case for locally hypercyclic tuples of diagonal matrices. In fact, we show that on a vector space of any finite dimension n � 2
one may construct a pair of diagonal matrices which is locally hypercyclic.
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Theorem 3.2. Let a,b ∈ R such that −1 < a < 0, b > 1 and ln |a|
lnb is irrational. Let n be a positive integer with n � 2 and consider the

n × n matrices

A =

⎛
⎜⎜⎜⎜⎝

a1 0 0 . . . 0
0 a2 0 . . . 0
0 0 a3 . . . 0
...

...
...

. . . 0
0 0 0 . . . an

⎞
⎟⎟⎟⎟⎠ , B =

⎛
⎜⎜⎜⎜⎝

b1 0 0 . . . 0
0 b2 0 . . . 0
0 0 b3 . . . 0
...

...
...

. . . 0
0 0 0 . . . bn

⎞
⎟⎟⎟⎟⎠

where a1 = a, b1 = b, a j,b j are real numbers with |a j| > 1 and |b j | > 1 for j = 2, . . . ,n. Then (A, B) is a locally hypercyclic pair
on Rn which is not hypercyclic. In particular, we have

{
x ∈ Rn: J (A,B)(x) = Rn} = {

(x1,0, . . . ,0)
t ∈ Rn: x1 ∈ R

}
.

Proof. Note that

AkBl =

⎛
⎜⎜⎜⎜⎜⎝

akbl 0 0 . . . 0
0 ak2b

l
2 0 . . . 0

0 0 ak3b
l
3 . . . 0

...
...

...
. . . 0

0 0 0 . . . aknb
l
n

⎞
⎟⎟⎟⎟⎟⎠

.

Let x = (1,0,0, . . . ,0)t ∈ Rn . We will show that J (A,B)(x) = Rn . Fix a vector y = (y1, . . . , yn)t . By [3, Lemma 2.6], the
sequence {akbl: k, l ∈ N} is dense in R. Hence there exist sequences of positive integers {ki} and {li} with ki, li → +∞ such
that aki bli → y1. Let

xi =
(
1,

y2

aki2 b
li
2

, . . . ,
yn

akin b
li
n

)t

.

Obviously xi → x and

Aki Bli xi =
(
aki bli , y2, . . . , yn

)t → y.

In [8, Theorems 3.4 and 3.6] Feldman showed that there exists a hypercyclic (n + 1)-tuple of diagonal matrices on Cn ,
for every n ∈ N but there is no hypercyclic n-tuple of diagonal matrices on Cn or on Rn . Feldman actually showed that
there is no n-tuple of diagonal matrices on Cn or Rn that has a somewhere dense orbit [8, Theorem 4.4]. So the pair
(A, B) is not hypercyclic. To finish, note that for every λ ∈ R \ {0} it holds that J (A,B)(λx) = λ J (A,B)(x) = Rn . In view of
Lemma 2.2 it follows that J (A,B)(0) = Rn . On the other hand, by the choice of a j,b j for j = 2, . . . ,n it is clear that for any
vector u = (u1,u2, . . . ,un)

t with u j �= 0 for some j ∈ {2,3, . . . ,n} we have J (A,B)(u) �= Rn . This completes the proof of the
theorem. �

A direct analogue to the previous theorem also holds in the complex setting. We will make use of the following result
in [8] due to Feldman.

Proposition 3.3.

(i) If b ∈ C \ {0} with |b| < 1 then there is a dense set �b ⊂ {z ∈ C: |z| > 1} such that for any a ∈ �b, we have that {akbl: k, l ∈ N}
is dense in C.

(ii) If a ∈ C with |a| > 1, then there is a dense set �a ⊂ {z ∈ C: |z| < 1} such that for any b ∈ �a, we have that {akbl: k, l ∈ N} is
dense in C.

Theorem 3.4. Let a,b ∈ C such that {akbl: k, l ∈ N} is dense in C. Let n be a positive integer with n � 2 and consider the diagonal
matrices A and B as in Theorem 3.2 where a1 = a, b1 = b, a j,b j ∈ C with |a j | > 1 and |b j | > 1 for j = 2, . . . ,n. Then (A, B) is a
locally hypercyclic pair on Cn which is not hypercyclic. In particular, we have

{
z ∈ Cn: J (A,B)(z) = Cn} = {

(z1,0, . . . ,0)
t ∈ Cn: z1 ∈ C

}
.

Proof. The proof follows along the same lines as that of Theorem 3.2. �
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4. Locally hypercyclic pairs of diagonal operators which are not hypercyclic in infinite dimensional spaces

In this section we slightly modify the construction in Theorem 3.2 in order to obtain similar results in infinite dimen-
sional spaces. As usual the symbol lp(N) stands for the Banach space of p-summable sequences, where 1 � p < ∞ and by
l∞(N) we denote the Banach space of bounded sequences (either over R or C).

Theorem 4.1. Let a,b ∈ C such that {akbl: k, l ∈ N} is dense in C and let c ∈ C with |c| > 1. Consider the diagonal operators
T j : lp(N) → lp(N), 1 � p � ∞, j = 1,2, defined by

T1(x1, x2, x3, . . .) = (ax1, cx2, cx3, . . .),

T2(x1, x2, x3, . . .) = (bx1, cx2, cx3, . . .),

for x = (x1, x2, x3, . . .) ∈ lp(N), 1 � p � ∞. Then (T1, T2) is a locally hypercyclic, non-hypercyclic pair in lp(N) for every 1 � p < ∞
and (T1, T2) is a locally topologically transitive, non-topologically transitive pair in l∞(N). In particular we have{

x ∈ lp(N): J (T1,T2)(x) = lp(N)
} = {

(x1,0,0, . . .): x1 ∈ C
}

for every 1 � p � ∞.

Proof. Fix 1 � p � ∞ and consider a vector y = (y1, y2, . . .) ∈ lp(N). There exist sequences of positive integers {ki} and {li}
with ki, li → +∞ such that aki bli → y1. Let

xi =
(
1,

y2
cki+li

,
y3

cki+li
, . . .

)
.

Obviously xi → x = (1,0,0, . . .) and

T ki
1 T li

2 xi =
(
akibli , y2, y3, . . .

) → y.

Therefore J (T1,T2)(x) = lp(N). For p = 2 the pair (T1, T2) is not hypercyclic by Feldman’s result which says that there are
no hypercyclic tuples of normal operators in infinite dimensions, see [8]. However, one can show directly that for every
1 � p < ∞ the pair (T1, T2) is not hypercyclic and (T1, T2) is not topologically transitive in l∞(N). Indeed, suppose that
x = (x1, x2, . . .) ∈ lp(N) is hypercyclic for the pair (T1, T2), where 1 � p < ∞. Then necessarily x2 �= 0 and the sequence {cn}
should be dense in C which is a contradiction. For the case p = ∞, assuming that the pair (T1, T2) is topologically tran-
sitive we conclude that the pair (A, B) is topologically transitive in C2, where A(x1, x2) = (ax1, cx2), B(x1, x2) = (bx1, cx2),
(x1, x2) ∈ C2. The latter implies that (A, B) is hypercyclic. Since no pair of diagonal matrices is hypercyclic in C2, see [8],
we arrive at a contradiction. It is also easy to check that {x ∈ lp(N): J (T1,T2)(x) = lp(N)} = {(x1,0,0, . . .): x1 ∈ C} for every
1 � p � ∞. �
Remark 4.2. Theorem 4.1 is valid for the lp(N) spaces over the reals as well. Concerning the non-separable Banach
space l∞(N) we stress that this space does not support topologically transitive operators, see [2]. On the other hand there
exist operators acting on l∞(N) which are locally topologically transitive, see [5].

