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Introduction

The main characteristic of my work is the use of asymptotic methods com-
ing from general topology and the theory of limit sets to study problems in
Topological Transformation Groups, Operator Theory and Dynamical Sys-
tems. The present Habilitationsschrift is cumulative, in the sense that we
expose results from papers which has been recently submitted or accepted
for publication. We divided them in three categories. Namely, we present
some results from

e the theory of Topological Transformation Groups related to properly
discontinuous, proper and isometric actions.

e Operator Theory related to topologically transitive and locally topo-
logically transitive (J-class) operators, hypercyclic operators and dy-
namics of commuting tuples of matrices.

e the theory of Dynamical Systems related to analytic crossed products.

In what follows X will denote a Hausdorff locally compact space or a
(complex or real) Hilbert or Banach space and G will denote a locally compact
group acting on X or GG will denote the semigroup of non-negative integers
generated by a continuous map or a bounded linear operator on X. For
x € X the limit set L(z) is defined by

L(z) = {y € X | there exists a divergent net{g; };c; in G such that {g;x}ics

converges to y}
and the eztended (prolongational) limit set J(z) is defined by

J(z) = {y € X |there exist a divergent net{g; };c; in G and a net {z;};es

in X converging to x such that {g;x; };e; converges to y}.

So we can say that limit sets describe the limit behavior of an orbit and
generalized limit sets describe the asymptotic behavior of the orbits of nearby



points to x € X. In the cases we study the limit and the generalized limit
sets are closed and invariant sets.

Limit and extended limit sets have their roots in the Qualitative Theory
of Dynamical Systems when they are used mainly to describe the Lyapunov
and the asymptotic stability of an equilibrium point or, more generally, of a
compact minimal set. They, also, “encode” information which allows us to
connect the global structure of the underlying space with local properties.
Such an example are the parallelizable flows. In this case we assumed that
the extended limit sets are empty and as a consequence the underlying space
is equivariantly isomorphic to a cartesian product of the form R x .S, where S
is global continuous section for the system. Using the same asymptotic topo-
logical methods as in the Qualitative Theory of Dynamical Systems and basic
properties of the structure of the underlying space (e.g. Hilbert space geom-
etry and the linearity of an operator or connectedness and local compactness
for the case of a topological space) we study several problems concerning the
dynamic behavior of the systems we investigate and the structure of the un-
derlying space. To make this more clear let us describe briefly the methods
and the tools we used to show the main results of the presentation at hand.
In Chapter 1 we give a characterization of proper actions in terms of the
geometry of the underlying space. A proper action has the property that all
the extended limit sets are empty. In [1] we showed that a locally compact
group G acts properly on a locally compact o-compact metrizable space X if
and only if there exists a G-invariant proper (Heine-Borel) compatible met-
ric on X. The construction of such a metric is based on the existence of an
open fundamental set for a proper action (which is a basic tool in this the-
ory) and the use of special coverings of the space created by this set. Using
a similar approach in [11] we constructed a dynamic invariant for properly
discontinuous actions of non-compact groups on locally compact, connected
and paracompact spaces by looking the dynamic behavior of such an action
at infinity (i.e. by embedding such an action in a suitable zero-dimensional
compactification and looking at the cardinality of the remainder of our space
in it). Proper and isometric actions are closely related as we showed in [1]
but in general isometric actions are not proper. In [8] we studied the dy-
namic behavior of the action of the group of isometries of a locally compact
metric space. Since such an action is not necessarily proper the idea is to
look for “thick” (i.e. closed-open) invariant subsets of the underlying space
where the action behaves like a proper one. In Chapter 2 we deal mainly
with topologically transitive operators on Hilbert spaces. The notion of a
topologically transitive operator can be viewed as the opposite of the notion
of a proper action. Topologically transitive operators have the property that



all the extended limit sets are the whole space in contrast with proper ac-
tions where all the extended limit sets are empty. In the main result in [6]
we used information of local nature (the generalized set of a cyclic vector
has non-empty interior) and we got, as a result, the global behavior of an
operator (that it is topologically transitive). Precisely, we showed that if z is
a cyclic vector for an operator 7' : X — X and the set J(z) has non-empty
interior then J(y) = X for every y € X, hence T is topologically transitive.
This result gave us the idea to “localize” the notion of a topological tran-
sitive operator by introducing and studying a new class of operators called
locally topologically transitive or J-class operators. This class of operators is
characterized by the property that there exists a non-zero vector x € X with
J(z) = X. The arguments we used in this work are quite similar to those we
used to study isometric actions plus the additional structure of linearity. In
Chapter 3 we present an answer we gave to a long standing question asked
by W. B. Arveson and K. B. Josephson in 1969 concerning the description
of the radical of the analytic crossed product of a classical dynamical sys-
tem in terms of the dynamic behavior of the system. The analytic crossed
product of a classical dynamical system is a non self adjoint algebra of op-
erators that characterizes the dynamical system. Two dynamical systems
are topologically conjugate if and only if the corresponding analytic crossed
products are isomorphic as algebras. The basic ideas in the proof of the main
theorem in [7] came again from the theory of topological dynamics. Firstly,
we showed that any monomial in the Jacobson radical has Fourier coefficient
that vanishes on the recurrent points of the dynamical system (a point is
called recurrent if z € L(x)). And secondly, we showed that a monomial in
the Jacobson radical which has Fourier coefficient with support contained in
an open set of points with the property = ¢ J(x) generates a two-sided ideal
whose square is 0. Using this as the first step of a transfinite induction and
using a procedure similar to the one used to find the Birkhoff center of a dy-
namical system in the theory of topological dynamics (i.e. a procedure with
successively “peeling off” the parts of the dynamical system which = ¢ J(x))
we showed that the Jacobson radical consists of all elements with Fourier co-
efficients which vanish on the set of recurrent points of the dynamical system
and the zero Fourier coefficient is 0.

The structure of the present text has two parts. In the first part, we have
divided the results and the methods we used into three categories, Topological
Transformation Groups, Operator Theory and Dynamical Systems. In each
category we give a brief description of the results in specific chapters. The
second part consists of copies of the papers we analyze, again divided into
three categories. For the economy of space, since we have included copies of



all papers at the second part, when we want to refer, e.g. to the reference [2]
in the paper [1] of the bibliography we will just write [1, reference 2.



Chapter 1

Limit sets and asymptotic
methods in Topological
Transformation GGroups

References for this chapter are the following papers put in the same order as
we present them in the following.

[1] H. Abels, G. Noskov and A. Manoussos, Proper actions and proper
invariant metrics, SFB preprint 08-011.

[11] A. Manoussos and P. Strantzalos, On embeddings of proper and
equicontinuous actions in zero-dimensional compactifications, SFB preprint
07-054, Trans. Amer. Math. Soc. 359 (2007), 5593-5609.

[10] A. Manoussos and P. Strantzalos, On the group of isometries on a
locally compact metric space, J. Lie Theory 13 (2003), 7-12.

[8] A. Manoussos, On the action of the group of isometries on a locally
compact metric space: closed-open partitions and closed orbits, SFB preprint
09-026.

[2] H. Abels and A. Manoussos, A group of isometries with non-closed
orbits, SFB preprint 09-064.

9] A. Manoussos, The group of isometries of a locally compact metric
space with one end, SFB preprint 09-066.

One of the most important notions related to the limit and to the extended
limit sets in the theory of Topological Transformation Groups is the notion
of a proper action. Proper actions are characterized by the property J(z) =
L(z) = 0 for every z € X. In case G is a locally compact group we have
the usual definition: an action is proper if for every x,y € X there exist
neighborhoods U and V' of z and y, respectively, such that the set {g €
G|lgU NV # (} has compact closure in G. The next interesting class of



actions related to the limit and generalized limit sets is the class where J(z) =
L(x) holds for every x € X but J(z) may not be empty. This class contains
the isometric actions.

In [1] we characterized proper actions in terms of the geometry of the
underlying space. Namely, we showed that a locally compact group G acts
properly on a locally compact o-compact metrizable space X if and only
if there exists a G-invariant proper (Heine-Borel) compatible metric on X.
A few words concerning terminology. A o-compact space is a topological
space that can be written as a countable union of compact sets. For locally
compact metrizable spaces this is equivalent to separability. By a proper (or
Heine-Borel) metric we mean a metric such that all balls of bounded radius
have compact closures. In other words the previous result says that we can
consider the group G, modulo the kernel of the action, as a closed subgroup
of the group of isometries of a locally compact o-compact metrizable space.
Removing the assumption about metrizability for X we generalized the previ-
ous result as follows. If a locally compact group G acts properly on a locally
compact o-compact space X then there is a family of G-invariant proper
continuous finite-valued pseudometrics which induces the topology of X. We
showed also a converse result: let X be a topological space and let D be a
family of proper continuous finite-valued pseudometrics on X, which induces
the topology of X. Let G be the group of all bijective maps X — X, leaving
every d € D invariant. If we endow G with the compact-open topology then
GG is a locally compact topological group and acts properly on X.

There is a remarkable invariant concerning the cardinality of the ends of
a locally compact and connected space with the “property Z” which admits
a proper action of a non-compact group. “Property Z” ia a certain technical
connectedness assumption: a space X has “property 7”7 if every compact
subset of X is contained in a compact and connected one, for instance every
locally compact connected and locally connected space has “property Z”.
When we say ends we mean the remainder of X in the end-point (Freuden-
thal) compactification eX of X. As it is proved in [11, reference 2] X has
at most two or infinitely many ends. In [11] we provided a tool for studying
properly discontinuous actions of non-compact groups on locally compact,
connected and paracompact spaces, by embedding such an action in a suit-
able zero-dimensional compactification (i.e. a compactification such that X
has compact totally disconnected remainder) of the underlying space with
pleasant properties. Precisely, given such an action we constructed a zero-
dimensional compactification X of X which is the maximal (in the ordering
of zero-dimensional compactifications of X) with respect to the following
properties: (a) the action has a continuous extension on uX, (b) if uL de-
notes the set of the limit points of the orbits of the initial action in uX, the
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restricted action of G on pX \ L remains properly discontinuous, is equicon-
tinuous with respect to the uniformity induced on pX \ uL by that of pX (so
all the information concerning the invariants is contained in the set pL) and
(c) the action is indivisible, i.e. if lim g;xg = e € uL for some xq € uX \ puL
and a net {g;} in G, then lim g;y = e for every z € pX \ puL (so actually
there is a correspondence between divergent nets in G and limit points in
puL). As we showed by an example there is a locally compact, connected
and paracompact space not having the “property Z” for which our compact-
ification is different from the end point compactification. So, if X doesn’t
have the “property Z” £X may fail to have the above mentioned properties.
The construction of the compactification uX stated above relies on a new
construction: The action of G on pX is obtained by taking the initial ac-
tion as an equivariant inverse limit of properly discontinuous G-actions on
polyhedra, which are constructed via G-invariant locally finite open cover-
ings of X, generated by locally finite coverings of (always existing) suitable
fundamental sets of the initial action. As an application of the previously
mentioned construction we have that pL consists of at most two or infinitely
many points. Another result is that if X has the “property Z” then puX
coincides with the end point compactification €¢X of X. Finally, we gave an
application concerning the cardinality of the ends of X. To be more precise,
let X be a locally compact, connected and paracompact space, and G be a
non-compact group acting properly on X such that either G, the connected
component of the neutral element of GG, is non-compact, or Gy is compact
and G/G, contains an infinite discrete subgroup. Then X has at most two
or infinitely many ends, and has at most two ends, if G; is not compact.
Another important class of transformation groups is the class in which
J(z) = L(z) holds for every x € X. As we mentioned before this class
contains the isometric actions. Omne of the first problems studied in this
direction was the problem of the local compactness of the group of isometries
and the way it acts on the underlying space. A classic result is the theorem
of D. van Dantzig and B. L. van der Waerden which says that the group G of
isometries of a connected, locally compact metric space X is locally compact
(with respect to the compact-open topology) and acts properly on X (via the
natural action (g,z) — g(z) g € G, x € X). Combining this result with the
result mentioned before about the cardinality of the ends of the space we have
the following remarkable implication. For locally compact locally connected
and connected metric space (e.g. a finite dimensional manifold) with finitely
many but more than two ends the group of isometries is compact. In [10]
we generalized the results of D. van Dantzig and B. L. van der Waerden
for the case of a locally compact metric space which has quasi-compact (i.e.
compact but not necessarily Hausdorff) space of connected components (or
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quasi-components). In particular it is shown that the group of isometries of
X is locally compact but may fail to act properly on X even for the case
that X has only two connected components.

The paper [8] can be considered as a first step towards the study of
the natural action of the group of isometries G on a locally compact met-
ric space (X,d) without the assumption that G is a locally compact group.
We gave an answer to the following question: Assume that there is a pair
of points z,y € X and a net {¢;} in G such that g;x — y. What can we
say about the convergence of {g;}?7 The answer is that the net {g;} (or a
subnet of it) converges pointwise on a closed open subset of X which con-
tains the pseudo-component of x. This result shows also “what is behind
the lines of the proofs” for all the already well known results when G is
locally compact and so, we can recover them using a unifying approach.
Moreover, it leads to a simple decomposition of X into closed-open invari-
ant disjoint sets that are related to various limit properties of the orbits in
X. More precisely, we showed that if G is locally compact and not com-
pact and CL = {z € X |L(z) is not empty and compact}, NCL = {z €
X | L(z) is not compact} and P = {z € X | L(z) is the empty set}, then the
sets C'L, NC'L and P are closed-open G-invariant disjoint, their union is X
and each one of them is a union of pseudo-components (for the definition of
a pseudo-component, introduced by S. Gao and A. S. Kechris, see [8, refer-
ence 8] and [8]). In case P is not empty we have a very interesting result
concerning its structure. If G is not compact and has compact space of con-
nected components (or the connected component of the identity of G is not
compact) then, P is homeomorphic to a product of the form R"™ x M for
some n € N where M is a closed subset of P. Actually one can take as n
the same n if we write the group G as a homeomorphic image of the product
R™ x K where K is a maximal compact subgroup of G in Malcev-Iwasawa’s
decomposition theorem for G. We showed, also, that the sets C'L, NC'L and
P may coexist in any combination.

In [2, reference 3] S. Gao and A. S. Kechris asked the following question.
Let (X,d) be a locally compact complete metric space with finitely many
pseudo-components or connected components. Does its group of isometries
have closed orbits? This is the case if X is connected since then the group
of isometries acts properly by the result of van Dantzig and van der Waer-
den we mentioned above and hence all of its orbits are closed. The above
question arose in the following context. Suppose a locally compact group
with a countable base acts on a locally compact space with a countable base.
Then the action has locally closed orbits (i.e. orbits which are open in their
closures) if and only if there exists a Borel section for the action (see |2,
reference 4], [2, reference 2|) or, in other terminology, the corresponding or-
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bit equivalence relation is smooth. For isometric actions it is easy to see
that an orbit is locally closed if and only if it is closed. In this paper we
gave a negative answer to the question of Gao and Kechris. Our space is
a one-dimensional manifold with two connected components, one compact
isometric to S*, and one non-compact, the real line with a locally Euclidean
metric. It has a complete metric whose group of isometries has non-closed
dense orbits on the compact component. In the course of the construction
we gave an example of a 2-dimensional manifold with two connected compo-
nents one compact and one non-compact and a complete metric whose group
G of isometries also has non-closed dense orbits on the compact component.
The difference is that G contains a subgroup of index 2 which is isomorphic
to R. Finally in [9] we studied the action of the group of isometries G of a
locally compact metric space X with one end. Using technics we developed
in [8] , we showed that X has only finitely many pseudo-components exactly
one of which is not compact and G acts properly on this pseudo-component.
The complement of the non-compact component is a compact subset of X
and G may fail to act properly on it.
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Chapter 2

Operator Theory

In this chapter we present results from Operator Theory related to topolog-
ically transitive, locally topologically transitive operators (J-class), hyper-
cyclic operators and dynamics of commuting tuples of matrices. Before, we
present our results, and for our convenience, let us recall some definitions. A
topologically transitive operator is a bounded linear operator 7" on a Banach
space X such that J(z) = X for every z € X or, in other words, for every
pair of non-empty open sets U,V of X there exists a positive integer n such
that 7"U NV # (). A bounded linear operator on a separable Banach space
is hypercyclic if it has the property that L(x) = X for some non-zero vector
x € X (i.e. the orbit of z is dense in X). Actually the existence of one
(non-zero) vector z € X such that L(x) = X is enough to ensure that the set
of vectors with this property is a dense G subset of X. Obviously in the case
of a hypercyclic operator T': X — X, the space X must be separable and
T is a topologically transitive operator. For separable spaces the converse is
also true: Birkhoff’s Transitivity Theorem says that a topologically transitive
operator on a separable Banach space is hypercyclic. In [6] we introduced
and studied a new class of operators called locally topologically transitive or
J-class operators. This class of operators is characterized by the property
that there exists a non-zero vector x € X with J(z) = X, so, J-class opera-
tors can be viewed as a “localization” of the notion of topologically transitive
and hypercyclic operators.

References for this chapter are the following papers put in the same order
as we present them in the following.

(6] G. Costakis and A. Manoussos, J-class operators and hypercyclicity,
SFB preprint 07-028, to appear in J. Operator Theory.

[5] G. Costakis and A. Manoussos, J-class weighted shifts on the space of
bounded sequences of complex numbers, SFB preprint 07-029, Integral Equa-
tions Operator Theory 62 (2008), 149-158.
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[4] G. Costakis, D. Hadjiloucas and A. Manoussos, On the minimal num-
ber of matrices which form a locally hypercyclic, non-hypercyclic tuple, SFB
preprint 09-035, J. Math. Anal. Appl. 365 (2010), 229-237.

[3] G. Costakis, D. Hadjiloucas and A. Manoussos, Dynamics of tuples
of matrices, SFB preprint 08-032, Proc. Amer. Math. Soc. 137 (2009),
1025-1034.

The study of dynamics of linear operators is a rapidly growing research
area in Analysis and Geometry. In general we look for the dynamics created
by the iterates of a bounded linear operator 7' : X — X on a complex or real
Banach or Hilbert space X ore more generally on a Fréchet space X (that
is a locally convex topological vector space whose topology is defined by a
translation invariant complete metric). One of the first classes of operators
studied were the classes of topologically transitive and hypercyclic operators.
Some examples of hypercyclic operators are the following (a) the translation
operator T, : H(C) — H(C) defined by T,,(f) = f(z + «), where z € C, a is
a non-zero complex number and H(C) is the space of holomorphic functions
on C (G. D. Birkhoff 1929), (b) the differentiation operator on H(C) (G.
R. MacLane 1952) and (c) for every scalar A of modulus greater than 1 the
operator AB on [?(N) for each 1 < p < 400 where B is the backward shift on
IP(N) (S. Rolewicz 1969). Actually the hypercyclic operators in the previous
examples have also the additional property that the set of periodic points is
dense and they are chaotic (in the sense of R. L. Devaney).

In [6] we introduced and studied a new class of operators called locally
topologically transitive or J-class operators. Recall that an operator is called
J-class if there exists a non-zero vector z € X with J(z) = X. The reason
we excluded the zero vector is to avoid certain trivialities, as for example
the multiples of the identity operator acting on a finite or infinite dimen-
sional space. This class can be viewed as a “localization” of the notion of
topologically transitive and hypercyclic operators. Hypercyclic and J-class
operators can occur only in infinite dimensional spaces. As it turns out this
new notion of operators although different from the notion of hypercyclic
operators shares some similarities with the behavior of hypercyclic opera-
tors. No compact, positive or normal operators can be J-class. We would
like to stress that some non-separable Banach spaces, like the space [*°(N)
of bounded sequences, supports J-class operators (in [6] we showed that the
operator \B for every scalar A of modulus greater than 1 is .J-class, where
B is the backward shift on [*°(N)), while it is known [6, reference 3] that the
space [*°(N) does not support topologically transitive operators. A connec-
tion between hypercyclic and J-class operators is given in the main theorem
of [6]. We showed that if z is a cyclic vector for an operator T': X — X
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and the set J(x) has non-empty interior then J(x) = X and, in addition, T’
is hypercyclic without = being necessarily a hypercyclic vector (i.e a vector
with dense orbit). An important implication of this theorem is that it gives
the Bourdon-Feldman Theorem as a corollary. Bourdon-Feldman’s Theorem
[6, reference 11] says that somewhere dense orbits are everywhere dense and
plays an important role in the theory of hypercyclic operators. Finally we
showed that if T" is a bilateral or a unilateral weighted shift on the space of
square summable sequences then 7' is hypercyclic if and only if 7" is a J-class
operator. At this point, we would like to mention that in a recent book of F.
Bayart and E. Matheron (Dynamics of linear operators, Cambridge Tracts
in Mathematics, 179. Cambridge University Press, Cambridge, 2009) which
is actually the first published book concerning dynamics of linear operators,
they referred to J-class operators and they used our asymptotic technics to
simplify lengthy proofs of old results.

In [5] we provided a characterization of J-class unilateral weighted shifts
on [*(N) in terms of their weight sequences and we described the set of the
J-vectors (i.e. vectors x € [*°(N) such that J(z) = [*°(N)). In contrast to
the previously mentioned result we showed that a bilateral weighted shift on
[*°(Z) cannot be a J-class operator. As we mentioned before, hypercyclic
and J-class operators can occur only in infinite dimensional spaces. This
is in contrast with the case of hypercyclic and J-class commuting tuples of
matrices. In [4] we extended the notion of a J-class operator to that of a J-
class tuple of operators. We then showed that the class of hypercyclic tuples
of operators forms a proper subclass to that of J-class tuples of operators.
What is rather remarkable is that in every finite dimensional vector space
over R or C, a pair of commuting matrices exists which forms a J-class non-
hypercyclic tuple. This comes in direct contrast to the case of hypercyclic
tuples where the minimal number of matrices required for hypercyclicity
is related to the dimension of the vector space. Finally in [4], as also in
[3], we gave some complementing results concerning hypercyclic and J-class
commuting pairs of matrices in diagonal or in upper triangular form.

13



14



Chapter 3

Dynamical Systems

In this chapter we present an answer we gave to a long standing question
asked by W. B. Arveson and K. B. Josephson in 1969 concerning the problem
of the description of the radical of the analytic crossed product of a classical
dynamical system in terms of the dynamic behavior of the system. The
analytic crossed product of a classical dynamical system is a non self adjoint
algebra of operators that characterizes the dynamical system. Two dynamical
systems are topologically conjugate if and only if the corresponding analytic
crossed products are isomorphic as algebras. Reference for this chapter is
the following paper.

(7] A. P. Donsig, A. Katavolos and A. Manoussos, The Jacobson radical
for analytic crossed products, J. Funct. Anal. 187 (2001), 129-145.

There is a rich interplay between operator algebras and dynamical sys-
tems, going back to the founding work of F. J. Murray and J. von Neumann
in the 1930’s. Crossed product constructions continue to provide fundamen-
tal examples of von Neumann algebras and C*-algebras as also remarkable
results in the theory of dynamical systems. Comparatively recently, W. B.
Arveson in 1967 introduced a non-selfadjoint crossed product construction,
called the analytic crossed product or the semi-crossed product, which has
the remarkable property of capturing all of the information about the dy-
namical system. By this we mean that two analytic crossed product algebras
are isomorphic as complex algebras if and only if the underlying dynamical
systems are topologically conjugate, i.e. there is a homeomorphism between
the spaces that intertwines the two actions. The construction of an ana-
lytic crossed product starts with a dynamical system, i.e. a locally compact
Hausdorft space X and a continuous, proper surjection ¢ : X — X. Con-
sider the algebra generated by Cy(X) (i.e. the space of continuous functions
of X that vanish at infinity) and a symbol U, where U satisfies the rela-
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tion fU = U(f o @), f € Co(X). The elements F' of this algebra can be
viewed as noncommutative polynomials in U of the form F' = ZTJLO U" fn,
fa € Co(X), N € N. Let us call this algebra Ay. We formed the Ba-
nach Algebra [;(Ap) by providing a norm to elements F' as above by setting
1F|l, =3, || fallco(x) and then completing Ap in this norm. On the other
hand, we can define the class of covariant representations of Ag and complete
Ap in the resulting norm. Either approach yields the same analytic crossed
product Cy(X) x4 Zy. By a covariant representation of Ay we mean a ho-
momorphism 7 of Ay into the bounded operators of a Hilbert space, which is
a *-representation when restricted to Cy(X), viewed as a subalgebra of Ay,
and such that 7(U) is an isometry. Let us denote an element of the analytic
crossed product by 7% U f,,, f, € Co(X) and let us call the sequence {f,,}
the corresponding Fourier coefficients. A long standing question asked by W.
B. Arveson and K. B. Josephson in 1969 was to characterize the Jacobson
radical of the analytic crossed product in terms of the dynamic behavior of
the system. Recall that the Jacobson radical of an algebra is the intersection
of all primitive ideals, i.e. the intersection of kernels of all irreducible rep-
resentations of the algebra. If the Jacobson radical is zero then the algebra
is called semisimple. In [7] we solved this problem. We showed that the Ja-
cobson radical consists of all elements of the form Y27 U™ f, such that each
Fourier coefficient f,, vanishes on the set of recurrent points of the dynamical
system (a point € X is called recurrent if x € L(z)). We generalized also
this result for the case of a multivariable dynamical system, that is a locally
compact Hausdorff space with a d-tuple of commuting proper surjections. In
this case we need a modification of the notion of a recurrent point (as also
a modification of the notion of the Birkhoff center of the dynamical system
we used in the case of one variable). Namely, let I C {1,2,...,d}. A point
x € X is called I-recurrent if there is a sequence {ny,} C N? such that the
i-th entry of ny,q is greater than the i-th coordinate of ny for every ¢ € [
such that ¢, o — . In this case the Jacobson radical is the closed ideal
generated by all monomials of the form U, f, n # 0 where f vanishes on the
set of recurrent point corresponding to the support of n. Some interesting
corollaries of the previous results are the following: (a) The analytic crossed
product is semisimple if and only if it is semiprime and (b) The prime radi-
cal of the analytic crossed product coincides with the Jacobson radical if and
only if it is closed. Recall that the prime radical is the intersections of all
prime ideals and the algebra is called semiprime if the prime radical is zero
or, equivalently, if there are no (non-zero) nilpotent ideals.
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Proper actions and proper invariant metrics
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Abstract

We show that if a (locally compact) group G acts properly on a locally com-
pact o-compact space X then there is a family of G-invariant proper continuous
finite-valued pseudometrics which induces the topology of X. If X is furthermore
metrizable then G acts properly on X if and only if there exists a G-invariant proper
compatible metric on X.

SUBJECT CLASSIFICATION [2000]: Primary 37B05, 54H15; Secondary 54H20, 54D45.

KEYWORDS: Proper action, group of isometries, proper metric, proper pseudometric,
Heine-Borel metric.

1 Introduction

We establish a close connection between proper group actions and groups of isometries.
There is an old result in this direction, proved in 1928 by van Dantzig and van der Waerden
It says that for a locally compact connected metric space (X, d) its group G = Iso(X, d)
of isometries is locally compact and acts properly. That the action is proper is no longer
true in general, if X is not connected, although G is sometimes still locally compact,
see [13]. Concerning properness of the action, Gao and Kechris [6] proved the following
result. If (X,d) is a proper metric space, then G (is locally compact and) acts properly
on X. Recall that a metric d on a space X is called proper if balls of bounded radius have
compact closures.

There is the following converse result. If a locally compact group G acts properly on a
locally compact o-compact metrizable space X, then there is a compatible G-invariant
metric d on X [12]. In this paper we prove that under these hypotheses there is actually
a compatible G-invariant proper metric on X. We call a metric on a topological space
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“Spektrale Strukturen und Topologische Methoden in der Mathematik” at the University of Bielefeld,
Germany. They are grateful for its generosity and hospitality. The paper was finished while the first
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compatible if induces its topology. Note that a proper metric space is o-compact. For the
records, here is one version of our main result, namely the one for metrizable spaces (see

also theorem H.2]).

Theorem 1.1. Suppose the (locally compact) topological group G acts properly on the
metrizable locally compact o-compact topological space X. Then there is a G-invariant
proper compatible metric on X.

These results raise the question if they generalize to the non-metrizable case. We give
a complete answer as follows. Recall that a pseudometric on X is a function d on X X
X which has all the properties of a metric, except that its value may be oo and that
d(x,y) = 0 may not imply that z = y. For a precise definition see below definition 211
A locally compact space is o-compact if and only if has a proper finite-valued continuous
pseudometric, as is easily seen, see e.g. below, the proof of corollary It then actually
has a family of such pseudometrics which induces the topology of X. The corresponding
statement for the equivariant situation is the following version of the main result of our
paper, namely for not necessarily metrizable spaces (see also theorem [A.T]).

Theorem 1.2. Let G be a (locally compact) topological group which acts properly on a
locally compact o-compact Hausdorff space X. Then there is a family of G-invariant
proper finite-valued continuous pseudometrics on X which induces the topology of X .

The connection of theorem [T and theorem is given by the following result. We are
in the case of theorem [T iff there is a countable family as in theorem For a precise
statement see corollary .4l

Note that continuity of the pseudometrics follows from the other properties, see remark

.5

This theorem may be considered as the converse of the following theorem, see below
theorem B.11

Theorem 1.3. Let X be a topological space and let D be a family of proper continuous
finite-valued pseudometrics on X, which induces the topology of X. Let G be the group of
all bijective maps X — X, leaving every d € D invariant. Endow G with the compact—
open topology. Then G is a locally compact topological group and acts properly on X.

The main result of our paper has been proved already for the special case of a smooth
manifold. Namely Kankaanrinta proved in [9] that if a Lie group G acts properly and
smoothly on a smooth manifold M, then M admits a complete G-invariant Riemannian
metric. A consequence of our main result for the metrizable case is the following result
of Haagerup and Przybyszewska [7]: Every second countable locally compact group has a
left invariant compatible proper metric which generates its topology, see below corollary
@.5 Proper G—-invariant metrics have been used in several fields of mathematics, see [§]
and [L1]. For more information about related work, open questions and miscellaneous
remarks see the last chapter of this paper.



2 Preliminaries

Pseudometrics

Definition 2.1. A pseudometric d on a set X is a function d : X x X — [0, +o0] which
fulfills for x,y, z € X the following properties

i) d(x,z) =0,

i) d(x,y) = d(y, z),

iii) d(x,y)+d(y,z) > d(z, 2).

Thus, loosely speaking, a pseudometric is a metric except that its values may be +00 and
d(x,y) = 0 does not imply z = y. A family D of pseudometrics on X induces a topology
on X, for which finite intersections of balls By(z,r) :={y € X;d(z,y) < r} with x € X,
d € D and r € [0,00) form a basis. This topology is the coarsest topology for which
every d € D is a continuous function on X x X. The topology of a topological space X
is induced by a family of pseudometrics if and only if X is completely regular, see [3, Ch.
X, §1.4 Theorem 1 and §1.5 Theorem 2]. A topological space X is called metrizable if its
topology is induced by an appropriately chosen metric d on X. Such a metric d on X is
then called a compatible metric.

From now on we will call a locally compact Hausdorff space simply a “space”, for short.
Recall that a space is called o—compact if it can be written as a countable union of
compact subsets. A o—compact space is metrizable if and only if it is second countable,
i.e., its topology has a countable base, see [3, Ch. IX, §2.9 Corollary].

A pseudometric d on a space X will be called proper if every ball of finite radius has
compact closure. A space X together with a compatible proper metric d will be called
a proper metric space. It is also called a Heine—Borel space by some authors and also
a finitely—compact space by others. Important examples of proper metric spaces are the
Euclidean spaces and the space Q, of rational p-adics with their usual metrics.

The topology of a space can be induced by a family of pseudometrics, since a space
(understood: locally compact Hausdorff) is completely regular. The topology of a o—
compact space can be induced by a family of proper finite-valued pseudometrics (see
corollary [5.3). One of our main results, theorem [[.2] spells out for which actions there
is a family of invariant proper finite-valued pseudometrics inducing the topology, namely
the proper actions. And theorem says that these are essentially the only ones for
which such a family exists.

Now let (X, D) be a space X together with a family D of pseudometrics inducing its
topology. A case of particular importance is when D consists of just one metric, which by
assumption induces the topology of X. Let G = Iso(X, D) be the group of isometries of
(X, D), that is the group of all bijections X — X leaving every d € D invariant. Endow
G with the topology of pointwise convergence. Then G will be a topological group [3 Ch.
X, §3.5 Corollary]. On G there is also the topology of uniform convergence on compact

3



subsets which is the same as the compact—open topology. In our case, these topologies
coincide with the topology of pointwise convergence, and the natural action of G on X is
continuous [3, Ch. X, §2.4 Theorem 1 and §3.4 Corollary 1]. We shall prove soon, that if
at least one of the pseudometrics d in D is proper then G is locally compact. In this case
the natural action of G on X is even proper. We will discuss this notion now.

Definition 2.2. A continuous map f : X — Y between spaces is called proper if one of
the following two equivalent conditions holds

i) f~YK) is compact for every compact subset K of Y.

ii) f is a closed map and the inverse image of every singleton is compact.

Let G be a topological group. Suppose a continuous action of G on a space X is given.

Proposition 2.3. and Definition The following conditions are equivalent

i) The map G x X — X x X, (g,x) — (gx,x), is proper.
ii) For every pair A and B of compact subsets of X the transporter
Gap :=1{9€ G; gANB # 0}
from A to B is compact.

iii) Whenever we have two nets (g;)ic; in G and (x;)ier in X, for which both (x;);e; and
(gixi)icr converge, then the net (g;)icr has a convergent subnet.

The action of G on X is called proper if one of these conditions holds.

For a proof see [3, Ch. I, §10.2 Theorem 1 and Ch. III, §4.4 Proposition 7]. For more
information on proper group actions see the forthcoming book [IJ.

Note that if the action of G on X is proper, then G is locally compact, by ii). And if
furthermore X is o—compact, then G is also o—compact, by ii).

It is useful to rephrase the definition of properness in terms of limit sets. Let (x;);c; be a

net in the — not necessarily locally compact — topological space X. We say that the net

(x;)ier diverges and write z; — 0, if the net (z;);er has no convergent subnet. If X is
1€

locally compact, a net (x;);e; in X diverges if and only if it converges to the additional
point oo of the one point (also called Alexandrov—) compactification of X.

Let again the topological group G act on the space X. For x € X the limit set L(x) is
defined by

L(x) :={y; there exists a divergent net (g;)iecr in G

such that (g;x);cr converges to y}



and the extended limit set J(z) is defined by

J(z) :={y; there ezists a divergent net (g;)icr in G
and a net (z;);cr in X converging to x,

such that (g;z;)icr converges to y}.

Thus, the action of G on X is proper if and only if the following condition holds:

iv) J(z) =0 for everyz € X,
since iv) is equivalent to iii). If furthermore D is a family of pseudometrics inducing
the topology of X and every g € G leaves every d € D invariant, then it is easy to
see that

v) L(xz) =0 implies J(x) = 0.

3 The group of isometries of a proper metric space

Let again X be a locally compact Hausdorff space, let D be a family of pseudometrics
inducing the topology of X and let G be the group of isometries of (X, D) with its natural
topology, as above.

Theorem 3.1. If at least one of the pseudometrics in D is proper then G is locally
compact and the natural action of G on X 1is proper.

The special case that D consists of just one metric is due to Gao and Kechris [6], as
follows.

Theorem 3.2. If (X,d) is a proper metric space then its group G of isometries is locally
compact and its natural action of G on X is proper.

Proof of theorem [3.1] It suffices to show that the natural action of G on X is proper.
To prove this we will show that the limit set L(x) is empty for every x € X. Thus let
(9:)ier be a net in G for which (g;x);e; converges to a point, say y, in X. We have to show
that the net (g;);e; has a convergent subnet. We may assume that g;x is contained in the
relatively compact ball By(y,r) for every ¢ € I, where d is a proper pseudometric in D
and r > 0. We will use the Arzela—Ascoli theorem. Let z € X. The points ¢;z, ¢ € I, are
contained in the ball By(z, R), where R = r+d(z, z). Thus the set {g,2;¢ € I} is relatively
compact for every z € X. The family of maps {g;;¢ € I} is uniformly equicontinuous,
being a subset of the uniformly equicontinuous family G' of maps from X to X. It follows
from the Arzela—Ascoli theorem that the net (g;);e; has a subnet (g;);es which converges
uniformly on compact subsets to a map g. Clearly, g leaves every d € D invariant. To
see that ¢ is actually invertible look at the net (gj_l)jej. We have gj_ly € By(x,r) and
hence g; 'z € Bq(z, R') where R' = r +d(z, z). Then the net (g;');es has a subnet which
converges uniformly on compact subsets to a map f. It then follows that f and g are
inverse of each other.



Remark 3.3. The sets K(F) := {x € X; Eux isrelatively compact}, where
E C Iso(X,d) played a crucial role in [13] where it is proved that they are open—closed
subsets of X. In the case of a proper metric space (X, d) the set K(FE) is either the empty
set or the whole space X as shown in the proof of Theorem Bl Using Bourbaki [3, Ch.
X, Exercise 13, p. 323] we may also show that sets K (E) are open-closed subsets of X but
we must be careful! Even in the legendary “Topologie Générale” of Bourbaki there is at
least one mistake! Precisely in the aforementioned Exercise 13 of Ch. X, p. 323, part d)
it is said that if E is a uniformly equicontinuous family of homeomorphisms of a locally
compact uniform space X then K(F) is a closed subset of X. This is not true if F is not
a subset of a uniformly equicontinuous group of homeomorphisms of X as we can easily
see by the following counterexample.

Counterexample 3.4. Let
= 1
X = U{(fﬂay);x:%,yZO}U{(a’,y);xZO,y>0}
k=1

be endowed with the Euclidean metric. Consider the family £ = {f,} of selfmaps of X
defined by f.(z,y) = (z,%). The family £ consists of uniformly equicontinuous homeo-
morphisms of X and K(E) = Uy {(z,y); © = 1, y > 0} as can be easily checked. Hence
the set K(F) is not closed in X.

4 Proper invariant metrics and pseudometrics, out-
line of the proof

The main results of our paper are the following converses of theorems [B.1land 3.2l Again,
X is a space, i.e., a locally compact Hausdorff space and G is a Hausdorff topological
group. Suppose we are given a continuous action of G on X.

Theorem 4.1. Suppose X is o—compact. If the action of G on X 1is proper then there
1s a family D of proper finite—valued G—invariant pseudometrics on X, which induces the
topology of X.

Theorem 4.2. Suppose X is o—compact. If the action of G on X is proper and X is
metrizable, then there is a compatible G—invariant proper metric d on X.

Remark 4.3. If the action is proper, it is easy to see that the kernel of the action K :=
{9 € G; gr = x for every x € X} is compact and the action map induces an isomorphism
of topological groups of G/K onto a closed subgroup of Iso(X, D), resp. Iso(X,d). We
thus have a complete correspondence between proper actions and isometry groups of proper
metrics or pseudometrics.

Corollary 4.4. Suppose X is c—compact and G acts properly on X. Then the following
properties of X are equivalent

a) X is metrizable.



b) There is a compatible G—invariant proper metric on X.

c) There is a countable family of finite—valued pseudo—metrics on X, which induces the
topology of X.

d) There is a countable family of proper finite—valued G—invariant pseudometrics on
X, which induces the topology of X .

Proof. a) = b) by theorem 2] b) = d) and d) = c¢) are trivial, ¢) = a) is a well
known theorem of topology [3, Ch. IX, §2.4 Corollary 1] whose proof is similar to the
argument in the last paragraph of the proof of lemma B0 a). O

The proof of theorems E.1] and will occupy most of the remainder of the paper. Let
us briefly describe the plan of the proof. We describe the plan for the case of a family of
pseudometrics, the proof for the metrizable case simplifies at some points.

1. We first construct a family D of pseudometrics on X, with values in [0,1] which
induces the topology of X, see section

2. Next we show how to make every d € D G-invariant, see section [6l
3. Then we make every d € D orbitwise proper, see section [7l

4. These steps are fairly routine. We then present our main tool, namely the “mea-
suring stick construction”. Imagine a family of measuring sticks given by distances
of closely neighboring points. We then define a pseudometric d on X by taking
for z,y in X as d(z,y) the infimum of all measurements along sequences of points
r = xg,...,T, = y such that the distance of any two adjacent points is given by
measuring sticks. For a precise definition, actually several equivalent ones, see sec-
tion [8 It turns out that we then get for an appropriate family of measuring sticks
a proper pseudometric. The disadvantage of this construction is that there may be
points which cannot be connected by sequences as above. Equivalently, there may
be points x,y with d(z,y) = co.

