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The Green-Tao theorem

Theorem

The prime numbers contain infinitely many arithmetic
progressions of length k for all k ≥ 1.

Related problems

(Erdös conjecture) Let A be a subset of N. If
∑
a∈A

1

a
=∞

then A contains arithmetic progressions of any length.

(Szemerédi’s theorem) Let A be a subset of the positive
integers with positive upper density; i.e.

lim sup
N→∞

|A ∩ [1,N]|
N

> 0.

Then for each k ≥ 1, the set A contains at least one
arithmetic progression of length k.
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The Green-Tao theorem

Theorem (The Green-Tao theorem is Szemerédi’s theorem in
the primes)

Let A be any subset of the prime numbers of positive relative
upper density; i.e.

lim sup
N→∞

|A ∩ [1,N]|
π(N)

> 0,

where π(N) denotes the number of primes less than or equal to
N. Then A contains infinitely many arithmetic progressions of
length k for all k.



The primes
contain

arbitrarily long
arithmetic

progressions

Antonios
Manoussos

The
Green-Tao
theorem

Basic
definitions and
notation

The proof of
the Green-Tao
theorem

The proof of
the
Szemeredi’s
theorem
relative to a
pseudorandom
measure

Supplementary
material

The Green-Tao theorem

History

Van der Corput (1939) proved that the primes contain
infinitely many arithmetic progressions of length 3.

Heath-Brown (1981) showed that there are infinitely many
arithmetic progressions of length 4 consisting of three
primes and a semiprime (: a product of at most two
primes).
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Basic definitions and notation

Definitions

Let N ∈ N be a prime. We denote ZN = Z/NZ.

We will write o(1) for a quantity that tends to zero as
N →∞ and we write O(1) for a bounded quantity.

(Expected value) Let n ≥ 1 and f : A→ R where A ⊆ Zn
N

with A 6= ∅. Then we define

E(f (x)|x ∈ A) =

∑
x∈A f (x)

|A|
.

If f is defined on all Zn
N we write E(f ) = E(f (x)|x ∈ Zn

N).

A function ν : ZN → R+ is called a measure if
E(ν) = 1 + o(1).
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Pseudorandom measures

Definition (Linear forms condition)

Let ν : ZN → R+ be a measure. Let m0, t0 and L0 be small
positive integers. Then we say that ν satisfies the
(m0, t0, L0)-linear forms condition if the following holds. Let
m ≤ m0 and t ≤ t0 and let (Lij), 1 ≤ i ≤ m, 1 ≤ j ≤ t are
arbitrary rational numbers with numerator and denominator at
most L0 in absolute value. Suppose that as i ranges over
1, . . . ,m the t-tuples (Lij)1≤j≤t ∈ Qt are nonzero, and no
t-tuple is a rational multiple of any other. Let b1, . . . , bm ∈ ZN

and define for 1, . . . ,m linear forms ψi : Zt
N → ZN by

ψi (x) =
∑t

j=1 Lijxj + bi , where x = (x1, . . . , xt). Then

E(ν(ψ1(x)) . . . ν(ψm(x))|x ∈ Zt
N) = 1 + oL0,m0,t0(1).
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Pseudorandom measures

Remarks

1 The rational numbers Lij are consider as elements of ZN

assuming that N is a prime larger than L0. E.g. a/b is the
unique solution of the equation bx ≡ a (mod N) in ZN

(unique since |a|, |b| < N).

2 The use of linear forms comes naturally. For instance, if
we look for arithmetic progressions of length k in the
primes we can define the linear forms ψi : Z2 → Z with
ψi (n, r) = n + (i − 1)r , n, r ∈ Z, i = 1, . . . , k and ask if
there exist positive integers n and r such that ψi (n, r) are
simultaneously primes.
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Pseudorandom measures

Definition (Correlation condition)

Let ν : ZN → R+ be a measure and let m0 be positive integer
parameter. We say that ν satisfies the m0-correlation condition
if for every 1 < m ≤ m0 there is τ = τm : ZN → R+ such that
E(τq) = Om,q(1) for all q ≥ 1 and such that

E(ν(x + h1) . . . ν(x + hm)|x ∈ Zt
N) ≤

∑
1≤i<j≤m

τ(hi − hj)

for all h1, . . . , hm ∈ ZN (not necessarily distinct).

Remark

The correlation condition arises in Goldston and Yildirim’s work
and is used for specific estimates applied to the prime numbers.
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Pseudorandom measures

Definition (Pseudorandom measure)

A measure ν : ZN → R+ is called k-pseudorandom if it satisfies
the (k2k−1, 3k − 4, k)-linear forms condition and also the
2k−1-correlation condition.

Examples

The constant measure νconst : ZN → R+ defined by
νconst(x) = 1, for all x ∈ ZN is k-pseudorandom for any k .