5. Locally hypercyclic pairs of upper triangular non-diagonal matrices which are not hypercyclic

We first show that it is possible for numbers a1,a2 ∈ R to exist with the property that the set{
ak1a

l
2

k
a1

+ l
a2

: k, l ∈ N

}

is dense in R and at the same time the sequences on both the numerator and denominator stay unbounded. For our
purposes we will show that the set above with a2 = −1 and a1 = a is dense in R for any a ∈ R with a > 1. Actually we
shall prove that the set{ k

a − l

ak(−1)l
: k, l ∈ N

}

is dense in R for any a ∈ R with a > 1. From this it should be obvious that the result above follows since the image of a
dense set in R \ {0} under the map f (x) = 1/x is also dense in R.

Lemma 5.1. The set{ k
a − l

ak(−1)l
: k, l ∈ N

}

is dense in R for any a > 1.
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Proof. Let x ∈ R and ε > 0 be given. We want to find k, l ∈ N such that
∣∣∣∣

k
a − l

ak(−1)l
− x

∣∣∣∣ < ε.

There are two cases to consider, namely the cases x > 0 and x < 0, and we consider them separately (the case x = 0 is trivial
since keeping l fixed we can find k big enough which does the job).

Case I (x > 0): There exists k ∈ N such that 1/ak < ε/2. We will show that there exists a positive odd integer l = 2s − 1
for some s ∈ N for which∣∣∣∣

k
a − l

ak(−1)l
− x

∣∣∣∣ =
∣∣∣∣2sak − 1

ak
− k

ak+1
− x

∣∣∣∣ < ε.

But note that this is true since consecutive terms in the sequence {2s/ak: s ∈ N} are at distance 2/ak < ε units apart and
so, for some s ∈ N it holds that 2s

ak
− 1

ak
− k

ak+1 ∈ (x− ε, x+ ε).

Case II (x < 0): There exists k ∈ N such that 1/ak < ε/2. We will show that there exists a positive even integer l = 2s for
some s ∈ N for which∣∣∣∣

k
a − l

ak(−1)l
− x

∣∣∣∣ =
∣∣∣∣ k

ak+1
− 2s

ak
− x

∣∣∣∣ < ε.

But note that this is true since consecutive terms in the sequence {2s/ak: s ∈ N} are at distance 2/ak < ε units apart and
so, for some s ∈ N it holds that k

ak+1 − 2s
ak

∈ (x− ε, x+ ε). �
Lemma 5.2. Let x ∈ R \ {0}, a > 1 and consider sequences {ki}, {li} of natural numbers with ki, li → +∞ such that

ki
a − li

aki (−1)li
→ x.

Then both the numerator and denominator stay unbounded.

Proof. This is trivial since the denominator grows unbounded and so it forces the numerator to keep up. �
Remark 5.3. The case where x = 0 is the only one for which one has the freedom of having the denominator grow un-
bounded and keep the numerator bounded. However, if one requires both numerator and denominator to stay unbounded
then the numerator can also be made to grow unbounded (growing at a slower rate than the denominator).

Let us now proceed with the construction of a locally hypercyclic pair of upper triangular non-diagonal matrices on Rn

which is not hypercyclic.

Theorem 5.4. Let n be a positive integer with n � 2 and consider the n × n matrices

A j =

⎛
⎜⎜⎜⎜⎝

a j 0 0 . . . 1
0 a j 0 . . . 0
0 0 a j . . . 0
...

...
...

. . . 0
0 0 0 . . . a j

⎞
⎟⎟⎟⎟⎠

for j = 1,2 where a1 > 1 and a2 = −1. Then (A1, A2) is a locally hypercyclic pair on Rn which is not hypercyclic. In particular, we
have {

x ∈ Rn: J (A1,A2)(x) = Rn} = {
(x1,0, . . . ,0)

t ∈ Rn: x1 ∈ R
}
.

Proof. It easily follows that

Ak
1A

l
2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

ak1a
l
2 0 0 . . . ak1a

l
2(

k
a1

+ l
a2

)

0 ak1a
l
2 0 . . . 0

0 0 ak1a
l
2 . . . 0

...
...

...
. . . 0

0 0 0 . . . ak1a
l
2

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Let x �= 0. We want to find a sequence xi = (xi1, xi2, . . . , xin)t , i ∈ N which converges to the vector (x,0, . . . ,0)t and such
that for any vector w = (w1, w2, . . . , wn)

t there exist strictly increasing sequences {ki}, {li} of positive integers for which
Aki
1 Ali

2xi → w . Without loss of generality we may assume that wn �= 0. This is equivalent to having

aki1 a
li
2xi1 + aki1 a

li
2

(
ki
a1

+ li
a2

)
xin → w1

and

aki1 a
li
2xij → w j

for j = 2, . . . ,n. By Lemma 5.1 there exist sequences {ki} and {li} of positive integers such that ki, li → +∞ and

aki1 a
li
2

ki
a1

+ li
a2

→ −wn

x
.

We set

xi1 = x− w1x

wn(
ki
a1

+ li
a2

)
, xij = − w jx

wn(
ki
a1

+ li
a2

)

for j = 2, . . . ,n − 1, and

xin = − x
ki
a1

+ li
a2

.

Note that, because of Lemma 5.2, xi1 → x and xij → 0 for j = 2, . . . ,n. Substituting into the equations above we find

aki1 a
li
2xi1 + aki1 a

li
2

(
ki
a1

+ li
a2

)
xin = aki1 a

li
2

(
− w1x

wn(
ki
a1

+ li
a2

)

)
→ w1

and

aki1 a
li
2xij = aki1 a

li
2

(
− w jx

wn(
ki
a1

+ li
a2

)

)
→ w j

for j = 2, . . . ,n − 1 as well as

aki1 a
li
2xin = aki1 a

li
2

(
− x

ki
a1

+ li
a2

)
→ wn.