5. We then use our “bridge construction”, see section Think of pairs of points
with d(z,y) < oo as lying on the same island. Thus what we call an island is an
equivalence class of the equivalence relation defined as z ~ y iff d(z,y) < co. We
connect (some of) these islands by bridges and attribute (high) weights to these
bridges. We then define a new pseudometric similarly as above using the already
defined pseudometric on the islands and the weights of bridges. We thus obtain a
proper pseudometric with finite values and actually a whole family of such, which
induces the topology of X. All these constructions are done in a G—invariant way,
so that the resulting pseudometrics are G—invariant.



5 A compatible metric and proper pseudometrics
Again, by a space we mean a locally compact Hausdorff space. Recall the following basic
metrization result, see [3, Ch. IX, §2.9 Corollary].

Theorem 5.1. For a space X the following properties are equivalent

a) X is second countable, i.e., its topology has a countable base.
b) The one-point compactification X of X is metrizable.

c) X is metrizable and o—compact.

If a space is metrizable we may assume that the metric d inducing the topology has values

in [0,1]. We just have to replace d by d; with d;(z,y) := 1151:0(%)'

For the general case of a not necessarily metrizable c—compact space — and for later use
— we need the following easy lemma, whose proof is left to the reader.

Lemma 5.2. A space X is o—compact if and only if there is a proper continuous function

f:X —10,00).

Corollary 5.3. On every o—compact space X there is a family D of proper finite—valued
pseudometrics inducing the topology of X.

Proof. Let Dy be the family of pseudometrics on X of the form
de(z,y) = [f(x) = f(y)]

for x,y € X, where f : X — R is a continuous function. Then Dy induces the topology
of X. Here we do not use that X is o—compact. But in the next step we do. If X is
o-compact let D be the family D := {d + dy ; d € Dy}, where f : X — R is proper
and continuous. Then D induces the topology of X and consists of proper finite-valued
pseudometrics. O

The same trick yields the following corollary.

Corollary 5.4. The following properties of a space X are equivalent.

a) X has a compatible proper metric.
b) X is metrizable and o—compact.
c) X is metrizable and separable.

d) X is second countable.

Remark 5.5. Note the if a pseudometric d belongs to a family of pseudometrics inducing
the topology of X then d is continuous. Since then By(z,7) is a neighborhood of z for
every € X and every r > 0, and hence the function y — d(z,y) is continuous at x for
every x € X, which easily implies that d is continuous by the triangle inequality.



6 Making the metrics or pseudometrics G—invariant

Now suppose X is a space, GG is a Hausdorff topological group and a proper continuous
action of G on X is given.

Step 2. If X is o—compact, then there is a family of G—invariant continuous finite—valued
pseudometrics inducing the topology of X. If X is furthermore metrizable then there is a
compatible G—invariant metric on X.

We present two proofs.

The first one is due to Koszul [12] and uses the concept of a fundamental set, a concept we
will need again, later on. The second one uses the notion of an equicontinuous action on
the one—point compactification of X. Unfortunately, in the process we loose the property
that our (pseudo—)metrics are proper.

Definition 6.1. A subset F' of X is called a fundamental set for the action of G on X if
the following two conditions hold.

a) GF =X

b) Gkr has compact closure for every compact subset K of X.

Concerning b), recall the definition of the transporter Gap = {g € G ; g AN B # (} from
A to B. Note that only proper actions can have a fundamental set, since a) implies that

Gap C Ggp - Gar

and hence G 4p is relatively compact if A and B are compact, by b), and then Gap is
actually compact, by continuity of the action. There is the following converse, see [12].

Proposition 6.2. If X is oc—compact, then there is an open fundamental set for every
proper action.

Step 2, 15t proof. Let F be an open fundamental set for the action of G on X. Let d be a
continuous finite—valued pseudometric on X. Let d’ be the supremum of all pseudometrics
on X with the property that d' | F x F < dand d' | (X \ F) x (X \ F) = 0. Explicitly,
let r be the function on X with r4(z) = d(z, X N F) := inf{d(z,y) ; y € X ~\ F'}. Then

d'(z,y) = min{d(z,y) , ra(z) +ra(y)}.

Note that for every x € F there is a neighborhood of = where d and d' coincide. The
function d' is a finite-valued continuous pseudometric and the function G — R, g ——
d'(gx, gy) is continuous and has compact support, namely contained in G, 3, 7. Define

d"(z,y) = / d'(gz, gy)dg
G

9



where dg is a right invariant Haar measure on G. Then d” is a G—invariant pseudometric on
X. The pseudometric d” is actually a metric if d is a metric. Furthermore d” is continuous
for every d € D, by a uniform equicontinuity argument for functions on compact spaces.
Thus the family D” = {d” ; d € D} induces a weaker topology than D. The two
topologies are actually equal since for every neighborhood V' of x € X there are a compact
neighborhood V; of x in X and a compact neighborhood U; of e in G such that U3V, C V
and U (X N\ V) C X \ V] and hence

d'(z,y) > d'(x, X \ V1) / dg

U1

for every y € X ~ V., which implies our claim for x € F and hence for every z by
G—invariance of the two topologies.

274 proof. This proof is based on the notion of an equicontinuous group action. Consider
the one point compactification X = X U{oo}. The action of G on X extends to an action
of G on X by defining g(oo) = oo for every g € G. The extended action is continuous.
Let D be a family of pseudometrics on X which induces the topology of X. Without
further assumptions on X we can take the family {d;; f : X — [0, 1] continuous}, see the
proof of corollary 5.3l If X is metrizable, we can take D to consist of just one element.
This is the case if and only if X is metrizable and o—compact, see theorem .l In any
case, define for d € D and z,y € X

d'(z,y) := sup d(gz, gy),
geG
and set D' = {d' ; d € D}. We claim that D’ induces the topology of X. Obviously, the
topology induced by D’ is finer than the topology of X, since d’ > d and D induces the
topology of X.

Concerning the converse, consider the following property. The action of G on X is called
pointwise equicontinuous with respect to D if for every x € X, d € D and € > 0 there is a
neighborhood U of x such that for y € U we have d(gz, gy) < € for every g € G. Clearly,
if this holds the topology defined by D’ is weaker than the topology of X and our claim
is proved. It thus remains to show

Lemma 6.3. Let X be a space and let G be a topological group acting properly on X. Let
D be a family of pseudometrics on X inducing the topology of X. Then G acts pointwise
equicontinuously on X with respect to D.

Proof. Arguing by contradiction, assume that there are d € D, x € X, ¢ > 0 and a net
(x;)ier in X converging to x and a net (g;);e; in G such that d(g;x, g;x;) > € for every
i € I. Tt follows that g; — o0, since otherwise the net (g;);c; has a convergent subnet, say
(9j);es converging to g € G. Then g;x ]e—f gz and g;z; E gz contradicting d(g;z, giz;) >

€ for every ¢ € I. It follows next that g;x; — o0, since otherwise there would be a subnet
1€

(gjxj)jes converging to a point of X, which implies that there would be a convergent
subnet of (g;)jes, by properness of the action. Thus g;z; 7 and g; % which
1€ 1€
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implies g;x — 00, again by properness of the action. But then d(g;z, g;z;) — 0, since
1€ 1€

d is continuous on X. This contradicts our assumption and finishes the proof. O

Remark 6.4. The 274 proof shows step 2 for the metrizable case only under the additional
assumption that X is metrizable, i.e., that X is metrizable and o—compact. This is enough
for our main results, though, because there all spaces are c—compact.

Remark 6.5. The pseudometrics we obtain by these proofs are not proper, in general.
This is clear for the second proof. For the first proof, even if we start from a proper
(pseudo—) metric d, we obtain in case that the orbit space G\X is compact — so F is
relatively compact — that d” has an upper bound.

Remark 6.6. One could rephrase the notion of pointwise equicontinuity in terms of
the unique uniformity on the compact space X. We chose here to use the language of
pseudometrics since proper (pseudo—) metrics are our final goal.

7 Orbitwise proper metrics and pseudometrics

If G acts on X we denote by 7 : X — G\ X the natural map to the orbit space. We will
call a pseudometric d on X orbitwise proper if m (By(x, 7)) has compact closure for every
x € X and 0 < r < oo. Again, we assume the notation and hypotheses of the last section.

Step 3. If X is o—compact there is a family of G—invariant orbitwise proper finite—valued
pseudometrics on X inducing the topology of X. If X s furthermore metrizable there is
a G—invariant orbitwise proper compatible metric on X.

Proof. If X is a space with a proper action, then the orbit space G\ X is Hausdorff as
well, see [3]. Clearly, G\X is locally compact. If furthermore X is o—compact, so is
G\X. So there is a proper continuous function f : G\X — [0, 00), see lemma The
pseudometric d' := ds., on X defined by

d'(z,y) = |fm(x) — fr(y)]

for z,y € X is orbitwise proper, continuous and G—invariant. Hence if D is a family
of finite-valued G—invariant pseudometrics on X inducing the topology of X, so is D' =
{d+d'; d € D} and furthermore every pseudometric of this family is orbitwise proper. [

8 The measuring stick construction

We first present our measuring stick construction in three equivalent ways. We then give a
sufficient condition under which the resulting pseudometric is proper. This will be applied
to our situation and yields step 4 of our proof.
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8.1. Let X be a set, let d be a pseudometric on X and let U be a covering of X. We then
define a new pseudometric d' = d'(d,U) on X depending on d and U as follows: d’ is the
supremum of all pseudometrics d” on X with the property that d”|U x U < d|U x U for
every U € U.

8.2. We think of pairs (x, y) of points lying in one U € U as measuring sticks or sticks, for
short. A sequence x = xg, 71,...,%, = y of points in X, such that any two consecutive
points form a stick, will be called a stick path from z to y of length n and d-length
S d(zi—y, x;). We claim that d'(z,y) is the infimum of d-lengths of all stick paths from
x to y. Since on one hand defining d' in this way clearly gives a pseudometric on X and
d'|U x U < d|U x U. And, on the other hand, for every pseudometric d” with the two
properties above we have that d”(x,y) is at most equal to the d-length of any stick path
from z to y, because for every stick path r = g, x1,...,z, =y we have

d'"(,y) > d"(wiog,2) <Y d(wio1, ).

i=1 i=1

We thus obtain the following properties of d' = d'(d,U)
a) d >d
b) d'|U x U =d|U x U

c¢) If d is finite-valued on every U € U then d(x,y) < oo if and only if there is a stick
path from x to y.

8.3. An alternative way to describe this construction is the following: Let Iy, be the
following graph. The vertices of [y, are the points of X and the edges of I'y, are the
sticks, i.e., the pairs (z,y) contained in one U € U. So the graph 'y is closely related
to the nerve of the covering U. To every edge (z,y) of I';; we can associate the weight
d(x,y). Then for points z,y in X the pseudometric d'(x,y) is the graph distance of the
corresponding vertices of this weighted graph.

Let us now return to the case we are interested in. Thus, let X be a o—compact space with
a proper action of a locally compact topological group G. Let F' be an open fundamental
set for G in X. We consider the covering U by the translates of F',soUd = {gF ; g € G}.
We apply the measuring stick construction for an appropriate pseudometric d and show
that the resulting pseudometric d' is proper, but may be infinite-valued. We do this first
for the case that the orbit space G\X is compact and then for the general case. We
shall need an auxiliary result about Lebesgue numbers of our covering, see below lemma
R The problem of infinite values of d’ will be dealt with in the next section. The method
will be the “bridge construction”.

We start with a well known result, for which we include a proof for the convenience of
the reader.

Lemma 8.4. If the orbit space G\X is compact then every fundamental set is relatively
compact. Conversely, if G\X is compact then every relatively compact subset F' of X with
the property that GF = X is a fundamental set for G in X.

12



Proof. The second claim is clear, since property b) of a fundamental set follows imme-
diately from the hypothesis that the action of G on X is proper, see proposition and
definition 23 ii). To prove the first claim choose a compact neighborhood U, for every
point x € X. A finite number of the 7n(U,), * € X, cover G\ X, where 7 is the nat-
ural map 7 : X — G\X, which is known to be an open map. Let us say G\X =
Uy )U--Un(U,,), so X = GU,, U---UGU,,. Hence A C Gy, AU, U---UGy,, aU,,
for every subset A of X. For A = F the subsets Gy, r of G are relatively compact, by
property b) of a fundamental set, see definition [6.Il Hence F' is relatively compact. [

A family D of pseudometrics is called saturated if dy, do € D implies sup(dy, ds) € D.

Lemma 8.5. Let D be a saturated family of G—invariant pseudometrics inducing the
topology of X. Suppose the orbit space G\X is compact. Then there is a pseudometric
d € D and a positive number € such that for every x € X the ball By(x,¢€) is contained in
one translate of F.

A number e with this property is called a Lebesque number for the covering {¢gF; g € G}
with respect to d.

Proof. By G-invariance, it suffices to show this for points € F. Since F is compact,
it is covered by a finite number of gF, say ' C ¢;F U ---U g,F. Recall that F is
supposed to be open. The set of balls By(z,7), d € D, x € X, r > 0, form a base of
the topology of X, not only their finite intersections, since D is saturated. Thus there is
for every x € F a pseudometric d, € D and a radius 7, such that By, (z,7;) is contained
in one translate of F', since F' is open. A finite number of balls By, (x, %‘3) cover F, say

those for z = x1,...,2,. Thus for every y € F there is an z;, ¢ = 1,...,n, such that
s Bdmi (932-, T;) and hence dei (y, ”i) - dei (x;,7z,) is contained in one translate of F.
Hence our claim holds for d = sup(d,,,...,d;,) € D and € = inf(ry,,,...,74,). 0O

Now let again U = {gF ; g € G} and for a G-invariant pseudometric d on X let
d' = d'(d, U) be the pseudometric obtained by the measuring stick construction.

Proposition 8.6. Suppose the orbit space G\X is compact. Let d be a continuous G-
invariant pseudometric on X, for which there is a Lebesque number for U. Then d' is
a proper pseudometric, i.e., By(x, R) is relatively compact for every x € X and every
R < 0.

Proof. We may assume that = € F', by G-invariance. Then y € By (z, R) if and only if
there is a stick path @ = g, 21, ..., 2, = y with d-length >""  d(z;_1,2z;) < R. We may
assume that no three consecutive points z;_1, x;, ;1 of our stick path are contained in
one translate of F', because otherwise we can leave out z; from our stick path and obtain
a stick path of not greater d-length. Let € be the Lebesgue number for ¢ with respect to
d. It follows that d(z;_1, x;) + d(x;, x;41) > € for every i = 1,...,n— 1, because otherwise
Xi_1, T;, T;y1 are contained in one translate of F. We thus obtain the following upper
bound for the length n of our stick path:

2R
n < — + 1.
€
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Thus, let N € NU {0} and let By be the set of points y € X for which there is a stick
path of length N starting at a point z € F' and ending at y. We have to show that By
is relatively compact for every N € NU {0}. For N = 0 we have By = F. If y € By
there is a point 3’ € By such that (y/,y) is a stick, say {¢/,y} C g F. Theny' € BynNgF
and hence g € Gpp, =G Byl F- This subset of G is relatively compact by induction and
property b) of a fundamental set. Thus y € ¢ F' C Gpp, F, hence Byy1 C Gpp, F and
so By is relatively compact. O

This yields step 4 of our proof for the case that the orbit space is compact. For the general
case we need one pseudometric d for which there is a Lebesgue number for every subset
of X of the form 7~ !(K) where K is a compact subset of G\ X. Here we have to suppose
that the orbit space is o—compact.

Before we proceed to do this we need to figure out where d’ is finite. Let F and U be
as above. We do not suppose that the orbit space is compact. Let d be a G—invariant
pseudometric on X for which d|F x F' has finite values. Let the symbol “~” denote the
smallest G—invariant equivalence relation on X for which F'is contained in one equivalence
class. Recall that Grr = {g € G; gF N F # (}. Let Gy be the subgroup of G generated
by GFF-

Lemma 8.7. Let x and y be points of X. The following properties of the pair (x,y) are
equivalent

a) d'(z,y) < cc.

b) There is a stick path from x to y.

c) x~y.

d) The vertices x and y of the graph Uy belong to the same connected component of
Iy

e) Ifr € gF andy € h F then g~th € G,.
The equivalence classes will be called islands from now on.

Proof. a)<=b) was noted above, and b)<=-d) and b)<=-c) follow immediately from the
definitions.

b) = e). Let x € g F and y € h I and let (z,y) be a stick, say {z,y} C k F for some
k€ G. Then g 'k € Gpp and h™'k € Gpp hence g~'h € Gy. The claim b)<=-e¢) follows
now by induction on the length of the stick path.

e) = ¢). Let Y be an equivalence class of ~. Thus, if one point of a translate g F' of
F' is contained in Y then ¢ F' is contained in Y. By the same argument applied to g k F
with k& € Gpp it then follows that g GppF C Y, hence g - Gpp - Gpp F C Y, etc. So
gGoF CY if gFNY # (0, which proves our claim. O

Corollary 8.8. The map g Gy — g Gy F' establishes a bijection between the set G/Gy of
left cosets of Gy in G and the set of islands in X.
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Corollary 8.9. If G\X is o—compact, so are F, Grr, Go and every island.

Proof. If K is a compact subset of G\ X, then so is Fx := FN7n Y K) =7"1(K)NF, by
lemma [8.4] and hence also G, g, since the action of G on X is proper and continuous.
It follows that if G\ X is o—compact, so are F', G 7, the subgroup G, of G generated by
fo and G1F. It thus remains to be shown that Gy = Gy and GoF = GyF. But clearly
G#r = Gpp since F' is open, hence Gz C G%; - Gz, by the formula following definition
6.1, and thus Gz C Go and hence Gy = Gy. Furthermore FcC G%;F , by a), and
hence GoF' = GyF'. O

We come back to the Lebesgue number and show properness of d' for the case that the
orbit space is o—compact. This accomplishes step 4 of our plan in section d. Note that at
this point we do not need that X is c—compact, only that the orbit space is o—compact.

Lemma 8.10. Suppose the orbit space G\X is o—compact.

a) Then there is a continuous orbitwise proper G—invariant pseudometric d on X with
the following properties: d is finite—valued on every island and for every compact
subset K of G\X there is a Lebesque number for the covering U|m~ (K) of the
G-space 7 (K) with respect to the restriction of d to 7~ (K).

b) If d is as in a) then d' is proper, which means that the ball By (x, R) has compact
closure for every x € X and every 0 < R < 00.

Proof. a) Let K,,, n € N, be a sequence of compact subsets of G\ X such that | J 7, K,, =

G\X and K, C K,y for every n € N. Put X,, = 7 '(K,). Then X, is a closed G-
invariant subset of X on which G acts properly with compact orbit space K,. The set
F, := FNX, is an open fundamental set for G in X,,, hence relatively compact in X,, and
in X. So there is a continuous orbitwise proper G—invariant finite-valued pseudometric
d, on X such that there is a Lebesgue number for the covering {gF,; g € G} of X,, with
respect to the pseudometric d,, restricted to X,,. Note that d,, is defined and finite—valued
on all of X. To see the existence of such a d,,, we apply lemma [R5 to the family d|X,, x X,
where d runs through a saturated family of finite-valued G—invariant pseudometrics on
X inducing the topology of X, which we may assume to be orbitwise proper, by Step 3
in section [7

Let Y be the island GoF containing F'. We use here the notation of lemma B and its
corollaries. Since Y is o—compact, there is a family L,,, n € N, of compact subsets of Y

such that Uzozl L, =Y and L, C L,+1. We may assume that d,|L,, X L, has values < 1,
by rescaling. Now define

A ) = Zzindn(x,y) if v~y
Y= 00 otherwise.

Then d is G—invariant continuous orbitwise proper pseudometric on X, which is finite—
valued on Y X Y and hence on every island. There is a Lebesgue number for the covering
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{g F,; g € G} of X,, with respect to d, since there is one for d,, and d > Q%dn. Here we
think of d and d,, as restricted to X,, x X,,. This implies our claim under a).

b) Islands are of the form g G F', hence open, since F' is supposed to be open. It follows
that they are also closed. Again, let Y = GoF be the island containing F'. Let By (x, R),
x € X,0< R < oo, be a ball for the pseudometric d and let B be its closure. We have
to show that B is compact. We know that K := mw(B) is compact, since d is orbitwise
proper and hence so is d’, since d’ > d by a). We may assume that x € F' and hence
By (z,R) CY and thus B C Y.

The subgroup Gg of G is open since generated by the open subset Gpp. It follows that
GGy is a closed subgroup of G. Then the action of Gy on Y is proper, since the restricted
action of Gy on X is proper and Y is a closed Gg—invariant subset of X. And F is an
open fundamental set for Gy in Y. Let Z = Y N7 }(K). This is a closed Gy—invariant
subset of Y and F; := ZNF = FNa'(K) is an open fundamental set for Gy in Z. The
orbit space G\ Z is compact; it can be identified with K. So we can apply proposition
to the Gp—space Z, the pseudometric d|Z x Z and the covering Uy := {gF7; g € Gy}
to obtain that the resulting stick path pseudometric d” := d'(d|Z x Z,Uy) is proper. It
remains to see that By (z, R) = By(x, R). Clearly d"(z,y) < R implies d'(z,y) < R, by
looking at the stick paths for U;. Conversely, if d'(z,y) < R then there is a stick path
T = Tg, T1,...,2, =y for U with Xd(z;_1,x;) < R. Then all the z; are in By(xz,R) CY
and m(z;) € K, hence x; € Z and every pair x;_1, z; is contained in some translate gF' of
F. But then g € Gy, by Bl e), and so {g~'x;_1, g x;} is contained in F and in Z, hence
in Fz. Thus our stick path is also a stick path for Uz in Z and thus d’(z,y) < R. O

9 Bridges

Again, let X be a o—compact space and let the locally compact group G act properly on
X. Note that then G is o—compact as well, since if X is the union of countably many
compact subsets K, then G is the union of the countably many sets G, x, which are
compact since the action of G on X is both proper and continuous. Let us again fix an
open fundamental set F' for G in X. Then, using the notation of the last section, Gy is an
open subgroup of G and hence G/G| is a countable discrete space. We can thus choose
a finite or infinite sequence of elements ¢g,, n = 0,1, ..., such that G is the union of the
disjoint cosets g,Go. We may assume that g is the identity element. Let S be the set of
indices, so S = NU{0} or S = {0,1,..., N} for some N € NU{0}. Thus G = J,,c5 9nGo
and hence X is the union of the disjoint subsets g,GoF, n € S, by corollary 8.8 Recall
that the sets of the form g GoF are called islands. Consequently we define a bridge to be
a 2—point subset of X of the form {gz, gg,x} with g € G, n € S, n # 0, and z € F. Note
that gz and gg,x are always on different islands since n # 0. But the representation of a
bridge in the form above may not be unique. Now suppose a G—invariant pseudometric
d on X is given. We then define the bridge path pseudometric dg on X as the supremum
of all pseudometrics d” with the following two properties.

9.1. a) For every island Y in X we have d"|Y xY < d|Y x Y.
b) d"(gx,ggnx) <m forge G,ne€ S andx € F.
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There is an alternative description of dg in terms of paths. Let us define the length of a
bridge {y, z} as the smallest number n € S such that {y, z} = {gx, gg,x} for some g € G
and x € F. Thus, the length of a bridge is always an integer > 1. Let us call a sequence of
points x = xg, 1, ..., T, =y a bridge path of length n from x to y if any two consecutive
points either lie on a common island or form a bridge, i.e., for every ¢ = 1,...,n there is
either an island Y such that {z;_1,2;} CY or {z;_1,z;} is a bridge. Define the d-length
of such a bridge path as >, d; where d; = d(x;_1, 2;) if {z;_1, z;} is on one island or, if
{z;_1,x;} is a bridge, then let d; be the length of this bridge.

9.2. dg(x,y) is the infimum of d-lengths of all bridge paths from x to y.

Proof. The pseudometric d” defined by the statement of @2 has the properties @1l a) and
b). Conversely, if d” is a pseudometric with the properties a) and b), then d’(z,y)
is at most equal to the d—length of any bridge path from x to y, cf. the similar proof in

B2 O

Proposition 9.3. Properties of dp

a) dg is G—invariant.
b) dp is finite—valued if d|Y XY is finite-valued for one (equivalently every) island Y .

c¢) If x is a point of the island Y, then the balls By(x,7)NY and By, (x,r) coincide for
r<1.

d) If d is continuous, so is dp.

e) Suppose d is continuous, proper and, for every island Y, has finite values on'Y X Y.
Then dp is continuous, proper and finite—valued (everywhere).

Proof.  a) follows from our construction.

b) follows from the fact that dp is G-invariant and every island can be reached from
F' by a bridge.

c) follows from and the fact that every bridge has length > 1.

d) A pseudometric is continuous if it is continuous near the diagonal, by the triangle
inequality. So d) follows from c).

e) is the main point of these properties. It remains to be shown that dp is proper
if d is proper, continuous and on every island finite—valued. Thus let x € X and
0 < R < oo. We have to show that By, (x, R) has compact closure. For a point
y € X we have dg(z,y) < R if there is a bridge path z = xg,...,z, = y with
d-length ¥d; < R. We may assume that three consecutive points x;_1,x;, ;41 of
our bridge path are not on a common island, since otherwise we could leave out x;
without increasing the d-length of our path, by the triangle inequality for d. So our
path has at least ”TH bridges, all of length > 1. We thus have an upper bound for
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the length n of our bridge path, namely n < 2R + 1. Furthermore, every bridge
in our path has length at most R and every step d; = d(z;_1,x;) on one island has
length at most R. It thus suffices to prove the following two claims.

a) If K is a compact subset of X, then By(K,R) = {y € X ; d(z,y) < R} has
compact closure.

b) If K is a compact subset of X, then the set B(K,R) := {z € X; there is a
bridge {y, z} from a point y € K to z of length < R} has compact closure.

Proof of a). K is contained in a finite union of islands, since K is compact and the islands
are open and disjoint and form a cover of X. It thus suffices to prove our claim for the
case that K is contained in one island, say Y. Let x be a point of K. Then the function
y — d(z,y) is continuous and finite—valued on Y, hence has a finite maximum on K, so
K C By(z,r) for some 0 < r < 0o. Then By(K, R) C By(z,r + R), which has compact
closure by hypothesis. This shows our claim.

Proof of b). The bridges {y, z} starting from a point of K and having length < R are
of the form {gx, ggnx} with x € F and n < R, and either gz € K or gg,x € K. Hence
geGrrorg€ Gy rr=Grk- g, ! and hence the endpoint z of our bridge is of the form
2 = ggnr € Grrg, K in the first case or of the form 2z = gr € Grig, 'K in the second
case, thus every endpoint z of such a bridge is contained in the relatively compact set
U, <r Grrgi'K, as was to be shown. O

9.4. We are now ready to finish the proof of our main theorems [T and Let X be
a o—compact Hausdorff space and suppose the locally compact topological group G acts
properly on X. We have shown that then there is a family of continuous G—invariant
pseudometrics on X inducing the topology of X, see step 2 in chapter [0 which we may
furthermore assume to be finite—valued and orbitwise proper, by step 3 in chapter[7. Then
the stick construction of chapter [ gave us a pseudometric, which is continuous, proper
and on every island finite-valued, namely the pseudometric d’ of lemma RI0 Continuity
of d' follows from property b) and finiteness on islands from lemma 87 If we use this
pseudometric in the bridge construction of chapter [@ then the resulting pseudometric dpg is
continuous, finite—valued and proper. If now D is a family of G-invariant pseudometrics
inducing the topology of X — we know that such a family exists, by step 2 in chapter
— then the family {sup(d,dp); d € D} has all the properties we want in theorem
(theorem [A.1]). If X is furthermore metrizable, then there is a compatible G-invariant
metric d on X, by step 2 in chapter Again, there is a pseudometric dg which is
continuous, proper, finite-valued and G—-invariant. Then the metric sup(d, dg) has all
these properties, too, and is furthermore a compatible metric. This proves theorem [T

(theorem [.2)).

Let us point out the following corollary, due to Haagerup and Przybyszewska [7].

Corollary 9.5. FEvery second countable locally compact group has a left invariant com-
patible proper metric.
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Proof. The underlying space of such a group G is metrizable and o—compact, by corollary
B4l The action of G on itself by left translations is obviously proper, so there is a
compatible left invariant proper metric on G, by theorem [Tl O

As a special case we obtain the following old result of Busemann [4].

Corollary 9.6. The group of isometries of a proper metric space admits a compatible left
mvariant proper metric.

Proof. The group G of isometries of a proper metric space is locally compact and Haus-
dorff, see theorem B.2] and second countable, see [3, Ch. X, §3.3 Corollary|, which implies
our claim by the previous corollary.

O

10 Concluding remarks

In this chapter we discuss applications and related work, mention open questions and
make other remarks.

10.1. In the non—equivariant context, i.e., if we consider just the topological space X
without any group action, it is well known that a oc—compact locally compact metrizable
space has a compatible proper metric, see corollary 5.4l More precisely, in [14] it is proved
that if d is a complete metric on such a space X then there is a proper metric on X which
is locally identical with d, i.e., for every point x € X there is a neighborhood of = where
the two metrics coincide. Note that in our construction the metric is not changed locally
in steps 4 and 5 of chapter @ Thus in the situation of theorem [[1] if d is a compatible
G—invariant metric on X which is orbitwise proper then there is a G—invariant compatible
proper metric on X which is locally identical with d. One may thus ask the following
question: Suppose, in the situation of theorem [T, we are given a G-invariant complete
compatible metric on X. Is there a G—invariant proper (compatible) metric on X which
is locally identical with d?

10.2. Given an isometric action of a group GG on a c—compact locally compact metric space
X with metric d, it is not true in general that there is a compatible proper metric d,, for
which the action of G is isometric. For an example let X = {(z,y) € R%z=0or z =1}
endowed with the metric d = min{dg, 1} where dg is the Euclidean metric of R? restricted
to X. Let G be the group of isometries of (X, d). There is no compatible proper metric d,
on X for which G acts isometrically, for the following reason. The group H of isometries
of (X,d,), endowed with the compact open topology, acts properly, hence the isotropy
group H ) of the point (0,0) is compact and hence has compact orbits. On the other
hand, let G(o) be the isotropy group of the point (0,0) in G. The orbit G (1,0) of
(1,0) is {1} x R and is not relatively compact in X. So G is not contained in H. The
point of the example is that the action of G is not proper, no matter which topology we
put on G.
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10.3. Let us consider the following question. Under which conditions is it true that given
a compatible metric d on a locally compact o—compact space X there is a compatible
proper metric d, with the same group of isometries? A sufficient condition was given by
Janos [§], namely if (X, d) is a connected uniformly locally compact metric space.

10.4. Note that if we have a closed subgroup G of the group of isometries of a proper
metric space (X, d) then it is not true in general that there is a metric d; on X for which
G is the precise group of isometries. E.g., the space X = R of real numbers with the
Euclidean metric has the group G = R as a closed subgroup of its group of isometries.
But for every G-invariant metric d; on X we have d;(x,0) = d;(0, —x), hence the group
of isometries of d; contains the reflections of R and is thus strictly larger than R.

10.5. Given a proper action of a locally compact topological group G on a locally compact
metrizable space X, one can ask if there is a G—invariant metric. This is known to be
equivalent to G\ X being paracompact [12], [1], [2]. The answer is positive in many cases,
see [1], [2]. If X is no longer locally compact, the answer is known to be negative if
the action is Bourbaki-proper, see [1], but again unknown in general for Palais—proper
actions.

10.6. Our theorem [T has potential applications for the Novikov conjecture. Namely, let
G be a locally compact second countable group and let p be a Haar measure on GG. Then,
using a proper left invariant compatible metric on G, Haagerup and Przybyszewska have
proved in [7] that there is a proper affine isometric action of G on some separable strictly
convex reflexive Banach space. Kasparov and Yu have recently proved that the Novikov
conjecture holds for every discrete countable group which has a uniform embedding into
a uniformly convex Banach space, see [10]
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ABSTRACT. We provide a tool for studying properly discontinuous actions of
non-compact groups on locally compact, connected and paracompact spaces,
by embedding such an action in a suitable zero-dimensional compactifica-
tion of the underlying space with pleasant properties. Precisely, given such
an action (G, X) we construct a zero-dimensional compactification puX of X
with the properties: (a) there exists an extension of the action on puX, (b) if
uL C pX \ X is the set of the limit points of the orbits of the initial action
in puX, then the restricted action (G, uX \ pL) remains properly discontinu-
ous, is indivisible and equicontinuous with respect to the uniformity induced
on uX \ pL by that of pX, and (c) uX is the maximal among the zero-
dimensional compactifications of X with these properties. Proper actions are
usually embedded in the endpoint compactification eX of X, in order to ob-
tain topological invariants concerning the cardinality of the space of the ends
of X, provided that X has an additional “nice” property of rather local char-
acter (“property Z”, i.e., every compact subset of X is contained in a compact
and connected one). If the considered space has this property, our new com-
pactification coincides with the endpoint one. On the other hand, we give an
example of a space not having the “property Z” for which our compactification
is different from the endpoint compactification. As an application, we show
that the invariant concerning the cardinality of the ends of X holds also for
a class of actions strictly containing the properly discontinuous ones and for
spaces not necessarily having “property Z”.

INTRODUCTION

The endpoint compactification of a locally compact space has been proved fruit-
ful for the study of the space in the topological framework, including proper actions.
One reason for this is that we have a “clear view” of the embedded space in such
a compactification, contrary to the situation when, for example, the Stone-Cech
compactification is considered instead. Actually, the endpoint compactification is
the quotient space of the Stone-Cech compactification with respect to the equiva-
lence relation whose equivalence classes are the singletons of X and the connected
components of X \ X.
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Our purpose in this paper is to provide an equivariant and analogously useful
notion corresponding to the endpoint compactification in order to have a “clear
view” of the embedded proper action. By saying a “clear view” of the embedded
action we mean that the embedded action has at least the three properties that
follow.

Let (G, X) be the initial proper action, (G,Y) the extended action in a zero-
dimensional compactification Y of X and let L be the set of the limit points of the
orbits of the initial action in Y (i.e., the cluster points of the nets {g;z}, for all nets
{gi} divergent in G, and = € X). Then the maximal invariant subspace where the
extended action can be proper is, obviously, Y\ L D X. So, the required properties
are: The action (G,Y \ L)

(a) remains proper,

(b) is equicontinuous with respect to the uniformity induced on Y\ L by that of
Y, and

(c) is indivisible (i.e., if lim g;yp = e € L for some yy € Y \ L, then limg;y = e
for every y € Y\ L).

In this direction the main results of the paper at hand are:

(1) If X is a locally compact, connected and paracompact space and G is a
non-compact group acting properly discontinuously on X, there always exists a
zero-dimensional compactification X of X which is the maximal (in the ordering
of zero-dimensional compactifications of X') that satisfies the properties: (a) the
initial action can be extended on uX, and (b) if uL denotes the set of the limit
points of the orbits of the initial action in X, the restricted action (G, uX \ pL)
remains proper, is equicontinuous with respect to the uniformity induced on puX\ uL
by that of X and indivisible as embedded in the action (G, uX) (Theorem 6.2).

(2) pL consists of at most two or infinitely many points (Theorem 6.3).

(3) If X has the “property Z”, i.e., every compact subset of X is contained in
a compact and connected one (for example if X is locally compact, connected and
locally connected), then X coincides with the endpoint compactification eX of X
(Corollary in Section 6).

The proof of the results stated above relies on a new construction: The action
(G, X) is obtained by taking the initial action as an equivariant inverse limit
of properly discontinuous G-actions on polyhedra, which are constructed via G-
invariant locally finite open coverings of X, generated by locally finite coverings of
(always existing) suitable fundamental sets of the initial action (cf. Section 3).

As an application of these results we prove in Theorem 7.1 that the invariant
concerning the cardinality of the ends for proper actions of non-compact groups on
locally compact and connected spaces with the “property Z” holds also for proper
actions on spaces not necessarily satisfying this property:

If either Gy, the connected component of the neutral element of G, is non-
compact, or Gy is compact and G/G contains an infinite discrete subgroup, then
X has at most two or infinitely many ends.

Moreover, in Section 2 we give an example of a properly discontinuous action
(G, X), where G is a non-compact group and X is a locally compact, connected
and paracompact space not satisfying the “property Z” such that puX does not
coincide with the endpoint compactification of X: we show that the sets of the
limit points of the actions (G, X) and (G,eX \ eL) in €X coincide, but the action
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(G,eX \ eL) is neither proper nor equicontinuous with respect to the uniformity
induced on X \ eL by that of eX.

Properties (a) and (b) in (1) above have already been used, especially concerning
embeddings in the endpoint compactification, in order to prove that the existence
of a proper action (G, X) of a non-compact group on a locally compact, connected
and paracompact space with the “property Z” has implications in the structure
and the cardinality of the space of ends of X. The following indications trace the
known results in this direction.

The first theorem that relates, although indirectly, equicontinuous actions with
structural features of spaces, is formulated by Kerékjarté (1934), who proved that, if
the abelian group generated by a homeomorphism of the 2-sphere, S?2, acts equicon-
tinuously on S? with respect to the metric uniformity of $? except for a finite num-
ber of points, then the number of these exceptional points is at most two. These
points can be viewed as the set of the endpoints of the maximal subspace of S2
on which the above group acts equicontinuously. This result is considerably gener-
alized by Lam in [7] for equicontinuous actions of non-compact groups on locally
compact, connected metric spaces X with respect to uniformities induced, say, by
the uniformities of suitable zero-dimensional compactifications of X, i.e., compacti-
fications with zero-dimensional remainder. Roughly speaking it is shown that, if an
action (G, X) can be embedded in an action (G,Y"), where Y is a zero-dimensional
compactification of X, such that

(a) there exists a subset R O X of Y such that Y\ R is exactly the non-empty
set of the points where the action (G,Y") is not equicontinuous, and

(b) the restricted action (G, R) is indivisible (i.e., if limg;yo = e € Y \ R for
some yy € R, then lim g;y = e for every y € R),
then Y \ R consists of at most two or infinitely many points.

On the other hand, similar results are proved by Abels in [2] for proper actions
(G, X), where G is a non-compact topological group and X is a locally compact
and connected space with the “property Z” (i.e., every compact subset of X is
contained in a compact and connected one). The corresponding property in Lam’s
work requires X to be a semicontinuum, which ensures the indivisibility of the
equicontinuous action on R. In [2] is considered the endpoint compactification, eX,
of X, the maximal compactification of it with zero-dimensional remainder, instead
of an appropriate zero-dimensional compactification Y of X, and it is proved that
such a proper action (G, X) has an extension on eX. To be more precise, let eL
denote the set of the limit points of the action (G, X) in eX. Then, it is shown
that (a) the action (G,eX \ L) remains proper and (b) it is indivisible. Using
this embedding, it is shown that X has at most two or infinitely many ends, a
remarkable invariant of the proper action (G, X) of the non-compact group G.

The interconnection of the main results in [7] and [2] is explained in [11], where
it is shown that, for spaces with the “property Z”, a group acting equicontinuously
in Lam’s view may be considered as a dense (not necessarily strict) subgroup of a
group acting properly as in Abels’ view.

1. PRELIMINARIES

1.1. The Freudenthal or endpoint compactification e X of a locally compact space
X may be defined as the quotient space of the Stone-Cech compactification X of X
with respect to the equivalence relation whose equivalence classes are the singletons
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of X and the connected components of 53X \ X. Recall that the zero-dimensional
compactifications of X are ordered with respect to the following ordering: Let
Y and Z be two zero-dimensional compactifications of X; then Y < Z if there
exists a surjection from Z onto Y extending the identity map of X. Therefore,
the endpoint compactification is the maximal zero-dimensional compactification of
X, i.e., for every zero-dimensional compactification Y of X there is a surjection
p:eX — Y extending the identity map of X.

The points of eX \ X are the ends of X.

The following theorem, [9], provides an equivalent definition.

Theorem 1.1.1. IfY is a compactification of X, it is the endpoint compactification
of X iff Y\ X is totally disconnected and does not disconnect Y locally, i.e., given
an open (in'Y ) neighborhood V of y € Y \ X, then there is no decomposition of
V N X into two open disjoint subsets Uy, Us such that y € Uy N Us.

The endpoint compactification has the following useful properties.

Proposition 1.1.2. Let X and Y be two locally compact topological spaces. Then
every proper map f: X — Y may be extended to a unique map f : eX — €Y that
maps ends of X to ends of Y.