Let ν be a k-pseudorandom measure, then

ν1/2 := (ν + νconst)/2 = (ν + 1)/2

is also a k-pseudorandom measure. So, pseudorandom
measures are star shaped around 1.
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The strategy of the proof

Theorem (Szemerédi’s theorem again)

For any positive integer k and any real number 0 < δ ≤ 1 there
exists a positive integer N0(δ, k) such that for every N ≥ N0,
every set A ⊆ {1, . . . ,N} of cardinality |A| ≥ δN contains at
least one arithmetic progression of length k.

Theorem (Reformulated Szemerédi’s theorem, Varnavides
(1959))

Let 0 < δ ≤ 1 and k ≥ 1 be fixed. Let f : ZN → R+ such that
0 ≤ f (x) ≤ 1 = νconst(x), for all x ∈ ZN , and E(f ) ≥ δ. Then

E(f (x)f (x + r) · · · f (x + (k − 1)r)|x , r ∈ ZN) ≥ c(k , δ)

for some constant c(k , δ) > 0, not depending on f nor N.
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The strategy of the proof

Theorem (Szemerédi’s theorem relative to a pseudorandom
measure)

let 0 < δ ≤ 1 and k ≥ 3 be fixed. Suppose that ν : ZN → R+

is k-pseudorandom. Let f : ZN → R+ such that
0 ≤ f (x) ≤ ν(x), for all x ∈ ZN , and E(f ) ≥ δ. Then

E(f (x)f (x +r) · · · f (x +(k−1)r) | x , r ∈ ZN) ≥ c(k , δ)−ok,δ(1)

for some constant c(k , δ) > 0, not depending on f nor N.
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The strategy of the proof

Construction of f

Let W be the product of primes up to log log N. Now define
the modified von Mangoldt function Λ̃ : Z+ → R+ by

Λ̃(n) :=

{
ϕ(W )
W log(Wn + 1) when Wn + 1 is prime

0 otherwise,

where ϕ denotes the Euler totient function (i.e. ϕ(n) is the
number of positive integers less than or equal to n that are
coprime to n).

Fix εk > 0. Now define f : ZN → R+ by

f (n) :=

{
1

k2k+5 Λ̃(n) if εkN ≤ n ≤ 2εkN

0 otherwise,

where we identify {0, . . . ,N − 1} with ZN in the usual manner.
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The strategy of the proof

Construction of ν

Let R be a parameter (it will be a small power of N). Define

ΛR(n) :=
∑

d |n, d≤R

µ(d) log(R/d) =
∑
d |n

µ(d) log(R/d)+

where log(x)+ := max(log(x), 0) and µ is the Möbius function,
i.e

µ(n) = 1, if n is a square-free positive integer with an
even number of distinct prime factors.

µ(n) = −1, if n is a square-free positive integer with an
odd number of distinct prime factors.

µ(n) = 0, if n is not square-free.
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The strategy of the proof

Let R := Nk−12−k−4
, and let εk = 1

2k (k+4)!
. We define a

k-pseudorandom measure ν : ZN → R+ by

ν(n) :=

{
ϕ(W )
W

ΛR(Wn+1)2

log R if εkN ≤ n ≤ 2εkN

1 otherwise.

Proposition

Let εk = 1
2k (k+4)!

and let N a sufficiently large prime number.

Then 0 ≤ f (x) ≤ ν(x), for all x ∈ ZN .
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The proof of the Green-Tao theorem

The main ingredient of the proof of the Green-Tao theorem is
Szemerédi’s theorem for pseudorandom measures.

After making an estimate to the generalized von Mangoldt
function

∑
n≤N Λ̃(n) = N(1 + o(1)) we get that

E(f ) = 1
k2k+5 εk(1 + o(1)).

For sufficiently large k we have 1
k2k+5 εk ≤ 1. So, if we let

δ < 1
k2k+5 εk the Szemerédi’s theorem for pseudorandom

measures gives

E(f (x)f (x + r) · · · f (x +(k−1)r)|x , r ∈ ZN) ≥ c(k , δ)−ok,δ(1)

for some constant c(k , δ) > 0, not depending on f nor N.
Note that the right-hand side goes to c(k , δ) > 0, as N goes to
infinity.
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δ < 1
k2k+5 εk the Szemerédi’s theorem for pseudorandom

measures gives

E(f (x)f (x + r) · · · f (x +(k−1)r)|x , r ∈ ZN) ≥ c(k , δ)−ok,δ(1)

for some constant c(k , δ) > 0, not depending on f nor N.
Note that the right-hand side goes to c(k , δ) > 0, as N goes to
infinity.
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function
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n≤N Λ̃(n) = N(1 + o(1)) we get that
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k2k+5 εk the Szemerédi’s theorem for pseudorandom

measures gives

E(f (x)f (x + r) · · · f (x +(k−1)r)|x , r ∈ ZN) ≥ c(k , δ)−ok,δ(1)

for some constant c(k , δ) > 0, not depending on f nor N.
Note that the right-hand side goes to c(k , δ) > 0, as N goes to
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The proof of the Green-Tao theorem