The pair (A1, A2) is not hypercyclic. The reason is that if it is hypercyclic then there is a vector y = (y1, y2, . . . , yn)t ∈ Rn

such that the set {Ak
1A

l
2 y: k, l ∈ N ∪ {0}} is dense in Rn . Hence the set of vectors

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

ak1a
l
2 y1 + ak1a

l
2(

k
a1

+ l
a2

)yn

ak1a
l
2 y2
...

ak1a
l
2 yn

⎞
⎟⎟⎟⎠ : k, l ∈ N ∪ {0}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

is dense in Rn . If yn = 0 then it is clear that the last coordinate cannot approximate anything but 0. If yn �= 0 then, since
a1 > 1 and a2 = −1 the sequence {|ak1al2 yn|: k, l ∈ N ∪ {0}} = {|a1|k|yn|: k ∈ N ∪ {0}} is geometric and so cannot be dense
in R+ . It is left to the reader to check that{

x ∈ Rn: J (A1,A2)(x) = Rn} = {
(x1,0, . . . ,0)

t ∈ Rn: x1 ∈ R
}
. �

In what follows we establish an analogue of Theorem 5.4 in the complex setting.

Lemma 5.5. Let a, θ be real numbers such that a > 1 and θ an irrational multiple of π . Then the set

{ k
aeiθ

− l

akeikθ (−1)l
: k, l ∈ N

}

is dense in C.
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Proof. Let w = |w|eiφ ∈ C \ {0} and ε > 0. By the denseness of the irrational rotation on the unit circle and by the choice
of a, there exists a positive integer k such that

∣∣e−ikθ − eiφ
∣∣ <

ε

4|w| and
k

ak−1
<

ε

4
.

By the proof of Lemma 5.1 there exists a non-negative odd integer l = 2s − 1 for some s ∈ N such that∣∣∣∣ −l

ak(−1)l
− |w|

∣∣∣∣ =
∣∣∣∣2sak − 1

ak
− |w|

∣∣∣∣ <
ε

2
.

Using the above estimates it follows that

∣∣∣∣
k

aeiθ
− l

akeikθ (−1)l
− |w|eiφ

∣∣∣∣ �

∣∣∣∣
k

aeiθ

akeikθ (−1)l

∣∣∣∣ +
∣∣∣∣ −l

akeikθ (−1)l
− |w|eiφ

∣∣∣∣
�

k

ak−1
+

∣∣∣∣ −l

ak(−1)l
− |w|

∣∣∣∣ + |w|∣∣e−ikθ − eiφ
∣∣

<
ε

4
+ ε

2
+ ε

4
= ε. �

We now construct a pair of upper triangular non-diagonal matrices which is locally hypercyclic on Cn and not hyper-
cyclic.

Theorem 5.6. Let n be a positive integer with n � 2 and consider the n × n matrices

A j =

⎛
⎜⎜⎜⎜⎝

a j 0 0 . . . 1
0 a j 0 . . . 0
0 0 a j . . . 0
...

...
...

. . . 0
0 0 0 . . . a j

⎞
⎟⎟⎟⎟⎠

for j = 1,2 where a1 = aeiθ for a > 1, θ an irrational multiple of π and a2 = −1. Then (A1, A2) is a locally hypercyclic pair on Cn

which is not hypercyclic. In particular, we have{
z ∈ Cn: J (A1,A2)(z) = Cn} = {

(z1,0, . . . ,0)
t ∈ Cn: z1 ∈ C

}
.

Proof. The proof follows along the same lines as the proof of Theorem 5.4 where use is made of Lemma 5.5 instead of
Lemma 5.1. �
Remark 5.7. Note that for n = 2 the upper triangular matrices we obtain in Theorems 5.4 and 5.6 are in Jordan form. This
gives an example of a locally hypercyclic pair of matrices in Jordan form which is not hypercyclic.

6. Concluding remarks and questions

We stress that all the tuples considered in this work consist of commuting matrices/operators. Recently, in [11] Javaheri
deals with the non-commutative case. In particular, he shows that for every positive integer n � 2 there exist non-
commuting linear maps A, B :Rn → Rn so that for every vector x = (x1, x2, . . . , xn) with x1 �= 0 the set{

Bk1 Al1 . . . Bkn Aln x: k j, l j ∈ N ∪ {0}, 1 � j � n
}

is dense in Rn . In other words the 2n-tuple (B, A, . . . , B, A) is hypercyclic.
The following open question was kindly posed by the referee.

Question. Suppose (T1, T2, . . . , Tm) is a locally hypercyclic tuple of (commuting) matrices such that J (T1,T2,...,Tm)(x) = Rn

for a finite set of vectors x in Rn whose linear span is equal to Rn . Is it true that the tuple (T1, T2, . . . , Tm) is hypercyclic?
Similarly for Cn .
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We characterise the Jacobson radical of an analytic crossed product C0(X)×f
Z+, answering a question first raised by Arveson and Josephson in 1969. In fact, we

characterise the Jacobson radical of analytic crossed products C0(X)×f Z
d

+. This

consists of all elements whose ‘‘Fourier coefficients’’ vanish on the recurrent points

of the dynamical system (and the first one is zero). The multidimensional version

requires a variation of the notion of recurrence, taking into account the various

degrees of freedom. © 2001 Elsevier Science

Key Words: semicrossed products; analytic crossed products; Jacobson radical;

recurrence; wandering sets.

There is a rich interplay between operator algebras and dynamical
systems, going back to the founding work of Murray and von Neumann in
the 1930’s. Crossed product constructions continue to provide fundamental
examples of von Neumann algebras and Cg-algebras. Comparatively
recently, Arveson [1] in 1967 introduced a nonselfadjoint crossed product
construction, called the analytic crossed product or the semicrossed
product, which has the remarkable property of capturing all of the
information about the dynamical system.



The construction starts with a dynamical system (X, f), i.e., a locally
compact Hausdorff space X and a continuous, proper surjection f: XQX.
Regarding the elements of a1(Z+, C0(X)) as formal series ;n \ 0 U

nfn, define
a multiplication by requiring fU=U(f p f). The analytic crossed product,
C0(X)×f Z+, is a suitable completion of a1(Z+, C0(X)); we give a detailed
discussion below. Then the property mentioned above is that, subject to a
mild condition on periodic points, two analytic crossed product algebras
are isomorphic as complex algebras if, and only if, the underlying dynami-
cal systems are topologically conjugate; i.e., there is a homeomorphism
between the spaces that intertwines the two actions. In this generality, the
result is due to Hadwin and Hoover [9, 10]—see also [20], which gives an
elegant direct proof of this if the maps f are homeomorphisms and extends
the result to analytic crossed products by finitely many distinct commuting
homeomorphisms on X, i.e., by Z

d

+.
Arveson’s original work [1] was for weakly-closed operator algebras and

Arveson and Josephson in [2] gave an extension to norm closed operator
algebras, including a structure theorem for bounded isomorphisms
between two such algebras. Motivated by this, they asked if the analytic
crossed product algebras were always semisimple (which would imply that
all isomorphisms are bounded), noting that the evidence suggested a
negative answer. This question stimulated considerable work on the ideal
structure of analytic crossed products.

Another stimulus is the close connections between the ideal structure of
Cg-crossed products and dynamical systems, such as the characterisation of
primitive ideals of Cg-crossed products in terms of orbit closures by Effros
and Hahn [5]. In this connection, we should mention Lamoureux’s devel-
opment of a generalisation of the primitive ideal space for various non-
selfadjoint operator algebras, including analytic crossed products [12, 13].