Proof. By the characteristic property of the Stone-Cech compactification, the map
f: X — Y has a unique extension e¢f : eX — €Y. The inclusion ef(eX \ X) C
eY' \ 'Y follows from the assumption that f is a proper map. O

Proposition 1.1.3. Let X be a locally compact and connected space and Y be
a zero-dimensional compactification of X. Then, whenever a continuous action
(G, X) has an extension (G,Y) this extension is continuous.

Proof. It suffices to show the continuity of the extended action map at the point
(e,z), where e is the neutral element of G and z € Y. Let V and U be two
open neighborhoods of z in Y with boundaries in X such that V C U. Since the
boundaries OU and 0V are compact subsets of X, the set A = {g € G|gdV C
Uandg 10U C Y \ V} is an open neighborhood of e in G. We shall show that
gV C U for every g € A: The boundary of the set gV N (Y \ U) is contained in
(goV N (Y \U)) N (gV NAU), which is empty by the definition of A. Since Y is
connected, this implies that gV N (Y \ U) is either the empty set or coincides with
Y. The latter is impossible since, choosing a point x € 9V, the definition of A
implies that gz ¢ Y \ U. Therefore gV N (Y \ U) = 0. O

As an immediate consequence of the above two propositions we state the follow-
ing:

Corollary 1.1.4. An action (G,X) of a group G on a locally compact and con-
nected space X may be extended to a unique action on the endpoint compactification
eX of X.

1.2.  The notion of a proper action is given in [4, III, 4]. Equivalently, an action
(G, X) is proper if J(zx) is the empty set for every z € X, where

J(x) = {y € X |there exist nets {z;} in X and {g¢;} in G with g; — oo,
limz; =z and lim g;z; = y}.

Here g; — oo means that the net {g;} does not have any limit point in G.
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In the special case where G is locally compact, an action (G, X) is proper iff for
every z,y € X there exist neighborhoods U, and U, of = and y, respectively, such
that the set

G(U..U,) = {9 € G| (gU.) U, # 0}
is relatively compact in G.
The action is called properly discontinuous when G(Ug,U,)) is finite.

Remark. Let (G, X) be a proper action of a non-compact group G and (G,eX) its
extension on the endpoint compactification of X. Then, the set J(x) with respect
to the extended action is a non-empty subset of eX \ X for every z € X. The
study of these sets provides useful information. As an example, we note from [2]
the following:

Theorem 1.2.1. Let (G, X) be a proper action of a non-compact group G on a
locally compact and connected space X with the “property Z”. Then, X has at most
two or infinitely many ends. In particular, if G is connected, then X has at most
two ends.

1.3. A characteristic and very useful feature of a proper action is the fundamental
set (cf. [6] and [1]).

Definition. Given an action (G, X), a subset F of X is a fundamental set for the
action if GF = X and for every compact subset K of X the set {g € G|(¢K)NF #
(0} is relatively compact in G.

The existence of a fundamental set implies that the action (G, X) is proper, but
the converse does not hold, in general. The notion of the fundamental set is relative
to the well-known notion of a section but is different in general, in the sense that
there are cases where a section is a fundamental set, a fundamental set fails to be
a section and cases where a section fails to be a fundamental set.

Theorem 1.3.1. Let (G, X) be a proper action, where X is a locally compact,
connected and paracompact space. Then, there exist open fundamental sets F' and
S for G in X such that FF C S.

This follows immediately by [6, Lemma 2, p. 8], because X is o-compact; hence
the orbit space of the action is paracompact.

1.4. Establishing the notation, we recall

Definition. An inverse system (X, pqa, A) consists of a directed set A, a family
of topological spaces {X,, A € A}, and continuous mappings pex : Xn — Xy
with the properties that for every k,A\,u € A with k < XA and A < g the map
Pax 1 Xa — X is the identity of Xy, and pex o pay = Pru- Let px : [, Xa — X
be the A-projection. The (possibly empty) space

{z € [[ Xx1px() = pur o pa(w) for every k < A}
A

is called the inverse limit of {Xx, A € A} and is denoted by lim X,.

Proposition 1.4.1 ([5, Pr. 2.3, p. 428]). The sets {p\ ' (U) |\ € A, U openin X)}
form a basis for liLHXA-

The following notion provides an alternative way to describe locally compact
and paracompact spaces using coverings.
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Definition. Let X be a paracompact space, (X, pxa, A) be an inverse system and
{px | € A} a family of mappings py : X — X, such that p.(z) = pex o px(z) for
every k < A. We say that the inverse system (X, pxa, A) is a resolution of X if the
following conditions hold:

(a) For every covering U of X that admits a subordinated partition of unity,
there exist an index A € A and a covering U of X that also admits a subordinated
partition of unity such that p}l(Z/{A) refines U.

(b) For every k € A and every covering U,; of X, as above, there exists A > &
such that p.(Xy) C St(p.(X),U,), where

St(B,U) = | {U: |UiN B #0, U; e U}
is the star of B with respect to the covering U.

Theorem 1.4.2 ([8, Cor. 4, p. 83]). If the spaces X are normal and X is
paracompact, then a resolution of X gives X as an inverse limit.

2. A COUNTEREXAMPLE

Following the notation in the introduction, we now give an example showing
that, if the space X does not have the “property Z”, then the action (G,eX \ L)
is not necessarily proper or equicontinuous.

2.1. The half-open Alexandroff square Y is the space [0,1] x [0,1] \ {(z,y) |z =
Oandy € (0,1Jorz = landy € [0,1)} endowed with the topology 7 defined as
follows: A neighborhood basis of a point (z,z) € A = {(z,z) |z € [0, 1]} is obtained
by the intersection of Y with open (in Y C R?) horizontal strips less a finite number
of vertical lines; a neighborhood basis for the points p = (s,t) off A is obtained
by the intersection of Y\ A with open vertical segments centered at p (cf. [10,
Ex. 101, p. 120]). This space is a compact, connected and not locally connected
Hausdorff space. Observe that, if {(x;,y;)} is a net converging with respect to the
Euclidean topology on Y to a point (z,y), then this net converges to (y,y) with
respect to 7, unless there is an index iy such that x; = z for all i > iy, in which
case it converges to (z,y).

2.2. Let X be the subspace (0,1) x (0,1) of Y. This space is locally compact, con-
nected and paracompact, because the closed horizontal strips are compact subsets
of X. It does not have the “property Z”, because every closed horizontal strip is
not contained in a compact and connected subset of X.

The space Y is the endpoint compactification, eX, of X, and the ends are the
points (z,0) for z € [0,1) and (z,1) for x € (0,1]. In order to prove this, by
Theorem 1.1.1, it is sufficient to verify that the set Y\ X is totally disconnected
and that every point of it does not disconnect Y locally: For the points of the form
(z,0) and (x,1) for x € (0,1) this follows from the fact that a neighborhood basis
of every one of these points consists of half-open vertical segments which do not
disconnect Y locally. To verify the same for the points (0,0) and (1,1) observe
that, if there is a neighborhood V (in Y) for, e.g., (0,0) such that V' N X is the
union of two open sets (in X) having (0,0) as a common point of their closures in
Y, then they have common interior points.
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2.3. Next we define a properly discontinuous action of the additive group of the
integers Z on X. For convenience, we consider X as R? endowed with the topology
7, and we define the action by letting
z(z,y) = (x + 2,y + 2) for z € Z and (z,y) € R%

By Corollary 1.1.4, this action has an extension on ¥ = €X. The set L, of the
limit points of this action, consists of the points (0,0) and (1,1). The restricted
action (Z,eX \ eL) is neither proper nor equicontinuous with respect to the uni-
formity induced on X \ eL by that of eX. For this, observe that the sequence
{(x —n,z)|n € N} converges to the point (z, z), while the sequence {n(x —n,z) =
(z,x+n)} converges to an end e that corresponds to the vertical line {(z,y) | y € R}.
Since e € J((x,x)), the action (Z,eX \ €L) is not proper. On the other hand,
limn(z —n,z) = e and limn(z,z) = (1, 1); therefore this action is not equicontin-
uous at (z,z).

3. THE BASIC CONSTRUCTION

In the sequel we shall proceed to answer the question formulated in the intro-
duction. Our answer will be based on an inverse system of properly discontinuous
actions on polyhedra, defined from the initial action on X. This is achieved using
appropriate invariant locally finite coverings of the given space, in order to have the
initial action as an inverse limit of them. To obtain this, it is reasonable to work
with invariant coverings of X extending specific coverings of always existing fun-
damental sets of the initial action. The construction of this inverse system, which
follows, is new and will be given in several steps:

3.1. Let (G, X) be a properly discontinuous action of a non-compact group G on a
locally compact, connected and paracompact space X. Recall that a covering V of
X is called a barycentric refinement of a given covering if the covering {St(z, V) | x €
X} refines it, where St(z, V) has been defined in §1.4. Since X is a locally compact
and paracompact space, by [5, Cor. 7.4, p. 242], starting with an open covering of
X, we can always find an open locally finite barycentric refinement V = {V; | j € J}
of it consisting of relatively compact open sets.

3.2. Theorem 1.3.1 ensures that there exist open fundamental sets F' and S such
that ' C S. With the previous notation, we can choose V such that (a) if V;
intersects the boundary of the open fundamental set S, then V; does not intersect
the open fundamental set F', and (b) if V; does not intersect the boundary of S,
then either V; C S or V; € X \ S. The family U = {St(z,V)|z € F} is an open
locally finite covering of F' (in X); it is also a covering of F, because if some V;
intersects the boundary of F', then it intersects F', hence is a member of a star of
some point of F. From (a) and (b) it is easily seen that each member of U is a
subset of S.

3.3.  In the sequel we shall use the following modification of the previous construc-
tion, aiming to enrich U with the property: if U; € U and gU; N F # () for some
g € G, then gU; € U. To this end, let W = {Wj |k € K} be a locally finite
refinement of V with the property that the closures of the stars of it are subsets of
corresponding stars of V. Now, we observe that the set M; = {g € G |gU; N F # ()}
is non-empty and finite, because the action is properly discontinuous, U; is relatively
compact and F' C S (cf. §§1.2 and 1.3).
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If x € W), C U; for some U; € U, and gz € F, then g € M; which is finite. So,
for z € X we can find a neighborhood N, C U; of x such that, if gN, N F # 0,
then g, is a subset of some U;. Since W}, is compact, we can replace this Wy by
a finite number of neighborhoods such as IV, and the corresponding open sets gV,
for g € M;. In this way, we obtain a refinement of I/, which will be denoted again
with ¢/ and shall be used in the sequel.

This refinement remains locally finite and, in addition, has the required property,
because if gN, N F # 0, then gU; N F # (), from which follows that g € M;; hence
gN, is a member of our refinement. It is easily seen that this property passes to
the family {St(z,U)|x € F}, because if gz € F, then gSt(z,U) = St(gz,U).

3.4. Next, using the covering U of F defined in §3.3, we consider the invariant
covering C = {gU;|U; € U, g € G} of X. We show that it is locally finite: For
x € X there exists h € G such that he € F. Since F' is open, there exists an
open and relatively compact neighborhood N C F' of hx that intersects finitely
many members of Z/. Then, the neighborhood h~ !N of z intersects finitely many
members of C, because by §3.3, if gU; NN # (), then gU; € U.

3.5.  To each covering C corresponds a polyhedron X, namely the nerve of the cov-
ering C with the CW-topology. A subordinated partition of unity ®¢ = {¢y |U €
C} determines a canonical map pec : X — X with the property that pc maps a
point z € X to the point of X whose barycentric coordinate corresponding to the
vertex U equals ¢y (z).

Since C is invariant, the initial properly discontinuous action (G, X) induces a
natural action (G, X¢) defined as follows: For g € G and U a vertex of C we let
(9,U) — gU and we extend the action map by linearity. This action is properly
discontinuous as is easily verified.

3.6. The construction of the desired inverse system of properly discontinuous ac-
tions on polyhedra will be based in the proof of the following theorem (cf. [3]; see
also [8, Th. 7 and Cor. 5, pp. 84-85]).

Theorem. FEvery connected, locally compact and paracompact space is the inverse
limit of polyhedra.

For the convenience of the reader, we outline the proof: Let X be a connected,
locally compact paracompact space and JF be the family of all coverings of X
admitting a subordinated partition of unity. For every D € F we choose a locally
finite partition of unity ®p subordinated to D. Let Xp be the nerve of D with the
CW-topology. Let A be the set of all finite subsets A = (Dy,...,D,) of F ordered
by inclusion. We denote by X the nerve of the covering

Dl/\.../\Dn:{Vlﬁ...ﬁVn|(V1,...,Vn)€D1><...><Dn}.

IfX<p={Dy,...,Dpn,..., D}, let py, : X, — X be the simplicial map which
maps the vertex (V1,...,Vy,...,V]) of the nerve of Dy A... AD, A... AD; to the
vertex (Vi,...,V,) of the nerve of Dy A ... A D,,.

As is shown in [3], the family

Sp nap, = {0, vy [ (V1,0 V) € D1 x ... x Dy},

where (v, ... v,) = @v;+... 9V, is a partition of unity subordinated to the covering
Dy A ... ND,. Using this, for A\ = (Dy,...,D,) we define the canonical map
px: X — X, as in §3.5.
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In order to obtain a polyhedral resolution of X (cf. §1.4), a slight modification
of the above construction is needed:

We replace the previous inverse system (X, pau, A) by a larger system (Y;., ¢, S)
defined as follows: For A € A let V) be a neighborhood basis of the closure of py(X)
in Xy, and let

S={r=N\V)|AeAand V € V) }.

Let r < s = (p, W) if A < pand py, (W) C V. Moreover, letting ¥, =V, for r < s
we define the map ¢, : Yy — Y;. as the restriction of py, on W.

Taking into account the fact that J consists of all coverings of X admitting
subordinated partitions of unity, it is proved that X = linYr = liLnX 2

3.7. If we replace F by P, the family of the coverings of X of the form C =
{gU; |U; € U, g € G} defined in §3.4, and we repeat the previous steps, we obtain
an inverse system, denoted (for simplicity) again by (X, pa,, A). Since we use star
coverings, we note that St(z, D) N St(z, D2) = St(x, D1 A Da).

3.8. If we restrict ourselves to the fundamental set FF C X, the coverings from
P induce a family of coverings on F' defined by intersections of each one covering
with F. This family is cofinal to the corresponding one defined analogously via JF
on F. Since P is not cofinal to F, regarded as families of coverings of X, we shall
focus on the induced coverings of the fundamental set F, where we may assume
that the members of both families are the same. Note that, by [4, I, Cor., p. 49],
F = lim py (F) holds, with respect to both F and P. Moreover, with respect to
F, we have li_mpA(F) = F C X, by the theorem in §3.6, while, with respect to P
and the notation from §3.7, F C liLHXA-

4. THE INITIAL ACTION AS INVERSE LIMIT OF ACTIONS ON POLYHEDRA

Lemma 4.1. Let C; € P. For the covering C1 A...AC,, there exists a subordinated
partition of unity ®c,a..nc, = {oi,...v,) | (Vi,-.., Vi) € CL x ... x Cp} such that
OV, Vi) = PlgVh,....gVi) © G5 Jor every g € G.

Proof. If the assertion is true for every single covering C, then

PlgVisgVargVa) ©9 = [(Pri 097 ) - (v, 09 Dleg = Qv oo v, = Qi v)-

So, it suffices to prove the assertion for a covering C = {gU; |U; € U, g € G} as
in §3.4. We follow the usual construction (cf. [5, Th. 4.2, p. 170]): We choose
locally finite coverings {V;|i € I'} and {W;|i € I'} of the open fundamental set F'
such that W; C V; C V; C U for every i € I. We can apply Urysohn’s Theorem in
order to find continuous maps fy, : X — [0,1] which are identically 1 on W; and
vanish on X \ V;. We set fyu, = fu, o g~ ! for every g € G. Since the covering
{gW;li € I, g € G} is locally finite, it follows that for each 2 € X at least one
and at most finitely many fg, are not zero; therefore )" fyy, is a well-defined
continuous real-valued map on X and is never zero. So, we can define the required
partition of unity by setting

_ ngi (y)
eov W) = S )
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Since z € U; iff gz € gU;, we have

o ngi(gx) _ fUiogil(gx) _ fUz(x) _
Pov(90) = S D) T S Joog i gn) T 3 fu(o) P

().
O

Theorem 4.2. With the notation from §3.7, X is equivariantly homeomorphic to
lim X)\.
—

Proof. We recall that the actions (G, X)) defined in §3.5 induce an action on lim X'
as follows: Let g € G and x € lim X, with coordinates py(z). The coordinates of
gx are gpy(x), i.e., pa(gx) = gpa(x). This action is well defined since the maps
Pap ¢ Xu — X, have the property pa,(9z,) = gpau(z,) for every g € G and
z, € X,, by the definition of the action on each X.

An equivariant homeomorphism f : X — 1&1 X\ may be defined in the following
way: For x € X there exists some g € G such that gr € F (cf. §1.3). We let
f(z) be the point with coordinates py(f(z)) = g~ '(par(gz)). We will prove that f
is well defined: It suffices to prove that, if z € X and g € G with g € F, then
9 *(px(g7)) is independent of the choice of g. Indeed, with the notation from §§3.5
and 3.6 let z € ViN...NV,. Then, by the definition of the actions on the polyhedra
and the previous lemma, we have:

o= gVirg—9vi) (0 (A7) = ©(gva,.oqvi) (PA(97)) = Q1. vy (P2 ().

Using this and the fact that f is the identity map on the open fundamental set F,
we can first verify that f is equivariant and then a homeomorphism. O

5. THE EMBEDDING OF THE ACTION IN liLnEX)\ AND ITS BASIC PROPERTIES

Theorem 5.1. The space liLIh?XA is a zero-dimensional compactification of X.
Moreover, G acts on lime Xy and (G, X) is equivariantly embedded in (G,limeXy).

Proof. The simplicial maps py, : X, — X, are proper surjections. Hence, by
Proposition 1.1.2, they have unique extensions epy, : X, — X, that map the
space of the ends of X, onto that of X,. Furthermore, epy) : eX) — X, is the
identity map of eXy, and for k < A and A < p we have epx 0 epy, = Py Hence,
they define an inverse limit, !iﬂmX A

Using the fact that each £X) is a zero-dimensional compactification of X, and
applying Proposition 1.4.1, we see that liLnaX » is a zero-dimensional compactifica-
tion of liilX)\. By Corollary 1.1.4, the action of G on X is extended to an action
on €X) such that the following equivariant diagram commutes:

(G,liLnX)\) l—> (G,liLnEX)\)

dg xh
idepAl lidgxsp)\
(G, XN) ——— (G,eX))
idg X1y

where iy : X, — X, are the inclusion maps, py : @XA — X and ep) :
liLHEXA — X, are projections, idq is the identity map of G and h : @XA —
liLnsXA is defined by setting hy = iy.

That (G, X) embeds equivariantly in (G,limeX}) is an immediate consequence
of Theorem 4.2 and the above diagram. (]
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Remark. The example in Section 2 shows that 131 X does not necessarily coincide
with the endpoint compactification eX of X. However,

Proposition 5.2. If X has finitely many ends, then eX = liin,\.

Proof. Let e; for i =1,2,...,n be the ends of X and Vi, Vs, ..., V, be open neigh-
borhoods of them in X, respectively, with disjoint closures and boundaries lying
in X. Then, the set K = X \ /., V; is a compact subset of X. Let e;, ez be
two distinct ends in e X with the same image in liLnsX A via the projection map
preX — liLnEXA- Such a projection exists since, by Theorem 5.1, !iﬂl&‘X}\ is a
zero-dimensional compactification of X and X is the maximal one. Therefore, e;
and es should have the same image under the composition map epy o p. With the
notation from §3.4, this means that there is a subfamily of C with infinitely many
members gU; with the property g;U; N K # (). Then, we can find a sequence {zy}
with xj € grUrNK. Since K is compact, we may assume that limx; = x € K, from
which follows that the covering C fails to be locally finite at x, a contradiction. [

The following proposition shows that, especially for equicontinuous actions, the
sets J(z), defined in §1.2; can be replaced by the limit sets

L(z) = {y € X | there exists a net {g;} in G with g; — oo and lim g;x = y},

which are simpler to handle. The points of the sets L(x) are the limit points of the
action.

Proposition 5.3. Let (G,X) be an equicontinuous action of a locally compact
group G on a locally compact space X. Then J(x) = L(x) holds for every x € X.
Moreover, if the nets {z;} in X and {g;} in G are such that limz; = z, g; — ©
and lim g;z; = y € J(z), then limg;x =y € L(x).

Proof. Since (G, X) is equicontinuous, for every entourage U there exists an en-
tourage V such that for y € X,

(z,y) € Vimplies (gz, gy) € U for every g € G.

But limz; = x, so we may assume that (z,z;) € V; therefore (g;z, g;z;) € U and
(9izi,y) € U. So (giz,y) € U o U; hence lim g;z = y. O

A kind of converse of the previous proposition is the following:

Proposition 5.4. LetY be a zero-dimensional compactification of the locally com-
pact and connected space Z. Let (G,Y) be an action such that 7 is an invariant
subspace of Y and the action (G,Z) is proper. The restricted action (G,Z) is
equicontinuous with respect to the uniformity induced on Z by that of Y iff the
following condition is satisfied: If z € Z is such that there exist a net {z;} in Z
with lim z; = z, and a net {g;} in G with g; — 00 and limg;z; = e € Y \ Z, then
limg;z = e.

Proof. The necessity may be proved by arguments analogous to those applied in
the proof of the previous proposition.

For the sufficiency, note that if the action (G, Z) is not equicontinuous at the
point z, then there exists an entourage U such that for every entourage V there
exist a point z, € Z and some g, € G such that

(z,2v) € Vand (gv 2z, gyv2v) ¢ U.
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Since the entourages of the uniformity may be directed by setting Vi3 < V5 if
Vo C Vi, we may assume that g, — oo and limz,, = z. By the compactness of
Y, we may assume that the nets {gy-z} and {g, 2.} converge to different points of
Y\ Z, a contradiction to our hypothesis. O

For the formulation of the next basic theorem, we recall that an action (G, X)
embedded in an action (G,Y’), where Y is a zero-dimensional compactification of
X, is indivisible if whenever lim g;yg = e € Y\ X for some yo € X, then limg;y = e
for every y € X.

Theorem 5.5. Let (G,liinsXA) be the action defined in Theorem 5.1 and L be the
set of the limit points of the action (G, X) = (G,lim X) in limeXy. Then, the
action (G,limeX, \ L) is
P

(a) proper,

(b) equicontinuous with respect to the uniformity induced on limeXy\ L by that
of lime Xy, and

(c) indivisible as embedded in the action (G,limeX}).

For the proof we need the following:

Lemma 5.6. Let Ly be the set of the limit points of the action (G, X)) in eX,.
Then L = (N, epy (Ly).

Proof. Let w € L, limgix = w for x € X = !EIX)\, and g; — oo. Then
lim g;epy () = limepy (g;2) = epy(w), from which follows that epy(w) € Ly; there-
fore L € (), Ep;l(L)\).

For the inverse inclusion, let v € Ny epy ' (Ly), that is, epa(v) € Ly for every
A € A. This means that for each A € A there exist a net {g}} in G with g} — o
and z) € X, with lim gi)‘:m\ = epa(v). Since the polyhedron X, is a connected,
locally compact and locally connected space, it has the “property Z”; therefore, by
[2, 3.4], the action (G, X)) is indivisible as a restriction of (G,eXy). So, we may
assume that z) = epy(x) for a fixed © € X and every A € A. By the compactness
of !iﬂléfX)\, we may assume that lim g}z = v* € L. So, we have

epa(v) = lim g)ay = lim glepy (x) = limepy (g7 x) = epa(v).
Let limv* = u € limeX,. This u is contained in limeX), \ X, because v* €
— —

liLnsX)\ \ X, which, by Theorem 5.1, is a compact set. But, for each k € A and
every A € A with kK < A, by §1.4, we have

Pk (u) = lim Epn(’l)k) = limepyy o epa (/U)\) = limepyx 0 epa (U) = &Pk (U)v
from which it follows that v = v. Taking into account that lim g;\x = v* and
applying a diagonal procedure, we may find a net {g;} in G such that lim g;z =

v € limeX, \ X. The properness of the action (G,X) implies that this net is
divergent, and therefore v € L, as required. (|

Proof of Theorem 5.5. (a) Assume that {g;} is a net in G and z, x; and y are
points in !iﬂu;X)\ \ L such that limz; = z and limg;z; = y. By the previous
lemma, limeXy \ L = U, epy (eXx \ Ly). So, there exist x and A such that
z € ept(eXy \ L) and y € epy H(eXy \ Ly).
For an index p with k < p and A < p, we may assume that
P (€Xi \ L) Uepy ;(eXa \ Ly) C eX, \ L.
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Indeed, note that if, e.g., z € ep,; (X, \ Ls) and z € L, there exist a net {h;}
in G with h; — oo and some z,, € X, with limh;z, = z; hence lim hjep,,(z,) =
€prp(2) € Ly, a contradiction.

By this, we may assume that the points x, z; and y are contained in the open and
invariant set sp;l(sX u \ L,). Since X, is connected, locally compact and locally
connected, it has the “property Z”; therefore the action (G,eX, \ L) is proper
[2, 4.7], and hence J(ep,(z)) = (. From this and the fact that lim g;ep,(z;) =
epu(y), it follows that the net {g;} cannot be divergent. Hence, by §1.2, the action
(G,lime X, \ L) is proper.

(b) We shall use Proposition 5.4 for Z = lime X \ L and the notation there. Let
lim g;z = e;. For every A € A we have

limepx(z;) = epa(2), limgiepa(z;) = epa(e), and lim giepa(z) = epa(er).
By (a), the action (G, Z) is proper; hence e,e; € L. Therefore, by Lemma 5.6,
epa(e),epa(er) € Ly. From this and the indivisibility of the action (G,eXy \ Ly)
(cf. [2, 3.4]), it follows that epy(e) = epx(eq) for every A € A, i.e., e = ey, and the
assertion follows.
(¢) The proof follows by repeating the arguments in the proof of (b). O

Remark. We note that X C lime X\ L, because (G, X) is proper and X = lim X, C
limeXy. - -
P

6. THE MAXIMALITY OF l@aX A = X AND THE CARDINALITY OF L = uL

In this paragraph we prove the main results of the paper.

Lemma 6.1. Let (X,D) be a uniform space, and (G,X) be an equicontinuous
action. Then, there exists a finer uniformity D* compatible with the topology of
X such that G acts on X by pseudoisometries with respect to the pseudometrics
generating D*.

Proof. Let {d;, i € I} be a saturated family of bounded pseudometrics on X which
generates D [4, IT, Th. 1, p. 142]. We obtain a pseudometric df on X such that ev-
ery h € G acts on X as a d;-pseudoisometry, by letting d; (v, y) = sup ¢ di(97, gy)-
Let D* denote the uniformity generated by the family {d} |7 € I'}. The topologies
7, 7* induced on X by D and D*, respectively, coincide: Since dj(z,y) > d;(z,y),
we have D C D* and 7 C 7*. Conversely, if U} = (_, Sk(z, €) is a neighborhood
of z in 7%, where Si.(z,¢) denotes a dj -ball of radius ¢, centered at z, then the
equicontinuity of G implies the existence of a neighborhood U, of x in 7, such that
U, C U~ O

Theorem 6.2. The compactification liineXA = pX is mazximal among the zero-
dimensional compactifications of X satisfying simultaneously the following proper-
ties:

(a) The initial action (G, X) is extended to an action (G, uX).

(b) The action (G, uX \ pL), where pL is the set of the limit points of the orbits
of the initial action (G,X) in uX, is proper, equicontinuous with respect to the
uniformity induced on uX \ pL by that of pX, and indivisible.

Proof. By Theorem 5.5, the zero-dimensional compactification pX of X satisfies
the properties (a) and (b). So, it remains to prove the maximality of uX: Suppose
that Y is a zero-dimensional compactification of X also satisfying these properties,
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such that ¢ : ¥ — liLné‘X)\ is a surjection extending the identity map of X (cf.
§1.1). We have to show that ¢ is bijective.

Claim 1. The restriction of ¢ on the set Ly of the limit points of the action (G, X)
in Y is a bijection.

Let Ly be the set of the limit points of the action (G, X) in Y, and ¢1, ¢o € Ly
be two distinct points such that g(c;) = g(c2). Then, there are open neighborhoods
V1 and V5 of ¢; and ca, respectively, in Y with disjoint closures.

Due to the indivisibility of the action (G, Y \ Ly ), we may assume that lim g;z =
c1 and limhjz = co with gjz € Vi and hjz € Va. If there exists a covering
C={gUi|U; €U, g € G}, as in §3.7, such that the members of it containing g;z,
respectively h;x, are pairwise disjoint, then it is easily seen that limepy(q(g;x)) =
limepy(gjz) # limepy(¢(h;z)), a contradiction to the assumption that g(ci) =
q(c2). Therefore, there exist cofinal families {A;} and {B;} of members of C such
that g;T € Aj, hj.’L' € B]' and Aj N Bj 7é 0.

Since we consider star coverings, using refinements if necessary, we may assume
that A;UB; = f;U; is a member of our covering intersecting both V; and V5. Then
g;z € f;U;; hence z € g;lijj € C. Since C is a locally finite covering, passing
if necessary to a subnet, we may assume that = € g; ! f;U; = gU, for suitable g
and r. It follows that hjz = gjgx;, where x; € U,.. Since U, is relatively compact
in X, we may assume that limz; = y € X. Thus, ¢; € J(y) with respect to the
action (G,Y), because lim hjz = ¢,. From this and the assumption that the action
(G,Y \ Ly) is equicontinuous, taking into account Proposition 5.4, we conclude
that lim gjgy = co. This contradicts the fact that gy € X, limg;z = ¢; and the
action (G,Y \ Ly) is indivisible.

Claim 2. The restriction of ¢ on the set Y \ Ly is also a bijection.

Since ¢ is, by definition, the identity map on X, we have to show that it is
bijective on Y \ (Ly U X). The action (G,Y \ Ly) is equicontinuous; hence, by
Lemma 6.1, we may assume that G acts by pseudoisometries. So, we are allowed
to assume that the invariant covering C consists of open sets leading to invariant
entourages.

Let b1,by € Y\ (Ly U X) be two distinct points such that ¢(b;) = q(bs), and
V=A{(z,y) € Y\Ly) x (Y\Ly)|dg(z,y) <€ k=1,2,...,n} be an entourage
such that (by,b2) ¢ V. Moreover, we may assume that C consists of open sets
leading to invariant entourages of the form

W ={(z,y) € Y\ Ly) x Y\ Ly)|de(z,y) <€/2, k=1,2,...,n,n+1,...,m}.

As in the proof of Claim 1 and the notation there, since by, by ¢ X, we can find
families {A;} and {B;} of members of C and x; € A, y; € Bj such that limz; = by,
limy; = b2 and A; U B; is a member of our covering. From this and the specific
choice of the entourages V and W, it follows that (by,bs) € V, a contradiction. [

Corollary. If X has the “property Z”, then pnX =eX.

Proof. We have to show that if (G, X) is a properly discontinuous action, then the
properties (a) and (b) of the previous theorem are satisfied for X, the maximal
zero-dimensional compactification of X, instead of uX. This follows from Corollary
1.1.4, the already mentioned results of [2] in the introduction (cf. [2, 4.7 and 3.7]),
and from Proposition 5.4 for Y =e¢X and Z =X \ eL. O
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Example. In our counterexample the set pL consists of the two endpoints of the
diagonal and the zero-dimensional compactification uX may obtained as a quotient
space of the half-open Alexandroff square by identifying on the one hand the points
{(z,1) |z € (0,1]}, and on the other hand the points {(x,0) |z € [0,1)}.

Theorem 6.3. The space pL of the limit points of the action (G, X) in uX either
consists of at most two points or it is a perfect compact set. In the case where the
group G is abelian, pL has at most two points.

Proof. Let pL have infinitely many points. We have to show that for every point
e of it and every neighborhood V = ep, }(U) of e (cf. Proposition 1.4.1), we can
find a point e; € pL with e; € V and e; # e. By [2, 4.2], the action (G,eXy \ L))
is proper. In the case under consideration, Ly is a perfect compact set, by [2,
4.11, Satz D, 4]. Since, by Lemma 5.6, epy(e) € Ly, we can find ey € Ly with
ex € U and ey # epy(e). By the indivisibility of the action (G, Xy) (cf. [2, 3.4]),
there is a net {¢;} in G with g; — oo and lim gepy(x) = ey for every z € X.
Since limep, (g;2) = e) and pX is compact, fixing an z € X, we may assume that
giv € V and lim g;z = e € uL. Therefore e; € V. Since epy(e1) = limepy (g;z) =
ex 7 epa(e), we have e; # e.

Now, assume that pl has finitely many points. Since, by Lemma 5.6, [ =
Ny ePy (L), the set pL is the inverse limit of the inverse system (Ly,epa,, A). By
Theorem 1.2.1, every Ly consists of at most two points. From this and the fact that
every simplicial map py, : X, — X is defined by deleting the last coordinates (cf.
§3.6), we conclude that X also has at most two points.

If the acting group is abelian, then the action (G, X)) fulfills the assumptions
of Theorem 1.17 of [7]; therefore every Ly consists of one or two points. From this
and using the same arguments as before, we see that uL consists of at most two
points. O

7. AN APPLICATION

In this section we apply our main results to show that the already known nec-
essary condition for the existence of a proper action of a non-compact group on a
locally compact and connected space with the “property Z” (cf. Theorem 1.2.1)
remains also necessary in a broad class of actions, containing the properly discon-
tinuous ones, on spaces that do not have the “property Z”.

Theorem 7.1. Let X be a locally compact, connected and paracompact space, and
G be a non-compact group acting properly on X such that either Gg, the connected
component of the neutral element of G, is non-compact, or Gy is compact and G/G
contains an infinite discrete subgroup. Then X has

(a) at most two or infinitely many ends, and

(b) at most two ends, if Gy is not compact.

Proof. We begin with the proof of (b) and we shall restrict ourselves in the proof
of (a) only in the case where Gy is compact.

(b) If Go is non-compact, we consider the restricted action (Go, X). By Iwa-
sawa’s Decomposition Theorem, G contains a closed subgroup isomorphic to R;
therefore it contains a closed subgroup isomorphic to Z, the additive group of the
integers. The restricted action (R, X) is proper; therefore the action (Z,X) is
properly discontinuous.
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Since the space of the ends of X is totally disconnected, every end is a fixed
point for the action (Go,eX), therefore for the restricted action (Z,eX) too. Since
the projection p : eX — pX is equivariant, every point of uX \ X is a fixed point
for the action (Z,uX), where pX is the zero-dimensional compactification of X
that corresponds to the action (Z, X) by Theorem 6.2. From this and Theorem 6.3,
there exist at most two limit points for the action (Z,uX \ pL). The set pX \ X
cannot have any other point except these limit points, because by Theorem 5.5,
the action (Z,uX \ pL) is properly discontinuous, therefore has compact isotropy
groups.

We claim that in this case eX = pX holds, which implies (b). To this end, we
have to prove that p is injective. In order to be able to repeat the arguments in the
proof of Theorem 6.2, Claim 2, replacing Y by X, we need the following;:

Claim. The action (R, X) is equicontinuous with respect to the uniformity induced
on X by that of eX.

We shall use Proposition 5.4. Let x € X and limz; = z for z; € X. To arrive
at a contradiction, assume that there exists a net {¢;} in R with t;, — +oo and
limt;z = e; € eX \ X, while limt;z; = e € eX \ X, where e; # e5. Let U and
V1 be disjoint neighborhoods in €X of x and ej, respectively, with boundaries in
X. Then, there exists ¢y such that tz € V; for every ¢t > tg, because otherwise, by
the connectedness of the orbits, we can find a net {r;z} in the boundary of V4 with
limr;x =y € X and r; — +o0; this is not possible, because the action (R, X) is
proper; hence L(z) C J(z) = ) for every x € X (cf. §1.2 and Section 5). So, we
can find a neighborhood V5 in ¢ X of e5 with boundary in X, disjoint from U such
that tz ¢ Vs for every t > 0. Since limz; = « € U and limt;z; = es € Vs there
exists a net {s;z;} in the boundary of V5 such that lims;z; = z € X. As before,
the net {s;} cannot be divergent; therefore we may assume that lims; = s > 0.
Hence z = sz € V4, a contradiction.

(a) We have to consider only the case where Gy is compact and G/Gy contains
an infinite discrete subgroup. Since X is connected and o-compact, the orbit space
X\Gy of the action (G, X) is connected and o-compact, therefore paracompact.
The group G/Gy acts on X\Gy, by letting

(9Go, Go(x)) — Go(gzx), for every g € G and z € X.

This action is well defined, since G is a normal subgroup of G. Moreover, it is
proper: Since the initial action is proper, G is locally compact. Therefore, by §1.2,
there exist compact neighborhoods U, U, in X of = and y, respectively, such that
the set

G(Um Uy) = {9 € G| (gUz) N Uy a @}

is relatively compact in G. Then Wy = {Go(z) | z € U, } and Wa = {Go(2) | z € Uy}
are compact neighborhoods of the points Go(z), Go(y) in X\Gy, respectively. The
set

(G/G())(Wl, WQ) = {gGo € G/GO | (gG()Wl) N Ws 7é 0}

is relatively compact in G/Gy. Indeed, let {g;Go} be a net in (G/Go) (W1, Wa).
Then, there exist h;, ¢; € Go and x; € U, y; € U, such that g;h;z; = qy;,
ie., ¢ 'gihi € G(Uy, U,). Therefore g; € Gy - G(Uy, U,) - Go, which is a rela-
tively compact subset of G. This means that {¢g;Go} — oo is not possible. Hence
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(G/Go) (W1, Wy) is relatively compact. Therefore, every non-compact discrete sub-
group F' of G/Gy acts properly discontinuously on X\Gy, which is a locally com-
pact, connected and paracompact space.

So, we can apply our results for the action (F, X\Gy). The surjective map
q: X — X\Gp with ¢(z) = Go(z) is proper, because Gy is compact. Therefore,
by Proposition 1.1.2, it has a unique extension eq : eX — £(X\Gp) that maps the
ends of X onto those of X\Gy. So, this map relates the ends of X with those of
X\Go.

Claim. The restriction of the map £q on the set of the ends of X is a bijection.

Since (G is connected, as before, the ends of X are fixed points for the action
(Go,eX). The map eq is equivariant; therefore the ends of X\Gy are also fixed
points with respect to the action (G/Go,e(X\Go)). Since every end of X is a
G-orbit, the assertion follows.

If X has infinitely many ends there is nothing to prove. If X has finitely many
ends, let pu(X\Gp) be the zero-dimensional compactification of X\Gj that corre-
sponds to the action (F, X\Gp) by Theorem 6.2. According to Proposition 5.2,
we have that u(X\Gy) = ¢(X\Gp), and by Theorem 6.3, the set L* of the limit
points of the action (F, X\Gy) consists of at most two points. There are no other
ends except those of L*, because by Theorem 6.2(b), the non-compact group F' acts
properly on e(X\Gy) \ L* which has finitely many points. This and the previous
claim prove the theorem. O
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1. Introduction

It is long known from the work of van Dantzig and van der Waerden ([1], cf.
also [2, Ch.I, Th.4.7]) that if (X,d) is a connected locally compact metric space
then its group of isometries I(X,d), when endowed with the topology of pointwise
convergence, is always locally compact and acts properly on X. More recently it
was shown by one of the authors ([6]) that the pointwise closure of (X, d) is locally
compact if the space ¥(X) of the connected components of X is quasicompact
(compact but not necessarily Hausdorff) with respect to the quotient topology.
The question whether I(X,d) is closed in C(X,X) (the space of all continuous
selfmaps of X endowed with the topology of pointwise convergence) remained
open. In this note we fill this gap (cf. also [4]), i.e., we show that if 3(X)
is quasicompact then (X, d) coincides with its Ellis’ semigroup, completing the
proof of the following:

Theorem. Let (X,d) be a locally compact metric space. Denote by 1(X,d) its
group of isometries, with the topology of pointwise convergence, and by (X)) the
space of the connected components of X, endowed with the quotient topology. Then

1. If ¥(X) is not quasicompact, then [(X,d) need not be locally compact, nor
act properly on X .

2. If ¥(X) is quasicompact then

* The authors want to thank the referee for his useful and constructive comments.
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8 MANOUSSOS AND STRANTZALOS

(a) I1(X,d) is locally compact,
(b) the action (I(X,d), X) is not always proper, and
(c) the action (I(X,d),X) is proper if X is connected.

