
A PROOF OF TYCHONOFF’S THEOREM

ANTONIOS MANOUSSOS

1. Nets and Compactness

Definition 1.1. We say that a net {xλ} has x ∈ X as a cluster point
if and only if for each neighborhood U of x and for each λ0 ∈ Λ there
exist some λ ≥ λ0 such that xλ ∈ U . In this case we say that {xλ} is
cofinally (or frequently) in each neighborhood of x.

Theorem 1.2. A net {xλ} has y ∈ X as a cluster point if and only if
it has a subnet which converges to y.

Proof. Let y be a cluster point of {xλ}. Define

M := {(λ, U) : λ ∈ Λ, U a neighborhood of y such that xλ ∈ U},
and order M as follows: (λ1, U1) ≤ (λ2, U2) if and only if λ1 ≤ λ2

and U2 ⊆ U1. This is easily verified to be a direction on M . Define
ϕ : M → Λ by ϕ(λ, U) = λ. Then ϕ is increasing and cofinal in Λ,
so ϕ defines a subnet of {xλ}. Let U0 be any neighborhood of y and
find λ0 ∈ Λ such that xλ0 ∈ U0. Then (λ0, U0) ∈ M , and moreover,
(λ, U) ≥ (λ0, U0) implies U ⊆ U0, so that xλ ∈ U ⊆ U0. It follows that
the subnet defined by ϕ converges to y.

Suppose ϕ : M → Λ defines a subnet of {xλ} which converges to y.
Then for each neighborhood U of y, there is some uU in M such that
u ≥ uU implies xϕ(u) ∈ U . Suppose a neighborhood U of y and a point
λ0 ∈ Λ are given. Since ϕ(M) is cofinal in Λ, there is some u0 ∈ M
such that ϕ(u0) ≥ λ0. But there is also some uU ∈ M such that u ≥ uU

implies xϕ(u) ∈ U . Pick u∗ ≥ u0 and u∗ ≥ uU . Then ϕ(u∗) = λ∗ ≥ λ0,
since ϕ(u∗) ≥ ϕ(u0), and xλ∗ = xϕ(u∗) ∈ U , since u∗ ≥ uU . Thus for
any neighborhood U of y and any λ0 ∈ Λ, there is some λ∗ ≥ λ with
xλ∗ ∈ U . It follows that y is a cluster point of {xλ}. ¤
Theorem 1.3. A topological space X is compact if and only if every
net on X has a convergent subnet on X.

Proof. Assume that X is compact, and suppose that we have a net
{xλ} that does not have any convergent subnet. Hence, using the
previous theorem, the net {xλ} does not have cluster points. This
means that for each x ∈ X we can find a neighborhood Ux of x and
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an index λx such that xλ /∈ Ux for every λ ≥ λx. Since X is compact

then there exist x1, x2, . . . , xn ∈ X such that X =
n⋃

i=1

Uxi
. Take any

λ ≥ λx1 , λx2 , . . . , λxn . Then xλ /∈ X which is a contradiction.
Assume that every net on X has a convergent subnet on X. We will

show that X is compact. To this end take a family F = {Fi : i ∈ I}
of closed subsets of X with the finite intersection property, that is
Fi1 ∩Fi2 ∩ . . .∩Fin 6= ∅ for every {i1, i2, . . . , in} ⊆ I. We will show that⋂
i∈I

Fi 6= ∅. Define a net as follows: Let

Λ = { {i1, i2, . . . , in} : i1, i2, . . . , in ∈ I and n ∈ N },
and order Λ as follows: λ1 = {i1, i2, . . . , ik} ≤ λ2 = {j1, j2, . . . , jn} if
and only if {i1, i2, . . . , ik} ⊆ {j1, j2, . . . , jn}. This is easily verified to be
a direction on Λ. Since the family F has the finite intersection property
then for every λ = {i1, i2, . . . , in} ∈ Λ we can find xλ ∈ Fi1 ∩Fi2 ∩ . . .∩
Fin . Using our hypothesis, the net {xλ} has a convergent subnet, let
say {xλm}. That is, there exists x ∈ X such that xλm → x. We will
show that x ∈ Fi for all i ∈ I. Fix some Fi. Hence, there exists m0 such
that λm0 ≥ {i}. Thus, for every λm = {i1, i2, . . . , in, i} ≥ λm0 ≥ {i} we
have that xλm ∈ Fi1 ∩ Fi2 ∩ . . . ∩ Fin ∩ Fi ⊆ Fi. Since xλm → x and Fi

is closed then x ∈ Fi. This finishes the proof of the theorem. ¤

2. Ultranets and Tychonoff’s Theorem

Definition 2.1. A net {xλ} in a set X is an ultranet (universal net)
if and only if for each subset E of X, {xλ} is either residually in E or
residually in X \ E.

Remark 2.2. It follows from this definition that an ultranet must con-
verge to each of its cluster points since if an ultranet is frequently in
a set E then it is residually in E. A trivial example of an ultranet is
the following: For any directed set Λ, the map P : Λ → X, defined by
P (λ) = x for a fixed point x ∈ X and for all λ ∈ Λ, gives an ultranet
on X, called the trivial ultranet.

Theorem 2.3. Every net {xλ} has a subnet which is an ultranet.

Proof. The proof follows by Zorn’s Lemma but this is beyond the scope
of these short notes. ¤

Theorem 2.4. Let X, Y be two non-empty sets. If {xλ} is an ultranet
in X and f : X → Y is a map, then {f(xλ)} is an ultranet.
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Proof. If B ⊆ Y , then f−1(B) = X \ f−1(Y \B), so {xλ} is eventually
in either f−1(B) or f−1(Y \ B), from which it follows that {f(xλ)} is
eventually in B or Y \B. Thus, {f(xλ)} is an ultranet. ¤

Theorem 2.5 (Tychonoff). A non-empty product
∏
i∈I

Xi is compact

if and only if each factor Xi is compact.

Proof. If the product space is non-empty, then the projection maps

pri :
∏
i∈I

Xi → Xi are all continuous surjections, so each factor Xi is

compact.
For the converse implication assume that Xi is compact for all i ∈ I.

Let {xλ} be a net in
∏
i∈I

Xi. By Theorem 2.3, {xλ} has a subnet {xλm}
which is an ultranet. Then, by Theorem 2.4, for each fixed i ∈ I, the
net {pri(xλm)} is an ultranet in Xi, hence has a convergent subnet in
Xi (see Theorem 1.3). So, by Remark 2.2, the net {pri(xλm)} converges

in Xi from which it follows that {xλm} converges in
∏
i∈I

Xi. Thus, by

Theorem 1.3, the product
∏
i∈I

Xi is compact. ¤
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