We state our main result for the case d=1. Recall that a point x ¥X is
recurrent for the dynamical system (X, f) if for every neighbourhood V of
x, there is n \ 1 so that fn(x) ¥ V. If X is a metric space, then this is
equivalent to having a sequence (nk) tending to infinity so that fnk(x) con-
verges to x. Let Xr denote the recurrent points of (X, f). Denoting ele-
ments of the analytic crossed product by formal series ;n \ 0 U

nfn we prove:

Theorem 1. If X is a locally compact metrisable space, then

Rad(C0(X)×f Z+)=3 C
n \ 1

Unfn ¥ C0(X)×f Z+: fn |Xr
=0 for all n4 .

Important progress towards a characterisation has been made by a
number of authors. In [16], Muhly gave two sufficient conditions, one for
an analytic crossed product to be semisimple and another for the Jacobson
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radical to be nonzero. The sufficient condition for a nonzero Jacobson
radical is that the dynamical system (X, f) possess a wandering set, i.e., an
open set V …X so that V, f−1(V), f−2(V), ... are pairwise disjoint. If there
are no wandering open sets, then the recurrent points are dense, so it turns
out that this sufficient condition is also necessary.

Peters in [18, 19] characterised the strong radical (namely, the intersec-
tion of the maximal (modular, two-sided) ideals) and the closure of the
prime radical and described much of the ideal structure for analytic crossed
products arising from free actions of Z

+. He also gave a sufficient condi-
tion for semisimplicity and showed that this condition is necessary and
sufficient for semisimplicity of the norm dense subalgebra of polynomials
in the analytic crossed product.

Most recently, Mastrangelo et al. [15], using powerful coordinate
methods and the crucial idea from [4], characterised the Jacobson radical
for analytic subalgebras of groupoid Cg-algebras. For those analytic
crossed products that can be coordinatised in this way (those with a free
action), their characterisation is the same as ours. The asymptotic centre of
the dynamical system that is used in [15] is also important to our
approach.

However, we are able to dispose of the assumption of freeness (and thus
our dynamical systems can have fixed points or periodic points); in fact,
our methods are applicable to irreversible dynamical systems having several
degrees of freedom (that is, actions of Z

d

+). In the multidimensional case
the usual notions of recurrence and centre are not sufficient to describe the
Jacobson radical, as we show by an example. Accordingly, we introduce
appropriate modifications.

After discussing the basic properties of analytic crossed products and
some of the radicals of Banach algebras, we develop the key lemma in
Section 1. This lemma, which is based on the idea of [4, Lemma 1], relates
(multi-) recurrent points in the dynamical system with elements not in the
Jacobson radical. In Section 2, we give a characterisation of semisimplicity.
The proof has three ingredients: the key lemma, a sufficient condition for
an element to belong to the prime radical (a descendant of Muhly’s condi-
tion mentioned earlier), and a basic fact from dynamical systems theory
which is known in the one-dimensional case. Our main result, Theorem 18,
is proved in the last section using a modification of the centre of a dynam-
ical system.

0.1. Definition of analytic crossed products. Analytic crossed products
or semicrossed products have been defined in various degrees of generality
by several authors (see for example [9, 13, 18, 19, 20]), generalising the
concept of the crossed product of a Cg-algebra by a group of g-auto-
morphisms. To fix our conventions, we present the definition in the form
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that we will use it. Let X be a locally compact Hausdorff space and
F={fn: n=(n1, n2, ..., nd) ¥ Z

d

+} be a semigroup of continuous and proper
surjections isomorphic (as a semigroup) to Z

d

+.
An action of S=Z

d

+ on C0(X) by isometric g-endomorphisms an (n ¥ S)
is obtained by defining an(f)=f p fn.

We write elements of the Banach space a1(S, C0(X)) as formal multi-
series A=;n ¥ S Unfn with the norm given by ||A||1=; ||fn ||C0(X). The
multiplication on a1(S, C0(X)) is defined by setting

UnfUm g=Un+m(am(f) g)

and extending by linearity and continuity. With this multiplication,
a1(S, C0(X)) is a Banach algebra.

We will represent a1(S, C0(X)) faithfully as a (concrete) operator algebra
on Hilbert space, and define the analytic crossed product as the closure of
the image.

Assuming we have a faithful action of C0(X) on a Hilbert space Ho, we
can define a faithful contractive representation p of a1(S, C0(X)) on the
Hilbert space H=Ho é a2(S) by defining p(Unf) as

p(Unf)(t é ek)=ak(f) t é ek+n

To show that p is faithful, let A=;n ¥ S Unfn be in a1(Zd

+, C0(X)) and
x, y ¥Ho be unit vectors. Since p is clearly contractive, the series p(A)=
;n ¥ S p(Unfn) converges absolutely. For m ¥ S, we have

Op(A)(x é e0), y é emP=C
n

Op(Unfn)(x é e0), y é emP

=C
n

Ofnx é en, y é emP

=Ofmx é em, y é emP=Ofmx, yP

as x é en and y é em are orthogonal for n ] m. It follows that

||p(A)|| \ ||fm ||.

Hence if p(A)=0 then fm=0 for all m, showing A=0. Thus p is a
monomorphism.

Definition 2. The analytic crossed product A=C0(X)×f Z
d

+ is the
closure of the image of a1(Zd

+, C0(X)) in B(H) in the representation just
defined.
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This is a generalisation of the definition given in [19]. Note that A is in
fact independent of the faithful action of C0(X) on Ho (up to isometric
isomorphism).

For A=; Unfn ¥ a
1(S, C0(X)) we call fn — En(A) the nth Fourier coef-

ficient of A. We have shown above that the maps En : a
1(S, C0(X))Q

C0(X) are contractive in the (operator) norm of A, hence they extend to
contractions En:AQ C0(X).

Moreover,

UmEm(A)=
1

(2p)d
F
([−p, p])

d
ht(A) exp(−im.t) dt,

where m.t=m1t1+...+mdtd and the automorphism ht is defined first on
the dense subalgebra a1(S, C0(X)) by

ht
1C Unfn
2=C Un(exp(it.n) fn)

and then extended to A by continuity.
Thus, by injectivity of the Fourier transform on C(([−p, p])d), if a

continuous linear form g on A satisfies g(Em(A))=0 for all m then (the
function t Q g(ht(A)) vanishes and hence) g(A)=0. The Hahn–Banach
Theorem yields the following remark.

Remark. Any A ¥A belongs to the closed linear span of the set
{UmEm(A): m ¥ S} of its ‘‘associated monomials’’.

In particular, A is the closure of the subalgebra A0 of trigonometric
polynomials, i.e., finite sums of monomials.

As ht is an automorphism of A, we conclude that if J ıA is a closed
automorphism invariant ideal (in particular, the Jacobson radical) then for
all B ¥J and m ¥ S we obtain UmEm(B) ¥J. Thus, an element ; Unfn is
in J if and only if each monomial Unfn is in J; this was first observed (for
d=1) in [16, Proposition 2.1]. It now follows from the remark that any
such ideal is the closure of the trigonometric polynomials it contains.