For the sake of completeness, we give short and slightly improved proofs of
some of the previously published partial results of the authors, these are crucial
for a unified proof of the above theorem. Our treatment is based on the sets
(x,Vy) ={g € I(X,d) : g(x) € V,.}, where V, is a neighborhood of x € X . These
sets form a neighborhood subbasis at the identity with respect to the topology of
pointwise convergence, the natural topology of I(X,d).

2. Generalities

2.1. The following simple examples establish 1 and 2(b) of the above theorem.

Example. Let X = Z with the discrete metric. Obviously »(X) is not quasi-
compact. It can be easily seen that I(X,d) is the group of all bijections of Z,
which is not locally compact with respect to the topology of pointwise convergence,
therefore it cannot act properly on a locally compact space.

Example. Let X = Y U {(1,0)} € R? where Y = {(0,y) : vy € R}, and
d = min{1,0}, where ¢ denotes the Euclidean metric. As we shall see in §3, by
Theorem 3.7, I(X,d) is locally compact; however the action (/(X,d), X) is not
proper, because the isotropy group of (1,0) is not compact, since it contains the
translations of Y. So, the action of I(X,d) on X is not proper, even if X has
two components.

Since the sets (z,V,) as above form a neighborhood subbasis at the iden-
tity in I(X,d), the following condition is necessary for the local compactness of

I(X,d):

(a) There exist z; € X, i =1,...,m such that N2, (z;, Vy,) is relatively compact
in C(X,X).

This condition becomes also sufficient if, in addition, the following condition is
satisfied:

(b) I(X,d) is closed in C(X, X).

So, to prove that I(X,d) is locally compact, we have to ensure that both
of the above conditions are satisfied.

3. The local compactness of (X, d)

The following is crucial for the investigation of the conditions 2.1(a) and (b):

3.1. Lemma. Let (X,d) be a locally compact metric space, F C I[(X,d), and

K(F)={z e X : F(z) ={f(x): f € F}is relatively compact}.
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Then K(F') is an open and closed subset of X .

Proof. Since F' is an equicontinuous family of selfmaps of X we see that K(F)
is open. It remains to prove that K(F) is closed.

We write S(z,n) = {y € X | d(z,y) <n} for any x € X and n > 0, and
S(M,n) = U{S(z,n) | z € M} for subsets M C X. Let = be a cluster point of
K(F) and let n be a positive real such that S(x,5n) is relatively compact. Choose
a point k € K(F)N S(x,n). Then F(k) C S(F(S(z,n)),n) = F(S(z,2n)),
and by the compactness of W we can find a finite subset L C F' such that
F(k) C L(S(z,2n)). We show that F'(x) is contained in the relatively compact set
L(S(x,5n)). To see this, pick f € F and let g € L such that f(k) € g(S(z,2n)).
Then

d(f(z),g(k)) < d(f(z), [(k)) +d(f(k), g(x)) + d(g(z), g(k))
= d(z,k) +d(f(k),g(z)) +d(z, k) < 4n

and therefore

f(x) € S(g(k), 4n) = g(S(k, 4n)) < g(S(z,5n)) € L(S(z, 5n)).
Thus z € K(F) and the proof is finished.

3.2. Remark. In the sequel we assume that X(X) is quasicompact in the quotient
topology via the natural map ¢ : X — 3(X). Note that 3(X) is a T;-space, and
need not be Hausdorff. Nevertheless

X is separable, hence second countable; so sequences are adequate in C(X,X).
The proof is similar to the lengthy one in [5] (see also [2, Appendix 2]).

3.3. Lemma. Let (X,d) be a locally compact metric space with a quasicompact
space of connected components X(X). Then condition 2.1(a) is satisfied.

Proof. Let V, be a relatively compact neighborhood of x € X. Then
(z,V2) = {g € I(X,d) : g(z) € Va}
is a neighborhood of the identity in I(X,d). Since z € K((z,V,)), K((z,V,))

is not empty, and by Lemma 3.1 is open and contains entire components of X.
Therefore ¢(K((x,V,))) is an open subset of ¥(X). Since 3(X) is quasicompact,
there are x;, i = 1,...,m, such that the corresponding q(K ((x;,V,,))) s cover
¥(X). This means that X = U, K((x;,V,,)), i.e., the neighborhood F =

" (x;, Vi) of the identity has the property: for every z € X the set F(x) is
relatively compact in X . Therefore, by Ascoli’ s theorem, F' is relatively compact

in C(X,X).

3.4. Now we prove that if (X)) is quasicompact then I(X,d) is a closed subspace
of C(X,X). Because of Remark 3.2, the elements f of the boundary of I(X,d)
in C(X, X) are limits of sequences {f, € I(X,d),n € N}. Obviously, such an f
preserves d; so the question is whether f is surjective. If 3(X) is not quasicompact
then this is not always true:
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Example. Let X = Z with the discrete metric. If f,(z) = 2z for —n < 2 < 0,
fn(=n) =0, and f,(z) = z+1 otherwise, then f, — f, where f(z) = z for z <0,
and f(z) = z+1 for z > 0. Hence each f, is an isometry, but f is not surjective

since 0 ¢ f(Z).

3.5. Lemma. If X(X) is quasicompact and {(f,) : fn € [(X,d)} is a sequence
such that f, — f for some selfmap f of X with respect to the topology of point-
wise convergence, then f(X) is open and closed in X .

Proof. By Lemma 3.1, it suffices to show that f(X) = K(F), where ' =
{f', n € N}. Indeed, since d(f,(z), f(z)) = d(z, f;7'(f(x)), we have f7(f(x)) —
x, so (since X is locally compact) f(z) € K(F), for every z € X. Now, if
y € K(F), we may assume f,'(y) — z for some = € X, because F(y) is rela-
tively compact in X, hence f(z) =y.

3.6. Proposition. If (X,d) is a locally compact metric space, and %(X) is
quasicompact, then I(X,d) is closed in C(X, X).

Proof. Let {(f.) : fu € I(X,d)} be a sequence such that f, — f for some
selfmap f of X with respect to the topology of pointwise convergence. We prove
that f is surjective. Let y € X. We denote by S, the connected component
containing z € X, and by S, the component of f,!(y). If {S,,n € N} has
a constant subnet {S,,,7 € I}, then S,, = Sy, for some S; € X(X). Hence
ngil(y) = S0, 80 fn,(So) =S, for every i € I. Pick an = € Sy, then f,,(z) € S,.
But f,,(z) — f(z),so f(z) € S,. By Lemma 3.5 S, C f(X), hence y € f(X).

Suppose that {S,,n € N} has no constant subnet. By the quasicompact-
ness of ¥(X), there exists a subnet {S,,, i € I} of {S,,n € N} such that S,, — S,
for some S € ¥(X). With the above notation, the following is true:

Claim. There exists a subsequence {Sk, k € N} of {S,, n € N} such that there
are T € S with x — xy, for some xo € X.

Proof. If not, R = (U2, S,) \ S is closed in X. Indeed, let {(ym) : ym € R}
be a sequence such that y,, — y € X. If y,, € (22, S,) \ S for m > myg, then
a subsequence of {y,,, m € N} is contained in some S; for some i € {1,...,ng},
therefore y € S; C R, as required. If this is not the case, we construct a
subsequence {Ym,, p € N} of {y,, m € N} in the following way: For S; we
choose a point y,,, € Sy, with ny > 1 and d(ym,,y) < 1, for (UpL; S,)\ S a point
Ymy € Sp, With no > ny and d(ym,,y) < %, and so on. Obviously, ¥, € S,, and
Ym, — ¥, a contradiction.

Since S does not meet R, then S C X \ R. On the other hand X \ R
is open (since R is closed in X) and contains entire components (recall that R
is a union of components), so S,, € X \ R, eventually. Therefore S,, = S, a
contradiction, since we have assumed that {S,,n € N} has no constant subnet.

According to the Claim, there exists a sequence {(xy) : zx € Sk} such that
zx — 2o € X, where Sp = Sy = f(S,), from which follows z), = fi ' (y) for
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some Y € Sy. Then

d(yr, f(z0)) < d(Yg, fr(zo)) + d(fi(T0), f(z0))
= d(f¢ (yr). o) + d(fr(20), f(20)) — 0,

therefore f(zo) € S,, which means that S, N f(X) # O and, by Lemma 3.5,
Sy C f(X), hence y € f(X), and f is surjective.

3.7. Theorem. If X(X) is quasicompact, then I(X,d) is locally compact.

Proof. This assertion follows from Lemma 3.3 and Proposition 3.6, since both
conditions 2.1(a) and (b) are satisfied.

4. The properness of the action (I(X,d), X)

In this short section, applying the methods used previously, we give a complete
proof of the following:

Proposition. If (X,d) is locally compact and connected, then I(X,d) is locally
compact and the action (I(X,d), X) is proper.

Proof. Since X is connected G = I(X,d) is locally compact by Theorem 3.7. So,
we have to show that, for every z, y € X, there are neighborhoods U,, U, of x
and y respectively such that

Uz, Uy) :={g € G: (gU,) N Uy # O}

is relatively compact in G. Let U, = S(z,e) and U, = S(y,e) be such that
S(y, 2e) is relatively compact. Then, for g € (U,,U,) and z € U, with g(z) € U,,
we have

d(g(z), (y)) < d(g(z),9(2)) +d(g(2),y) = d(z, 2) + d(g(2),y) < 2,

therefore g € F'={g € G: g(z) € S(y,2¢)}. Then z € K(F), and, according to
Lemma 3.1, K(F') coincides with the connected space X . From this and Ascoli’s
theorem it follows that F' is relatively compact in C'(X, X). So (U,,U,) C F' is
relatively compact in C'(X, X), hence in G, because G is closed (cf. Proposition

3.6).

This proves the Proposition and completes the proof of the Theorem in the
Introduction.

5. Final Remark

Using the same arguments we can prove that if X is a locally compact metrizable
space, then I(X,d) is locally compact for all admissible metrics d, provided that
the space Q(X) of the quasicomponents of X is compact with respect to the
quotient topology (note that Q(X) is always Hausdorff) (cf. [3]). Recall that the
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quasicomponent of a point is the intersection of all open and closed sets which
contain it. Our exposition is given via X(X) because we regard the condition
7Y(X) is quasicompact” as a topologically more natural condition than ” Q(X) is
compact”, although it is more restrictive: There are locally compact metric spaces
with compact Q(X) and non quasicompact X(X) as the following example shows:

Example. The space of all connected components of the locally compact space

= (0(G velLn) uiowveropu (U n) e v,

k=1

where

h={0.)ye (Gl keN,

is not quasicompact, because the sequence {I;} C ¥(X) does not have a con-
vergent subsequence in X(X). On the contrary, Q(X) is compact, because the
quasicomponent of the point (0, —1) consists of the set {(0,y) :y € [-1,0)} and
the intervals I, k € N*.

So the quasicompactness of ¥(X) is not necessary for the local compactness
of I(X,d).
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ON THE ACTION OF THE GROUP OF ISOMETRIES
ON A LOCALLY COMPACT METRIC SPACE:
CLOSED-OPEN PARTITIONS AND CLOSED ORBITS

ANTONIOS MANOUSSOS

ABSTRACT. In the present work we study the dynamic behavior
of the orbits of the natural action of the group G of isometries on a
locally compact metric space X using suitable closed-open subsets
of X. Precisely, we study the dynamic behavior of an orbit even in
cases where G is not locally compact with respect to the compact-
open topology. In case G is locally compact we decompose the
space X into closed-open invariant disjoint sets that are related
to various limit behaviors of the orbits. We also provide a simple
example of a locally compact separable and complete metric space
X with discrete group of isometries G such that the natural action
of G on X has closed and non-closed orbits.

1. INTRODUCTION

The group of isometries and their actions play an important role in
many branches of Mathematics (especially in Geometry). This class of
actions is rich, as a recent result of Abels, Noskov and the author in
[2] shows. In [2] it is shown that if Y is a locally compact o-compact
metrizable space then a locally compact group I' acts properly on Y if
and only if there exists a I'-invariant proper compatible metric on Y
(recall that a metric on Y is called proper or Heine-Borel if every ball
has compact closure in Y). So, in this case, we can consider such a
group as a closed subgroup of the group of isometries of a proper met-
ric space (modulo the kernel of the action). The first result concerning
the local compactness of the group of isometries of a locally compact
metric space is the van Dantzig - van der Waerden theorem in 1928 (see
[7] and [10, Theorem 4.7]) which says that the group G of isometries of
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a connected, locally compact metric space X is locally compact (with
respect to the compact-open topology) and acts properly on X. In [12]
(see also [14]) this result is generalized for the case of a locally compact
metric space which has quasi-compact (i.e. compact but not necessar-
ily Hausdorff) space of connected components (or quasi-components).
In particular it is shown that the group of isometries of X is locally
compact but may fail to act properly on X even for the case that X has
only two connected components. A crucial point in obtaining this re-
sult is making use of suitable closed-open subsets of X (for more details
see the next section). At the same time Gao and Kechris in [8, Theo-
rem 5.4 and Corollary 6.2] (see also [6]) showed a stronger result: that
the group of isometries G of a locally compact separable metric space
X with finitely many pseudo-components (which are also closed-open
subsets of X, see [8, Proposition 5.3]) is locally compact and in case X
is locally compact, separable and pseudo-connected then G acts prop-
erly on X (for definitions and more details see [§, p. 32] and Section 3
below). Important examples of locally compact, separable and pseudo-
connected spaces are the proper (Heine-Borel) spaces. Comparing the
results of [12] and [§] we would like to mention that the assumption
about the quasi-compactness of the space of connected components of
X in [12] is purely topological hence the result in [I2] applies to any
metric that induces the topology of X. Obviously the assumption in [§]
about finitely many pseudo-components depends on the choice of the
metric on X but the result is stronger since a locally compact metric
space with quasi-compact space of connected components has finitely
many pseudo-components.

The purpose of this paper is to show that the closed-open subsets of
X used in [12] and [§] also give information for the space X and the
dynamic behavior of the orbits of the natural action of G on X, even
for the case that G is not a locally compact group. In what follows, X
will denote a locally compact metric space with a fixed metric d and
G = Iso(X,d) will denote the group of (surjective) isometries of X
endowed with the compact-open topology. The natural action of G on
X is the action with (g,z) — g(x), g € G, v € X. The main results in
this work are stated below:

In Section 3 (see Propositions 3.1l and Corollary 3.4l below) we show
the following:

Proposition. Let z,y € X and a net {g;} in G with gjx — y. Then
there exist a subnet {g;} of {g9;}, a closed-open subset A of X that
contains x and a map f : A — X which preserves the distance such
that g; — f pointwise on A, f(x) =y and f(A) is an open subset of X.
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The same result also holds if we replace A with the pseudo-component
Cy that contains x. In this case f(Cy) = Ch (.

The previous proposition gives as corollaries the van Dantzig - van
der Waerden theorem (see Corollary B2l below) and the results of Gao
and Kechris in [8, Theorem 5.4 and Corollary 6.2] (see Corollary
below). In Section 4 we give some applications in case G is locally
compact and there exist closed orbits for the action of G on X. We
also give a simple example of a locally compact separable and complete
metric space with a discrete group of isometries such that the natural
action of G on X has closed and non-closed orbits (see Example [£.4]
below). In Section 5 we show that the closed-open subsets of X used
in [12] leads to a decomposition of the space X into closed-open G-
invariant disjoint sets that are related to the limit behavior of the
orbits (see Theorem [5.1] below): Let

L(z) = {y € X | there exists a net {g;}in G
with g; — oo and lim g;z = y},

denote the limit set of z € X, where g; — co means that the net {g;}
has no cluster point in G.

Theorem. Assume that G is locally compact and not compact and let
CL ={z € X | L(z) is not empty and compact},
NCL = {x € X | L(x) is not compact} and
P ={x € X|L(x) is the empty set}.

Then the sets CL, NCL and P are closed-open G-invariant disjoint,
their union is X and each one of them is a union of pseudo-components.

2. PRELIMINARIES

A continuous action of a topological group I' on a topological space
Y is a continuous map I' x Y — Y with (g,z) — gz, g € I',x € Y such
that (1,x) — z, for every # € Y where 1 denotes the unit element of
I', and h(gx) = (hg)z for every h,g € ' and x € Y. For U C Y let
I'U denote the set {gz|g € I',x € U}. Especially, if U = {z} then the
set 'z := I'{x} is called the orbit of x € Y under I'. If TU = U we
say that U is [-invariant. The subgroup I', := {g € I'| gz = x} of ' is
called the isotropy group of z € Y.

In what follows, X will denote a locally compact metric space with a
fized metric d and G = Iso(X,d) will denote the group of (surjective)
isometries of X endowed with the compact-open topology. The natural
action of G on X 1is the action with (g,z) — g(x), g € G, v € X.
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If we endow G with the topology of pointwise convergence then G
is a topological group (see [B, Ch. X, §3.5 Corollary]). On G there
is also the topology of uniform convergence on compact subsets which
is the same as the compact—open topology. In the case of a group
of isometries these topologies coincide with the topology of pointwise
convergence, and the natural action of G on X with (g,x) — g(z) is
continuous (see [5, Ch. X, §2.4 Theorem 1 and §3.4 Corollary 1]).

We recall that in [4, Ch. III, §4.1 Definition 1] a continuous action
of a topological group I' on a topological space Y is said to be proper
(or Bourbaki proper) if the map

I'xY =Y xY with (¢g,z) — (z,g9x), forge T and x € Y

is proper, i.e. it is continuous, closed and the inverse image of a single-
ton is a compact set.

To simplify the proofs we shall use the following equivalent definition
for properness: a continuous action is proper if the extended limit sets
J(x) are empty for every x € Y, where

J(z) = {y € Y | there exist nets {z;} in Y and {g;} in T’
with g; — oo,limz; = = and lim g;z; = y},

where g; — oo means that the net {g;} has no cluster point in G. It is
easy to see that in the special case of actions by isometries J(x) = L(x)
holds for every x € Y, where

L(x) = {y € Y | there exists a net {g;}in I’
with g; — oo and lim g;z = y},

denotes the limit set of x € Y under the action of I' on Y. Hence
an action by isometries is proper if and only if L(x) is the empty set
for every x € Y. The limit and the generalized limit sets for locally
compact spaces and groups are closed and I'-invariant (see [3]). The
following example shows that even in case that X has two connected
components the action of G on X may not be proper (see also [14]).

Example 2.1. Let X = L; U L, C R? where L; = {(0,t)|t € R} and
Ly ={(2,t) |t € R}. We consider the metric d = min{dg, 1} where dg
is the usual Euclidean metric on R?. With this metric X is a locally
compact separable space. Since for a point x € X (actually for every
x € X) the isotropy group G, contains an isomorphic copy of the reals
the action of G on X is not proper.

Let F' be a subset of G. We define K (F') to be the set
K(F) := {x € X | the set F'x has compact closure in X}.
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These sets played a crucial role in [12] where it is shown that they are
closed-open subsets of X (see [12, Lemma 3.1], [14]). Actually we can
find the same definition and result in Bourbaki (see [5, Ch. X, Exercise
13, p. 323]) but as we mentioned in [2] there is a mistake in part d) of
this exercise (for a counterexample see [2] or [I1]).

3. THE GENERAL CASE

In this section the only assumption is that X is locally compact with-
out assuming the same for G. We study the following problem: Assume
that there is a pair of points z,y € X and a net {g;|i € I} in G such
that g;z — y. What can we say about the convergence of {g;}?

Proposition 3.1. Let z,y € X and a net {g;|i € I} in G with g;x —
y. Then there exist a subnet {g;|j € J} of {g;|i € I}, a closed-open
subset A of X that contains x and a map f: A — X which preserves
the distance such that g; — f pointwise on A, f(x) = y and f(A)
is an open subset of X. Moreover, if {g;} is a sequence and X is a
second countable space (in which case the limit sets can be described
using sequences) then f(A) is closed.

Proof. Since d(z, g;'y) = d(g;x,y) — 0 it follows that g; 'y — z. By
the local compactness of X there exists an index iy € I such that, if
F :={g;|i > ip} then z € K(F) and y € K(F~'), where 7! :=
{g;7"|i > io}. Set A:= K(F). By [12, Lemma 3.1] A is a closed-open
subset of X. If g;|4 denotes the restriction of each g; on A, then the
Arzela-Ascoli theorem implies that the set {g;|a : A — X |i > 4y} has
compact closure in C'(A, X) (this the set of all continuous maps from
A to X). Thus, there exists a subnet {g;|j € J} of {g;|i € I} and a
map f: A — X with f(x) =y which preserves the distance such that
g; — f pointwise on A. We show that f(A) is open: Let z € f(A).
That is, there is w € A such that f(w) = z. It is enough to show
that if {z} C X is a net such that z; — z then z € A eventually for
every [. Since w € A then gjw — f(w) = z. Hence gj_lz — w. As
before there exists an index jy such that, if Fy := {g;|j > jo} then
w € K(Fy) and z € K(F;'). Again by the Arzela-Ascoli theorem
there exist a subnet {gz} of {g;} and a map h : K(F;') — X which
preserves the distance such that g,' — h pointwise on K(F; ') and
h(z) = w. Since K(F[ ') is open and z € K(F; ') we may assume that
z € K(F7') eventually for every I. Hence h(z) — h(z) = w € A
as | — oo and for each I, g;'z — h(z) as k — oo. Therefore
h(z) € A eventually for every [. Fix a point h(z) € A. Then

ge(h(z)) — f(h(=)). Thus d(z, f(h(2))) < d(ggy 2, geh(z)) +
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d(grh(2), f(h(2))) = d(g;, 2, h(z0)) + d(grh(z), f(h(2))) — 0 as k —
oo. Hence 2z, = f(h(z)) € A eventually for every .

Note that up to this point we have only used the property that the
sets K(F') are open. If {g;|i € N} is a sequence we can set F, :=
{g;|i € N} and A := K(F,). Then A is a non-empty closed-open
subset of X and, as before, there exists a subsequence {g;, |n € N} of
{gi} (here we use that X is second countable) and a map f: A — X
with f(x) = y which preserves the distance such that g;, — f pointwise
on A. We will use now the property that the sets K(F') are closed to
show that f(A) is also a closed subset of X. If we set F3 := {g;, |n €
N} then it is easy to verify that f(A) C K(F;*') and there exist a
subsequence {g;, |l € N} of {g;,} and a map h : K (F;1) — X which
preserves the distance such that g; ll — h pointwise on K(F;*'). Take
a sequence {f(ax)|k € N}, a € A such that f(ay) — b for some
b€ X. We will show that b € f(A). Fix k € N. Since f(A) C K(F; ')
and K(F;*') is closed then f(ay) € K(F;'), gi_nllf(ak) — h(f(ay))
as | — oo and b € K(F;*'). The latter implies that gi_nllb — h(b).
Note that d(g; 10, h(b)) = d(b, g, h(b)) — 0 s0 gi, h(b) — b. We will
show that h(b) € A and g, h(b) — f(h(b)), hence b = f(h(b)) €
f(A) and the proof is finished. Indeed, observe that d(gi;llf(ak), ay) =
d(f(ak), gin,ar) — 0 as | — oo. Therefore h(f(ax)) = a;. Thus ay =
h(f(ar)) — h(b) as k — oco. But a; € A and A is a closed subset of X
hence h(b) € A. So g;, h(b) — f(h(D)). O

Note that f(A) may not be G-invariant, see for instance Example
2.1l As an application of Proposition [3.1] we can prove the van Dantzig
- van der Waerden theorem in a short and elegant way comparing to
the proof in the original work of van Dantzig and van der Waerden [7]
or to the lengthy one in [10, Theorem 4.7, pp. 46-49]:

Corollary 3.2. (The van Dantzig - van der Waerden theorem) The
group G of isometries of a connected, locally compact metric space X
is locally compact (with respect to the compact-open topology) and G
acts properly on X.

Proof. Tt is enough to show that G acts properly on X (i.e. L(x) = () for
every z € X, see Section 2) because in this case for every pair of points
xz,y € X there exist open neighborhoods U,,U, of z,y respectively
such that the set {g € G|gU, N U, # 0} has compact closure in G
(see e.g. [3]). Let x,y € X and a net {g;} in G such that g;x — v.
Proposition Bl implies that there exist a subnet {g;} of {g;}, a closed-
open subset A of X and a map f : A — X which preserves the distance
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such that g; — f pointwise on A. Since X is connected it follows that
A = X. Note that d(x,g;'y) = d(gix,y) — 0 hence we can repeat
the same procedure as before and find a subnet {gx} of {g;} and maps
f,h : X — X which preserve the distance such that g, — f and
gz — h pointwise on X. Obviously h is the inverse of f. This shows
that f € G. Hence, L(x) = () and since € X was arbitrary the action
is proper. O

A question which arises from Proposition B.1]is whether there is any
difference if one replaces A with the pseudo-component that contains
the point x € X. We answer this question in the affirmative in Corol-
lary B.4l Before we present these result we need some formulation that
we can also find in [, p. 32]:

An important notion in the definition of the pseudo-component of a
point x € X is the radius of compactness p(x) of x:

p(x) :=sup{r > 0] the open ball B(z,r) has compact closure}

where B(z,r) denotes the open ball centered at z € X with radius
r > 0. It is easy to see that if g € G then p(gx) = p(x). We define
an equivalence relation £ on X as follows: Firstly we define a directed
graph R on X by

2Ry if and only if d(x,y) < p(x).
Let R* be the transitive closure of R, i.e.
xR*y if and only if for some wug =z, uq,...,u, =y

we have u;Ru; ;1 for every i < n. Finally, define the following equiva-
lence relation £& on X

x€y if and only if z =y or (zR*y and yR*z).

We call the £-equivalence class of x € X the pseudo-component of x,
and we denote it by C,. We call X pseudo-connected if it has only one
pseudo-component. It follows that pseudo-components are closed-open
subsets of X (see [8, Proposition 5.3]). An immediate consequence of
the definitions is that ¢gC, = Cy, for every g € G.

The following example shows that in many cases the closed-open set
A in Proposition [3.I] may contain strictly the pseudo-component that
contains the point z € X.

Example 3.3. Let X = L; U Ly U Ly C R? where L; = {(0,t) |t €
R}, Ly = {(2,t) |t € R} and L3 = {(4,t) |t € R} endowed with the
metric d = min{dg, 1} where dg is the usual Euclidean metric on R2.
With this metric X is a locally compact separable and complete metric
space with finitely many pseudo-components. Let x := (0,0) and let
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gn: X — X, n €N with g,(t,a) = (t,a) if a =0 or 2 and t € R and
gn(4,t) = (4,t +n), t € R. Obviously g,x = = for every n € N, the
map g, restricted to L; U Ls is the identity and the pseudo-component
C, of x is the set L;. Hence, if we take as A := L;U L, then A contains
strictly C,.

Corollary 3.4. Assume that X is locally compact (perhaps with in-
finitely many pseudo-components). Let x,y € X and a net {g;} in G
such that gix — y. Then there exist a subnet {g;} of {g;:} and a map
f: Cy — X which preserves the distance such that g; — f pointwise

Proof. With a slight modification of the technical Lemma 5.5 in [§]
in order to use nets instead of sequences we have the following: Let
x,y € X and {g;} be a net in G with g;x — y. Then for F := {g;} the
set F'(z) has compact closure in X for every z € C,. For A := K(F)
Proposition Blimplies that there exist a subnet {g;} of {g;} and a map
f: Cy — X which preserves the distance such that g; — f pointwise
on C, and f(z) =y. Since gj_lf(x) — x then there exist a subnet {g}
of {g;} and amap h : Cy — X which preserves the distance such that
gy - — h pointwise on C}(,) and h(y) = z. Take a point 2 € C,. Since
grz — f(2) and the pseudo-component Cf(, is a closed-open subset
of X then f(2) € Cy() (so f(Cr) C Cyz)) and grz € C(z) eventually
for every k. Hence z = g, '(gx2) — h(f(2)). In the same way we can
deduce that f(h(w)) = w for every w € Cy, thus f(Cy) = Cpy. O

As an implication of the previous corollary we can take the results
of Gao and Kechris [8, Theorem 5.4 and Corollary 6.2]:

Corollary 3.5. (The Gao - Kechris theorem) The isometry group of a
locally compact metric space with only finitely many pseudo-components
15 locally compact. In case X s locally compact and pseudo-connected
then G acts properly on X.

Proof. Let Cy,Cs, ..., C, denote the pseudo-components of X and take
points 1 € Cy,x9 € Cy, ..., x, € C, and open balls B(x,,,r) C C,,,
m=1,2,...,n,r > 0such that all B(x,,,r) have compact closures. We

will show that the set V' := ﬂ {9 € G|gxm € B(xy,r)} is an (open)

m=1
neighborhood of the identity in G with compact closure. Indeed take
anet {g;} C V. Since each B(x,,,r) has compact closure there exist a
subnet {g;} of {g;} and points y; € C1,y2 € Cs, ..., y, € C, such that
GjTm — Ym, as j — 00, for every m = 1,2, ..., n. Corollary 3.4l implies
that there exist a subnet {¢;} of {g;} and maps f,, : C,, — C,, which
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preserve the distance such that g, — f,, on C,, and f,,(C,) = C,,
for all m. This shows that {gx} converges to a surjection of X which
actually gives that {gx} converges to an isometry of X.

Assume that X is pseudo-connected. In order to show that G acts
properly on X it is enough to show that the limit set L(x) is empty
for every z € X (see Section 2). Let z,y € X and a net {g;} in G such
that g;x — y. Corollary B4 implies that there exist a subnet {g;} of
{g;} and a map f : C;, — X which preserves the distance such that
g; — [ pointwise on C, f(z) = y and f(C,;) = Cf). Since X is
pseudo-connected then C, = Cf,) = X. Hence f € G thus L(x) is
empty. L]

Remark 3.6. Note that in Corollary we do not require that X is
separable like in [8, Theorem 5.4 and Corollary 6.2]. This is not a real
improvement since we can show that a locally compact metric space X
with countably many pseudo-components is separable. For a proof we
can imitate the proof of Lemma 3 in [10, Appendix 2| (actually this is
a result of Sierpinski, see [13]): We define a relation S on X by xSy
if and only if there exist separable open balls B(x,r;) and B(y,s)
with y € B(x,r;) and © € B(y,ry). For every A C X we denote
by SA := {y € X|ySxz for some z € A}. If A = {z} is a singleton

we write Sz instead of S{z}. Set S"™'z := 88"z for every n € N
+00

and U(x) = U S"z. Then by [10, Lemma 3 in Appendix 2| each
n=1

U(x) is a separable closed-open subset of X and if U(x) N U(y) # 0

then U(x) = U(y). By construction every U(z) contains the pseudo-

component of z € X. Therefore X is separable.

Remark 3.7. Proposition Bl and Corollary B.4] point out a natural
generalization of the notion of properness for locally compact metric
spaces with groups of isometries which are not closed in the space of all
continuous selfmaps of X endowed with the compact-open topology: In
particular, it will be interesting to study actions with the property “if
x,y € X and there is a net {g;} in G such that g;x — y then there exist
a subnet {g;} of {¢g;} and a map f: X — X not necessarily surjective,
which preserves the distance and such that g; — f pointwise on X”.
That is, let’s say, if g; — oo then this happens in a “strong” way.

4. CLOSED ORBITS

In this section we assume that both X and G are locally compact and
we will discuss some implications of the existence of closed orbits. In
the previous section we saw that if there is a pair of points x,y € X and
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anet {g;} in G such that g,z — y then there exist a subnet {g,} of {g;},
a closed-open subset A of X that contains x and amap f: A — X
which preserves the distance such that g; — f pointwise on A, f(z) =y
and f(A) is an open subset of X. A question which arises naturally is:
When is the map f a restriction of some element of G on A? An answer
can be given using the following general proposition but before we see
that we need again some formulation: Given a continuous action of a
locally compact group I' on a locally compact space Y we can define a
homomorphism ¢ : I' — H(Y) with ¢(g)(x) := gz, g € I', x € Y where
H(Y) denotes the group of homeomorphisms of Y endowed with the
compact-open topology. This homomorphism is always continuous (see
e.g. [3] or [15, Lemma 10.4 (c)]). If g|4 denotes the restriction of g € T’
on a subset A of Y we define ¢ : I' — C(A,Y) with ¢(g)(x) = gz,
g €',z € A where C(A,Y) denotes the space of all continuous maps
from A to Y endowed with the compact-open topology. Note that ¢ is
a continuous map.

Proposition 4.1. Let Y be a locally compact space, A be an open or
closed subset of Y and I be a locally compact o-compact group which
acts continuously on Y . If there exists a point x € A with closed orbit

such that ¢(T'y) is closed in C(A,Y) then ¢(I') is closed in C'(A,Y).

Proof. Since I' is locally compact and o-compact and I'(z) is closed
in Y, the map ¢ : I'/T, — D'(z) with ¢(¢gI';) :=T'z, g € I'is a
homeomorphism (see [15, Theorem 10.10 (c)]). Let {g;|7 € I} be a
net in I" such that ¢(g;) — h for some h € C(A,Y). Since the orbit
I'(z) is closed, there exists v € I" such that vo = h(z) so ¢;I'y — T,.
The quotient map I' — T'/T", is open and I' is locally compact hence
there exist an open neighborhood V' of v with compact closure and
nets {f;} in V, {v;} in T'; such that g; = fiv; eventually for every
i € 1. Thus, there exist a subnet {f;} of the net {f;} and f € I' such
that f; — f. The set A is locally compact, hence the composition
map T : C(Y,Y) x C(A,Y) — C(A,Y) with T(f1, fo) = fio fo, f1 €
C(Y)Y), fo € C(AY) is continuous (see [I5, Lemma 9.4 (c)]). Thus,
o(v;) = o(f; ) 0 ¢g;) — ¢(f 1) o h. Since ¢(I';) is closed in C(A,Y)
there exists g € I', such that ¢(f~1)oh = ¢(g) from which follows that
h = ¢(fg). Hence ¢(I') is closed in C(A,Y). O

Note that in our case, if X is a second countable locally compact
metric space with locally compact group of isometries G then G is
o-compact (see [0, Ch. X, §3.3 Corollary]). Following the proof of
the previous proposition, if z,y € Y and {g;} is a net in " such that
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gix — y then g; = f;v; for some nets {f;} in a compact subset of I" and
{v;} in Ty, so we have the following:

Corollary 4.2. Let Y be a locally compact space and I' be a locally
compact o-compact group which acts continuously on'Y . If x is a point
of Y with closed orbit then the limit set L(x) is not empty if and only
if the isotropy group I, of x is not compact.

If we assume that X is second countable (hence separable) and com-
plete and its group of isometries G is locally compact then G is second
countable (see [0, Ch. X, §3.3 Corollary]). So, in this case, both X
and G are Polish spaces. In [9] Glimm showed that for the case of an
action of a locally compact separable group on a locally compact sep-
arable space the existence of a Borel section (or selection) is actually
equivalent to the fact that each orbit is locally closed. Recall that a
subset S of a topological space Y is called a section (or selection) for a
continuous action of a topological group I' on Y if S meets every orbit
in exactly one point. In our case if x,y is a pair of points of X and
{g;} is a net in G such that g;x — y then g; 'y — =, since g; preserves
the metric. Thus, for isometric actions, locally closed orbits are closed
and vice versa. A question which arises naturally is the following:

Question 4.3. If X and G are locally compact do there exist always
closed orbits?

Note that we are considering the full group of isometries of X because
if we ask the same question for the action of a closed subgroup of G on
X then the answer is negative (see [11]). The following simple example
shows that the answer is also negative for the action of G on X:

Example 4.4. Let X = RUQ C R? where R = {(¢,0)|t € R}
and @ = {(¢,1)|¢ € Q}. For every pair of points w; = (x1,41),
wy = (xg,y2) € X define

|£L’1—ZL’2|, if’wl,UJgER
d(wy,wy) :== 1] |o1 —x2| + 1, if only one of wy, ws is not in R
|£L’1—[L’2|—|—2, if wy,we € Q.

It is easy to verify that d is a metric on X and X with this metric is a
locally compact, separable and complete space. The group of isometries
G is generated by the horizontal translations by rationals and by the
horizontal reflections with centers of the form (z,y) € X with x € Q
(if we want to have only translations we may take @ := {(¢,1)|q €
Q + V2N}). Hence G is a discrete group (so it is locally compact). If
w = (z,1) € Q then the orbit G(w) = @ and if w = (z,0) € R then the
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orbit G(w) = {(z,0) € R|z € Q} so it is not closed in X. Moreover if
w € @ then L(x) =0 and if w € R then x € L(x) = R.

In this direction Gao and Kechris in [8, p. 35] asked the following
question which still remains open:

Question 4.5. (Gao - Kechris) Let (X, d) be a locally compact com-
plete metric space with finitely many pseudo-components (or connected
components). Is it true that the action of G := Iso(X,d) on X has
closed orbits?

Based on this we ask the following question.

Question 4.6. Let (X,d) be a locally compact and complete metric
with only two connected components, one compact and one not com-
pact. If the action of G := Iso(X,d) on the non-compact component
is proper is it true that the orbits of points in the compact component
are closed?

The last question is of great interest in case of a metric space having
only one end in its Freudenthal (end-point) compactification.

As we saw in Example [4.4] the set of points of X with closed orbits
may not be the whole space X, so it is natural to ask the following:

Question 4.7. Let X be a locally compact metric space. Is the set of
points of X with closed orbits closed or open? Does it contain entire
pseudo-components?

In the following example we give (a partial) negative answer to this
question. Namely the set of points of X with closed orbits may not be
open or may not contains entire pseudo-components:

Example 4.8. This example is based on the same idea as Example
A4 Let X = DUS C R? where D is the closed unit disk and S is an
orbit of a point on a circle with center the origin and radius 2 under an
irrational rotation 2¢?™ a ¢ Q. The distance of two points in the unit
disk is the usual Euclidean one. To measure the distance from a point
of x € S to a point of y € D we firstly move on the radius connecting
x with the origin until we meet the circle with center the origin and
radius the distance from y to the origin. Then we move on this circle
in the shortest way until we meet the point y. In a similar way we
measure the distance of two points z,y € S: Firstly we move on the
radius connecting x with the origin until we meet the unit circle and
then we move on this circle and follow back the radius connecting y
with the origin in the shortest way until we meet the point y. The space
X endowed with this metric is locally compact, separable and complete
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and its group of isometries G is discrete (hence locally compact) like
in Example [4.4l Moreover, all the points of the closed unit disk except
the origin do not have closed orbits and the origin is a fixed point. The
action of G on S is proper and the orbits coincide with S. Note that the
pseudo-component (and the connected component) that contains the
origin is the closed unit disk hence the set of points of X with closed
orbit is not closed and does not contain entire pseudo-components.

The only thing that remains to be clarified is whether the set of
points of a space X with closed orbits is a closed subset of X. In this
direction we know that if there is a pair of points x,y € X and a net
{g;} in G such that g;z — y then, by Corollary [3.4], there exist a subnet
{g;} of {g:} and a map f: C, — X which preserves the distance such
that g; — f pointwise on C,. So, if X is separable then by Proposition
4.1l we know that if there exists some point z € C, such that ¢(I',) is
closed in C(C,, X) then ¢(I') is closed in C(C,, X). From this we can
deduce that the set of points of X with closed orbits is closed. The
general question remains open as well as the following generalized one:

Question 4.9. Is there any locally compact, separable and complete
metric space such that G is locally compact and every orbit is not
closed?

5. CLOSED-OPEN GG-INVARIANT PARTITIONS

In [12] Theorem| we showed that in case X has quasi-compact (i.e.
compact but not necessarily Hausdorff) space of connected components
(or quasi-components) the group G is locally compact. This is an
application of the fact that the sets K(F), defined in Section 2, are
closed and open. In this section we will see another application of this
property of K (F') concerning the structure of X. We will show that if
G is locally compact then there is a decomposition of X into closed-
open G-invariant sets that are related to various limit behaviors of the
orbits: To be more precise, let

CL = {x € X|L(z) is not empty and compact},
NCL = {z € X | L(z) is not compact} and
P ={x € X|L(x) is the empty set}.
Theorem 5.1. Let (X, d) be a locally compact metric space and G :=

Iso(X,d) the group of isometries of X. Assume that G is locally com-
pact and not compact. Then

(i) The closure of each orbit is a minimal set.
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(ii) If the closure of an orbit is compact then it is stable. Hence
each x € C'L has a stable orbit closure.

(iii) The sets CL, NCL and P are closed-open G-invariant disjoint,
their union is X and each one of them is a union of pseudo-
components.

