WINTERSEMESTER 2007-2008

Übungen zu Topologie I

A. Manoussos Blatt 2

6. Let (X, d) be a metric space and A, B be two closed subsets of X which are disjoint, i.e. $A \cap B = \emptyset$. Show that there exist two disjoint open subsets of X, let say U and V such that $A \subseteq U$ and $B \subseteq V$.

Hint: Use exercise 5.

7. Let (X, d), (Y, p) be two metric spaces. A map $f : X \to Y$ is called *uniformly* continuous if for every $\epsilon > 0$ there is a $\delta > 0$ such that $d(x, y) < \delta$ implies that $p(f(x), f(y)) < \epsilon$, for every $x, y \in X$. Show that if f is uniformly continuous and $\{x_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence in X then $\{f(x_n)\}_{n\in\mathbb{N}}$ is a Cauchy sequence in Y.

8. Let (X, d) be a metric space and $f : X \to \mathbb{R}$ be a continuous function (\mathbb{R} is endowed with the usual metric). Show that the map

$$p(x, y) = d(x, y) + |f(x) - f(y)|$$

for every $x, y \in X$, defines a metric on X. Moreover $d(x_n, x) \to 0$ if and only if $p(x_n, x) \to 0$. Show, also, that if f is uniformly continuous then, $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in (X, d) if and only if $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in (X, p). *Hint*: Use exercise 7.

9. Let (X, d) be a metric space and $\{x_n\}_{n \in \mathbb{N}}, \{y_n\}_{n \in \mathbb{N}}$ be two Cauchy sequences in X. Show that there exists a real number l such that $d(x_n, y_n) \to l$. *Hint*: Use exercise 2.

10. (Fredholm's second (linear) integral equation) Let $G : [0,1] \to \mathbb{R}$ and $K : [0,1] \times [0,1] \to \mathbb{R}$ be two continuous functions and let $|\lambda| < \frac{1}{M}$ where

$$M = \sup\{|K(x, y)| : x, y \in [0, 1]\}.$$

Let C[0,1] be the space of all continuous functions $f:[0,1] \to \mathbb{R}$ endowed with the supremum metric (i.e. $d(f,g) = \sup\{|f(x) - g(x)| : x \in X\}$). With this metric C[0,1] is complete. Show that the map $T: C[0,1] \to C[0,1]$ with

$$T(f) = \lambda \, \int_0^1 K(x,y) f(y) dy \, + G(x)$$

is a contraction (i.e. there exists 0 < c < 1 such that $d(T(f), T(g)) \leq c \cdot d(f, g)$, for every $f, g \in C[0, 1]$), hence T has a fixed point in C[0, 1].