0.2 Radicals in Banach algebras. Recall that an ideal J of an algebra
A is said to be primitive if it is the kernel of an (algebraically) irreducible
representation. The intersection of all primitive ideals of A is the Jacobson
radical of A, denoted Rad A.

An ideal J is prime if it cannot factor as the product of two distinct
ideals, i.e., if J1,J2 are ideals of A such that J1J2 ıJ then either J1 ıJ

or J2 ıJ. The intersection of all prime ideals is the prime radical of A,
denoted PRad A. An algebra A is semisimple if Rad A={0} and
semiprime if PRad A={0}, or equivalently, if there are no (nonzero)
nilpotent ideals.
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As a primitive ideal is prime, PRad A ı Rad A. Thus a semisimple
algebra is semiprime. If A is a Banach algebra, then the Jacobson radical is
closed; indeed every primitive ideal is the kernel of some continuous repre-
sentation of A on a Banach space. In fact an element A ¥A is in Rad A if
and only if the spectral radius of AB vanishes for all B ¥A.

The prime radical need not be closed; it is closed if and only if it is a
nilpotent ideal (see [8] or [17, Theorem 4.4.11]). Thus for a general
Banach algebra, PRad A ı PRad A ı Rad A.

1. RECURRENCE AND MONOMIALS

Our main results will be proved for metrisable dynamical systems; hence
we make the blanket assumption that X will be a locally compact metrisable

space. As in the one-dimensional case, we say that a point x ¥X is
recurrent for the dynamical system (X, F) if there exists a sequence (nk)

tending to infinity so that fnk
(x)Q x. We will need the following variant:

Definition 3. Let J ı {1, 2, ..., d}. Say x ¥X is J-recurrent if there
exists a sequence (nk) which is strictly increasing in the directions of J (that
is, the jth entry of nk+1 is greater than the jth entry of nk for every j ¥ J
and k ¥N) such that limk fnk

(x)=x. Denote the set of all J-recurrent
points by XJr.

We say that a point x ¥X is strongly recurrent if it is {1, 2, ..., d}-
recurrent. Finally, SJ denotes {n ¥ Z

d

+: nj > 0 for all j ¥ J}.

In the multidimensional case, the Jacobson radical cannot be charac-
terised in terms of either the recurrent points (in the traditional sense) or
the strongly recurrent points. To justify this, we give the following example.

Example 4. Let X=X0 2X1 2X2 where Xi=R×{i}. Consider the
dynamical system (X, (f1, f2)), where f1 acts as translation by 1 on X1 and
as the identity on X0 2X2 while f2 acts as translation by 1 on X2 and as
the identity on X0 2X1. It is easy to see that the set of {1}-recurrent points
is X0 2X2, the set of {2}-recurrent points is X0 2X1 and the set of strongly
recurrent points is X0.

Choose small neighbourhoods V1 ıX1 and V2 ıX2 of (0, 1) and (0, 2)
respectively such that f1(V1) 5 V1=” and f2(V2) 5 V2=”. Let f ¥ C0(X)

be any function supported on V1 2 V2 such that f(0, 1)=f(0, 2)=1.
Then one can verify (as in the proof of Lemma 8 in the next section) that
U1U2f is in the prime radical. On the other hand, neither U1f nor U2f

belong to the Jacobson radical (they are not even quasinilpotent).
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Here, the associated semicrossed product has nonzero Jacobson radical,
although every point is recurrent. Also, the monomial U1f is not in the
Jacobson radical, although f vanishes on the strongly recurrent points. The
next lemma shows that for such a monomial to be in the Jacobson radical,
f must vanish on the {1}-recurrent points.

The main result of this section is the following lemma, which is crucial to
our analysis.

Lemma 5. Let Uqf ¥ Rad(C0(X)×f Z
d

+). If J contains the support of q,

then f vanishes on each J-recurrent point of (X, F).

In order to prove this lemma, we need a basic property of recurrent
points, adapted to our circumstances.

Definition 6. Given a sequence n̄=(nk) ı Z
d

+ we define recursively
the family of indices associated to n̄, denoted S(n̄)=(S0, S1, S2, ...) as
follows: S0={0}, S1={n1} and generally

Sk+1=3nk+1+mk+j : j ¥ 0
k

i=0

Si 4

where m0=0 and mk=nk+2mk−1.

The sets in S(n̄) will be needed in the proof of Lemma 5: they are the
indices of f occurring in the simplification of the inductive sequence of
products given by P1=Un1

g and Pk=Pk−1(Unk
(g/2k−1)) Pk−1. We should

also point out that 1i Si is an IP-set (see [6, Section 8.4]) and the next
lemma is a variant on [6, Theorem 2.17].

Recall SJ denotes {(n1, n2, ..., nd): nj ] 0 for all j ¥ J}. Let DJ be the
subset of SJ with entries in the directions of Jc identically zero.

Lemma 7. Let x be in X, J be a subset of {1, 2, ..., d}. Suppose that

limk fpk
(x)=x, where (pk) is a sequence whose restriction to J is strictly

increasing while its restriction to Jc is constant.

For each open neighbourhood V of x and each k ¥N, there is nk ¥ DJ and
xk ¥ V with

fs(xk) ¥ V for all s ¥ 0
k

i=0

Si,

whereS(n̄)=(S0, ...) is the family of indices associated to the sequence (nk).
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Proof. We inductively find indices n1, n2, ..., as above, open sets
V ` V1 ` V2 ` · · · and points x1, x2, ... with xi ¥ Vi and xi=fki

(x) for some
index ki, so that

fs(Vi) ı V for all s ¥ Si.

This will prove the lemma, for if k ¥N and s ¥ Si for some i [ k then, since
xk ¥ Vk ı Vi it will follow that fs(xk) ¥ fs(Vk) ı fs(Vi) ı V.

Since limk fpk
(x)=x ¥ V, there is pi1

with x1=fpi
1

(x) ¥ V. Let k1=pi1
.

Using limk fpk
(x)=x ¥ V and the form of the pk, it follows that there is

n1 ¥ DJ so that fn1+k1
(x) ¥ V. Now

fn1
(x1)=fn1

(fk1
(x))=fn1+k1

(x) ¥ V,

and so there is V1 ı V, an open neighbourhood of x1, so that fn1
(V1) ı V.