Proof. (i) Recall that a non-empty G-invariant closed subset A of X is
called minimal if it has no G-invariant closed proper subsets. Equiv-
alently, A = G(z) for every x € A. Let y € X and =z € G(y).

Obviously G(z) € G(y) and there exists a sequence {g,} in G such
that g,y — . Since d(g,y,z) = d(y, g, 'z) it follows that y € G(z),
thus G(y) € G(z). Note also that since L(y) is a G-invariant closed
subset of X then whenever L(y) # ( we have that L(y) = G(y).
So, if G is not compact then CL = {z € X | G(x) is compact} and
NCL = {z € X | G(z) is not compact and L(z) # 0}.

(ii) Assume that G(z) is compact for some x € X. We will show

that G(z) is stable, that is, for every open set U C X with G(z) C U
there exists a G-invariant open set V' such that G(z) CV C U. Since

X is locally compact and G(x) is compact then G(z) has a neighbor-
hood base consisting of compact sets, let’s say W (see |4, Ch. I, §9.7
Proposition 10]). There is a natural direction defined on W: W; < W,
if and only if Wy, C W; for Wi, Wy € W. We argue by contradic-
tion: Assume that for every W € W there exist z,, € W and a point
gw € G such that g,z, ¢ U. It is not hard to see that there exist a
point y € G(x) and a subnet {z;} of the net {z, |w € W} such that
x; — y. Since ¢g;y € G(zr) and G(z) is compact there exist a subnet
{g9;y} of {giy} and a point z € G(z) such that gjy — z. Note that
d(g;x,2) < d(gjzs, 95y) + d(g;y, 2) = d(zj, y) + d(g;y, 2) — 0 which is
a contradiction since we have assumed that g;z; ¢ U for every index i.

(iii) Obviously the sets CL, NCL and P are G-invariant, disjoint
and their union is X. Item (i) implies that C'L = K(G) hence, by [12,
Lemma 3.1], C'L is closed and open. Since J(z) = L(z) for every z € X
(because we have an action by isometries, see Section 2), P = {z €
X | J(z) = 0}. Take a point = in the complement of P. Then J(x) # ()
and since J(x) = L(x) we have that J(x) = L(x) = G(x). Hence
X\P={z e X |z e J(x)} and it is well known (see e.g. [3]) that this
is a closed subset of X, so P is open. We claim that P is also closed.
Let {z,, | n € N} be a sequence of points of P such that z,, — x for some
x € X. We argue by contradiction: If z ¢ P then z € J(x) = L(x)
hence there exists a net {g; |i € I} in G with g; — oo and g;x — z. Fix
a positive real number r > 0 such that the ball centered at x with radius
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2r has compact closure and fix also a point z,,, such that d(z,,,z) < r.
Note that d(g;zn,, x) < d(giTn,, giv) + d(giz, ) = d(2n,, ) + d(giz, ).
Since g;x — x the net {g;x,,|i € I} is eventually in the open ball
B(z, 2r) hence it has a convergent subnet. This implies that L(x,,,) # 0
(since g; — oo) thus z,, ¢ P which is a contradiction.

In Corollary B4 we saw that if z,y € X and {g¢;} is a net in G
such that g;x — y then there exist a subnet {g;} of {¢g;} and a map
f : C; — X which preserves the distance such that g; — f pointwise
on C,. This shows that the set P is a union of pseudo-components. If
we work as in the proof of Corollary [3.4] and take F' := G then it easy
to see that the set C'L has also the same property. U

A question which arises from the previous theorem is the following:
Can the sets C'L, NC'L and P may coexist in any combination? We
answer this question in the affirmative using the following simple ex-
amples. Note that the Arzela-Ascoli theorem implies that C'L = X if
and only if the group G is compact. If X is connected the van Dantzig
- van der Waerden theorem implies that P = X and in Example 2.1]
we have that NC'L = X.

Example 5.2. (CL # (), NCL # () and P = ()). Let X = {(0,0)} U
Ly ULy C R* where Ly = {(2,t)|t € R} and Ly = {(4,t) |t € R}. We
consider the metric d = min{dg, 1} where dg is the usual Euclidean
metric on R?. As in Example 2] it is easy to see that C'L = {(0,0)},
NCL:IqULQ andP:(Z).

Example 5.3. (CL # (), NCL = () and P # ). If we take X =
{(0,0)} U Ly, where L; = {(2,t)|t € R}, and the metric as in the
previous example then CL = {(0,0)}, NCL =0 and P = L;.

Example 5.4. (CL = (), NCL # () and P # ()). In Example [L.4] we
have that CL = (), NCL = R and P = Q.

Example 5.5. (CL # 0, NCL # () and P # ()). This example is
a modification of the Example [£4l Firstly we replace the metric d
in Example [4.4] by the bounded metric d' = #‘ld (note that d’ and d
give the same group of isometries). Then we add the point (3,0) to X
and finally we endow the set Y := X U {(3,0)} with a new metric d*
requiring that d*|x«x = d'|xxx and d*((3,0),w) = 1 for every w € X.
If G denotes the group of isometries of Y with respect to d* it is easy
to see that CL = {(3,0)}, NCL = R and P = Q.

In case P is not empty we have a very interesting result concerning
its structure. This result is an application of a theorem of Abels in [I].
Namely, in [I], Abels proved that if a non-compact locally compact
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group G with compact space of connected components acts properly
on a locally compact space Y such that the orbit space G\Y is para-
compact then Y is homeomorphic to a product of the form R"™ x M for
some n € N where M is a closed subset of X. Actually n is the same
n if we write the group G as a homeomorphic image of the product
R"™ x K where K is a maximal compact subgroup of GG in the Malcev-
Iwasawa’s decomposition theorem for G (see [I5, Theorem 32.5]). If
we apply this theorem to our case we have the following:

Proposition 5.6. Let (X,d) be a locally compact metric space and
G = Iso(X,d) the group of isometries of X. Assume that G is locally
compact, not compact with compact space of connected components (or
the connected component of the identity of G is not compact). Then P,
if 1t is mot empty, it is homeomorphic to a product of the form R™ x M
for some n € N where M is a closed subset of P.

Proof. The proof is an immediate consequence of the previous men-
tioned theorem of Abels in [I] taking into account that if Gy denotes
the connected component of the identity of G then G is a closed sub-
group of G. Hence G acts properly on P and the orbit space G1\ X is
metrizable (see [3]). O

Remark 5.7. As a final remark we would like to point out that the re-
sults of this paper also hold for the natural action of a locally compact,
pointwise equicontinuous group of homeomorphisms I" on a locally com-
pact uniform space Y.
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A GROUP OF ISOMETRIES WITH NON-CLOSED
ORBITS

H. ABELS AND A. MANOUSSOS

ABSTRACT. In this note we give an example of a one-dimensional
manifold with two connected components and a complete metric
whose group of isometries has an orbit which is not closed. This
answers a question of S. Gao and A. S. Kechris.

1. PRELIMINARIES AND THE CONSTRUCTION OF THE EXAMPLE

In [3, p. 35] S. Gao and A. S. Kechris asked the following question.
Let (X,d) be a locally compact complete metric space with finitely
many pseudo-components or connected components. Does its group
of isometries have closed orbits? This is the case if X is connected
since then the group of isometries acts properly by an old result of van
Dantzig and van der Waerden [1] and hence all of its orbits are closed.
The above question arose in the following context. Suppose a locally
compact group with a countable base acts on a locally compact space
with a countable base. Then the action has locally closed orbits (i.e.
orbits which are open in their closures) if and only if there exists a Borel
section for the action (see [4], [2]) or, in other terminology, the corre-
sponding orbit equivalence relation is smooth. For isometric actions it
is easy to see that an orbit is locally closed if and only if it is closed. In
this note we give a negative answer to the question of Gao and Kechris.
Our space is a one-dimensional manifold with two connected compo-
nents, one compact isometric to S, and one non-compact, the real line
with a locally Euclidean metric. It has a complete metric whose group
of isometries has non-closed dense orbits on the compact component.
In the course of the construction we give an example of a 2-dimensional
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manifold with two connected components one compact and one non-
compact and a complete metric whose group G of isometries also has
non-closed dense orbits on the compact component. The difference is
that GG contains a subgroup of index 2 which is isomorphic to R.

Let (Y, d;) be a metric space. Later on Y will be a torus with a flat
Riemannian metric. Let Z =Y U (Y x R). We fix two positive real
numbers R and M. We endow Z with the following metric d depending
on R and M.

d(y1,y2) = di(y1, y2)
d((y1,t1), (Y2, t2)) = di(y1, y2) + min(|t; — tof, M)
d(y1, (42, t2)) = d((y2,t2), 1) = d(y1,92) + R,

for y1,y2 € Y and t1,t5 € R. It is easy to check that d is a metric on
Z if 2R > M. The metric space Z has the following properties

1.1. a) For a given point (y,r) € Y X R there is a unique point in Y’
which is closest to (y,7), namely y.

b) Given a point y € Y the set of points in Y x R which are closest
to y is the line {y} x R.

¢) For every point (y,7) € Y x R and every y' € Y there is a unique
point on the line {y'} x R which is closest to (y,r), namely (v, r).

d) Let gy be an isometry of Y and let gg be an isometry of the
Euclidean line R. Define a map g = g(gy,gr) : Z — Z by g|Y = gy
and g(y,7) = (g9v(y), gr(r)) for (y,r) € Y x R. Then g is an isometry
of Z.

e) Every isometry of Z is of the form given in d) if Y is compact.

Proof. a) through d) are easily checked. To prove e) let g be an isometry
of Z. Then g(Y) =Y and g(Y x R) =Y x R, since Y is compact and
Y x R consists of non-compact components. Then gy := g|Y is an
isometry of Y. The map ¢(gy, id)~! o g, where id denotes the identity
map, is an isometry of Z which fixes Y, hence maps every line {y} x R
to itself, by b). Let h, : R — R be defined by ¢(y,t) = (y, hy(t)). Then
h, is an isometry of the Euclidean line R for every y € Y and all the
h,’s are the same, by c), say h, = gr. Thus g = (gv, gr)- O

1.2. Let now Y be a 2-dimensional torus with a flat Riemannian metric.
Y is also an abelian Lie group whose composition we write as multipli-
cation. Every translation L, of Y, L,(y) = z -y, is an isometry. Let
g(t), t € R, be a dense one parameter subgroup of Y. Let H CY xR
be its graph, H = {(g(t),t); t € R}. Our example is X =Y U H with
the metric induced from Z =Y U (Y x R).
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1.3. a) If gg is an isometry of the Euclidean line R then there is a
unique isometry g of X such that g(y,t) € Y x {gr(t)}. If gr is the
translation by a, so gg = L, with L,(t) = t+a, then g is the restriction
of g(Lg(a), La) to X. If gg is the reflection at O, gr = —1, then g is the
restriction of g(inv, —1) to X, where inv : Y — Y inv(y) = y~'. The
reflection in a € R is the composition L_g, 0 (=1) = —1 0 Ly,.

b) Every isometry of X is of the form in a). It follows that the
group of isometries of X has dense non-closed orbits on Y and the
other component H is one orbit.

¢) H is locally isometric to the real line with the Euclidean metric,

actually d((g(t), ), (g(s), s)) = (1+]|g(0)||) |t —s| for small |t —s|, where

L&(O) is the tangent of the one-parameter group ¢(t), t € R, and || - ||
is the norm on the tangent space of Y at the identity element derived
from the Riemannian tensor.

Proof. c) follows from the definition of the metric d on Y xR. The maps
given in a) are isometries of Z and map X to X, hence are isometries
of X. To prove the uniqueness claim in a) it suffices to prove it for
gr = id. But then g is the identity on the image of the one-parameter
group ¢(t), t € R, by 1.1 a) and hence on all of Y. Hence ¢ has the
form given by 1.1 d). To show b) it suffices to show that every isometry
h of H is of the form given in a). This follows from c). O

1.4 Remark. In our example the space has dimension 2 and the group
of orientation preserving isometries is of index 2 in the group of all
isometries and is isomorphic to R. We can reduce the dimension of our
space to 1 to obtain a group of isometries with closed orbits on the
non-compact component, which is diffeomorphic and locally isometric
to R, and non-closed dense orbits on the compact component, which
isometric to S'. The example is as follows. Take a one-dimensional
subtorus Y] of Y containing the identity element of Y. Define X; =
Y1 UH C Y U H. Then the group of isometries of Y; consists of those
maps g, = g(Lg(a), La) restricted to Yy with g(a) € Y1, and of the maps
g(inv o Ly(aq), =1 o L) restricted to Y7 with g(2a) € Y;. The proof
follows from the proof of 1.3.
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THE GROUP OF ISOMETRIES OF A LOCALLY
COMPACT METRIC SPACE WITH ONE END

ANTONIOS MANOUSSOS

ABSTRACT. In this note we study the dynamics of the action of
the group of isometries G of a locally compact metric space (X, d)
with one end. Using the notion of pseudo-components introduced
by S. Gao and A. S. Kechris we show that X has only finitely
many pseudo-components exactly one of which is not compact and
G acts properly on this pseudo-component. The complement of
the non-compact component is a compact subset of X and G may
fail to act properly on it.

1. PRELIMINARIES AND THE MAIN RESULT

The idea to study the dynamics of the action of the group of isome-
tries G of a locally compact metric space (X, d) with one end, using the
notion of pseudo-components introduced by S. Gao and A. S. Kechris
in [2], came from a paper of E. Michael [6]. In this paper he introduced
the notion of a J-space, i.e. a topological space with the property
that whenever {A, B} is a closed cover of X with A N B compact,
then A or B is compact. In terms of compactifications locally compact
non-compact J-spaces are characterized by the property that their end-
point compactification coincides with their one-point compactification
(see [6, Proposition 6.2], [7, Theorem 6]). Recall that the Freudenthal
or end-point compactification of a locally compact non-compact space
X is the maximal zero-dimensional compactification of X. By zero-
dimensional compactification of X we here mean a compactification Y
of X such that Y\ X has a base of closed-open sets (see [5], [7]). From
the topological point of view locally compact spaces with one end are
something very general since the product of two non-compact locally
compact connected spaces is a space with one end (see [7, Proposition
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8], [6, Proposition 2.5]), so it is rather surprising that the dynamics
of the action of the group of isometries GG of a locally compact metric
space (X, d) with one end has a certain structure as our main result
shows.

Theorem 1.1. Let (X, d) be a locally compact metric space with one
end and let G be its group of isometries. Then

(i) X has finitely many pseudo-components exactly one of which is
not compact and G is locally compact.

(ii) Let P be the non-compact pseudo-component. Then G acts
properly on P, X \ P is a compact subset of X and G may
fail to act properly on it.

Recall that the action of G on X is the map Gx X — X with (g, z) —
g(x), g € G, z € X and it is proper if and only if the limit sets L(z) =
{y € X |there exists a net {g;} in G with g; — oo and limg;x = y}
are empty for every x € X, where g; — oo means that the net
{gi} has no cluster point in G (see [4]). A few words about pseudo-
components. They were introduced by S. Gao and A. S. Kechris in
2] and we used them in [4] to study the dynamics of the action of
the group of isometries of a locally compact metric space. For the
convenience of the reader we repeat what a pseudo-component is. For
each point x € X we define the radius of compactness p(z) of x as
p(x) := sup{r > 0| B(z,r) has compact closure} where B(z,r) de-
notes the open ball centered at x € X with radius » > 0. We define
next an equivalence relation £ on X as follows: Firstly we define a
directed graph R on X by xRy if and only if d(x,y) < p(z). Let
R* be the transitive closure of R, i.e. 2R*y if and only if for some
Uyg = T, Uy, ..., U, =y we have u;Ru; 1 for every ¢+ < n. Finally, we
define the following equivalence relation £ on X: z€y if and only if
x =y or (rR*y and yR*z). We call the E-equivalence class of x € X
the pseudo-component of x, and we denote it by C,. It follows that
pseudo-components are closed-open subsets of X, see [2, Proposition
5.3] and ¢gC, = C,, for every g € G.

Before we give the proof of Theorem 1.1 we need some results that
may be of independent interest.

Lemma 1.2. Let X be non-compact J-space and let A = {A;, i € I}
be a partition of X with closed-open non-empty sets. Then A con-
tains only finitely many sets exactly one of which is not compact; its
complement is a compact subset of X.

Proof. We show firstly that there exists a set in A which is not compact.
We argue by contradiction. Assume that every set B € A is compact.
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Then A contains infinitely many distinct sets because otherwise X
must be a compact space. Let {B,, n € N} C A with B,, # By, for
n # k (i.e. B,N By, =) and choose z,, € B,,. Obviously the sequences

{zan_1}, {x2,} have no limit points in X since A is an open partition
—+o00

of X. The sets D =: U By, and X \ D are open (since X \ D is a
n=1
union of elements of A) and disjoint so they form a closed partition of
X. Hence, one of them must be compact. Therefore, at least one of the
sequences {To,_1}, {x2,} has a limit point which is a contradiction.
Fix a non-compact P € A. Since P is a closed-open subset of X
then {P, X \ P} is a closed partition of X. Hence P or X \ P must
be compact. But P is non-compact so X \ P is compact. If K € A
with K # P then K C X \ P. Therefore, K is compact. Moreover A
contains finitely many sets, since X \ P is compact and A is a partition
of X with closed-open non-empty sets. O

The previous lemma makes X a second countable space (i.e. X has
a countable base):

Proposition 1.3. A metrizable locally compact J-space has a countable
base.

Proof. We follow the proof of Lemma 3 in [3, Appendix 2] (actually
this is a result of Sierpinski, see [8]). We define a relation S on X by
xSy if an only if there exist separable open balls B(x,r;) and B(y,r2)
with y € B(z,r) and x € B(y,r2). For every A C X we denote by
SA = {y € X |ySxz for some x € A}. If A = {z} is a singleton we

write Sz instead of S{z}. Set S""'x := S§"z for every n € N and
+oo

Uz) = U S"z. Then, by [3, Lemma 3 in Appendix 2], each U(x)

n=1
is a separable closed-open subset of X and if U(z) N U(y) # 0 then
U(xz) = U(y). Lemma 1.2 implies that we have finitely many of these
sets, hence X is separable so it is second countable. O

Proof of Theorem 1.1. Since every pseudo-component is a closed-open
subset of X we can apply Lemma 1.2 for the family of the pseudo-
components of X. Hence, X has finitely many pseudo-components
exactly one of which, say P, is not compact and its complement X \ P
is a compact subset of X. Take any g € G. Then gP is a non-
compact pseudo-component hence gP = P. This shows that P is
G-invariant. Then G is locally compact, since X has finitely many
pseudo-components (see [2, Corollary 6.2]). We shall show that G acts
properly on P. Assume that there are points x,y € P and a sequence
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{gn} in G with g,z — y. We can use sequences in the definition of limit
sets because X has a countable base. Let {P,C1,Cs,...,Cx} be an
enumeration of the pseudo-components of X. Each pseudo-component
C;,i1=1,...,kis compact. Choose points z; € C;, i = 1,...,k. Since
X \ P is compact we may assume that there exist points y; € X \ P,
i=1,...,k and a subsequence {g,,} of {g,} such that g,,z; — y; for
every i = 1,..., k. By Corollary 3.4 in [4] there is a subsequence of
{9gn,,} of {gn} and amap f : X — X which preserves the distance such
that g,, * — f pointwise on X (we may find a subsequence instead
of a subnet because X has a countable base). Then g 'y — = € P,
since d(g;'y,xr) = d(y, g,z). Repeating the previous arguments we
conclude that there exists a map h : X — X such that g;' — h
pointwise on X and h preserves the distance. Obviously A is the inverse
map of f, hence f € G and G acts properly on P. The group G
may fail to act properly on X \ P. As an example we may take as
X = PUS C R? where P is the plane {(z,y,0))|z,y € R} and S
is the circle {(x,y,2)|2* + y* = 1}. We endow X with the metric
d = min{dg, 1}, where dg is the usual Euclidean metric on R?. Then
the action of GG on S is not proper, since for a point x € S the isotropy
group G, := {g € G| gz = x} is not compact. O

Remark 1.4. If G does not act properly on X \ P one may ask if the
orbits on X \ P are closed or if the isotropy groups of points x € X \ P
are non-compact (see also Question 4.6 in [4]). The answer is negative
in general. As an example we may consider the example in [1]. In this
paper we constructed a one-dimensional manifold with two connected
components, one compact isometric to S', and one non-compact, the
real line with a locally Euclidean metric. It has a complete metric
whose group of isometries has non-closed dense orbits on the compact
component. We can regard the real line as a distorted helix with a
locally Euclidean metric. The problem is that this manifold has two
ends. But this is not really a problem. Following the same arguments
as in [1] we can replace the distorted helix by a small distorted helix-like
stripe and have a space with one end and two connected components,
one compact isometric to S!, and one non-compact with a locally Eu-
clidean metric so that the group of isometries has non-closed dense
orbits on the compact component.
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J-CLASS OPERATORS AND HYPERCYCLICITY
GEORGE COSTAKIS AND ANTONIOS MANOUSSOS

ABSTRACT. The purpose of the present work is to treat a new
notion related to linear dynamics, which can be viewed as a “lo-
calization” of the notion of hypercyclicity. In particular, let T" be
a bounded linear operator acting on a Banach space X and let =
be a non-zero vector in X such that for every open neighborhood
U C X of z and every non-empty open set V' C X there exists
a positive integer n such that T"U NV # (). In this case T will
be called a J-class operator. We investigate the class of operators
satisfying the above property and provide various examples. It is
worthwhile to mention that many results from the theory of hyper-
cyclic operators have their analogues in this setting. For example
we establish results related to the Bourdon-Feldman theorem and
we characterize the J-class weighted shifts. We would also like to
stress that even some non-separable Banach spaces which do not
support topologically transitive operators, as for example [*°(N),
do admit J-class operators.

1. INTRODUCTION

Let X be a complex (or real) Banach space. In the rest of the paper
the symbol T stands for a bounded linear operator acting on X. We
first fix some notation. Consider any subset C' of X. The symbols
C°, C and 9C denote the interior, the closure and the boundary of
C' respectively. The symbol Orb(T,C) denotes the orbit of C' under
T,ie. Orb(T,C)={T"x: 2 € C,n=012,...}. If C ={x}is
a singleton and the orbit Orb(T,x) is dense in X, the operator T is
called hypercyclic and the vector x is a hypercyclic vector for T'. If C' =
{\x : X € C} = Cx and the set Orb(T,C') is dense in X, the operator
T is called supercyclic and the vector z is a supercyclic vector for T'. A
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Key words and phrases. Hypercyclic operators, .J-class operators, .JJ™®-class op-
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2 GEORGE COSTAKIS AND ANTONIOS MANOUSSOS

nice source of examples and properties of hypercyclic and supercyclic
operators is the survey article [18], see also some recent survey articles
[30], [19], [24], [8], [15], [20] and the recent book [2]. Observe that
in case the operator T' is hypercyclic the underlying Banach space X
should be separable. Then it is well known and easy to show that an
operator T : X — X 14s hypercyclic if and only if for every pair of
non-empty open sets U,V of X there exists a positive integer n such
that T"(U) NV # (). The purpose of this paper is twofold. Firstly we
somehow “localize” the notion of hypercyclicity by introducing certain
sets, which we call J-sets. The notion of J-sets is well known in the
theory of topological dynamics, see [6]. Roughly speaking, if = is a
vector in X and T an operator, then the corresponding J-set of x
under 7" describes the asymptotic behavior of all vectors nearby . To
be precise for a given vector x € X we define

J(x) ={y € X : there exist a strictly increasing sequence of positive
integers {k,, } and a sequence {x,} C X such thatx, — xand
Tz, — y}.

Secondly we try to develop a systematic study of operators whose J-
set under some vector is the whole space. As it turns out this new class
of operators although different from the class of hypercyclic operators,
shares some similarities with the behavior of hypercyclic operators. In
fact it is not difficult to see that if 7" is hypercyclic then J(z) = X
for every x € X. On the other hand we provide examples of operators
T such that J(z) = X for some vector x € X but T fails to be hy-
percyclic and in general 7' need not be even multi-cyclic. This should
be compared with the results of Feldman in [16] where he shows that
a countably hypercyclic operator need not be multi-cyclic. We would
like to stress that some non-separable Banach spaces, such as the space
[*°(N) of bounded sequences, support J-class operators, (see Proposi-
tion 5.2), while it is known that the space [*°(N) does not support
topologically transitive operators, see [3].

The paper is organized as follows. In section 2 we define the J-
sets and we examine some basic properties of these sets. In section
3 we investigate the relation between hypercyclicity and J-sets. In
particular we show that T": X — X is hypercyclic if and only if there
exists a cyclic vector z € X such that J(x) = X. Recall that a vector
x is cyclic for T if the linear span of the orbit Orb(T, x) is dense in X.
The main result of section 4 is a generalization of a theorem due to
Bourdon and Feldman, see [11]. Namely, we show that if x is a cyclic
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vector for an operator 7' : X — X and the set J(x) has non-empty
interior then J(z) = X and, in addition, 7" is hypercyclic. In section
5 we introduce the notion of J-class operator and we establish some of
its properties. We also present examples of J-class operators which are
not hypercyclic. On the other hand, we show that if T" is a bilateral or
a unilateral weighted shift on the space of square summable sequences
then T' is hypercyclic if and only if 7" is a J-class operator. Finally, in
section 6 we give a list of open problems.

2. PRELIMINARIES AND BASIC NOTIONS

If one wants to work on general non-separable Banach spaces and
in order to investigate the dynamical behavior of the iterates of T,
the suitable substitute of hypercyclicity is the following well known
notion of topological transitivity which is frequently used in dynamical
systems.

Definition 2.1. An operator T : X — X is called topologically tran-
sitive if for every pair of open sets U,V of X there exists a positive
integer n such that T"U NV # (.

Definition 2.2. Let T': X — X be an operator. For every x € X the
sets

L(z) ={y € X : there exists a strictly increasing sequence
of positive integers {k,} such that T* z — y}
and
J(x) ={y € X : there exist a strictly increasing sequence of positive
integers {k,, } and a sequence {x,} C X such thatx, — xand
TFrz, — y}
denote the limit set and the extended (prolongational) limit set of x

under T respectively. In case T is invertible and for every x € X the

sets LT (x), J*(x) (L~ (z), J~(x)) denote the limit set and the extended
limit set of z under T' (T1).

Remark 2.3. An equivalent definition of J(z) is the following.
J(xz) ={y € X : for every pair of neighborhoods U, V of z, y
respectively, there exists a positive integer n,

such that T"U NV # 0}.

Observe now that T is topologically transitive if and only if J(z) = X
for every z € X.



4 GEORGE COSTAKIS AND ANTONIOS MANOUSSOS

Definition 2.4. Let T : X — X be an operator. A vector x is called
periodic for T if there exists a positive integer n such that T"z = z.

The proof of the following lemma can be found in [12].

Lemma 2.5. Let T : X — X be an operator and {z,}, {y.} be two
sequences in X such that x, — x and y, — y for some x,y € X. If
Yn € J(xy) for everyn =1,2,..., then y € J(x).

Proposition 2.6. For all z € X the sets L(z), J(x) are closed and
T-invariant.

Proof. 1t is an immediate consequence of the previous lemma. O

Remark 2.7. Note that the set J(z) is not always invariant under the
operation 7! even in the case T is surjective. For example consider
the operator T' = %B where B is the backward shift operator on *(N),
the space of square summable sequences. Since ||| = 1 it follows
that L(z) = J(z) = {0} for every x € [*(N). For any non-zero vector
y € KerT we have Ty =0 € J(z) and y € X \ J(z). However, if T is
invertible it is easy to verify the following.

Proposition 2.8. Let T : X — X be an invertible operator. Then
T J(x) = J(x) for every x € X.

Proof. By Proposition 2.6 it follows that J(x) C T7'J(z). Take y €
T~1J(x). There are a strictly increasing sequence {k,} of positive
integers and a sequence {r,} C X so that x, — z and T*z, — Ty,
hence "1z, — 4. O

Proposition 2.9. Let T : X — X be an invertible operator and x,y €
X. Theny € Jt(z) if and only if x € J (y).

Proof. It y € J*(x) there exist a strictly increasing sequence {k,} of
positive integers and a sequence {x,} C X such that z, — z and
T*nx, — y. Then T F»(T* z,) = x, — x, hence x € J~ (y). O

Proposition 2.10. Let T : X — X be an operator. If T is power
bounded then J(x) = L(z) for every z € X.

Proof. Since T' is power bounded there exists a positive number M such
that [|7"]| < M for every positive integer n. Fix a vector x € X. If
J(z) = 0 there is nothing to prove. Therefore assume that J(z) # 0.
Since the inclusion L(x) C J(x) is always true, it suffices to show that
J(z) C L(x). Take y € J(x). There exist a strictly increasing sequence
{k,} of positive integers and a sequence {z,,} C X such that z,, — x
and T*x, — y. Then we have |[T*z — y| < |[|[T*z — Tra,| +
Tz, —y|| < M|z — 2| + || T" 2, — y|| and letting n goes to infinity
to the above inequality, we get that y € L(x). O
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Lemma 2.11. Let T : X — X be an operator. If J(x) = X for some
non-zero vector v € X then J(Ax) = X for every A € C.

Proof. For A € C\ {0} it is easy to see that J(Ax) = X. It remains to
show that J(0) = X. Fix a sequence of non-zero complex numbers {\,, }
converging to 0 and take y € J(x). Then y € J(A\,z) for every n and
since A\, — 0, Lemma 2.5 implies that y € J(0). Hence J(0) = X. O

Proposition 2.12. Let T : X — X be an operator. Define the set
A={r e X :J(x)=X}. Then A is a closed, connected and T'(A) C
A.

Proof. The T-invariance follows immediately from the T-invariance of
J(z). By Lemma 2.5 we conclude that A is closed. Let x € A. Lemma
2.11 implies that for every A € C, J(0) = J(Az) = X, hence A is
connected. U

3. A CHARACTERIZATION OF HYPERCYCLIC
OPERATORS THROUGH J-SETS

The following characterization of hypercyclic operators appears more
or less in [18]. However we sketch the proof for the purpose of com-
pleteness.

Theorem 3.1. Let T : X — X be an operator acting on a separable
Banach space X. The following are equivalent.
(i) T is hypercyclic;
(ii) For every x € X it holds that J(z) = X;
(iii) The set A={x € X : J(z) = X} is dense in X;
(iv) The set A={x € X : J(z) = X} has non-empty interior.

Proof. We first prove that (i) implies (ii). Let z,y € X. Since the
set of hypercyclic vectors is G5 and dense in X there exist a sequence
{z,} of hypercyclic vectors and a strictly increasing sequence {k,} of
positive integers such that x, — x and 7%z, — y as n — oo. Hence
y € J(z). That (ii) implies (iii) is trivial. A consequence of Lemma
2.5 is that (iii) gives (ii). Next we show that (iv) implies (ii). Fix
x € A° and consider y € X arbitrary. Then y € J(x) = X, hence
there exist a sequence {z,} C X and a strictly increasing sequence
{k,} of positive integers such that x, — x and T*x, — y. Since
x € A° without loss of generality we may assume that z,, € A for every
n. Moreover A is T-invariant, hence 7%z, € A for every n. Since
Tkng, — y and A is closed we conclude that y € A. Let us now prove
that (ii) implies (i). Fix {z;} a countable dense set of X. Define the
sets E(j,s,n) ={z € X : |T"z—z,|| < %} for every j,s =1,2,... and



6 GEORGE COSTAKIS AND ANTONIOS MANOUSSOS

every n = 0,1,2,.... In view of Baire’s Category Theorem and the
well known set theoretical description of hypercyclic vectors through
the sets E(j,s,n), it suffices to show that the set |J,—, E(j,s,n) is
dense in X for every j,s. Indeed, let y € X, € > 0, j, s be given. Since
J(y) = X, there exist x € X and n € N such that ||z — y|| < € and
|T"e — x| < 1/s. O

The following lemma -see also Corollary 3.4- which is of great im-
portance in the present paper, gives information about the spectrum
of the adjoint T™ of an operator T : X — X provided there is a vector
x € X whose extended limit set J(z) has non-empty interior. The
corresponding result for hypercyclic operators has been proven by P.
Bourdon in [9].

Lemma 3.2. Let T : X — X be an operator acting on a complex or
real Banach space X. Suppose there exists a vector v € X such that
J(x) has non-empty interior and x is cyclic for T. Then for every non-
zero polynomial P the operator P(T) has dense range. In particular the
point spectrum o,(T*) of T* (the adjoint operator of T') is empty, i.e.
op(T) = 0.

Proof. Assume first that X is a complex Banach space. Since P(T) can
be decomposed in the form P(T) = a(T—MI)(T—XoI) ... (T =\ I) for
some a, \; € C, i =1,...,k, where I stands for the identity operator, it
suffices to show that T'— A\I has dense range for any A € C. If not, there
exists a non-zero linear functional z* such that «*((7'— A\I)(x)) = 0 for
every x € X. The last implies that 2*(T"z) = A"z*(x) for every z € X
and every n non-negative integer. Take y in the interior of J(x). Then
there exist a sequence {z,} C X and a strictly increasing sequence
{k,} of positive integers such that z,, — x and T* x,, — y as n — +oo.
Suppose first that |A| < 1. Observe that x*(T* x,) = \™z*(z,) and
letting n — 400 we arrive at *(y) = 0. Since the functional z* is
zero on an open subset of X must be identically zero on X, which is
a contradiction. Working for |A\| = 1 as before, it is easy to show that
for every y in the interior of J(x), *(y) = pz*(x) for some pu € C
with |u| = 1, which is again a contradiction since z* is surjective.
Finally we deal with the case |A\| > 1. At this part of the proof we shall
use the hypothesis that x is cyclic. Letting n tend to infinity in the
relation z*(z,) = =" (T*"x,), it is plain that 2*(z) = 0 and therefore
x*(T"x) = 0 for every n non-negative integer. The last implies that
z*(P(T)x) = 0 for every P non-zero polynomial and since x is cyclic the
linear functional z* vanishes everywhere, which gives a contradiction.
It remains to handle the real case. For that it suffices to consider
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the case where P is an irreducible and monic polynomial of the form
P(t) = t* — 2Re(w)t + |w|* for some non-real complex number w.
Assume that P(7") does not have dense range. Then there exists a non-
zero z* € Ker(P(T)*). Following the proof of the main result in [5],
there exists a real 2 x 2 matrix A such that Ju:((x*(Tx), z*(z))!) = R?,
where the symbol A’ stands for the transpose of A. By Proposition 5.5
(which holds in the real case as well) we get z*(T'z) = 2*(x) = 0. The
last implies that z*(Q(T")x) = 0 for every real polynomial ). Since x is
cyclic we conclude that * = 0 which is a contradiction. This completes
the proof of the lemma. O

Theorem 3.3. Let T : X — X be an operator acting on a separable
Banach space X. Then T is hypercyclic if and only if there exists a
cyclic vector x € X for T such that J(x) = X.

Proof. We need only to prove that if x € X is a cyclic vector for T'
and J(x) = X then T is hypercyclic. Take any non-zero polynomial
P. 1t is easy to check that P(T)(J(x)) C J(P(T)x). By the previous
lemma it follows that P(T") has dense range and since J(z) = X we
conclude that X = P(T)(X) C J(P(T)x). Therefore J(P(T)x) = X
for every non-zero polynomial P. The fact that = is a cyclic vector it
now implies that there exists a dense set D in X so that J(y) = X for
every y € D. Hence, in view of Theorem 3.1, T" is hypercyclic. U

Corollary 3.4. Let T : X — X be an operator. Suppose there exists
a vector x € X such that J(z) has non-empty interior. Then for every
A € C with |A| <1 the operator T — X has dense range.

Proof. See the proof of Lemma 3.2. O

Remark 3.5. At this point we would like to comment on Theorem 3.3.
First of all under the hypothesis that x is a cyclic vector for T and
J(z) = X one cannot get a stronger conclusion than 7' is hypercyclic.
In particular it is not true in general that = is a hypercyclic vector. To
see this, take T' = 2B where B is the backward shift operator acting on
the space of square summable sequences [*(N) over C. In [14] Feldman
showed that for a given positive number € there exists a vector z € [*(N)
such that the set Orb(2B,z) is e-dense in [*(N) (this means that for
every y € [%(N) there exists a positive integer n such that T"x is e
close to y), but z is not hypercyclic for 2B. It is straightforward to
check that x is supercyclic for 2B and hence it is cyclic. In addition
J(z) = I*(N) since 2B is hypercyclic (see Theorem 3.1).

Remark 3.6. Let us now show that the hypothesis x is cyclic in Theorem
3.3 cannot be omitted. Let B : [*(N) — [*(N) be the backward shift
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operator. Consider the operator T'= 2 ® 2B : C® I*(N) — C ® *(N),
where [ is the identity operator acting on C. It is obvious that 2/ & 2B
is not a hypercyclic operator. However we shall show that for every
hypercyclic vector y € (?(N) for 2B it holds that J(0®y) = C @ I*(N).
Therefore there exist (non-cyclic) non-zero vectors x € C @ I?(N) with
J(x) = C® [*(N) and T is not hypercyclic. Indeed, fix a hypercyclic
vector y € [*(N) for 2B and let A € C, w € [*(N). There exists a strictly
increasing sequence of positive integers {k,} such that T%y — w.
Define z,, = 2,%” ®vy. Then z, - 0@y and T*x, — A\ @ w. Hence,

J(0®y)=CaI*N).

4. AN EXTENSION OF BOURDON-FELDMAN’S
THEOREM

In this section we establish an extension of the following striking
result due to Bourdon and Feldman [11]: if X is a separable Banach
space, T : X — X an operator and for some vector x € X the orbit
Orb(T, x) is somewhere dense then Orb(T,x) = X. This theorem was
an answer to a question raised by Peris in [26]. We shall prove the
following theorem.

Theorem 4.1. Let x be a cyclic vector for T. If J(x)° # 0 then
J(z)=X.

In order to prove Theorem 4.1 we follow the steps of the proof of
Bourdon-Feldman’s theorem. Of course there are some extra techni-
calities which have to be taken care since the orbit Orb(T, x) of x under
T is replaced by the extended limit set J(x) of x.

Lemma 4.2. If for some non-zero polynomial P the operator P(T)
has dense range and x is a cyclic vector for T' then P(T)x is cyclic for

T.

Proof. Take P(T)y for some y € X. Since z is cyclic there is a
sequence of polynomials {Q,} such that Q,(T)z — y. Therefore,
Qn(T)(P(T)z) — P(T)y. O

Lemma 4.3. Assume that x is a cyclic vector for T and J(x) has
non-empty interior. Then the set X \ J(x)° is T-invariant.

Proof. We argue by contradiction. Let y € X \ J(x)° be such that
Ty € J(x)°. By the continuity of " we may assume that y ¢ J(z).

Moreover, since z is cyclic we may find a non-zero polynomial P(T)
such that P(T)x € X \ J(x)° and TP(T)x € J(z)°. Hence, there



J-CLASS OPERATORS AND HYPERCYCLICITY 9

exist a sequence {z,} C X and a strictly increasing sequence of pos-
itive integers {k,} such that x, — z and T*z, — TP(T)z. Tak-
ing any polynomial @ we get Q(T)z, — Q(T)x and T*Q(T)x, =
Q(T)(TFrx,) — Q(T)TP(T)x. So it follows that P(T)TQ(T)x €
J(Q(T)x) for every polynomial Q. But J(Q(T)z) C J(T'Q(T)x), hence
we get P(T)TQ(T)x € J(TQ(T)x) for every polynomial (). By Lem-
mata 3.2 and 4.2, T'x is a cyclic vector for T', hence there exists a se-
quence of the form {Q,(T)z}, for some non-zero polynomials @,,, such
that T7Q, (T)x — x. Therefore it follows that P(T)T'Q,(T)x — P(T)x.
Observe that P(T)TQ,(T)x € J(TQ,(T)x) and using Lemma 2.5 it
follows that P(T)x € J(x) which is a contradiction. O

Lemma 4.4. Assume that x is a cyclic vector for T and J(x) has
non-empty interior. Suppose that Q(T)x € X\ J(x) for some non-zero
polynomial Q. Then Q(T)(J(x)) C X \ J(x)°.

Proof. Let y € J(x). There exist a sequence {x,} C X and a strictly
increasing sequence of positive integers {k,} such that x, — z and
T*»x, — y. Since X\ J(x) is an open set we may assume that Q(T)x,, €
X \ J(z) for every n and thus Q(T)x, € X \ J(z)°. By Lemma 4.3
the set X \ J(x)° is T-invariant, therefore 7% Q(T)x = Q(T)T*z,, €
X\ J(z)°. Now it is plain that Q(T)y € X \ J(x)°. O

Lemma 4.5. Assume that x is a cyclic vector for T, J(x) has non-
empty interior and let P be any non zero polynomial. Then P(T)x ¢
O(J(x)°).

