WINTERSEMESTER 2007-2008

A. Manoussos Blatt 9

Übungen zu Topologie I

41. Let X be a compact topological space and $\{V_n : n \in \mathbb{N}\}$ be a decreasing sequence (i.e. $V_{n+1} \subseteq V_n$ for every $n \in \mathbb{N}$) of *closed* neighborhoods of $x \in X$ such that $\bigcap_{n=1}^{+\infty} V_n = \{x\}$. Show that $\{V_n : n \in \mathbb{N}\}$ is a neighborhood base of x.

42. Let X be a compact topological space, V be an *open* subset of X and $\{F_n : n \in \mathbb{N}\}$ be a decreasing sequence (i.e. $F_{n+1} \subseteq F_n$ for every $n \in \mathbb{N}$) of closed subsets of X such that $\bigcap_{n=1}^{+\infty} F_n \subseteq V$. Show that there exists $n_0 \in \mathbb{N}$ such that $F_{n_0} \subseteq V$.

43. Let X be a locally compact space and A be a compact subset of X. Show that for every open set $W \subseteq X$ such that $A \subseteq W$ there exists an open set $V \subseteq X$ such that \overline{V} is compact and

$$A \subseteq V \subseteq \overline{V} \subseteq W.$$

44. (σ -compact spaces) Let X be a locally compact, second countable space. Show that X is a σ -compact space, that is there exists a sequence $\{V_n : n \in \mathbb{N}\}$ of open subsets of X such that

$$\overline{V_n}$$
 is compact and $\overline{V_n} \subseteq V_{n+1}$, for every $n \in \mathbb{N}$, with $X = \bigcup_{n=1}^{+\infty} V_n$.

Hint: Use Lindelöf's lemma.

45. Let X be a topological spaces endowed with two topologies $\mathcal{T}_1 \subseteq \mathcal{T}_2$. Show that if (X, \mathcal{T}_2) is connected then (X, \mathcal{T}_1) is also connected.