Since S1={n1}, this establishes the base step.
For the inductive step, assume we have chosen indices n1, n2, ..., nq, open

subsets of V, V1 ` V2 ` · · · ` Vq and points x1, x2, ..., xq, with xi ¥ Vi and
xi=fki

(x), so that, for i=1, ..., q, we have

fs(Vi) ı V for all s ¥ Si. (1)

Since limk fpk
(xq)=fkq

(limk fpk
(x))=xq ¥ Vq, there is kq+1=piq

so that
xq+1=fkq+1

(xq) ¥ Vq. Notice that mq (as in Definition 6) is in DJ. It follows
that there exists nq+1 ¥ DJ such that fnq+1+mq+kq+1

(xq) ¥ Vq and so fnq+1+mq

(xq+1) ¥ Vq. Hence there exists an open neighbourhood Vq+1 of xq+1, con-
tained in Vq, so that

fnq+1+mq
(Vq+1) ı Vq. (2)

It remains only to show that fs(Vq+1) ı V for all s ¥ Sq+1. An element s

in Sq+1 is of the form s=nq+1+mq+j for some j ¥1q

i=0 Si. Assuming j ¥ Si
for some i, we have

fs(Vq+1)=fj(fnq+1+mq
(Vq+1)) ı fj(Vq) by (2)

ı fj(Vi) ı V by (1)

completing the induction. L

Proof of Lemma 5. Assume that f(x) ] 0 for some J-recurrent point x.
We will find B ¥A such that BUqf has nonzero spectral radius. We may
scale f so that there exists a relatively compact open neighbourhood V of x
such that |f(y)| \ 1 for all y ¥ V. Since Uq |f|

2=(Uqf) f
g ¥ Rad A when

Uqf ¥ Rad A, we may also assume that f \ 0.
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Since x is J-recurrent, there exists a sequence (pk) which is strictly
increasing in the directions of J such that limk fpk

(x)=x. Deleting some
initial segment, we may assume that fpk

(x) ¥ V for all k ¥N.
If (pk) has all entries going to infinity, then we may apply Lemma 7 with
J={1, 2, ..., d}, to find a strictly increasing sequence (nk) such that nk > q

for all k and points xk ¥ V such that fs(xk) ¥ V for all s in 1k

i=0 Si.

If not, enlarging J and passing to a subsequence if necessary, we may
assume that the restriction of (pk) to Jc takes only finitely many values.
Passing to another subsequence, we may further assume that this restriction
is constant. Applying Lemma 7, we may find a strictly increasing sequence
(nk) in Z

d

+ with nk ¥ DJ and points xk ¥ V such that fs(xk) ¥ V for all s in
1k

i=0 Si. We may suppose that nk−q ¥ SJ for all k. Thus Unk−q is an
admissible term in the formal power series of an element of C0(X)×f Z

d

+.
Fix a nonnegative function h ¥ C0(X) such that h(fq(y))=1 for all y ¥ V

and consider

B=C
.

k=1

Unk−q

h

2k−1
.

This is an element of A since the series converges absolutely. To complete
the proof, it suffices to show that the spectral radius of A — BUqf is strictly
positive. Note that

A=C Unk

g

2k−1
,

where g is f.(h p fq), a nonnegative function satisfying g(y) \ 1 for all
y ¥ V. Thus each Fourier coefficient En(A

m) of Am is a finite sum of non-
negative functions, and hence its norm dominates the (supremum) norm of
each summand. Since ||A2

k
−1|| \ ||En(A

2
k
−1)||, it suffices to find e > 0 such

that for each k there exists n such that the norm of some summand of
En(A

2
k
−1) exceeds e2

k
−1.

If we let P1=Un1
g, then trivially P1 is a term in A. In the next product,

A3=A(; Unk

g

2
k−1) A=; A(Unk

g

2
k−1) A, we have the term

P2=Un1
g 1Un2

g

2
2 Un1

g.

Generally, one term in the expansion of A2
k
−1=A2

k−1
−1AA2

k−1
−1 is

Pk=Pk−1
1Unk

g

2k−1
2 Pk−1.
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Claim. If l1=1 and lk+1=l
2

k/2
k, then Pk=Umk

lk <s g p fs where mk

is as in the definition ofS(n̄) and the product is over all s in (1k

i=0 Si)0{mk}.

Proof of Claim. For k=1, the claim holds trivially as (S0 2 S1)0{m1}

={0}. Assuming the claim is true for some k, we have

Pk+1=Pk 1Unk+1

g

2k
2 Pk

=Umk
lk 1D

s

g p fs
21Unk+1

g

2k
2 Umk

lk 1D
t

g p ft
2

(where s, t range over (1k

i=0 Si)0{mk})

=Umk

l2k
2k
1D

s

g p fs
2 Unk+1+mk

(g p fmk
) 1D

t

g p fs
2

=U2mk+nk+1

l2k
2k
1D

s

g p fs+nk+1+mk

2 (g p fmk
) 1D

t

g p ft
2

=U2mk+nk+1

l2k
2k
1D

sŒ

g p fsŒ
21D

tŒ

g p ftŒ
2 ,

where s
− ranges over {nk+1+mk+s}, for s ¥ (1k

i=0 Si)0{mk}, and t
− ranges

over (1k

i=0 Si). Therefore

Pk+1=Umk+1
lk+1
1D

s

g p fs
2

for s in (1k+1

i=0 Si)0{mk+1}, proving the claim.
Recall that for each k ¥N there exists xk ¥ V such that fs(xk) ¥ V for all

s ¥1k

i=0 Si. Since g|V \ 1, we have <s g(fs(xk)) \ 1 where s ranges over
(1k

i=0 Si)0{mk} and hence ||<s g p fs || \ 1. From the claim, it follows that
||Pk || \ lk and so, by the earlier remarks,

||A2
k
−1|| \ ||Emk

(A2
k
−1)|| \ ||Pk || \ lk.

Thus the proof will be complete if we show that lk \ (
1

2
)2

k
−1 or equivalently

log2 l
−1

k [ 2k−1 for all k. Setting mk=log2 l
−1

k , the recurrence relation for
lk becomes mk+1=2mk+k and m1=0, which has solution mk=2

k−k−1.
L
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2. WANDERING SETS AND SEMISIMPLICITY

We characterise semisimplicity of analytic crossed products and show
this is equivalent to being semiprime. Part of this characterisation is of
course a special case of our main result, Theorem 18, but we will need the
preliminary results in any case.

A wandering open set is an open set V …X so that f−1n (V) 5 V=”
whenever n ¥ Z

d

+ is nonzero. A wandering point is a point with a wandering
neighbourhood.

We will need the following variant: let J ı {1, ..., d}. An open set V ıX
is said to be wandering in the directions of J, or J-wandering, if f−1n (V)

5 V=” whenever n is in SJ. It is easily seen that, if XJw denotes the set of
all J-wandering points (those with a J-wandering neighbourhood), then
XJw is open and its complement is invariant and contains the set XJr of
J-recurrent points.

Note, however, that it is possible for a recurrent point (in the usual
sense) to have a neighbourhood that is J-wandering (for some J). For
example, if X=R

2 and f1(x, y)=(x+1, y) while f2(x, y)=(x, 3y), then
the origin is recurrent for the dynamical system (X, (f1, f2)), but it also
has a {1}-wandering neighbourhood.

The idea of the following Lemma comes from [16, Theorem 4.2].

Lemma 8. Suppose V ıX is an open set which is J-wandering and

g ¥ C0(X) is a nonzero function with support contained in V. If eJ denotes the

characteristic function of J, then B=UeJ
g generates a nonzero ideal ABA

whose square is 0.