Proof. In view of Lemma 4.4 let us define the set
A={Q: Qis a polynomial and Q(T)z € X \ J(x)}.

Note that the set {Qx : @ € A} is dense in X \ J(x)°. We argue
by contradiction. Suppose there exists a non-zero polynomial P so
that P(T)x € 0(J(x)°). The inclusion d(J(x)°) C dJ(x) gives that
P(T)x € 0(X \ J(x)). We will prove that P(T)(J(z)°) C X \ J(z)°.
Since z is a cyclic vector and J(x)? is open, it is enough to show that:
it S(T)z € J(z)° for some non-zero polynomial S then P(T)S(T)x €
X\ J(x)°. We have P(T)x € 9(X \ J(z)). Therefore there exists
a sequence {Q,(T)z} such that @, € A and Q,(T)r — P(T)x.
Hence Lemma 4.4 yields that Q,(7)S(T)z € X \ J(z)°. So, we get
Q.(T)S(T)x — P(T)S(T)x and P(T)S(T)x € X \ J(z)°. Consider
the set D = J(z)°U{Q(T)x : @ € A} which is dense in X. By
Lemma 3.2, P(T)D is dense in X. Since P(T)x € J(z), Lemma 4.4
implies that Q(T)P(T)x € X \ J(x)° for every ) € A. Hence

P(T)D = P(T)(J(x)*) | J{P(T)Q(T)x : Q € A} € X\ J(x)",
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which is a contradiction. O

Proof of Theorem 4.1 The set { P(7")x : Pis a non-zero polynomial}
is dense and connected. Assume that J(z) # X. So we can find a
non-zero polynomial P such that P(T)z € 9(J(x)°). This contradicts
Lemma 4.5. U

Corollary 4.6. Let T : X — X be an operator. If there exists a cyclic
vector x € X for T such that J(x) has non-empty interior then T is
hypercyclic.

Proof. The proof follows by combining Theorems 3.3 and 4.1. O

Corollary 4.7 (Bourdon-Feldman’s theorem). Let T': X — X be an
operator. If for some vector x € X the orbit Orb(T,x) is somewhere
dense then it is everywhere dense.

Proof. Tt is easy to see that x is a cyclic vector for T'. Since Orbd(T, x)
is somewhere dense, it follows that L(z)° # (). Note that L(z) C
J(z). Hence Theorem 4.1 implies that J(xz) = X. The set Orb(T, )
has non-empty interior so we can find a positive integer [ such that
T'x € Orb(T, x)o. Since J(z) = X and J(z) C J(T'x) we arrive at
J(T'z) = X. So it is enough to prove that Orb(T,z) = J(T'z). Let
y € J(T'z). There exist a sequence {z,,} C X and a strictly increasing
sequence of positive integers {k,} such that x, — T'z and T*z,, — .
Observing that T'x € Orb(T, x)o, without loss of generality we may
assume that z, € Orb(T,z) for every n. Moreover Orb(T, z) is T-
invariant, hence T*»x,, € Orb(T,z) for every n. Since T* z,, — y we
conclude that y € Orb(T, z). O

Corollary 4.8. Let T : X — X be an operator. Suppose there exist a
vector x € X and a polynomial P such that P(T)z is a cyclic vector
for T'. If the set J(x) has non-empty interior then T is hypercyclic.

Proof. Since P(T')z is a cyclic vector for 7' it is obvious that x is a cyclic
vector for T. Using the hypothesis that the set J(z) has non-empty
interior, Corollary 4.6 implies the desired result. O

Remark 4.9. The conclusion of Corollary 4.6 does not hold in general
if z is a cyclic vector for T" and J(P(T)x) = X for some polynomial P.
To see that, consider the space X = C®I*(N) and let B : [?(N) — [*(N)
be the backward shift operator. Define the operator T" = 21 @ 3B
X — X, where I denotes the identity operator acting on C. Take any
hypercyclic vector y for 3B and define x = 1 @ y. Then z is cyclic for
T (in fact = is supercyclic for T') and obviously 7" is not hypercyclic.
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In fact it holds that J(x) = (). Consider the polynomial P(z) = z — 2.
Then P(T)z = 0 P(3B)y. Since y is hypercyclic for 3B, by a classical
result due to Bourdon [9], the vector P(3B)xz is hypercyclic for 3B as
well. Then using a similar argument as in Remark 3.6 we conclude
that J(P(T)z) = J(0 @ P(3B)y) = X. In particular, the above shows
that, if T is cyclic and J(x) = X for some vector x € X then T is not
hypercyclic in general. On the other hand, we have the following.

Corollary 4.10. Let T : X — X be an operator. Suppose P is a
non-zero polynomial such that P(T) has dense range. If x is a cyclic
vector for T, P(T)x # 0 and J(P(T)x)° # 0 then T is hypercyclic.

Proof. Lemma 4.2 implies that P(T")z is a cyclic vector for T. Since
J(P(T)x)° # (), Corollary 4.6 implies that T is hypercyclic. O

5. J-CLASS OPERATORS

Definition 5.1. An operator T : X — X will be called a J-class
operator provided there exists a non-zero vector x € X so that the
extended limit set of x under T' (see Definition 2.2) is the whole space,
ie. J(z) = X. In this case x will be called a J-class vector for T.

The reason we exclude the extended limit set of the zero vector is to
avoid certain trivialities, as for example the multiples of the identity
operator acting on finite or infinite dimensional spaces. To explain
briefly, for any positive integer n consider the operator A\l : C* —
C", where A is a complex number of modulus greater than 1 and [ is
the identity operator. It is then easy to check that Jy;(0) = X and
Ja(x) # C™ for every x € C"\ {0}. However, the extended limit
set of the zero vector plays an important role in checking whether an
operator T': X — X -acting on a Banach space X- supports non-zero
vectors z with Jr(z) = X, see Proposition 5.9. Let us also point out
that from the examples we presented in section 3, see Remark 3.6, it
clearly follows that this new class of operators does not coincide with
the class of hypercyclic operators.

Let us turn our attention to non-separable Banach spaces. Obviously
a non-separable Banach space cannot support hypercyclic operators.
However, it is known that topologically transitive operators may ex-
ist in non-separable Banach spaces, see for instance [7]. On the other
hand in [3], Bermudez and Kalton showed that the non-separable Ba-
nach space [*°(N) of bounded sequences over C does not support topo-
logically transitive operators. Below we prove that the Banach space
[*°(N) supports J-class operators.
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Proposition 5.2. Let B : [*(N) — [*°(N) be the backward shift where
[*(N) is the Banach space of bounded sequences over C, endowed with
the usual supremum norm. Then for every |\ > 1, AB is a J-class
operator. In fact we have the following complete characterization of the
set of J-class vectors. For every |\ > 1 it holds that

{z € I(N) : Jyg(x) =1*(N)} = ¢(N),
where ¢o(N) = {x = (zp)nen € [®(N) @ lim,, 400 x, = 0}.

Proof. Fix |A\| > 1. Let us first show that if x is a vector in [*(N)
with finite support then Jyg(x) = (°°(N). For simplicity let us assume
that x = e; = (1,0,0,...). Take any y = (y1,¥2,...) € [*(N). De-
fine z, = (1,0,...,0,%, 4 ...) where 0’s are taken up to the n-th
coordinate. Obviously z,, € [*°(N) and it is straightforward to check
that z, — e; and (AB)"z, = y for all n. Hence, Jyg(e;) = [*(N).
Since the closure of the set consisting of all the vectors with finite
support is ¢y(N), an application of Lemma 2.5 gives that ¢y(N) is
contained in {z € I*°(N) : Jyg(x) = [*°(N)}. It remains to show
the converse implication. Suppose that Jyg(z) = [*°(N) for some
non-zero vector x = (x1,%s,...) € [*°(N). Then there exist a se-
quence Y, = (Yn1,Yn2,---), n = 1,2,... in [*(N) and a strictly in-
creasing sequence of positive integers {k,} such that y, — x and
(AB)kry, — 0. Consider ¢ > 0. There exists a positive integer ng
such that ||y, — z|| < e and [|[(AB)*ry, || = [A[* sup,sp, 11 [Ynm| < € for
every n > ng. Hence for every m > k,, + 1 and since |A| > 1 it holds
that |2, < ||Yne — || + |Ungm| < 2¢. The last implies that = € ¢y(N)
and this completes the proof. l

Remark 5.3. The previous proof actually yields that for every |A| > 1,
Jag(z) = 1*°(N) if and only if 0 € Jyp(x).

Next we show that certain operators, such as positive, compact, hy-
ponormal and operators acting on finite dimensional spaces cannot be
J-class operators. It is well known that the above mentioned classes of
operators are disjoint from the class of hypercyclic operators, see [23],
[10].

Proposition 5.4. (i) Let X be an infinite dimensional separable
Banach space and T : X — X be an operator. If T is compact
then it is not a J-class operator.

(ii) Let H be an infinite dimensional separable Hilbert space and
T : H— H be an operator. If T is positive or hyponormal then
it 1s not a J-class operator.
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Proof. Let us prove assertion (i). Suppose first that 7" is compact. If
T is a J-class operator, there exists a non-zero vector x € X so that
J(z) = X. It is clear that there exists a bounded set C' C X such that
the set Orb(T,C) is dense in X. Then according to Proposition 4.4 in
[16] no component of the spectrum, o(T'), of T' can be contained in the
open unit disk. However, for compact operators the singleton {0} is
always a component of the spectrum and this gives a contradiction.
We proceed with the proof of the second statement. Suppose now
that 7" is hyponormal. If T"is a J-class operator, there exists a non-zero
vector h € H so that J(h) = H. Therefore there exists a bounded set
C' C H which is bounded away from zero (since h # 0) such that the
set Orb(T, C) is dense in X. The last contradicts Theorem 5.10 in [16].
The case of a positive operator is an easy exercise and is left to the
reader. U

Below we prove that any operator acting on a finite dimensional
space cannot be .J-class operator.

Proposition 5.5. Fiz any positive integer | and let A : C' — C' be a
linear map. Then A is not a J-class operator. In fact J(x)° =0 for
every z € CH\ {0}.

Proof. By the Jordan’s canonical form theorem for A we may assume
that A is a Jordan block with eigenvalue A\ € C. Assume on the
contrary that there exists a non-zero vector € C' with coordinates
21,...,2% such that J(z)° = 0. If {z,} € C'is such that z, — =z
and 2,1, ..., 2y be the corresponding coordinates to x,, then the m-th
coordinate of A"z, equals to

l-m
Z ( Z ) AR ) -
k=0

If |A] < 1 then J(z) = {0}. It remains to consider the case |\| >
1. Suppose z; # 0. Then, for every strictly increasing sequence of
positive integers {k,} the possible limit points of the sequence {\*"z,;}
are: either oo in case |[A| > 1 or a subset of the circumference {z €
C : |z| = |z} in case |A\| = 1. This leads to a contradiction since
J(x)° # (. Therefore, the last coordinate z of the non-zero vector
x € C! should be 0. In case |\ = 1 and since z; = 0 the only limit
point of {\*n2,,} is 0 for every strictly increasing sequence of positive
integers {k,}. So J(z)° C C!=! x {0}, a contradiction. Assume now
that |A] > 1. For the convenience of the reader we give the proof
in the case | = 3. Take y = (y1,¥2,y3) € J(x). There exist a strictly
increasing sequence {k,} of positive integers and a sequence {z,} C C?
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such that z, = (Zn1, Tno, Tn3) — (21,22,0) = x and A*»x, — y. Let
Yn = (ym, Yn2, yns) = Ak”xn. Hence we have

_ \kn kn—1 kn kn_l) kn—2

Yns = A Tp1 + kn>\ Tp2 + ( D) A Tn3
kn kn—1

Yn2 = A Tpo + kn>\ Tn3

Yn1 = )\knan-

Since yn3 = A*x,3 — y3 then k,(k, — 1)z,3 — 0. From 9,0 — yo we
’\,% kpnZna + N1z, 5 — 0. Using the fact that \fra,5 — y3

it follows that the sequence {% knxno} converges to a finite complex

Yn2 _
get e =

number, hence k,x,» — 0. The last implies z,» — 0, therefore z, = 0.

We have x,,; = %2 — %knxng — %)\an(l{?n — 1)z,3. Observing that each

one term on the right hand side in the previous equality goes to 0,
since y,3 — ¥y3, we arrive at z; = 0. Therefore x = 0 which is a
contradiction. O

Remark 5.6. The previous result does not hold in general if we remove
the hypothesis that A is linear even if the dimension of the space is 1. It
is well known that the function f : (0,1) — (0,1) with f(z) = 4z(1—2)
is chaotic, see [13]. Consider any homeomorphism ¢ : (0,1) — R. Take
h=g¢gfg ' : R — R. Then it is obvious that there is a G5 and dense
set of points with dense orbits in R. Applying Theorem 3.1 (observe
that this corollary holds without the assumption of linearity for 7') we
get that J(x) = R, for every x € R.

It is well known, see [22], that if T is a hypercyclic and invertible
operator, its inverse T~! is hypercyclic. On the other hand, as we show
below, the previously mentioned result fails for J-class operators.

Proposition 5.7. There exists an invertible J-class operator T acting
on a Banach space X so that its inverse T—1 is not a J-class operator.

Proof. Take any hypercyclic invertible operator S acting on a Banach
space Y and consider the operator T'=Alc & S: ChpY - CahY, for
any fixed complex number A with |A| > 1. Then, arguing as in Remark
3.6 it is easy to show that T" is a J-class operator. However its inverse
T=1 = X" @ S~ is not a J-class operator since |A7!| < 1. O

Salas in [28] answering a question of D. Herrero constructed a hy-
percyclic operator T" on a Hilbert space such that its adjoint 7™ is also
hypercyclic but T'@T™ is not hypercyclic. In fact the following (unpub-
lished) result of Deddens holds: suppose T is an operator, acting on a
complex Hilbert space, whose matriz with respect to some orthonormal
basis, consists entirely of real entries. Then T & T* is not cyclic. A
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proof of Deddens result can be found in the expository paper [30]. Re-
cently, Montes and Shkarin, see [25], extended Deddens’ result to the
general setting of Banach space operators. Hence it is natural to ask
if there exists an operator T" such that T' @ T is a J-class operator.
Below we show that this is not the case.

Proposition 5.8. Let T be an operator acting on a Hilbert space H.
Then T & T™ is not a J-class operator.

Proof. We argue by contradiction, so assume that T'& T™ is a J-class
operator. Hence there exist vectors x,y € H such that J(z®y) = HGH
and x @y # 0.

Case I: suppose that one of the vectors x,y is zero. Without loss of
generality assume « = 0. Then there exist sequences {z,},{y.} C H
and a strictly increasing sequence of positive integers {k,} such that
r, - v =0y, =y, T*x, =y and Ty, — x = 0. Taking limits
to the following equality < T*rxz,,, vy, >=< x,,T**"y, > we get that
llyl| = ||z|| = 0 and hence y = 0. Therefore x & y = 0, which yields a
contradiction.

Case II: suppose that x # 0 and y # 0. Let us show first that
J(Ax@®py) = H® H for every A\, u € C\{0}. Indeed, fix A\, u € C\{0}.
Take any z,w € H. Since J(z @ y) = H @ H, there exist sequences
{zn},{yn} C H and a strictly increasing sequence of positive integers
{k,} such that z, — z, y, — vy, T"z, — \'z and Ty, — p~tw.
The last implies that z®w € J(Az @ py), hence J(A\x G py) = H S H.
With no loss of generality we may assume that ||z| # ||ly|| (because
if ||z]| = ||y||, by multiplying with a suitable A\ € C\ {0} we have
IAz]| # |ly|| and J(Az @ y) = H & H). Then we proceed as in Case |
and arrive at a contradiction. The details are left to the reader. U

Below we establish that, for a quite large class of operators, an oper-
ator T' is a J-class operator if and only if J(0) = X. What we need to
assume is that there exists at least one non-zero vector having “regular”
orbit under T'.

Proposition 5.9. Let T : X — X be an operator on a Banach space
X.

(i) For every positive integer m it holds that Jr(0) = Jrm(0).
(ii) Suppose that z is a non-zero periodic point for T. Then the
following are equivalent.
(1) T is a J-class operator;
(2) J(0) = X;
(3) J(z) = X.
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(iii) Suppose there exist a non-zero vector z € X, a vector w € X
and a sequence {z,} C X such that z, — z and T"z, — w.
Then the following are equivalent.

(1) T is a J-class operator;
(2) J(0) = X;
(3) J(z) = X.

In particular, this statement holds for operators with non triv-
1al kernel or for operators having at least one non-zero fixed
point.

Proof. Let us first show item (i). Fix any positive integer m and let
y € Jr(0). There exist a strictly increasing sequence of positive integers
{k,} and a sequence {z,,} in X such that z, — 0 and T* xz, — .
Then for every n there exist non-negative integers l,, p, with p, €
{0,1,...,m — 1} such that k, = l,m + p,. Hence without loss of
generality we may assume that there is p € {0, 1,...,m — 1} such that
kn = l,m + p for every n. The last implies that 7" (T?z,) — y and
T?z, — 0 as n — oco. Hence Jr(0) C Jrm(0). The converse inclusion
is obvious. Let us show assertion (ii). That (1) implies (2) is an
immediate consequence of Lemma 2.11. We shall prove that (2) gives
(3). Suppose that N is the period of the periodic point z. Fix w € X
Assertion (i) yields that Jp~(0) = X. Hence there exist a strictly
increasing sequence of positive integers {m,} and a sequence {y,} in
X such that y, — 0 and TV™ny, — w — 2. It follows that y, + z — 2
and TN™» (y,, + ) — w, from which we conclude that Jr(z) = X. This
proves assertion (ii). We proceed with the proof of assertion (iii). It
only remains to show that (2) implies (3). Take any y € X. There
exist a sequence {z,} C X and a strictly increasing sequence {k,} of
positive integers such that x,, — 0 and 7%z, — y —w. Our hypothesis
implies that z,, + 2z, — 2 and T* (z,, + z1,) — y. Hence y € J(z). O

In the following proposition we provide a construction of J-class
operators which are not hypercyclic.

Proposition 5.10. Let X be a Banach space and let Y be a separable
Banach space. Consider an operator S : X — X so that o(S) C {\:
Al > 1}. Let also T :Y — Y be a hypercyclic operator. Then

i) SeT : XY - X&Y is a J-class operator but not a
hypercyclic operator and

(i) the set {xdy 2z € X,y € Y such that J(xdy) = X &Y}
forms an infinite dimensional closed subspace of X &Y and in
particular

{rdy:zeX,yeY such that J(xdy)=XdY}={0} Y.
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Proof. We first prove assertion (i). That S @ T is not a hypercyclic
operator is an immediate consequence of the fact that o(S) C {\ :
|A| > 1}. Let us now prove that S & T is a J-class operator. Fix
any hypercyclic vector y € Y for T. We shall show that J(0 & y) =
X @Y. Take z € X and w € Y. Since o(S) C {X : |A] > 1} it
follows that S is invertible and o(S™') C {X : |\| < 1}. Hence the
spectral radius formula implies that ||S™"|| — 0. Therefore S~z — 0.
Since y is hypercyclic for T there exists a strictly increasing sequence
of positive integers {k,} such that 7"y — w. Observe now that
(SeT)(S™™rpy) =ac®Try — zdwand SFrdy — 0dy. We
proceed with the proof of (ii). Fix any hypercyclic vector y € Y for T.
From the proof of (i) we get J(0®y) = X @Y. Since for every positive
integer n the vector T™y is hypercyclic for T', by the same reasoning as
above we have that J(0 ® T"y) = X @Y. Using Lemma 2.5 and that
y is hypercyclic for T we conclude that J(0 ® w) = X @Y for every
w € Y. To finish the proof, it suffices to show that if z € X \ {0}
then for every w € Y, J(z & w) # X. In particular we will show that
J(x @& w) = (. Suppose there exists h € J*(z) = J(x) (see Definition
2.2). Propositions 2.9 and 2.10 imply that = € J~(h) = L~ (h) (since
S~!is power bounded). On the other hand ||[S™| — 0 and therefore
x € L~ (h) = {0}, which is a contradiction. O

Let us point out that Proposition 5.10 shows that the cyclicity as-
sumption is indeed necessary in Corollary 4.8 and Lemma 3.2. We next
provide some information on the spectrum of a J-class operator. Recall
that if 7" is hypercyclic then every component of the spectrum o(7T)
intersects the unit circle, see [23]. Although the spectrum of a J-class
operator intersects the unit circle 0D, see Proposition 5.12 below, it
may admits components not intersecting dD. For instance consider the
J-class operator 2B & 31, where B is the backward shift on [?(N) and
I is the identity operator on C.

Proposition 5.11. Let T' : X — X be an operator on a complex
Banach space X. If r(T) < 1, where r(T) denotes the spectral radius
of T, or o(T) C {X: |\ > 1} then T is not a J-class operator.

Proof. 1f r(T') < 1 then we have ||T"|| — 0. Hence T is not a J-class
operator. If o(T) C {\ : |A\| > 1} the conclusion follows by the proof
of Proposition 5.10. 0

Proposition 5.12. Let X be a complex Banach space. If T : X — X
is a J-class operator, it holds that o(T) N 0D # (.

Proof. Assume, on the contrary, that o(7) N 9D = (). Then we have
o(T) = 01U oy where 01 = {\ € o(T) : [N\ < 1} and 09 = {\ €
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o(T) : |A| > 1}. If at least one of the sets o1, o9 is empty, we reach
a contradiction because of Proposition 5.11. Assume now that both
01, 09 are non-empty. Applying Riesz decomposition theorem, see [27],
there exist invariant subspaces X7, X5 of X under T such that X =
X; @ X5 and o(T;) = 0, i = 1,2, where T; denotes the restriction of
T to X;, 1 = 1,2. It follows that T' = T7 & 1T, and since T is J-class
it is easy to show that at least one of T3, T5 is a J-class operator. By
Proposition 5.11 we arrive again at a contradiction. U

Proposition 5.13. Let T : [*(N) — [*(N) be a unilateral backward
weighted shift with positive weight sequence {a,} and consider a vector
x = (z1,79,...) € I*(N). The following are equivalent.

(i) T is hypercyclic;

(ii) J(z) = I*(N);

(iif) J(z)° # 0.
Proof. 1t only remains to prove that (iii) implies (i). Suppose J(z)° #
(). Then there exists a vector y = (y1,¥2,...) € J(x) such that y; #
0. Hence we may find a strictly increasing sequence {k,} of positive
integers and a sequence {z,} in I*(N), z, = (2n1, 22, - - -), such that
2, — x and Tz, — y. We have

|(T an_yl|—‘<H04z> (kn+1) — Y1

The above inequality implies z,,+1) — 0 and since y; # 0 we arrive

— 0.

at Hf;l a; — +00. By Salas’ characterization of hypercyclic unilateral
weighted shifts, see [29], it follows that T is hypercyclic. O

Remark 5.14. We would also like to mention that (ii) implies (i) in the
previous proposition, is an immediate consequence of Proposition 5.3
n [16]. Let us stress that in case 7' is a unilateral backward weighted
shift on [?(N), the condition J(0) = [*(N) implies that 7" is hypercyclic.
For a characterization of J-class unilateral weighted shifts on [*(N) in
terms of their weight sequence see [12].

Proposition 5.15. Let T : I*(Z) — [*(Z) be a bilateral backward
weighted shift with positive weight sequence {c,} and consider a non-
zero vector ¥ = (T )nez i 12(Z). The following are equivalent.
(i) T is hypercyclic;
(i) J(z) = 1*(Z);
(iii) J(z)° #0.
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Proof. Tt suffices to show that (iii) implies (i). In view of Salas’ The-
orem 2.1 in [29], we shall prove that there exists a strictly increas-
ing sequence {k,} of positive integers such that for any integer g,
Hf;l Qg — +00 and Hf;gl a,—; — 0. Since z is a non-zero vector,
there exists an integer m such that z,, # 0. Without loss of generality
we may assume that m is positive. Suppose J(x)° # (. Then there
exists a vector ¥y = (Yn)nez in [*(Z) such that y; # 0. Hence we may
find a strictly increasing sequence {k,} of positive integers and a se-
quence {z,} in 1*(Z), z, = (2u)iez, such that z, — z and T* 2z, — y.
For simplicity reasons we assume that ¢ = 0. Arguing as in the proof
of Proposition 5.13 we get that Hf;l a; — 400. On the other hand

observe that

m kn—m+1
|(Tknzn)m—kn - ym—kn| = ‘ (H ai) ( H a—i) Znm — Ym—k,
=0

=1

— 0.

Since z,, # 0 there exists a positive integer ng such that |z,,,| > @
for every n > ng. We also have (T%"2,),,_x, — 0. The above imply
that []"" a_; — 0. O

6. OPEN PROBLEMS
Below we give a list of open problems.

Problem 1.
Let T : X — X be an operator on an infinite dimensional Banach

space X. Suppose there exists a vector 2 € X such that J(z)° # (). Is
it true that J(z) = X7

Ansari [1] and Bernal [4] gave a positive answer to Rolewicz’ ques-
tion if every separable and infinite dimensional Banach space supports
a hypercyclic operator. Observe that we showed that the non-separable
Banach space {*°(N) admits a J-class operator, while on the other hand
Bermudez and Kalton [3] showed that {*°(N) does not support topo-
logically transitive operators. Hence it is natural to raise the following
question.

Problem 2.
Does every non-separable and infinite dimensional Banach space sup-
port a J-class operator?

D. Herrero in [21] established a spectral description of the closure of
the set of hypercyclic operators acting on an infinite dimensional and
separable Hilbert space. Below we ask a similar question for J-class
operators.
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Problem 3.
Is there a spectral description of the closure of the set of J-class
operators acting on a separable and infinite dimensional Hilbert space?

Problem 4.

Let X be a separable and infinite dimensional Banach space and
T : X — X be an operator. Suppose that J(z)° # ) for every z € X.
Does it follow that T is hypercyclic?

Grivaux in [17] showed that every operator on a complex infinite
dimensional Hilbert space can be written as a sum of two hypercyclic
operators. We consider the following

Problem 5.
Is it true that any operator on {*°(N) can be written as a sum of two
J-class operators?
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1. Introduction

During the last years the dynamics of linear operators on infinite dimensional
spaces has been extensively studied, see the survey articles [4], [7], [8], [9], [10],
[12] and the recent book [1]. Let us recall the notion of hypercyclicity. Let X be
a separable Banach space and T': X — X be a bounded linear operator. The
operator T is said to be hypercyclic provided there exists a vector x € X such
that its orbit under T', Orb(T,z) = {T"x : n = 0,1,2,...}, is dense in X. If X
is Banach space (possibly non-separable) and 7' : X — X is a bounded linear
operator then T is called topologically transitive (topologically mizing) if for every
pair of non-empty open subsets U, V of X there exists a positive integer n such that
TPUNV £ (T™U NV # () for every m > n respectively). It is well known, and
easy to prove, that if T' is a bounded linear operator acting on separable Banach
space X then T is hypercyclic if and only if 7" is topologically transitive.

A first step to understand the dynamics of linear operators is to look at par-
ticular operators as for example the weighted shifts. Salas [11] was the first who

During this research the second author was fully supported by SFB 701 “Spektrale Strukturen
und Topologische Methoden in der Mathematik” at the University of Bielefeld, Germany. He
would also like to express his gratitude to Professor H. Abels for his support.
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characterized the hypercyclic weighted shifts in terms of their weight sequences.
We would like to point out that [*°(N) and {*°(Z) do not support hypercyclic op-
erators since they are not separable Banach spaces. In fact they do not support
topologically transitive operators as it was shown by Bermudez and Kalton in
[2]. Recently Bes, Chan and Sanders [3] showed that there exists a weak™ hyper-
cyclic weighted shift T on {*°(N), i.e there exists a vector x € {°°(N) whose orbit
Orb(T, ) is dense in the weak* topology of {*°(N). In fact they give a characteri-
zation of the weak™ hypercyclic weighted shifts in terms of their weight sequences.
In [5] we studied the dynamics of operators by replacing the orbit of a vector
with its extended limit set. To be precise, let T : X — X be a bounded linear
operator on a Banach space X (not necessarily separable) and x € X. A vector
y belongs to the extended limit set J(x) of x if there exist a strictly increasing
sequence of positive integers {k,} and a sequence {z,} C X such that z,, — =
and T*»x, — y. If J(z) = X for some non-zero vector z € X then T is called
J-class operator. Roughly speaking, the use of the extended limit set “localizes”
the notion of hypercyclicity. The last can be justified by the following: J(x) = X
if and only if for every open neighborhood U of x and every non-empty open set
V C X there exists a positive integer n such that T"U NV # {.

The purpose of this paper is to study the dynamical behavior of weighted
shifts on the spaces of bounded sequences of complex numbers [°°(N) and [*°(Z)
through the use of the extended limit sets. Our main result is the following (see
Theorem 3.1).

Theorem. Let T : [*°(N) — [°°(N) be a backward unilateral weighted shift with
positive weights (an)nen. The following are equivalent.

(i) T is a J-class operator.

n

(i) | tim <}I>1fonlo‘i+j> = +o0.
1=

In particular, if T is a J-class operator then the sequence of weights (o, )nen

is bounded from below by a positive number and we have the following complete

description of the set of J-vectors.

{r € I°(N) : J(2) = I®(N)} = colN),
where co(N) = {z = (zp)neny € I°(N) : limy, 400 2, = 0}.

Observe that if T is a J-class backward unilateral weighted shift on [*°(N)
then in view of the above theorem and Salas’ characterization of hypercyclic
weighted shifts, see [11], we conclude that T is hypercyclic on [P(N) for every
1 < p < 4+o00. However, as we show in section 3, the converse is not always true.

On the other hand the situation is completely different in the case of bilateral
weighted shifts. In particular we show that a bilateral weighted shift on [°°(Z)
cannot be a .J-class operator, see Theorem 3.3. In addition, we prove similar results
for J™i*_class weighted shifts (see Definitions 2.1 and 2.2).
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2. Preliminaries

Definition 2.1. Let 7' : X — X be a bounded linear operator on a Banach space
X. For every z € X the sets

J(x) ={y € X : there exist a strictly increasing sequence of positive
integers {ky } and a sequence {z,} C X such thatz, — zand

Tknl‘n - y}a

JM(p) = {y € X : there exists a sequence {z,,} C X such that
z, — z and T"z,, — y}

will be called the extended limit set of  under T' and the extended mixing limit
set of z under T respectively.

Definition 2.2. A bounded linear operator T': X — X acting on a Banach space

X will be called a J-class (J™* class) operator if there exists a non-zero vector
x € X such that J(z) = X (J™*(z) = X respectively).

Definition 2.3. Let T be a bounded linear operator acting on a Banach space X.
A vector z € X will be called a J-vector (J™*-vector) if J(z) = X (J™*(z) = X
respectively).

Remark 2.4. Observe that

(i) an operator T': X — X is topologically transitive if and only if J(z) = X

for every z € X,

(ii) an operator T': X — X is topologically mixing if and only if J™*(z) = X

for every =z € X,
see [5]. Hence every hypercyclic operator (topologically mixing) is a J-class oper-
ator (J™*_class operator). However the converse is not true. To see that consider
the operator 3/ ©2B : C®1?(N) — C®1?(N) where I is the identity map on C and
B is the backward shift on the space of square summable sequences [2(N). Consider
any non-zero vector z € [>(N). We shall prove that J31%, (0 ® z) = C & I*(N).
Let y € I2(N) and A € C. There exists a sequence {z,} in [?(N) such that
(2B)"x, — y. Define the vectors 3% @ z,,. Then we have 3% Dxp, — 09z and
(3 ®2B)"($ ®x,) — A@y. Hence 3] ©2B is a J™*-class operator which is not
hypercyclic. In fact it is not even supercyclic, see [6].

Let us also give an example of a backward weighted shift, acting on a non-
separable space, which is a J-class operator but not topologically transitive. Con-
sider the operator 2B : [°°(N) — [°°(N) where B is the backward shift and I*°(N) is
the space of bounded sequences. Theorem 3.6 implies that 2B is a J™*-class oper-
ator. On the other hand the space [*°(N) does not support topologically transitive
operators, see [2].

The next lemma, which will be of use to us, also appears in [5]. For the
convenience of the reader we give its proof.
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Lemma 2.5. Let T : X — X be a bounded linear operator on a Banach space X
and {z,}, {yn} be two sequences in X such that z,, — x and y, — y for some
z,y € X.

(i) If yn € J(:pn) for everyn=1,2,..., then y € J(x). 4

(i) If yn, € J™*(xy,) for everyn =1,2,..., then y € J™*(x).

Proof. (i) For n =1 there exists a positive integer k1 such that

1 1
lzg, — | < 3 and |yx, —yl| < 2

Since yi, € J(xg,) we may find a positive integer [; and z; € X such that

1 1
o1 = ol < 5 and T2 =g, [ < 5.

Therefore,

|21 — || <1 and ||Thz —y|| < 1.
Proceeding inductively we find a strictly increasing sequence of positive integers
{l»} and a sequence {z,} in X such that

1 1
llzn — z|| < — and ||Tl"zn -yl < —.
n n

This completes the proof of assertion (i).
(ii) For n = 1 there exists a positive integer k; such that

1 1
Jay — ol < 5 and flgy — 9l <

Since yg, € J™*(xy,) we may find a positive integer [; and a sequence {z,} C X
such that

1 1
lon = 2l < 5 and |72 — o < 5
for every n > l1. Therefore,
lzn —z|| <1 and | T"z, —y| < 1
for every n > l;. Proceeding in the same way we may find a positive integer Iy > [y
and a sequence {wp} C X such that
1 n 1
lwp, — || < 5 and | T"w, —y|| < 3
for every n > Il. Set v, = z, for every l; < n < I3, hence
|lvn, — z|| < 1 and [|[T"v, —y| < 1.
Proceeding inductively we find a strictly increasing sequence of positive integers

{nk} and a sequence {v,} in X such that if n > ny then

1 1
lvn —z|| < Z and || T"v, —y| < T
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Take any € > 0. There exists a positive integer ko such that % < €. Hence for
every n > ng, we get

1 1
lon — || < — < eand [|[T"v, —y|| < — <e.
]130 kO

This completes the proof of assertion (ii). O

3. Main results
Theorem 3.1. Let T :1%°(N) — I*°(N) be a backward unilateral weighted shift with
positive weights (ay)nen. The following are equivalent.
(i) T is a J-class operator.
n
0 i (o) = v

In particular, if T is a J-class operator then the sequence of weights (cu,)nen
is bounded from below by a positive number and we have the following complete
description of the set of J-vectors.

{z € l*®°(N): J(z) =1*°(N)} = ¢(N),
where ¢o(N) = {z = (2 )nen € I°°(N) : lim,, 4 o0 z,, = 0}.
Proof. Let us prove that (i) implies (ii). There exists a non-zero vector z € [*°(N)
such that J(z) = [*°(N). Consider the vector y = (1,1,...). Then there exists a

strictly increasing sequence {k,} of positive integers and a sequence {y,} € {*°(N),
Yn = (ynm)(r)nozl, such that

ln — #)loe — 0 and | T*yn — (1,1,...)]/oe — O.
Observe that

— 0

||Tk"yn —(1,1,..)]lco = sup
>0

kn
(H ai+j> Yn(kn+j+1) — 1

i=1

as n — 00. Fix 0 < € < 1. There exists a positive integer n; such that

lyn — Z|loo < € for every n >ny (3.1)
and
Eny
sup Ha’i‘l‘j Yni(kpy +i+1) — 1| <e
J201\ =1
Therefore

Kny
Haiﬂ- Yny (kn, +j+1)| > 1 —€ forevery j>0. (3.2)
i=1
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On the other hand, using (3.1), we have

Koy
[ eiss | vnitrn, 5| < | TT s | lymlloo
i=1 i
(3.3)
Fony
< Hazﬂ (€ + [lz]loo)
for every j > 0. By (3.2) and (3.3) it follows that
Qip; > ———  for every j >0,
H et IIiEHoo
where m; := kp,. For every | = 2,3,... consider the vector (l,l,...). Since

(,1,...) € J(z) and working as before we inductively construct a strictly in-
creasing sequence {ml} of positive integers such that

H%ﬂ ———— forevery j7>0 andevery [>1.
€+ ||$||oo

The last unphes that

which in turn yields

limsup | inf le} = 40o0.
n_)+0£) <] H z+]>

It remains to show that

nl{rfoo (]11>1f(; H a“ﬂ) = +00.

Let us first show that the sequence (ay)nen is bounded from below by a positive
number. Fix a positive number M > 1. There exists a positive integer N such that

Haiﬂ- > M for every j > 0.

i=1
If N =1 there is nothing to prove. Assume that N > 1. For every j > 0 and since
|IT|| = sup,, an, we have

N
aji [TV > (H sz‘+j> > M.

i=2
Proceeding inductively we conclude that

.M
ay > —
AR
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for every n € N. Take any positive integer n > N. There exist positive integers
Dn, Up, such that n = Np,, + v, and 0 < v, < N — 1. Since (@, )nen is bounded
from below by HTH% it follows that

n
Ha”j > MP»C for every j > 0,
i=1

- M N-1
C—mln{(7|T||N_1> ,1}.

From the last and the fact that M > 1 it clearly follows that

i (H) o

i=1

where

We shall now prove that (i) implies (i). Fix a vector x = (x1,23,...) in
1°°(N) with finite support. There exists a positive integer ny such that z, = 0 for
every n > ng and inf;>q H:L:l aiyj > 0 for every n > ng. Consider any vector
y = (y1,Y2,...) € [°°(N). We set

yn:<$1,$2,...,$no1,0,...,0, nyl 5 ny2 5 nyS ,>
[y @i Tlicy @i Tlizy @it

for every n > ng, where the 0’s fill all the coordinates from the ng-th up to n-th

position. Then for every n > ny we have

19l
infjo [T @iy
hence y, — x. Observe also that T"y, = y, so y € J(x). Thus T is a J-class
operator and this completes the proof that (ii) implies (i).

It remains to show that the set of J-vectors is ¢o(N). From the proof that (ii)
implies (i) we have that if x is a vector with finite support then J(z) = I*°(N).
Since the closure of the set of all vectors with finite support is ¢o(N), by Lemma
2.5, we conclude that

Yj+1
Yn — Z||oe = sUp
i =l >0 | 1Ty ity

co(N) € {z € 1°(N) : J(z) = I°(N)}.

To prove the converse inclusion, take a vector x such that J(x) = [°°(N). Consider
the zero vector and let € be a positive number. There exist positive integers ng, n;
and a vector Yn, = (Ynok)ken such that
ni
1o — Zlloo < €, ([T Ynolloo < € and Ha”j > 1 for every j > 0.
i=1

(H ai+j> Yno(ni+j+1)

i=1

Hence we have

<e€
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for every j > 0. The last and the previous bound on the weights imply that

€

o] < e < €
SRR Vi

for every j > 0. Hence it follows that

|xn1+j+1| < ”yno - T”OO + |yn0(n1+j+1)‘ < 2e

for every j > 0. Thus x belongs to ¢g(N). This completes the proof of the theorem.
O

Remark 3.2. As we promised in the introduction, we provide below an example of
a hypercyclic backward unilateral weighted shift on the space of square summable
sequences [?(N), which is not a J-class operator on [*°(N). Consider the backward
unilateral weighted shift 7" with weight sequence

( )_(1221122211122221111 )
a17a2)"' - 27 b 7272) ) b 727272) ) ) ) )27272727""

It is easy to check that T is hypercyclic on I2(N). On the other hand we have that
1
i_nf(;Hozi_H < on for every n=1,2,....

Hence,

li inf ivi | =0.
L, (;I;O,Hl ) 0
1=
Theorem 3.1 implies that 7" is not a .J-class operator on [*°(N).
To complete our study on J-class backward unilateral weighted shifts we
would like to mention the following result from [5]: a backward unilateral weighted

shift T is a J-class operator on IP(N) if and only if T is hypercyclic on IP(N), for
1 < p < 4o0. A similar result holds for bilateral shifts, see [5].

Theorem 3.3. Let T : [*°(Z) — [°°(Z) be a backward bilateral weighted shift with
positive weights (cu,)nez. Then T is not a J-class operator.