Proof. Let C ¥A be arbitrary and h=Ek(C). Then

BUkEk(C) B=UeJ
gUkhUeJ

g=Uk+2eJ
(ak+eJ

(g) aeJ
(h) g),

which is zero since g is supported on V and ak+eJ
(g) is supported on the

disjoint set f−1k+eJ
(V). This shows that all Fourier coefficients of BCB will

vanish, and hence BCB=0. It follows that all products (C1BC2)(C3BC4)

vanish and hence (ABA)2=0. On the other hand, choosing functions
h1 ¥ C0(X) equal to 1 on f−1eJ

(V) and h2 equal to 1 on V, we find EeJ
(h1Bh2)

=aeJ
(h1) gh2=g ] 0, so the ideal ABA is nonzero. L

The following proposition is known for the usual notions of recurrence
and wandering in the case d=1; see [6, Theorem 1.27].

Proposition 9. Suppose X is a locally compact metrisable space. If

(X, F) has no nonempty J-wandering open sets, then the J-recurrent points

are dense.
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Proof. Let V ıX be a relatively compact open set. We wish to find a
J-recurrent point in V.

Since V is not J-wandering, there exists n1 ¥ SJ such that f−1n1
(V) 5 V

]”. Hence there is a nonempty, relatively compact, open set V1 with
diam(V1) < 1 such that V1 ı f

−1

n1
(V) 5 V.

Since V1 contains no J-wandering subsets, a similar argument shows that
there exists n2 such that f−1n2

(V1) 5 V1 ]” and the jth entry of n2 is greater
than that of n1 for every j ¥ J.

Inductively one obtains a sequence of open sets Vk and nk strictly
increasing in the directions of J with Vk ı f

−1

nk
(Vk−1) 5 Vk−1 and diam(Vk)

< 1/k all contained in the compact metrisable space V0. It follows from
Cantor’s theorem that the intersection 4n \ 1 Vn is a singleton, say x. Since
x ¥ Vk ı f

−1

nk
(Vk−1) we have fnk

(x) ¥ Vk−1 for all k and so fnk
(x)Q x; hence

x ¥XJr. L

Theorem 10. If X is a metrisable, locally compact space, then the

following are equivalent:

1. the strongly recurrent points are dense in X,

2. C0(X)×f Z
d

+ is semisimple, and

3. C0(X)×f Z
d

+ is semiprime.

Proof. If the strongly recurrent points are dense in X, then by Lemma 5
there are no nonzero monomials in the Jacobson radical of C0(X)×f S.
But we have already observed that an element A is in the Jacobson radical
if and only if each monomial UnEn(A) is. Thus C0(X)×f S is semisimple
and hence semiprime.

Suppose that C0(X)×f S is semiprime. Then Lemma 8 shows that there
are no nonempty J-wandering open sets for J={1, 2, ..., d}. Thus, by
Proposition 9, the strongly recurrent points are dense. L

3. CENTRES AND THE JACOBSON RADICAL

In order to describe the Jacobson radical of an analytic crossed product,
we need to characterise the closure of the J-recurrent points, for a dynam-
ical system (X, F) with X a locally compact metrisable space.

Lemma 11. (i) If Y ıX is a closed invariant set, the set YJr of

J-recurrent points for the dynamical system (Y, F) equals XJr 5 Y.
(ii) The set XJr is the largest closed invariant set Y ıX such that

(Y, F) has no J-wandering points.
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Proof. (i) To see that YJr ıXJr, note that if y ¥ YJr then for every
neighbourhood V of y (in X) the set V 5 Y is a neighbourhood of y in the
relative topology of Y, so there exists n ¥ SJ such that fn(y) ¥ V 5 Y. Thus
fn(y) ¥ V showing that y ¥XJr. On the other hand if y ¥ Y 5XJr then for
each relative neighbourhood V 5 Y of y, since V is a neighbourhood of y
in X there exists n ¥ SJ such that fn(y) ¥ V. Since y ¥ Y and Y is invariant,
fn(y) ¥ V 5 Y establishing (i).

(ii) Given a closed invariant set Y ıX, if (Y, F |Y) has no
J-wandering points, then YJr is dense in Y by Proposition 9, and hence
Y ıXJr. On the other hand, (XJr, F) clearly has no J-wandering open
sets. L

The set XJr is found by successively ‘‘peeling off’’ the J-wandering parts
of the dynamical system. This construction and Lemma 13 generalise the
well known concept of the centre of a dynamical system (X, f) [7, 7.19].

If V ıX is the union of the J-wandering open subsets of X, then let XJ, 1

be the closed invariant set X0V. Consider the dynamical system
(XJ, 1, FJ, 1), where FJ, 1 — F |XJ, 1

. Let XJ, 2 be the complement of the union
of all J-wandering open sets of (XJ, 1, FJ, 1). Again we have a closed
invariant set, and we may form the dynamical subsystem (XJ, 2, FJ, 2) where
FJ, 2 — F |XJ, 2

. By transfinite recursion, we obtain a decreasing family
(XJ, c, FJ, c) of dynamical systems: indeed, if (XJ, c, FJ, c) has been defined,
we let XJ, c+1 ıXJ, c be the set of points in (XJ, c, FJ, c) having no
J-wandering neighbourhood and we define FJ, c+1=F |XJ, c+1

; if b is a limit
ordinal and the systems (XJ, c, FJ, c) have been defined for all c < b, then
we set XJ, b=4c < b XJ, c and FJ, b=F |XJ, b

. (We write XJ, 0=X and
FJ, 0=F.) This process must stop, for the cardinality of the family {XJ, c}

cannot exceed that of the power set of X.

Definition 12. By the above argument, there exists a least ordinal c
such that XJ, c+1=XJ, c. The set XJ, c is called the strong J-centre of the
dynamical system, and c is called the depth of the strong J-centre.

Lemma 13. If X is metrisable, then the strong J-centre of the dynamical

system is the closure of the J-recurrent points.

Proof. As a J-recurrent point cannot be J-wandering, XJr ıXJ, 1. If
XJr ıXJ, c for some c, then by Lemma 11 the set (XJ, c)Jr of J-recurrent
points of the subsystem (XJ, c, FJ, c) equals XJr 5XJ, c, so (XJ, c)Jr=XJr;
but (XJ, c)Jr ıXJ, c+1, and so XJr ıXJ, c+1. Finally, if c is a limit ordinal
and we assume that XJr ıXJ, d for all d < c then XJr ı4d < c XJ, d=XJ, c.
This shows that XJr ı4c XJ, c and so XJr ı4c XJ, c since the sets XJ, c are
closed.
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But on the other hand, if c0 is the depth of the strong J-centre we have
4c XJ, c=XJ, c0

, a closed invariant set. Since XJ, c0+1=XJ, c0
, the dynamical

system (XJ, c0
, FJ, c0

) can have no J-wandering points. Thus it follows from
Lemma 11 that XJ, c0

ıXJr and hence equality holds. L

Remark. If X is a locally compact (not necessarily metrisable) space
and {fn: n ¥ Z

d} is an action of an equicontinuous group of homeo-
morphisms (with respect to a uniformity compatible with the topology
of X) then XJr=X0XJw (see [14, Proposition 4.15]).

Lemma 14. For any ordinal d, any f ¥ Cc(X
c

J, d+1) (i.e., f has compact

support disjoint from XJ, d+1) can be written as a finite sum f=; fk where
each fk has compact support contained in a set Vk such that Vk 5XJ, d is

J-wandering set for (XJ, d, FJ, d).

Proof. If K is the support of f then K 5XJ, d ıXJ, d 0XJ, d+1; in other
words the compact set K 5XJ, d consists of J-wandering points for
(XJ, d, FJ, d). This means that each x ¥K 5XJ, d has an open neigh-
bourhood Vx so that the (relatively open) set Vx 5XJ, d is J-wandering for
(XJ, d, FJ, d). Each y ¥K0XJ, d has an open neighbourhood Vy such that
Vy 5XJ, d is empty (and so J-wandering).

The family {Vx: x ¥K} is an open cover for K. Thus, there is a partition
of unity for f, i.e., a finite subcover, {Vk: 1 [ k [ m}, and functions fk,
1 [ k [ m, with supp(fk) a compact subset of Vk, so that f=f1+·· ·
+fm. L

Definition 15. We denote by RJ, c the closed ideal generated by all
monomials of the form Unf where n is in SJ and f ¥ C0(X) vanishes on
the set XJ, c and by SJ, c the set of all elements of the form Bf where
B ¥RJ, c and f has compact support disjoint from XJ, c.

Note that a monomial Unf ¥RJ, c may be written in the form CUeJ
f

with C ¥A, since n ¥ SJ.
Also observe that SJ, c is dense in RJ, c. Indeed if Unf ¥RJ, c, then f can

be approximated by some g ¥ Cc(X
c

J, c); now Un g is in SJ, c and approxi-
mates Unf.

Proposition 16. For each ordinal c and each J ı {1, 2, ..., d}, the set
SJ, c is contained in RadA. Hence RJ, c is contained in RadA.

If PRadA is closed, then RJ, c is contained in PRadA.

Proof. Since SJ, c is dense in RJ, c, it suffices to prove that any A=
Bf ¥SJ, c is contained in Rad A.
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Suppose c=1. By Lemma 14 we may write A as a finite sum A=;k Bfk
where each fk is supported on a compact set that is J-wandering. Since
Ak — Bfk=DUeJ

fk for some D ¥A as observed above, by Lemma 8 we
have (AAkA)

2=0 and so Ak ¥ PRad A. Thus A ¥ PRad A ı Rad A.
Suppose the result has been proved for all ordinals less than some c.
Let c be a limit ordinal. If supp f=K ıXc

J, c, we have K ıXc

J, c=

1d < c Xc

J, d; hence K can be covered by finitely many of the Xc

J, d, hence
(since they are decreasing) by one of them. Thus f has compact support
contained in some Xc

J, d (d < c) and so Bf ¥SJ, d. Therefore A=Bf
¥ Rad A by the induction hypothesis.

Now suppose that c is a successor, c=d+1. By Lemma 14, we may
write f=; fk where the support of fk is compact and contained in an
open set Vk such that Vk 5XJ, d is J-wandering for (XJ, d, FJ, d), i.e.,

f−1n (Vk 5XJ, d) 5 (Vk 5XJ, d)=”

when n ¥ SJ. This can easily be seen to imply f−1n (Vk) 5 Vk ıXc

J, d.
Let C ¥A be arbitrary. Writing Ak=DUeJ

fk as above, it follows as in
the proof of Lemma 8 that for each k all Fourier coefficients of AkCAk are
supported in Vk 5 f−1n (Vk) (for some n ¥ SJ) which is contained in Xc

J, d by
the previous paragraph.

Thus AkCAk ¥RJ, d. By the induction hypothesis, AkCAk must be con-
tained in Rad A. Thus (AkC)

2 is quasinilpotent, hence so is AkC (by the
spectral mapping theorem). Since C ¥A is arbitrary, it follows that
Ak ¥ Rad A for each k, so that A ¥ Rad A.

Finally, we suppose that PRad A is closed. Then the argument above
can be repeated exactly up to the previous paragraph, changing Rad A to
PRad A. The previous paragraph can be replaced by the following
argument.

Thus AkCAk ¥RJ, d. By the induction hypothesis, AkCAk must be con-
tained in PRad A. Thus all products (C1AkC2)(C3AkC4) are in PRad A

and so the (possibly non-closed) ideal Jk generated by Ak satisfies JkJk ı
PRad A. For every prime ideal P, we have JkJk ıP and so Jk ıP.
Hence Jk ı PRad A, and therefore Ak ¥ PRad A for each k, so that
A ¥ PRad A. L

One cannot conclude that RJ, c ı PRad A in general, even for finite c, as
the following example shows. Thus the prime radical is not always closed.
Note that Hudson has given examples of TAF algebras in which the prime
radical is not closed [11, Example 4.9].

Example 17. We use a continuous dynamical system (X, {ft}t ¥ R)

based on [3, Example 3.3.4, p. 20] and look at the discrete system given by
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the maps {ft} for t ¥ Z+. The space X is the closed unit disc in R
2. For the

continuous system, the trajectories consist of: (i) three fixed points, namely
the origin O and the points A(1, 0) and B(−1, 0) on the unit circle, (ii) the
two semicircles on the unit circle joining A and B and (iii) spiraling trajec-
tories emanating at the origin and converging to the boundary.

Let f=f1. The recurrent points for the (discrete) dynamical system
(X, f) are Xr={A, B, O} and the set of wandering points is the open unit
disc except the origin. Hence X2=Xr and so the depth of the dynamical
system is 2.

Now choose small disjoint open neighbourhoods VA, VB, VO around the
fixed points and let f ¥ C(X) be a nonnegative function which is 1 outside
these open sets and vanishes only at A, B and O. Then the element Uf ¥A

is clearly not nilpotent, so Uf ¨ PRad A. However Uf ¥ Rad A by the
next theorem.

Theorem 18. Let (X, F) be a dynamical system with X metrisable. The

Jacobson radical, Rad(C0(X)×f Z
d

+), is the closed ideal generated by all

monomials Unf (n ] 0) where f vanishes on the set XJr of J-recurrent points

corresponding to the support J of n.

Moreover, PRadA=RadA if and only if PRadA is closed.

Proof. Let Unf be a monomial contained in Rad A and let J be the
support of n. Then Lemma 5 shows that f must vanish on XJr.

On the other hand, let Unf be as in the statement of the Theorem, so
that f vanishes on XJr (where J=supp n). We will show that Unf is in
Rad A. It is enough to suppose that the support K of f is compact. Since
K is contained in (XJr)

c=1c Xc

J, c, it is contained in finitely many, hence
one, Xc

J, c. It follows by Proposition 16 that Unf ¥ Rad A.
In the final statement of the theorem, one direction is obvious. For

the other, suppose PRad A is closed. Then by the final statement of
Proposition 16, we have RJ, c ı PRad A. L

This theorem leaves open the possibility that the closure of the prime
radical is always equal to the Jacobson radical.
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