Proof. Following a similar line of reasoning as in the proof that (i) implies (ii)
in Theorem 3.1 and using the vectors (...,I,1,l,...) € [®°(Z) for | = 1,2,... we
conclude that the sequence (ay,)nez is bounded from below by a positive number
and

n n
1= 1=

Assume that there exists a non-zero vector = (x;);ez € °°(Z) such that J(z) =

[°°(Z). Since = # 0 there is some j € Z such that z; # 0. By our assumption

0 € J(x) hence there exist a sequence of positive integers k,, and vectors y,, =

(Ynm)mez such that

lyn = 2lloc — 0 and [T gyl — 0.
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Therefore, taking the —k, + 1 + j-th coordinate of the vector Ty, we conclude

that
kn
i=1
Since Hf;l aj_; — +oo then z; = lirf yn; = 0, a contradiction. O
n—-—1+0oc

Corollary 3.4. Let T be a backward unilateral (bilateral) weighted shift with weight
sequence (ap)nen ((an)nez respectively). The following are equivalent

() J(0) = 1%(N) (J(0) = 1>(Z))-
6 i (1T ) = oo i (s [T ) = 400

Remark 3.5. By the previous corollary and Theorem 3.1 it follows that if T is a
backward unilateral weighted shift and J(0) = [°°(N) then T is J-class operator.
However, for backward bilateral weighted shifts this is no longer true. For example
consider the backward bilateral weighted shift 7" : I°°(Z) — [*°(Z) with weight
sequence (ap )nez, @p = 2 for n > 1 and a,, = 1 for n < 0. Corollary 3.4 gives that
J(0) = 1°°(Z) and Theorem 3.3 implies that 7" is not a .J-class operator.

Using similar arguments as in the proof of Theorem 3.1 we obtain the follow-
ing.
Theorem 3.6. Let T :1*°(N) — [*°(N) be a backward unilateral weighted shift with
positive weights (an)nen. The following are equivalent.

(i) T is a J™*-class operator.

(i) nkgloo mea,ﬂ) = 400.

In addition, if T is a J™*-class operator we have the following complete description
of the set of J™*-vectors.

{z € I°°(N) : J™(z) = 1°°(N)} = co(N).
Combining Theorems 3.1 and 3.6 we obtain the following.
Corollary 3.7. Let T': [°°(N) — [°°(N) be a backward unilateral weighted shift with
positive weights (ap)nen. The following are equivalent.
(i) T is a J™®-class operator.
(ii) T is a J-class operator.
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DYNAMICS OF TUPLES OF MATRICES
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ABSTRACT. In this article we answer a question raised by N. Feldman in 2008
concerning the dynamics of tuples of operators on R™. In particular, we prove
that for every positive integer n > 2 there exist n-tuples (A1, Aa,..., Ap)

of n X n matrices over R such that (A1, Aa,..., Ap) is hypercyclic. We also
establish related results for tuples of 2 X 2 matrices over R or C being in Jordan
form.

1. INTRODUCTION

Following the recent work of Feldman in [4] an n-tuple of operators is a finite
sequence of length n of commuting continuous linear operators Ty, 75, ..., T, acting
on a locally convex space X. The tuple (T1,T5,...,T,) is hypercyclic if there exists
a vector x € X such that the set

(TF T8 Thog kg Koy Ky > 0}

is dense in X. Such a vector z is called hypercyclic for (Ty,T5s,...,T,) and the set
of hypercyclic vectors for (11,75, ...,T,) will be denoted by HC((T1, Tz, ..., Ty)).
The above definition generalizes the notion of hypercyclicity to tuples of operators.
For an account of results, comments and an extensive bibliography on hypercyclicity
we refer to [1], [5], [6] and [7]. For results concerning the dynamics of tuples of
operators see [2], [3], [4] and [9].

In [4] Feldman showed, among other things, that in C™ there exist diagonalizable
(n + 1)-tuples of matrices having dense orbits. In addition he proved that there
is no n-tuple of diagonalizable matrices on R™ or C™ that has a somewhere dense
orbit. Therefore the following question arose naturally.

Question (Feldman [4]). Are there non-diagonalizable n-tuples on R that have
somewhere dense orbits?

We give a positive answer to this question in a very strong form, as the next
theorem shows.

Received by the editors March 24, 2008.
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Theorem 1.1. For every positive integer n > 2 there exist n-tuples (A1, ..., Ay) of
n X n non-(simultaneously) diagonalizable matrices over R such that (Ay,..., Ay)
is hypercyclic.

Restricting ourselves to tuples of 2 x 2 matrices in Jordan form either on R? or
C?, we prove the following,.

Theorem 1.2. There exist 2 X 2 matrices Aj,j = 1,2,3,4, in Jordan form over R
such that (A1, As, As, A4) is hypercyclic. In particular

HC((Aq, A, Az, Ay)) = {( ‘2 > ER?: 3y # o}.

Theorem 1.3. There exist 2 x 2 matrices Aj,j =1,2,...,8, in Jordan form over
C such that (A, As, ..., As) is hypercyclic.

2. PRODUCTS OF 2 X 2 MATRICES

Lemma 2.1. Let m be a positive integer and for each j = 1,2,...,m let A; be a
i1

2 x 2 matriz in Jordan form over a field F = C orR , i.e. A; = %J o > for
J

ai,aa,...,a;, € F. Then (A1, As, ..., Ay) over C (respectively R) is hypercyclic if
and only if the sequence

{( a1+a2kj.“'+m )zkl,kg,...,kmeN}

alkl as Qo
is dense in C? (respectively R? ).

Proof. We prove the above in the case ' = C, since the other case is similar.
Observe that

a;l la;'?t

Al = J J
J 0 ajl

for [ € N. As a result we have
m m .
[[a* [la 3 %
j=1 j

AP Ak A = m
0 H aj’”j
j=1

Assume that (Ay, As,..., Apn) is hypercyclic and let (1) € C? be a hypercyclic
vector for (Aj, Ag, ..., A,,). Then the sequence

{A1k1A2k2..-Amkm < zl ) :k17k27"'akm GN}
2

z1 [T a™ + 20 [T a;™ 30 2
j=1 j=1 s=1
m
22 ] aj™
=1
is dense in C2. This implies that 2o # 0. Dividing the element in the first row by
that in the second, it can easily be shown that the sequence

ki oy ko Km
{( a :agk:_.'-"—'—kfznm > :kl,kg,...,kmEN}

a1*tas . Qm

Zkl,kg,...,k‘mEN

is dense in C2. The converse can easily be shown. O
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Remark 2.2. Let m be a positive integer and for each j = 1,2,...,m let A; be a
2 x 2 matrix in Jordan form over a field F = C or R. By the proof of Lemma 2.1 it is
immediate that whenever (A1, Ag, ..., Ap,) over C (respectively R) is hypercyclic,
one can completely describe the set of hypercyclic vectors as

{( 2 ) 6@2:227&0} (respectively {( 2 ) €R2:x27$0}>.

2.1. The real case. The one-dimensional version of Kronecker’s theorem stated
below (see for example [8, Theorem 438, p. 375]) will be used repeatedly throughout
this work.

Theorem 2.3. If x is a positive irrational number, then the sequence {kx — s :

k,s € N} is dense in R.

Remark 2.4. If z is a positive irrational number, then the sequence {s —kx : k, s €
N} is also dense in R. Likewise, if z is a negative irrational number, then the
sequence {s + kz : k, s € N} is dense in R.

We shall need the following well-known result; see for example [4].

Theorem 2.5. If a,b> 1 and 2 is irrational, then the sequence {g—:; :n,m € N}

Inb
is dense in RT.

In |a|

18 irrational.
Inb

Lemma 2.6. Let a,b € R such that —1 < a < 0, b > 1 and
Then the sequence {a™b™ : n,m € N} is dense in R.

Proof. Since ]iln—@ is irrational it follows that Inbd/In a—lz is irrational as well. Ap-

plying Theorem 2.5 we conclude that the sequence {a®*b™ : n,m € N} is dense
in RT™. On the other hand the fact that a is negative implies that the sequence
{a®"*1y™ : n,m € N} is dense in R™. This completes the proof of the lemma. O

Proposition 2.7. There ezist ay,as,a3,aq4 € R such that the sequence
k1 ko ks ka4
biphe ey b
{( 21k1;;k2a3a]5’3a4]&4 ) o1, Koy ko by € N}
is dense in R?.
Proof. By the lemma above fix a,b € R such that —1 < a <0, a + é € R\ Q and
{a™b™ : n,m € N} is dense in R. Let 1,25 € R and € > 0 be given. Then there

exist n,m € N such that [a"b™ — x| < e. Note that a"b™ = a™ "™ 1% for every
k,s € N. Note also that a + é < 0. Hence, by Remark 2.4, the sequence

{s+k<a+1> :k,sEN}
a

is dense in R; i.e. there exist k,s € N such that
< 1) n o m
s+k{a+ - f(xlf—f—) <,
a a b

nom 1
—4+—+4kla+—-)+s—x
a b a

Hence, setting a; = a,as = b,a3 = é,a4 = 1 we prove the result. (|

1.e.

< €.
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Proof of Theorem 1.2. This is an immediate consequence of Lemma 2.1, Proposi-
tion 2.7 and Remark 2.2.

Example 2.8. One may construct many concrete examples of four 2 x 2 matrices,
in Jordan form over R, being hypercyclic. For example, fix a,b € R such that
—1<a<0,b>1andbotha+ 1 Inlal ore jrrational. From the above we conclude

GGG DG

We shall now prove Theorem 1.1 for n = 2; see Proposition 2.10 (ii). For this
we need the following result due to Feldman; see Corollary 3.2 in [4].

Q= =

is hypercyclic.

Proposition 2.9 (Feldman). Let D denote the open unit disk centered at O in the
complez plane. If b € D\ {0}, then there exists a dense set A C C\D such that for
every a € A the sequence {a™b™ : n,m € N} is dense in C.

Proposition 2.10. (i) Every pair (A1, As) of 2 X 2 matrices over R with A;,
j =1,2, being either diagonal or in Jordan form is not hypercyclic.

(i) There exist pairs (A1, A2) of 2 X 2 matrices over R such that Ay is diagonal,
Ay is antisymmetric (rotation matriz) and (A1, As) is hypercyclic. In particular
every mon-zero vector in R? is hypercyclic for (A1, Aa); i.e.

HC((A1, A2)) = R*\ {(0,0)}.

(i33) There exist pairs (A1, A2) of 2 x 2 matrices over R such that both Ay and A,
are antisymmetric and (Ay, As) is hypercyclic. In particular every non-zero vector
in R? is hypercyclic for (A1, Az), i.e.

HC((A1, A2)) = R*\ {(0,0)}.
Proof. Let us prove assertion (7). The case of Ay, As both diagonal is covered by

Feldman; see [4].
Assume that A; is diagonal and As is in Jordan form; i.e.

A1:<8 2) A2=<8 2) for a,b € R.

Suppose that (Ay, As) is hypercyclic and let (5.) € R? be a hypercyclic vector for
(A1, Az). Then the sequence

npm npm—1
{AlnAzm(il):n,meN}={<ab xla—tb??n(ib xZ):n,meN}
2 2

is dense in R2. Therefore b cannot be zero. Observe that x5 cannot be zero either.
Take any y; € R and y> € R\ {0}. Then there exist sequences of positive integers
{nr}, {my} such that my — +oo and

a™ o™y 4+ mpa™ o™y —

a™ o™y — Yo

as k — +oo. Since b # 0, yo # 0 and z2 # 0 we get that
my

Y21 and |mkankbmk71x2|: W‘ankbmkxﬂ — 400
T2

a™ by —
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as k — +oo. From the last, it clearly follows that
la™e 6™ 1+ mga™ b | — 400,

which is a contradiction.
Assume now that both A;, A5 are in Jordan form; i.e.

a 1 b 1
a=(o ) a=(0,)
for a,b € R and (Aj, A3) is hypercyclic. Lemma 2.1 implies that the sequence

nyom
{( ‘Zl;zn{’ ):n,mEN}

is dense in R2. Observe that neither |a| nor [b] is equal to 1. By taking the absolute
value in the second coordinate and then applying the logarithmic function, we find

that the sequence
2rr Y,
{( nln|;\ + mln |b| > .n,meN}

is dense in R2. Hence the sequence

nln|a| +mln\a\
lna\‘a\ lnb|b\ tn,me N
n—- tm=-

is dense in R2. Subtracting the second coordinate from the first one, we conclude

that the sequence
1 1
{m(n_la_ﬂ> :meN}
b a

is dense in R, which is absurd. We proceed with the proof of assertion (ii). By
Proposition 2.9 there exist a € R\ Q and b € C such that the sequence {a™b™ :
n,m € N} is dense in C. Write b = [b|e?? and set

[ a O [ |blcos —|b|sind
Al_(O a)’ A2_<|b|sin9 |blcos6 )

a™b|™ cosmf —a™|b|™ sin mf
a™b|™sinmf  a™|b|™ cosmb

Then we have
AMA™ = (

Applying in the above relation the vector (}) and taking into account that the
sequence {a™b™ : n,m € N} is dense in C, we conclude that the sequence

nam( 1Y) _ a”|b|"™ cosmb '\
{Al As ( 0 ) .n,mEN}{( a"[b[™ sin mf ) .n,mEN}

is dense in R2. Hence (Aj, Ay) is hypercyclic. It is now easy to show that every
non-zero vector in R? is hypercyclic for (Ay, As).

In order to prove the last assertion we follow a similar line of reasoning as above.
That is, by Proposition 2.9 there exist a,b € C such that the sequence {a™b™ :
n,m € N} is dense in C. Write a = |a|e’®, b = |ble?’ and set

A — la|cos¢ —|a|sin¢ A — |bl|cos@ —|b|sind
7\ la|sing  |a|cosp ) 27\ |b|sin® |blcosf® |-
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A direct computation gives that {AlnAgm ( (1) ) in,m € N} is equal to
lal" bl cos(ne -+ m) \
{ ( lal"[bl™ sin(ng + me) ) " EN S

and by the choice of a, b we conclude that the vector (}) is hypercyclic for (Ay, As).
This completes the proof of the proposition. O

Question 2.11. What is the minimum number of 2 x 2 matrices over R in Jordan
form so that their tuple forms a hypercyclic operator?

2.2. The complex case. In what follows we will be writing R(z) and 3(z) for the
real and imaginary parts of a complex number z respectively.

Proposition 2.12. There exist a; € C, j = 1,2,...,8 such that the sequence

kv 4 ke ks
{( al_li—@kj‘..'._FkZS ):kl,kg,...,kgeN}

ay & a9 .ag
is dense in C2.

Proof. The proof is in the same spirit as the proof of Proposition 2.7. Fix a,b € C
such that -1 < a < 0,a+ 1,a—1 e R\ Q and {a"b™ : n,m € N} is dense in C
(see Proposition 2.9). Let 21,z € C and € > 0 be given. Then there exist n,m € N
such that |a™b™ — 23| < e. Note that

3 P

1 1 1

nim n+kpm s \E : -
a™b™ =a"""b —akl (ia) (ia) (42)”( 4>

for every k,s,£ € N and p € 4N. Note that a + % < 0and a— % > 0. Hence, by
Theorem 2.3, the sequence

le(o-2)- () :cenpen]

is dense in R. As a result, there exist £ € N and p € 4N such that

P(e(2) @) g5 <

i.e. we have that

‘%<g+%+i§<a%> z<§>> ~ (=)

By Remark 2.4, the sequence

{k <a+%>+s:k,s€N}

is dense in R. Hence, there exist k,s € N such that

k (a—l—%) +s— <4p+§f€(zlfgf %))‘ <€
i.e. we have that

‘%(E—Fm—kk(a—Fl) 4p—|—s> —R(z1)
a b a

< €.
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But this means that the real and imaginary parts of the complex number

1 1
Dy ik (ar =) 4stic(a— =) il —4p
a b a a 4
are within e of the real and imaginary parts of z;. Hence, setting ay = a,ay =
b,az = %,a4 =1,a5 =ia,a6 = %,cw =4i,ag = *i’ we prove the result.
O
Proof of Theorem 1.3. By Proposition 2.12, Lemma 2.1 and Remark 2.2 the asser-

tion follows.

Example 2.13. Fix a,b € C such that -1 < a <0, a+ 1,a—1 € R\ Q and
{a™b™ : n,m € N} is dense in C. From the above it is evident that the 8-tuple of
2 x 2 matrices in Jordan form over C given by

a 1 b 1 1 11

0 a)’\0b)’\0o L£)°\o0o1)
ia 1 4 1 i1 -3 1
0 ia )\ 0 L J°L0 4 )\ 0 -1

is hypercyclic.

|=

I

Question 2.14. What is the minimum number of 2 x 2 matrices over C in Jordan
form so that their tuple forms a hypercyclic operator?

3. PRODUCTS OF 3 X 3 MATRICES

In this section we start with the following special case of Corollary 3.5 in [4], due
to Feldman, which will be of use to us in the following.

Proposition 3.1 (Feldman). If by,bo € D\ {0}, then there exists a dense set
A C C\ D such that for every ai,as € A the sequence

(Ilnblm .
{( by ) 1n,m,l EN}

In order to handle products of 3 x 3 matrices, we establish the following:

is dense in C2.

Corollary 3.2. There exist a € C and b,c,d € R such that the sequence
{( inlzzl ) tn,m,l EN}

Proof. Fix two real numbers by, by with by,by € (0,1). By Proposition 3.1 there
exist aj,as € C\ D such that the sequence

{( alnbll >:n,m,l€N}
a" by

is dense in C2. Define a = a1, b = by, ¢ = |az| and d = —/bs. Observe that the

sequence
’I’me

{( (an ! ) :n,m,leN}
2

is dense in C x [0, +00). Take z € C and = € R.

is dense in C x R.
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Case I. = > 0.
Then there exist sequences of positive integers {ny}, {my}, {lx} such that
a* b — z and anbglk — .
Since by't = 2 we get ¢ d? — 1.
Case II. = < 0.

Then there exist sequences of positive integers {ny}, {mx}, {lx} such that

. o7 | Z
a™b"™ — z and byt — —.

d

The last implies that ¢™*d?* ! — z. This completes the proof of the corollary. [

The main result of this section is to prove Theorem 1.1 for n = 3. This is stated
and proved below.

Proposition 3.3. There exist 3 tuples (A1, Aa, A3) of 3 x 3 matrices over R such
that (A1, As, A3) is hypercyclic.

Proof. By Corollary 3.2 there exist a € C and b, ¢, d € R such that the sequence

{< ac"lZil > :n,m,leN}

is dense in C x R. Write a = |a|e?’ and set

la|cos§ —lalsin@ 0 b 0 0
Ay = |alsin® |a cosG 0 b 0 | and
0 0 0 1
1 0 0
As=1[ 0 1 O
0 0 d
Then we have
la|"b™ cosmf  —|a|"b™sinnd 0
A" A A = | Ja"b™sinnd  |a]"b™ cosnf 0 ,
0 0 cd'
which in turn gives
1 |a|"b™ cosnb
AMAm A 0 | = | |a"b™ sinnd
1 cd!

The last and the choice of a, b, ¢, d imply that (A;, Az, As) is hypercyclic with (é)
being a hypercyclic vector for (A;, Az, A3). O
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4. PROOF OF THEOREM 1.1

By Proposition 2.10, there exist 2 x 2 matrices By and Bs such that (B, B) is
hypercyclic.

Case I. n = 2k for some positive integer k. For & = 1 the result follows by
Proposition 2.10. Assume that £ > 1. Each A; will be constructed by blocks
of 2 x 2 matrices. Let Iy be the 2 x 2 identity matrix. We will be using the
notation diag(D1, Da,...,Dy,) to denote the diagonal matrix with diagonal en-
tries the block matrices Dy, Ds,...,D,. Define A; = diag(Bi1,Ia,...,15), Ay =
diag(Bg,]z, ey 12), A3 = diag(]Z,Bl, 12, ey ]2), A4 = diag(lg, BQ,IQ, e ,IQ) and
so on up to A, 1 =diag(Is,...,Is, B1), A, = diag(ls,..., I, By).

It is now easy to check that (Aj, As, ..., A4,) is hypercyclic and furthermore that
the set HC'((A1, Aa, ..., Ap)) is

{(z1,22,...,20) 6R":x§j71+w§j #£0,Vj=1,2,...,k}.

Case II. n = 2k + 1 for some positive integer k. If & = 1 the result follows
by Proposition 3.3. Suppose k£ > 1. For simplicity we treat the case k£ = 2,
since the general case follows by similar arguments. By Proposition 3.3 there exist
C4, Cs, C3, 3 x 3 matrices such that (Cy, Cy, Cs3) is hypercyclic. Let I3 be the 3 x 3
identity matrix. Define Ay = diag(B1,I3), As = diag(Bs, I3), Az = diag(Is,Cy),
A4 = diag(lg, 02) and A5 = diag(lg, 03)

It can easily be shown that (Aj, As, ..., As) is hypercyclic. The details are left
to the reader.
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ARTICLE INFO ABSTRACT
Article history: In this paper we extend the notion of a locally hypercyclic operator to that of a locally
Received 21 April 2009 hypercyclic tuple of operators. We then show that the class of hypercyclic tuples of

Available online 15 October 2009

) : operators forms a proper subclass to that of locally hypercyclic tuples of operators. What
Submitted by J.H. Shapiro

is rather remarkable is that in every finite dimensional vector space over R or C, a pair of
commuting matrices exists which forms a locally hypercyclic, non-hypercyclic tuple. This

ﬁ?;ggiiic operators comes in direct contrast to the case of hypercyclic tuples where the minimal number of
Locally hypercyclic operators matrices required for hypercyclicity is related to the dimension of the vector space. In
J-class operators this direction we prove that the minimal number of diagonal matrices required to form a
Tuples of matrices hypercyclic tuple on R" is n + 1, thus complementing a recent result due to Feldman.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Locally hypercyclic (or J-class) operators form a class of linear operators which possess certain dynamic properties. These
were introduced and studied in [5]. The notion of a locally hypercyclic operator can be viewed as a “localization” of the
notion of hypercyclic operator. For a comprehensive study and account of results on hypercyclic operators we refer to the
book [1] by Bayart and Matheron.

Hypercyclic tuples of operators were introduced and studied by Feldman in [6-8], see also [12]. An n-tuple of operators is
a finite sequence of length n of commuting continuous linear operators T1, T3, ..., T, acting on a locally convex topological
vector space X. The tuple (T1, T2, ..., Ty) is hypercyclic if there exists a vector x € X such that the set

(ThThe TR ko, . ke e NU (0}

is dense in X. The tuple (T1, T2, ..., Ty) is topologically transitive if for every pair (U, V) of non-empty open sets in X there
exist kq,ka, ...k, € NU {0} such that Tll<1 T’Z<2 ...T’,f”(U) NV #@. If X is separable it is easy to show that (Tq,To,..., Tp)
is topologically transitive if and only if (T1, T2, ..., Ty) is hypercyclic. Following Feldman [8], we denote the semigroup
generated by the tuple T = (T1,Ta,...,Ty) by Fr = {TiCl T'Z<2 ...T,’f”: ki e NU {0}} and the orbit of x under the tuple T
by Orb(T, x) = {Sx: S € Fr}. Furthermore, we denote by HC((T1, T2, ..., Ty)) the set of hypercyclic vectors for the tuple
(T1,Ta, ..., Ty).

* Corresponding author.
E-mail addresses: costakis@math.uoc.gr (G. Costakis), d.hadjiloucas@euc.ac.cy (D. Hadjiloucas), amanouss@math.uni-bielefeld.de (A. Manoussos).
1 During this research the author was fully supported by SFB 701 “Spektrale Strukturen und Topologische Methoden in der Mathematik” at the University
of Bielefeld, Germany. He would also like to express his gratitude to Professor H. Abels for his support.

0022-247X/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2009.10.020
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In this article we extend the notion of a locally hypercyclic operator (locally topologically transitive) to that of a locally
hypercyclic tuple (locally topologically transitive tuple) of operators as follows. For x € X we define the extended limit set
J1y,T,,..., T, (X) to be the set of y € X for which there exist a sequence of vectors {xp,} with x, — x and sequences of

non-negative integers {kf,?: meN} for j=1,2,...,n with

kY + kD 4+ 4k — oo (11)
such that
O @ Q)
Tf’” T;‘”‘ T,lf’" Xm— Y.
Note that condition (1.1) is equivalent to having at least one of the sequences {kfﬂj): meN} for j=1,2,...,n containing a
strictly increasing subsequence tending to +oo. This is in accordance with the well-known definition of J-sets in topological
dynamics, see [9]. In Section 2 we provide an explanation as to why condition (1.1) is reasonable. The tuple (T, T2, ..., Ty)

is locally topologically transitive if there exists x € X \ {0} such that ], 1,,.. 1, (%) = X. Using simple arguments it is easy
to show the following equivalence. J(r, 1,,..,T,)(X) = X if and only if for every open neighborhood Uy of x and every non-

empty open set V there exist kq,k, ..., k; € NU{0} such that Tf] T’z<2 ...T,lf"(Ux) NV #@. In the case when X is separable
and there exists x € X \ {0} such that J(7, 1,,.. 1, (%) =X, the tuple (T1, T2, ..., Ty) will be called locally hypercyclic.

In a finite dimensional space over R or C, no linear operator can be hypercyclic (see [13]) or locally hypercyclic (see
[5]). However, it was shown recently by Feldman in [8] that the situation for tuples of linear operators in finite dimensional
spaces over R or C is quite different. There, it was shown that there exist hypercyclic (n + 1)-tuples of diagonal matrices
on C" and that no n-tuple of diagonal matrices is hypercyclic. We complement this result by showing that the minimal
number of diagonal matrices required to form a hypercyclic tuple in R" is n 4+ 1. We also mention at this point that in [3]
it is proved that non-diagonal hypercyclic n-tuples exist on R”, answering a question of Feldman.

In the present work we make a first attempt towards studying locally hypercyclic tuples of linear operators on finite
dimensional vector spaces over R or C. We show that if a tuple of linear operators is hypercyclic then it is locally hypercyclic
(see Section 2). We then proceed to show that in the finite dimensional setting, the class of hypercyclic tuples of operators
forms a proper subclass of the class of locally hypercyclic tuples of operators. What is rather surprising is the fact that
the minimal number of matrices required to construct a locally hypercyclic tuple in any finite dimensional space over R
or C is 2. This comes in direct contrast to the class of hypercyclic tuples where the minimal number of matrices required
depends on the dimension of the vector space. Examples of diagonal pairs of matrices as well as pairs of upper triangular
non-diagonal matrices and matrices in Jordan form which are locally hypercyclic but not hypercyclic are constructed. We
mention that some of our constructions can be directly generalized to the infinite dimensional case, see Section 4.

2. Basic properties of locally hypercyclic tuples of operators

Let us first comment on the condition (1.1) in the definition of a locally hypercyclic tuple. This comes as an extension to
the definition of a locally hypercyclic operator given in [5]. Recall that a hypercyclic operator T : X — X is locally hypercyclic
and furthermore J7(x) = X for every x € X. In the definition of a locally hypercyclic tuple, one may have been inclined to
demand that k,g{) — +oo for every j=1,2,...,n. However this would lead to a situation where the class of hypercyclic
tuples would not form a subclass of the locally hypercyclic tuples. To clarify this issue, we give an example. Take any
hypercyclic operator T:X — X and consider the tuple (T,0) where 0: X — X is the zero operator defined by 0(x) =0
for every x € X. Obviously, this is a hypercyclic tuple (Orb(0, x) = {x, 0}). On the other hand, for every pair of sequences of
integers {ny}, {my} with ny, my — +oo and for every sequence of vectors x; tending to some vector x we have T Q"™ x;, — 0
and so (T, 0) would not be a locally hypercyclic pair.

Let us now proceed by stating some basic facts which will be used in showing that the class of hypercyclic tuples is
contained in the class of locally hypercyclic tuples.

Lemma 2.1.If x € HC((T1, T2, ..., Tp)) then J(1,,15,.. 1) (X) = X.

Proof. Let y € X, € > 0 and m € N. Since the set Orb(T, x) is dense in X it follows that the set

{T’]‘]le<2 TR X Ky 4 kg 4+ Ky >m}

is dense in X (only a finite number of vectors is omitted from the orbit Orb(T, x)). Hence, there exist (k1,kz,...,ky) € N"
with k1 +ky + --- +k, > m such that

||T4‘1T’2<2...T,’f"x—y|| <e. O
The proof of the following lemma is an immediate variation of the proof of Lemma 2.5 in [4].

Lemma 2.2. If {xn}, {ym} are two sequences in X such that x, — x and y, — y for some x,y € X and ym € J(1,,T,,...T,) (Xm) for
everymeNtheny e J,,1,,..T)X).
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Lemma 2.3. For all x € X the set (1, T,,....1,)(X) is closed and T j invariant for every j=1,2,...,n.
Proof. This is an easy consequence of Lemma 2.2. O

Proposition 2.4. (T1, Ty, ..., Ty) is hypercyclic if and only if it is locally hypercyclic and ] (1, 1,,...1,)(X) = X for every x € X.

Proof. Assume first that (T1,T3,..., Tp) is hypercyclic. By Lemma 2.1 it follows that (Tq, T2,...,Ty) is locally hyper-
cyclic. Denote by A the set of vectors {x € X: J(1,.1,,...1,)(¥) = X}. By Lemma 2.1 we have HC((T1, T2, ..., Tp)) C A. Since
HC((T1, T3, ..., Ty)) is dense (see [8]) and A is closed by Lemma 2.2, it is plain that A = X. For the converse implication let
us consider x € X. Since J(t,,1,,..T,)(X) = X then for every open neighborhood Uy of x and every non-empty open set V

there exist ki, ko, ..., k, € NU {0} such that Tf‘ T'z<2 ...T,If”(UX) NV # (. Therefore (T1, T3, ..., Ty) is topologically transitive
and since X is separable it follows that (T, T3, ..., Tp) is hypercyclic. O

3. Locally hypercyclic pairs of diagonal matrices which are not hypercyclic

In [8], Feldman showed that there exist (n + 1)-tuples of diagonal matrices on C" and that there are no hypercyclic
n-tuples of diagonalizable matrices on C". In the same paper, Feldman went a step further to show that no n-tuple of
diagonal matrices on R" is hypercyclic while, on the other hand, there exists an (n + 1)-tuple of diagonal matrices on R"
that has a dense orbit in (RT)". We complement the last result by showing that there is an (n 4 1)-tuple of diagonal
matrices on R" which is hypercyclic. Throughout the rest of the paper for a vector u in R" or C" we will be denoting by u*
the transpose of u.

Theorem 3.1. For every n € N there exists an (n + 1)-tuple of diagonal matrices on R" which is hypercyclic.

Proof. Choose negative real numbers aq, ay, ..., a, such that the numbers
1,a1,az,...,an
are linearly independent over Q. By Kronecker’s theorem (see Theorem 442 in [10]) the set
{(kaq + s1,kaz + 52, ... . kan +sp)": k,s1,..., 5, e NU{0}}
is dense in R". The continuity of the map f:R" — R" defined by f(x1,x2,...,x,) = (e, e*2,...,e*) implies that the set
{((e”l)kes1, (e”z)kesz, el (ea")kes")[: k,s1,....sn € NU{0}}
is dense in (RT)". An easy argument (see for example the proof of Lemma 2.6 in [3]) shows that the set
e (—ve)
(eHZ)k(._\/E)SZ 1k, s1,...,5, e NU{0}
() (o)™

is dense in R". Let

1 e

1 e
1= , A= )

1 en

_\/E 1
1 1
B] — 5 ey Bn: .
1 —Je

Then the set
{AKBY' .. Bi1: k.51, ..., sn e NU{0}}
is dense in R", which implies that the (n + 1)-tuple (A, B1, ..., By) of diagonal matrices is hypercyclic. O

All of the results mentioned at the beginning of this section as well as the one proved above show that the length of
a hypercyclic tuple of diagonal matrices depends on the dimension of the space. It comes as a surprise that this is not the
case for locally hypercyclic tuples of diagonal matrices. In fact, we show that on a vector space of any finite dimension n > 2
one may construct a pair of diagonal matrices which is locally hypercyclic.
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Theorem 3.2. Let a,b € R such that —1 <a <0, b > 1 and % is irrational. Let n be a positive integer with n > 2 and consider the
n x n matrices

a 0 O 0 by 0 O 0
0 a O 0 0 by O 0
A= 0 0 a3 0 B = 0 0 b3 0
A .0 : : : 0
0 0 0 ... an 0 0 0 ... by

where ay = a, by = b, aj, bj are real numbers with |aj| > 1 and |bj| > 1 for j =2,...,n. Then (A, B) is a locally hypercyclic pair

on R™ which is not hypercyclic. In particular, we have

{xeR™ Jap®=R"} ={(x,0,...,0' €R": x; e R}.

Proof. Note that

ap! 0 0 0
kpl
0 dap, o 0
Akgl—| 0 0 dip} 0
: : : .0
0 0 0 ... d¥

n=n

Let x = (1,0,0,...,0)" € R". We will show that J g (x) = R". Fix a vector y = (y¥1,...,yn)". By [3, Lemma 2.6], the
sequence {akb': k,I1 € N} is dense in R. Hence there exist sequences of positive integers {k;} and {l;} with k;,l; = +oo such
that akibi — y. Let

t

X'—(l Y2 J/n)

i=\bL =7 1]
ag’blz’ a’,‘{bf{

Obviously x; — x and

L. . t
AkiBlix; = (a“b", ya, ... yn) — .

In [8, Theorems 3.4 and 3.6] Feldman showed that there exists a hypercyclic (n + 1)-tuple of diagonal matrices on C",
for every n € N but there is no hypercyclic n-tuple of diagonal matrices on C" or on R". Feldman actually showed that
there is no n-tuple of diagonal matrices on C" or R" that has a somewhere dense orbit [8, Theorem 4.4]. So the pair
(A, B) is not hypercyclic. To finish, note that for every A € R\ {0} it holds that J(a g)y(Ax) = A J(a,p)(¥) =R". In view of
Lemma 2.2 it follows that J4 p)(0) =R". On the other hand, by the choice of aj, b; for j=2,...,n it is clear that for any
vector u = (uq, Uy, ..., uy)" with uj#0 for some je{2,3,...,n} we have ] p)(u) # R™. This completes the proof of the
theorem. O

A direct analogue to the previous theorem also holds in the complex setting. We will make use of the following result
in [8] due to Feldman.

Proposition 3.3.

(i) Ifb € C\ {0} with |b| < 1 then there is a dense set A, C {z € C: |z| > 1} such that for any a € Ap, we have that {a*b': k,1 € N}
is dense in C.

(ii) If a € C with |a| > 1, then there is a dense set Aq C {z € C: |z| < 1} such that for any b € A,, we have that {a*b': k,1 € N} is
dense in C.

Theorem 3.4. Let a, b € C such that {a*b': k,1 € N} is dense in C. Let n be a positive integer with n > 2 and consider the diagonal
matrices A and B as in Theorem 3.2 where a; =a, by =b, aj,b; € C with |a;| > 1 and |bj| > 1 for j=2,...,n. Then (A, B) isa
locally hypercyclic pair on C" which is not hypercyclic. In particular, we have

{ZE(C"Z ](A,B)(Z):(Cn} = {(21,0,...,0)t eC" 1 GC}.

Proof. The proof follows along the same lines as that of Theorem 3.2. O
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4. Locally hypercyclic pairs of diagonal operators which are not hypercyclic in infinite dimensional spaces

In this section we slightly modify the construction in Theorem 3.2 in order to obtain similar results in infinite dimen-
sional spaces. As usual the symbol IP(N) stands for the Banach space of p-summable sequences, where 1 < p < co and by
[°°(N) we denote the Banach space of bounded sequences (either over R or C).

Theorem 4.1. Let a,b € C such that {a*b': k,| € N} is dense in C and let c € C with |c| > 1. Consider the diagonal operators
Tj:IP(N) = IP(N), 1 < p < oo, j=1,2, defined by

T1(X1,%2,X3,...) = (ax1,CX2, CX3, .. ),

Ty(x1,%2, X3, ...) = (bx1, X2, Cx3, . ..),

for x = (x1,%2,x3,...) €IP(N), 1 < p < oo.Then (T, Ty) is a locally hypercyclic, non-hypercyclic pair in IP (N) for every 1 < p < 0o
and (Tq, T») is a locally topologically transitive, non-topologically transitive pair in [°°(N). In particular we have

{xelPM): Ji, 1) ®) =P} ={(x1,0,0,...): x1 € C}
forevery 1 < p < oo.

Proof. Fix 1 < p < oo and consider a vector y = (y1, y2,...) € IP(N). There exist sequences of positive integers {k;} and {l;}
with k;, [; - +oo such that akibli — yq. Let

2 3
xi=11, J s Y .
Cki+li Cki+li

Obviously x; - x=(1,0,0,...) and

ki li i pli
Tf TZX,‘ = (a" B! ,¥Y2,¥3, ) —y.

Therefore J(r,,1,)(x) =IP(N). For p =2 the pair (T, T2) is not hypercyclic by Feldman’s result which says that there are
no hypercyclic tuples of normal operators in infinite dimensions, see [8]. However, one can show directly that for every
1 < p < oo the pair (Tq, T2) is not hypercyclic and (T, T2) is not topologically transitive in [°°(N). Indeed, suppose that
X=(X1,X2,...) €P(N) is hypercyclic for the pair (T1, T2), where 1 < p < co. Then necessarily x, # 0 and the sequence {c"}
should be dense in C which is a contradiction. For the case p = oo, assuming that the pair (T, T) is topologically tran-
sitive we conclude that the pair (A, B) is topologically transitive in C2, where A(x1, x2) = (ax1, cx2), B(x1, x2) = (bx1, cx2),
(x1,X2) € C?. The latter implies that (A, B) is hypercyclic. Since no pair of diagonal matrices is hypercyclic in C2, see [8],
we arrive at a contradiction. It is also easy to check that {x e IP(N): J(r, 1,)(X) =P (N)} ={(x1,0,0,...): x; € C} for every
1<p<oco. O

Remark 4.2. Theorem 4.1 is valid for the IP(N) spaces over the reals as well. Concerning the non-separable Banach
space [°°(N) we stress that this space does not support topologically transitive operators, see [2]. On the other hand there

exist operators acting on [°°(N) which are locally topologically transitive, see [5].

5. Locally hypercyclic pairs of upper triangular non-diagonal matrices which are not hypercyclic

We first show that it is possible for numbers aq, a; € R to exist with the property that the set

kAl
{ %1% :k,leN}

LI
a az

is dense in R and at the same time the sequences on both the numerator and denominator stay unbounded. For our
purposes we will show that the set above with a = —1 and a; =a is dense in R for any a € R with a > 1. Actually we
shall prove that the set

k_q
-2 . kleN
ak(_])l
is dense in R for any a € R with a > 1. From this it should be obvious that the result above follows since the image of a
dense set in R\ {0} under the map f(x) =1/x is also dense in R.

Lemma 5.1. The set

k-1
a .

is dense in R for any a > 1.
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Proof. Let x € R and € > 0 be given. We want to find k,[ € N such that

k
k_j

ak(_])l -
There are two cases to consider, namely the cases x > 0 and x < 0, and we consider them separately (the case x =0 is trivial
since keeping I fixed we can find k big enough which does the job).

Case I (x > 0): There exists k € N such that 1/a¥ < €/2. We will show that there exists a positive odd integer [ = 2s — 1
for some s € N for which

X| <E€.

k-1 25 1k
—— =X = | —— - —X| <€
ak(_])l ak ak ak+1
But note that this is true since consecutive terms in the sequence {2s/a¥: s € N} are at distance 2/a* < ¢ units apart and
so, for some s € N it holds that ﬁ — ;—k — ak% e(x—e,x+e€).

Case II (x < 0): There exists k € N such that 1/a* < €/2. We will show that there exists a positive even integer | = 2s for
some s € N for which

k1 k 2
=|—07 —— —X| <€.
ak+1 gk

ak(_])l -X

But note that this is true since consecutive terms in the sequence {2s/a*: s € N} are at distance 2/a* < € units apart and

so, for some s € N it holds that ak%— % eE(x—e€,x+€). O

Lemma 5.2. Let x € R\ {0}, a > 1 and consider sequences {k;}, {l;} of natural numbers with k;, l; — +oo such that
ko

—_— > X.
aki(—l)li

Then both the numerator and denominator stay unbounded.
Proof. This is trivial since the denominator grows unbounded and so it forces the numerator to keep up. O

Remark 5.3. The case where x =0 is the only one for which one has the freedom of having the denominator grow un-
bounded and keep the numerator bounded. However, if one requires both numerator and denominator to stay unbounded
then the numerator can also be made to grow unbounded (growing at a slower rate than the denominator).

Let us now proceed with the construction of a locally hypercyclic pair of upper triangular non-diagonal matrices on R"
which is not hypercyclic.

Theorem 5.4. Let n be a positive integer with n > 2 and consider the n x n matrices

a; 0 0 ... 1
0 aj 0 ... O
Aj= 0 0 aq ... O
: : : .0
0 0 0 ... gj

for j=1,2 where a; > 1 and ap = —1. Then (A1, A3) is a locally hypercyclic pair on R™ which is not hypercyclic. In particular, we
have

{x€R™ Jaa)® =R"} ={(x1,0,...,0 € R": x; e R}.

Proof. It easily follows that

kAl kAl ok l

aja, 0 0o ... alaz(%—i-a)

0 dd o .. 0
Akab=1 0 0o dd .. 0



G. Costakis et al. / J. Math. Anal. Appl. 365 (2010) 229-237 235

Let x % 0. We want to find a sequence x; = (X1, Xi2, ..., Xin)!, i € N which converges to the vector (x,0,...,0)" and such
that for any vector w = (w1, wp, ..., w,)! there exist strictly increasing sequences {k;}, {I;} of positive integers for which

A’;iAlz"x,- — w. Without loss of generality we may assume that w, # 0. This is equivalent to having

. (ki
dyidyxir +dia} (—’ + j Xin — W1
2

aj
and
ki [,‘ .. i
ay' a;Xij — W
for j=2,...,n. By Lemma 5.1 there exist sequences {k;} and {l;} of positive integers such that k;, [; — +o0 and
kl‘ li
41 % Wn
ki L X
a + ap
We set
wiX WjX
X“ =X= k,’ li ’ Xij =" ki l,‘
Wn(a‘l’a) Wn(a-i-a)
for j=2,...,n—1, and
X
Xin = N L I .
ay a
Note that, because of Lemma 5.2, x;1 — x and x;; — 0 for j=2,...,n. Substituting into the equations above we find
L 0 ki l; L wiXx
didixg +didi [ 2+ L )k =didi (- —— ) 5wy
192 192\, "oy 192 W(ﬁ—i-l—")
n ay ap
and
dhidlixg; = ak"al’( WX Y Low,
10t =40 T K & j
Wn(a + E)
for j=2,...,n—1 as well as

. - X
ddix, = d“idi (- —— ) > wy.
19 19— 3

ot

The pair (A1, A2) is not hypercyclic. The reason is that if it is hypercyclic then there is a vector y = (y1, Y2,..., yn)! € R"
such that the set {A’{A’zy: k,1 e NU{0}} is dense in R™. Hence the set of vectors

kAl kAl ok l
a1a;y1 + @10, (5 + ;) ¥n

kol
aia
1922 -k, e NU{0)
didby,
is dense in R". If y, =0 then it is clear that the last coordinate cannot approximate anything but 0. If y, # 0 then, since
a; > 1 and a; = —1 the sequence {|a’{a’2yn|: k,1e NU{0}} = {lai[¥|ynl: k € NU{0}} is geometric and so cannot be dense

in RT. It is left to the reader to check that

[XeR™ Ja,ap®) =R"} ={(x1,0,...,0 eR" x;eR}. O
In what follows we establish an analogue of Theorem 5.4 in the complex setting.

Lemma 5.5. Let a, 6 be real numbers such that a > 1 and 6 an irrational multiple of 7. Then the set

a7~
ae' .
{ delfi (1)1 k,le N}

is dense in C.
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Proof. Let w = |w|el® € C\ {0} and € > 0. By the denseness of the irrational rotation on the unit circle and by the choice
of a, there exists a positive integer k such that

e~ — ¢0| < € k ¢

W] and pra < 1

By the proof of Lemma 5.1 there exists a non-negative odd integer [ =2s — 1 for some s € N such that
2s 1 €
P |w|‘ <3

ak(_])l -

Using the above estimates it follows that

|W|‘=

k k

ae? " i¢p ael? _ i¢p
dkeikd (—7)! Iwle™ < ded (1)1 | T | akei (1) lwie
k . .
< —wl| +|w e—lkﬁ _ez¢
o+ ey i+ 1w |
€ + < + d =€ O
47274

We now construct a pair of upper triangular non-diagonal matrices which is locally hypercyclic on C" and not hyper-
cyclic.

Theorem 5.6. Let n be a positive integer with n > 2 and consider the n x n matrices

aj 0 0 AN 1
0 aj 0 ... O
0 0 a;j ... O
P .0
0 0 0 ... g
for j =1,2 where a; = ae'® for a > 1, 0 an irrational multiple of m and a, = —1. Then (A1, Ay) is a locally hypercyclic pair on C"

which is not hypercyclic. In particular, we have
{z€C" Jaa)(@=C"} ={(21,0,...,0 e C": z; e C}.

Proof. The proof follows along the same lines as the proof of Theorem 5.4 where use is made of Lemma 5.5 instead of
Lemma 5.1. O

Remark 5.7. Note that for n =2 the upper triangular matrices we obtain in Theorems 5.4 and 5.6 are in Jordan form. This
gives an example of a locally hypercyclic pair of matrices in Jordan form which is not hypercyclic.

6. Concluding remarks and questions

We stress that all the tuples considered in this work consist of commuting matrices/operators. Recently, in [11] Javaheri
deals with the non-commutative case. In particular, he shows that for every positive integer n > 2 there exist non-
commuting linear maps A, B:R" — R" so that for every vector x = (x1, X2, ..., Xp) With x; # 0 the set

{BFrah . BMAlx: kj, ;e NU{0}, 1< j<n)

is dense in R". In other words the 2n-tuple (B, A, ..., B, A) is hypercyclic.
The following open question was kindly posed by the referee.

Question. Suppose (T1,Ta,..., Trm) is a locally hypercyclic tuple of (commuting) matrices such that J(r, 1, . 1,,)*) =R"
for a finite set of vectors x in R" whose linear span is equal to R". Is it true that the tuple (Tq, T2, ..., Tp) is hypercyclic?
Similarly for C.
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We characterise the Jacobson radical of an analytic crossed product Cy(X) x4
7., answering a question first raised by Arveson and Josephson in 1969. In fact, we
characterise the Jacobson radical of analytic crossed products Co(X) X4 Z%. This
consists of all elements whose “Fourier coefficients” vanish on the recurrent points
of the dynamical system (and the first one is zero). The multidimensional version
requires a variation of the notion of recurrence, taking into account the various
degrees of freedom.  © 2001 Elsevier Science
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recurrence; wandering sets.

There is a rich interplay between operator algebras and dynamical
systems, going back to the founding work of Murray and von Neumann in
the 1930’s. Crossed product constructions continue to provide fundamental
examples of von Neumann algebras and C*-algebras. Comparatively
recently, Arveson [1] in 1967 introduced a nonselfadjoint crossed product
construction, called the analytic crossed product or the semicrossed
product, which has the remarkable property of capturing all of the
information about the dynamical system.
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The construction starts with a dynamical system (X, ¢), i.e., a locally
compact Hausdorff space X and a continuous, proper surjection ¢: X — X.
Regarding the elements of £'(Z,, Co(X)) as formal series >, , U"f,, define
a multiplication by requiring fU = U( f o ¢). The analytic crossed product,
Co(X) %, Z_, is a suitable completion of £'(Z,, Cy(X)); we give a detailed
discussion below. Then the property mentioned above is that, subject to a
mild condition on periodic points, two analytic crossed product algebras
are isomorphic as complex algebras if, and only if, the underlying dynami-
cal systems are topologically conjugate; i.e., there is a homeomorphism
between the spaces that intertwines the two actions. In this generality, the
result is due to Hadwin and Hoover [9, 10]—see also [20], which gives an
elegant direct proof of this if the maps ¢ are homeomorphisms and extends
the result to analytic crossed products by finitely many distinct commuting
homeomorphisms on X, i.e., by Z<.

Arveson’s original work [1] was for weakly-closed operator algebras and
Arveson and Josephson in [2] gave an extension to norm closed operator
algebras, including a structure theorem for bounded isomorphisms
between two such algebras. Motivated by this, they asked if the analytic
crossed product algebras were always semisimple (which would imply that
all isomorphisms are bounded), noting that the evidence suggested a
negative answer. This question stimulated considerable work on the ideal
structure of analytic crossed products.

Another stimulus is the close connections between the ideal structure of
C*-crossed products and dynamical systems, such as the characterisation of
primitive ideals of C*-crossed products in terms of orbit closures by Effros
and Hahn [5]. In this connection, we should mention Lamoureux’s devel-
opment of a generalisation of the primitive ideal space for various non-
selfadjoint operator algebras, including analytic crossed products [12, 13].

We state our main result for the case d = 1. Recall that a point x € X is
recurrent for the dynamical system (X, ¢) if for every neighbourhood ¥ of
x, there is n>1 so that ¢"(x)eV. If X is a metric space, then this is
equivalent to having a sequence (7,) tending to infinity so that ¢™(x) con-
verges to x. Let X, denote the recurrent points of (X, ¢). Denoting ele-
ments of the analytic crossed product by formal series >, , U"f, we prove:

THEOREM 1. If X is a locally compact metrisable space, then

Rad(Cy(X) x4 Z,) = { Y U"f, € Co(X) x4 Z,: f,ly, =0 for alln}.

n>1

Important progress towards a characterisation has been made by a
number of authors. In [16], Muhly gave two sufficient conditions, one for
an analytic crossed product to be semisimple and another for the Jacobson
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radical to be nonzero. The sufficient condition for a nonzero Jacobson
radical is that the dynamical system (X, ¢) possess a wandering set, i.e., an
open set ¥V < X so that V, ¢~'(V), ¢ 2(V), ... are pairwise disjoint. If there
are no wandering open sets, then the recurrent points are dense, so it turns
out that this sufficient condition is also necessary.

Peters in [ 18, 19] characterised the strong radical (namely, the intersec-
tion of the maximal (modular, two-sided) ideals) and the closure of the
prime radical and described much of the ideal structure for analytic crossed
products arising from firee actions of Z*. He also gave a sufficient condi-
tion for semisimplicity and showed that this condition is necessary and
sufficient for semisimplicity of the norm dense subalgebra of polynomials
in the analytic crossed product.

Most recently, Mastrangelo et al. [15], using powerful coordinate
methods and the crucial idea from [4], characterised the Jacobson radical
for analytic subalgebras of groupoid C*-algebras. For those analytic
crossed products that can be coordinatised in this way (those with a free
action), their characterisation is the same as ours. The asymptotic centre of
the dynamical system that is used in [15] is also important to our
approach.

However, we are able to dispose of the assumption of freeness (and thus
our dynamical systems can have fixed points or periodic points); in fact,
our methods are applicable to irreversible dynamical systems having several
degrees of freedom (that is, actions of Z%). In the multidimensional case
the usual notions of recurrence and centre are not sufficient to describe the
Jacobson radical, as we show by an example. Accordingly, we introduce
appropriate modifications.

After discussing the basic properties of analytic crossed products and
some of the radicals of Banach algebras, we develop the key lemma in
Section 1. This lemma, which is based on the idea of [4, Lemma 1], relates
(multi-) recurrent points in the dynamical system with elements not in the
Jacobson radical. In Section 2, we give a characterisation of semisimplicity.
The proof has three ingredients: the key lemma, a sufficient condition for
an element to belong to the prime radical (a descendant of Muhly’s condi-
tion mentioned earlier), and a basic fact from dynamical systems theory
which is known in the one-dimensional case. Our main result, Theorem 18,
is proved in the last section using a modification of the centre of a dynam-
ical system.

0.1. Definition of analytic crossed products. Analytic crossed products
or semicrossed products have been defined in various degrees of generality
by several authors (see for example [9, 13, 18, 19, 20]), generalising the
concept of the crossed product of a C*-algebra by a group of *-auto-
morphisms. To fix our conventions, we present the definition in the form
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that we will use it. Let X be a locally compact Hausdorff space and
& = {$,:n=(n,,n,, ...,n;) € Z%} be a semigroup of continuous and proper
surjections isomorphic (as a semigroup) to Z4.

An action of X' = Z% on C,(X) by isometric *-endomorphisms «, (n€ X)
is obtained by defining o, ( f) = f o @,.

We write elements of the Banach space £(X, Cy(X)) as formal multi-
seriess A=Y, .5 U, f, with the norm given by |4|; =3 ||f.llc,x)- The
multiplication on £1(X, Cy(X)) is defined by setting

U fUng=Uin(ou(f) &)

and extending by linearity and continuity. With this multiplication,
£Y(XZ, Cy(X)) is a Banach algebra.

We will represent £1(X, Cy(X)) faithfully as a (concrete) operator algebra
on Hilbert space, and define the analytic crossed product as the closure of
the image.

Assuming we have a faithful action of Cy(X) on a Hilbert space H,, we
can define a faithful contractive representation 7 of £'(Z, Cy(X)) on the
Hilbert space # = H, ® £*(X) by defining (U, f) as

(U, f)E®e) = o (f) € ® ey

To show that r is faithful, let 4 =3, > U, f, be in £'(Z%, Cy(X)) and
x, y € H, be unit vectors. Since 7 is clearly contractive, the series 7(A4) =
> ner (U, f,) converges absolutely. For m € X, we have

<7Z(A)(X ® eO)9 y ® em> = z <TC(U“ fn)(x ® 80), y ® em>

=Y {fux®e, yQe,»

as x ® e, and y ® e, are orthogonal for n # m. It follows that

(AN = || full-

Hence if n(4)=0 then f, =0 for all m, showing 4=0. Thus = is a
monomorphism.

DerFINITION 2. The analytic crossed product of = Cy(X) X4 7% is the
closure of the image of £'(Z%, Cy(X)) in #(#) in the representation just
defined.
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This is a generalisation of the definition given in [19]. Note that .« is in
fact independent of the faithful action of Cy(X) on H, (up to isometric
isomorphism).

For A=Y U, f, € £'(2, Co,(X)) we call f, =E,(A) the nth Fourier coef-
ficient of A. We have shown above that the maps E,: £'(X, Cy(X)) —
Cy(X) are contractive in the (operator) norm of ./, hence they extend to
contractions E,: o/ — Cy(X).

Moreover,

U,E,.(A)= , 0.(A4) exp(—im.t) dt,
)

where m.t = m, ¢, +... +m,t, and the automorphism 6, is defined first on
the dense subalgebra £!(X, C,(X)) by

6, <Z U fa > = ). U,(exp(itn) f,)

and then extended to .« by continuity.

Thus, by injectivity of the Fourier transform on C(([—=, n])9), if a
continuous linear form # on &/ satisfies #(E,(4)) =0 for all m then (the
function t — #(6,(4)) vanishes and hence) 7(4) =0. The Hahn-Banach
Theorem yields the following remark.

Remark. Any Ae o/ belongs to the closed linear span of the set
{UnE,(A):me X} of its “associated monomials™.

In particular, 7 is the closure of the subalgebra .o, of trigonometric
polynomials, i.e., finite sums of monomials.

As 6, is an automorphism of ./, we conclude that if ¢ = o/ is a closed
automorphism invariant ideal (in particular, the Jacobson radical) then for
all Be ¢ and m e X' we obtain U, E, (B) € #. Thus, an element > U, f, is
in # if and only if each monomial U, f, is in Z; this was first observed (for
d=1) in [16, Proposition 2.1]. It now follows from the remark that any
such ideal is the closure of the trigonometric polynomials it contains.

0.2 Radicals in Banach algebras. Recall that an ideal # of an algebra
o/ is said to be primitive if it is the kernel of an (algebraically) irreducible
representation. The intersection of all primitive ideals of .« is the Jacobson
radical of </, denoted Rad /.

An ideal ¢ is prime if it cannot factor as the product of two distinct
ideals, i.e., if 4, % are ideals of .« such that ¢ # < ¢ then either ¢ < ¢
or % < ¢. The intersection of all prime ideals is the prime radical of </,
denoted PRad «/. An algebra </ is semisimple if Rad o/ ={0} and
semiprime if PRad o = {0}, or equivalently, if there are no (nonzero)
nilpotent ideals.
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As a primitive ideal is prime, PRad o« = Rad /. Thus a semisimple
algebra is semiprime. If .o/ is a Banach algebra, then the Jacobson radical is
closed; indeed every primitive ideal is the kernel of some continuous repre-
sentation of &/ on a Banach space. In fact an element 4 € o7 is in Rad o if
and only if the spectral radius of 4B vanishes for all B e «/.

The prime radical need not be closed; it is closed if and only if it is a
nilpotent ideal (see [8] or [17, Theorem 4.4.11]). Thus for a general
Banach algebra, PRad .« < PRad &/ =< Rad «/.

1. RECURRENCE AND MONOMIALS

Our main results will be proved for metrisable dynamical systems; hence
we make the blanket assumption that X will be a locally compact metrisable
space. As in the one-dimensional case, we say that a point xe X is
recurrent for the dynamical system (X, @) if there exists a sequence (ny)
tending to infinity so that ¢, (x) — x. We will need the following variant:

DerFINITION 3. Let J={1,2,...,d}. Say xe X is J-recurrent if there
exists a sequence (n,) which is strictly increasing in the directions of J (that
is, the jth entry of m,,, is greater than the jth entry of n, for every jeJ
and ke N) such that lim, ¢, (x) = x. Denote the set of all J-recurrent
points by X/,.

We say that a point xe€ X is strongly recurrent if it is {1,2,...,d}-
recurrent. Finally, X, denotes {ne Z%:n; >0 for all je J}.

In the multidimensional case, the Jacobson radical cannot be charac-
terised in terms of either the recurrent points (in the traditional sense) or
the strongly recurrent points. To justify this, we give the following example.

ExaMPLE 4. Let X =X, U X, UX, where X, =Rx{i}. Consider the
dynamical system (X, (¢,, ¢,)), where @, acts as translation by 1 on X, and
as the identity on X, U X, while ¢, acts as translation by 1 on X, and as
the identity on X, U X;. It is easy to see that the set of {1}-recurrent points
is X, U X,, the set of {2}-recurrent points is X, U X, and the set of strongly
recurrent points is X|,.

Choose small neighbourhoods V; € X, and V, < X, of (0, 1) and (0, 2)
respectively such that ¢, (V7)) nV; = & and ¢,(V,) NV, = . Let f € Co(X)
be any function supported on V; U ¥, such that £(0, 1) = f(0,2) =1.

Then one can verify (as in the proof of Lemma 8 in the next section) that
U,U, f is in the prime radical. On the other hand, neither U, f nor U, f
belong to the Jacobson radical (they are not even quasinilpotent).
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Here, the associated semicrossed product has nonzero Jacobson radical,
although every point is recurrent. Also, the monomial U, f is not in the
Jacobson radical, although f vanishes on the strongly recurrent points. The
next lemma shows that for such a monomial to be in the Jacobson radical,
f must vanish on the {1}-recurrent points.

The main result of this section is the following lemma, which is crucial to
our analysis.

LemMMA 5. Let U, f € Rad(Cy(X) %, Z%). If J contains the support of q,
then f vanishes on each J-recurrent point of (X, ®).

In order to prove this lemma, we need a basic property of recurrent
points, adapted to our circumstances.

DerINITION 6. Given a sequence il = (n;) S Z¢ we define recursively
the family of indices associated to @, denoted Z(ii) = (S,, S, S,,...) as
follows: S, = {0}, S; = {n, } and generally

k
Skt ={nk+1+mk+j je Y 51}
=0

iz
where m; = 0 and m; =n, +2m,_,.

The sets in &% () will be needed in the proof of Lemma 5: they are the
indices of ¢ occurring in the simplification of the inductive sequence of
products given by P, =U, g and P, = P,_,(U, (g/2*"")) P,_,. We should
also point out that (J; S; is an IP-set (see [6, Section 8.4]) and the next
lemma is a variant on [6, Theorem 2.17].

Recall X, denotes {(n;,n,,...,n;):n; #0 for all jeJ}. Let 4, be the
subset of X', with entries in the directions of J* identically zero.

LEMMA 7. Let x be in X, J be a subset of {1,2,...,d}. Suppose that
lim, ¢, (x) = x, where (p,) is a sequence whose restriction to J is strictly
increasing while its restriction to J° is constant.

For each open neighbourhood V' of x and each k € N, there is n, € A; and
X, €V with

d(x) eV forall sel) S,

where & (i) = (S,, ...) is the family of indices associated to the sequence (ny).



136 DONSIG, KATAVOLOS, AND MANOUSSOS

Proof. We inductively find indices mn;, n,, ..., as above, open sets
V2V, 2V, 2 - and points x,, X,, ... with x; € V; and x; = ¢, (x) for some
index k;, so that

¢ V)sV forall seS,.

This will prove the lemma, for if k € N and s € S; for some i < k then, since
x, €V, <V, it will follow that ¢,(x;) € (V) < ¢, (V) V.

Since lim, ¢, (x) = x eV, there is p; with x, = ¢Pi1 (x)eV. Let k, =p,,.
Using lim, ¢, (x) =x eV and the form of the p,, it follows that there is
n, € 4; so that ¢, ., (x) eV. Now

G, (x1) = G0, (P, (X)) = o 11, (W) €V,

and so there is ¥; =V, an open neighbourhood of x,, so that ¢, (V) = V.
Since S, = {n, }, this establishes the base step.

For the inductive step, assume we have chosen indices n;, n, ..., n,, open
subsets of V, ¥V, 2V, 2 --- 2V, and points x,, X,, ..., X,, with x; €V, and
X; = ¢y, (x), so that, fori =1, ..., g, we have

o, (V))<V forall ses;. €))

Since lim; ¢, (x,) = ¢kq‘(1imk P, (X)) =X, € v, ‘there is.kq +1 =D, so that
Xop1 = b, ()fq) € V,. Notice that m, (as in Definition 6) is in 4,. It follows
that there exists n,,; € 4, such that ¢, +m, +ky (X)) €V, and s0 @, i,
(x,,1) €V,. Hence there exists an open neighbourhood V,,, of x,,,, con-
tained in V, so that

Pugrmg Vas1) S Vo @

It remains only to show that ¢,(V,,,) =V for all se S,,,. An element s
in S, is of the form s =n,,, +m, +j for some je J/_, S;. Assuming je S,
for some i, we have

BVt = 4oy oo Vi DE BT by @)
s4h(V)sV by (1)

completing the induction. ||

Proof of Lemma 5. Assume that f(x) # 0 for some J-recurrent point x.
We will find B e o such that BU, f has nonzero spectral radius. We may
scale f so that there exists a relatively compact open neighbourhood V" of x
such that |f(y)| =1 for all y e V. Since U, | f|*= (U, f) f* € Rad o/ when
U,f € Rad ./, we may also assume that f > 0.
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Since x is J-recurrent, there exists a sequence (p,) which is strictly
increasing in the directions of J such that lim; ¢, (x) = x. Deleting some
initial segment, we may assume that ¢, (x) e V for all k e N.

If (p,) has all entries going to infinity, then we may apply Lemma 7 with
J={1,2,...,d}, to find a strictly increasing sequence (n,) such that n, > q
for all k and points x, € V such that ¢,(x;) € V for all s in |J*_, S,.

If not, enlarging J and passing to a subsequence if necessary, we may
assume that the restriction of (p,) to J¢ takes only finitely many values.
Passing to another subsequence, we may further assume that this restriction
is constant. Applying Lemma 7, we may find a strictly increasing sequence
(n) in Z¢ with n € 4, and points x; € V such that ¢,(x;) e V for all s in

k_»S;. We may suppose that n, —qe X, for all k. Thus U, —q 1s an
admissible term in the formal power series of an element of Cy(X) x, 74,

Fix a nonnegative function 4 € C,(X) such that h(¢,(y)) =1forall yeV
and consider

i h
B= Z Ui k=1
k=1
This is an element of .o/ since the series converges absolutely. To complete

the proof, it suffices to show that the spectral radius of 4 = BU, f is strictly
positive. Note that

g
A=2UnkFa

where g is f.(ho¢,), a nonnegative function satisfying g(y) >1 for all
yeV. Thus each Fourier coefficient E,(A™) of A™ is a finite sum of non-
negative functions, and hence its norm dominates the (supremum) norm of
each summand. Since |42~ > ||E,(42~Y)|, it suffices to find &> 0 such
that for each k there exists n such that the norm of some summand of
E,(4%7") exceeds e .

If we let P, = U, g, then trivially P, is a term in 4. In the next product,
A*=AZ U, &) A=3 A(U,, ;&) A, we have the term

g
PZ = Unlg <Un2 E) Un1 8-
Generally, one term in the expansion of 42 ' = 42" '~144%'~1is

g
P.=P,_, <Unk F>Pk—1-
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Cram. If 4, =1 and iy = A3/2%, then P, =U, A I, g o ¢, where m,
is as in the definition of & (i) and the product is over all s in (Jf_, S;) \ {m, }.

Proof of Claim. For k=1, the claim holds trivially as (S, U S;)\ {m, }

= {0}. Assuming the claim is true for some k, we have

Py =P <U 2§>P
= Umkj‘k <1_[ go ¢S ><Unk+1 %) Umkj‘k <1_[ go ¢t>
s t

(where s, t range over (Uf_, S;)\ {m,})

Ak
= Umk ?(n go ¢s> Unk+1+mk(g ° ¢mk) <l:[ go° ¢s>

A
~Usm s 5 (11 £ ernrom ) (e ) (TT £
s t
Ak
= U2mk+nk+1 ? 1_[ go ¢s’ l_[ ge° ¢t’ s
s’ t'

where s’ ranges over {n,,, +my+s}, for se (U%_, ;)\ {m,}, and t’ ranges
over (J¥_, S,). Therefore

Pk+1 = Umk+1)“k+l <l__[ go ¢s>

forsin (Ui*y S;)\ {m,,,}, proving the claim.

Recall that for each k € N there exists x;, € V' such that ¢,(x,) € V for all
se J¥_, S,. Since g|, > 1, we have [, g(¢,(x;)) =1 where s ranges over
(U¥_0 S\ {m,} and hence |[], g © 4| > 1. From the claim, it follows that
| 2]l = A and so, by the earlier remarks,

k k
147 = = 1B, (A% =D = 1Pell > A

Thus the proof will be complete if we show that 4, > (%)zk’1 or equivalently
log, 2;' <2¥—1 for all k. Setting u, =log, A;', the recurrence relation for
A becomes ., =2u, +k and u; =0, which has solution y, =2—k—1.
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2. WANDERING SETS AND SEMISIMPLICITY

We characterise semisimplicity of analytic crossed products and show
this is equivalent to being semiprime. Part of this characterisation is of
course a special case of our main result, Theorem 18, but we will need the
preliminary results in any case.

A wandering open set is an open set ¥V < X so that ¢,;'(V)nV =
whenever n € Z4 is nonzero. A wandering point is a point with a wandering
neighbourhood.

We will need the following variant: let J = {1, ..., d}. An open set V = X
is said to be wandering in the directions of J, or J-wandering, if ¢ (V)
NV = ¢ whenever n is in 2. It is easily seen that, if X, denotes the set of
all J-wandering points (those with a J-wandering neighbourhood), then
X, is open and its complement is invariant and contains the set X, of
J-recurrent points.

Note, however, that it is possible for a recurrent point (in the usual
sense) to have a neighbourhood that is J-wandering (for some J). For
example, if X = R? and ¢,(x, y) = (x+1, y) while ¢,(x, y) = (x, 3y), then
the origin is recurrent for the dynamical system (X, (¢, ¢,)), but it also
has a {1}-wandering neighbourhood.

The idea of the following Lemma comes from [ 16, Theorem 4.2].

LemMA 8. Suppose V= X is an open set which is J-wandering and
g € Cy(X) is a nonzero function with support contained in V. If e; denotes the
characteristic function of J, then B=U,, g generates a nonzero ideal o/ Bo/
whose square is 0.

Proof. Let C € o/ be arbitrary and & = E,(C). Then
BUkEk(C) B = Uej gUkhUng = Uk+2ej(ak+e1(g) a’ej (h) g)a

which is zero since g is supported on V" and o, (g) is supported on the
disjoint set (/SljieJ(V). This shows that all Fourier coefficients of BCB will
vanish, and hence BCB = 0. It follows that all products (C,BC,)(C;BC,)
vanish and hence («/Bo/)*=0. On the other hand, choosing functions
h, € Cy(X) equal to 1 on ¢;Jl (V) and h, equal to 1 on V', we find E, (h, Bh,)
=, (hy) gh, = g # 0, so the ideal ./ B.«/ is nonzero. |

The following proposition is known for the usual notions of recurrence
and wandering in the case d = 1; see [ 6, Theorem 1.27].

PrOPOSITION 9. Suppose X is a locally compact metrisable space. If
(X, @) has no nonempty J-wandering open sets, then the J-recurrent points
are dense.
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Proof. Let V = X be a relatively compact open set. We wish to find a
J-recurrent point in V.

Since V' is not J-wandering, there exists n, € 2'; such that ¢,;1(V) NV
# . Hence there is a nonempty, relatively compact, open set V; with
diam(V;) <1 such that V; = ¢, ' (V) " V.

Since V] contains no J-wandering subsets, a similar argument shows that
there exists n, such that ¢;21(V1) NV, # & and the jth entry of n, is greater
than that of n, for every je J.

Inductively one obtains a sequence of open sets V), and n, strictly
increasing in the directions of J with V, = ¢,'(Vi_,) nV;_, and diam(V;)
< 1/k all contained in the compact metrisable space V,. It follows from
Cantor’s theorem that the intersection (), ¥, is a singleton, say x. Since
xeV, c ¢;kl (Vi—1) we have ¢, (x) e V,_, for all k and so ¢, (x) — x; hence
xeX,. 1

THEOREM 10. If X is a metrisable, locally compact space, then the
following are equivalent:

1. the strongly recurrent points are dense in X,
2. Co(X) %, 74 is semisimple, and
3. Co(X) %, Z4 is semiprime.

Proof. If the strongly recurrent points are dense in X, then by Lemma 5
there are no nonzero monomials in the Jacobson radical of Cy(X) X, X.
But we have already observed that an element A is in the Jacobson radical
if and only if each monomial U, E,(A4) is. Thus Cy(X) x; 2 is semisimple
and hence semiprime.

Suppose that Cy(X) x, X is semiprime. Then Lemma 8 shows that there
are no nonempty J-wandering open sets for J={l1,2,...,d}. Thus, by
Proposition 9, the strongly recurrent points are dense. |

3. CENTRES AND THE JACOBSON RADICAL

In order to describe the Jacobson radical of an analytic crossed product,
we need to characterise the closure of the J-recurrent points, for a dynam-
ical system (X, @) with X a locally compact metrisable space.

Lemva 11. (1) If YS X is a closed invariant set, the set Y, of
J-recurrent points for the dynamical system (Y, @) equals X;, Y.

(i) The set X, is the largest closed invariant set Y = X such that
(Y, @) has no J-wandering points.
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Proof. (i) To see that Y, = X, note that if yeY,, then for every
neighbourhood V" of y (in X) the set V" nY is a neighbourhood of y in the
relative topology of Y, so there exists n € 2'; such that ¢,(y) eV nY. Thus
¢.(y) eV showing that y € X;,. On the other hand if y € Y n X, then for
each relative neighbourhood V' nY of y, since V' is a neighbourhood of y
in X there exists n € 2, such that ¢,(y) e V. Since y € Y and Y is invariant,
¢.(y) eV NY establishing (i).

(i) Given a closed invariant set Y <X, if (Y,®|,) has no
J-wandering points, then Y, is dense in Y by Proposition 9, and hence
Y = X,,. On the other hand, (X,,, ®) clearly has no J-wandering open
sets. |1

The set X, is found by successively “peeling off”” the J-wandering parts
of the dynamical system. This construction and Lemma 13 generalise the
well known concept of the centre of a dynamical system (X, ¢) [7, 7.19].

If VV = X is the union of the J-wandering open subsets of X, then let X ,
be the closed invariant set X \V. Consider the dynamical system
(X7,1,D;,1), where @, | =Py, . Let X, , be the complement of the union
of all J-wandering open sets of (X, ,,®;,). Again we have a closed
invariant set, and we may form the dynamical subsystem (X} ,, @, ,) where
®@;,=P|y,,- By transfinite recursion, we obtain a decreasing family
(X;,,, D, ,) of dynamical systems: indeed, if (X, ,, @, ,) has been defined,
we let X, ., =X,;, be the set of points in (X, ,,®,,) having no
J-wandering neighbourhood and we define @, ,,, =®|y, ,; if f is a limit
ordinal and the systems (X ,, @, ,) have been defined for all y < g, then
we set X;,=(),<5X,, and 45Jjﬁ=<15|XJ‘ﬁ. (We write X; =X and
®, o =P.) This process must stop, for the cardinality of the family {X ,}
cannot exceed that of the power set of X.

DermNiTION 12. By the above argument, there exists a least ordinal y
such that X, ,., =X, ,. The set X, , is called the strong J-centre of the
dynamical system, and y is called the depth of the strong J-centre.

LemMma 13.  If X is metrisable, then the strong J-centre of the dynamical
system is the closure of the J-recurrent points.

Proof. As a J-recurrent point cannot be J-wandering, X, < X, . If
X, =X, , for some y, then by Lemma 11 the set (X, ), of J-recurrent
points of the subsystem (X, ,,®,,) equals X, n X, ,, so (X;,); =X,;
but (X;,);, X, ,.1, and so X, =X, .. Finally, if y is a limit ordinal
and we assume that X, = X ; for all 6 <y then X,, = ;., X; ;=X .
This shows that X;, =, X, , and so X, =), X, , since the sets X, , are
closed.
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But on the other hand, if y, is the depth of the strong J-centre we have
N, X;, =X, ,,, a closed invariant set. Since X, , ., = X, ,,, the dynamical
system (X, ,, D, , ) can have no J-wandering points. Thus it follows from

Lemma 11 that X, , < X,, and hence equality holds. ||

Remark. 1If X is a locally compact (not necessarily metrisable) space
and {¢,:neZ? is an action of an equicontinuous group of homeo-
morphisms (with respect to a uniformity compatible with the topology
of X) then X, = X\ X, (see [ 14, Proposition 4.157).

LemMA 14.  For any ordinal 9, any f € C, (X5 5,,) (i.e., f has compact
support disjoint from X; ;5. ) can be written as a finite sum f =3 f, where
each f;, has compact support contained in a set V, such that V, N X, s is
J-wandering set for (X; s, @; 5).

Proof. If K is the support of f then K n X, ; = X, s\ X, ;,,; in other
words the compact set KN X;; consists of J-wandering points for
(X; 5, ®;5). This means that each xe KnJX,;; has an open neigh-
bourhood ¥, so that the (relatively open) set V, n X ; is J-wandering for
(X, 5, D, ;). Each ye K\ X, ; has an open neighbourhood ¥, such that
V, n X; 5 is empty (and so J-wandering).

The family {V,: x € K} is an open cover for K. Thus, there is a partition
of unity for f, i.e., a finite subcover, {V,: 1 <k <m}, and functions f,
1 <k <m, with supp(f,) a compact subset of V;, so that f = f;+ ---

+ /- |

DrrFINITION 15. We denote by £, , the closed ideal generated by all
monomials of the form U, f where n is in X2, and f € Cy(X) vanishes on
the set X;, and by & , the set of all elements of the form Bf where
Be Z;, and f has compact support disjoint from X ,.

Note that a monomial U, f € #, , may be written in the form CU,, f
with C € o7, sincene 2.

Also observe that .%; , is dense in %, ,. Indeed if U, f € £, ,, then f can
be approximated by some ge C.(X7 ,); now U,g is in & , and approxi-
mates U, f.

PROPOSITION 16. For each ordinal y and each J ={1,2,...,d}, the set
., is contained in Rad o/ . Hence A; , is contained in Rad o/ .
If PRad o is closed, then R; , is contained in PRad of .

Proof. Since &, is dense in £, ,, it suffices to prove that any 4=
Bf € ¥, is contained in Rad .«/.
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Suppose y = 1. By Lemma 14 we may write 4 as a finite sum 4 =), Bf;
where each f; is supported on a compact set that is J-wandering. Since
A, = Bf, = DU,, f; for some D e o/ as observed above, by Lemma 8 we
have (/4,/)*> =0 and so 4, e PRad «/. Thus 4 € PRad ./ = Rad «.

Suppose the result has been proved for all ordinals less than some .

Let y be a limit ordinal. If supp f =K< X5 ,, we have K Xj , =
Us<, X7 s; hence K can be covered by finitely many of the X7 ;, hence
(since they are decreasing) by one of them. Thus f has compact support
contained in some X5 ; (6<y) and so Bf e ,;. Therefore A= Bf
€ Rad &/ by the induction hypothesis.

Now suppose that y is a successor, y =0+ 1. By Lemma 14, we may
write f =Y f, where the support of f, is compact and contained in an
open set V;, such that V, n X ; is J-wandering for (X ;, @, ;), i.e.,

¢;1(I/k mXJ,&) NN XJ,J) =

when n € Z,. This can easily be seen to imply ¢," (V;) NV, < X .

Let C € o be arbitrary. Writing 4, = DU,, f; as above, it follows as in
the proof of Lemma 8 that for each k all Fourier coefficients of 4,CA, are
supported in ¥, N ¢, (V) (for some n e X;) which is contained in X§ ; by
the previous paragraph.

Thus A4,CA, € #; s. By the induction hypothesis, 4,CA, must be con-
tained in Rad «/. Thus (4,C)? is quasinilpotent, hence so is 4,C (by the
spectral mapping theorem). Since C e .o/ is arbitrary, it follows that
A, € Rad «f for each k, so that 4 € Rad /.

Finally, we suppose that PRad ./ is closed. Then the argument above
can be repeated exactly up to the previous paragraph, changing Rad .« to
PRad /. The previous paragraph can be replaced by the following
argument.

Thus A,CA, € %, s. By the induction hypothesis, 4,CA, must be con-
tained in PRad /. Thus all products (C,4,C,)(C;4,C,) are in PRad &/
and so the (possibly non-closed) ideal % generated by A, satisfies % ¢, <
PRad /. For every prime ideal £, we have 4 4. <% and so % < Z.
Hence ¢, < PRad .o/, and therefore A, € PRad o/ for each k, so that
AePRad &7. |

One cannot conclude that #; , = PRad .« in general, even for finite y, as
the following example shows. Thus the prime radical is not always closed.
Note that Hudson has given examples of TAF algebras in which the prime
radical is not closed [ 11, Example 4.9].

ExaMPLE 17. We use a continuous dynamical system (X, {¢,},cr)
based on [ 3, Example 3.3.4, p. 20] and look at the discrete system given by
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the maps {¢,} for t € Z_ . The space X is the closed unit disc in R* For the
continuous system, the trajectories consist of: (i) three fixed points, namely
the origin O and the points A(1, 0) and B(—1, 0) on the unit circle, (ii) the
two semicircles on the unit circle joining 4 and B and (iii) spiraling trajec-
tories emanating at the origin and converging to the boundary.

Let ¢ =¢,. The recurrent points for the (discrete) dynamical system
(X, ¢) are X, = {4, B, O} and the set of wandering points is the open unit
disc except the origin. Hence X, = X, and so the depth of the dynamical
system is 2.

Now choose small disjoint open neighbourhoods V,, V3, V, around the
fixed points and let f € C(X) be a nonnegative function which is 1 outside
these open sets and vanishes only at 4, B and O. Then the element U f € &/
is clearly not nilpotent, so Uf ¢ PRad «/. However U f € Rad &/ by the
next theorem.

THEOREM 18. Let (X, @) be a dynamical system with X metrisable. The
Jacobson radical, Rad(Cy(X)Xx, 7%), is the closed ideal generated by all
monomials U, f (n# 0) where f vanishes on the set X;, of J-recurrent points
corresponding to the support J of n.

Moreover, PRad o/ = Rad of if and only if PRad </ is closed.

Proof. Let U, f be a monomial contained in Rad o/ and let J be the
support of n. Then Lemma 5 shows that f must vanish on X,.

On the other hand, let U, f be as in the statement of the Theorem, so
that f vanishes on X, (where J =suppn). We will show that U, f is in
Rad /. It is enough to suppose that the support K of f is compact. Since
K is contained in (X,,)°={J, X7 ,, it is contained in finitely many, hence
one, X7 . It follows by Proposition 16 that U, f € Rad .«/.

In the final statement of the theorem, one direction is obvious. For
the other, suppose PRad .« is closed. Then by the final statement of
Proposition 16, we have #, , = PRad «/. ||

This theorem leaves open the possibility that the closure of the prime
radical is always equal to the Jacobson radical.
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