The product in the average on the left-hand is positive
whenever f is positive on all elements in a configuration
{x , . . . , x + (k − 1)r}. Therefore, must be infinitely many such
configurations such that f is positive on all elements. Now
notice that f (x) > 0 if and only if Wx + 1 is prime and
εkN ≤ x ≤ 2εkN. So, if x + jr , j = 0, . . . , k − 1 is an
arithmetic progression then so is W (x + jr), since
W (x + jr) + 1 = (Wx + 1) + j(Wr). So, by definition of f ,
each of the configurations gives us an arithmetic progression
consisting of primes.
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The proof of the Green-Tao theorem

Problems

There are two problems remaining. First of all the configuration
is not an arithmetic progression of length k if r = 0, and
secondly we must show that the arithmetic progressions we
found in ZN are genuine arithmetic progressions in Z.
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The proof of the Green-Tao theorem

1 The contribution to the average on the left-hand side for
the degenerate case r = 0 is

1

N2

∑
x∈ZN

f (x)k .

Note that f (x) = O(log N) since ϕ(W )
W ≤ 1 and

log(Wn + 1) ≤ 2 log N for large N. So the average for

r = 0 is O( (log N)k

N ) = o(1) and thus can be discarded.
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The proof of the Green-Tao theorem

2 Now we need to prove that the arithmetic progressions we
find in ZN are also progressions in Z. Recall that in the
configurations {x , . . . , x + (k − 1)r} we found, we have
that εkN ≤ x + jr ≤ 2εkN, for all j = 0, . . . , k − 1
because f has its support in this interval. So, if we assume
that the arithmetic progression exceeds N the step r of the
progression must be greater or equal to N − 2εkN.
Therefore, 1

k > εk ≥ N−r
2N ≥

N−1
2N . Hence, N < k

k−2 which
is a contradiction since N is large enough.
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The ingredients of the proof

1 A Furstenberg-type decomposition of a function into a Gowers
uniform part and a bounded Gowers anti-uniform part.

2 Gowers uniform part is negligible by a generalized von Neumann
theorem.

3 Gowers anti-uniform part is bounded from below by the
reformulated Szemerédi’s theorem.

4 Szemerédi’s theorem relative to a pseudorandom measure.
5 Construction of f and ν.

1

2 3

4 5

GT
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The Gowers uniformity norm

Definition

Let d ≥ 0 be a dimension (in practise, we will have d = k − 1,
where k is the length of the arithmetic progressions under
consideration). We let {0, 1}d be the standard d-dimensional
cube, consisting of d-tuples ω = (ω1, . . . , ωd) where
ωj ∈ {0, 1} for j = 1, . . . , d . If h = (h1, . . . , hd) ∈ Zd

N we define
ω · h := ω1h1 + . . .+ ωdhd . If (fω)ω∈{0,1}d is {0, 1}d -tuple of
functions in L∞(ZN), we define the d-dimensional Gowers inner
product < (fω)ω∈{0,1}d >Ud by the formula

< (fω)ω∈{0,1}d >Ud :=

E

 ∏
ω∈{0,1}d

fω(x + ω · h)

∣∣∣∣∣ x ∈ ZN , h ∈ Zd
N

 .
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The Gowers uniformity norm

Definition

The Gowers uniformity norm ‖f ‖Ud of a function f : ZN → R
is defined by the formula

‖f ‖Ud : =< (f )ω∈{0,1}d >
1/2d

Ud =

= E

 ∏
ω∈{0,1}d

f (x + ω · h)

∣∣∣∣∣ x ∈ ZN , h ∈ Zd
N

1/2d

.
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The Gowers uniformity norm

The Gowers uniformity norm is a shift invariant, i.e.
‖f (x)‖Ud = ‖f (x + h)‖Ud for any h ∈ ZN and they are
genuinely norms for d ≥ 2.

Moreover, ‖f ‖U1 ≤ ‖f ‖U2 ≤ . . . ≤ ‖f ‖L∞ .

The pseudorandom measures ν are close to the constant
measure νconst in the Ud norms.

Suppose that ν is a k-pseudorandom measure. Then

‖ν − νconst‖Ud = ‖ν − 1‖Ud = o(1)

for all 1 ≤ d ≤ k − 1.
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The Gowers uniformity norm is a shift invariant, i.e.
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Moreover, ‖f ‖U1 ≤ ‖f ‖U2 ≤ . . . ≤ ‖f ‖L∞ .

The pseudorandom measures ν are close to the constant
measure νconst in the Ud norms.

Suppose that ν is a k-pseudorandom measure. Then

‖ν − νconst‖Ud = ‖ν − 1‖Ud = o(1)

for all 1 ≤ d ≤ k − 1.
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The Gowers uniformity norm

The Gowers uniformity norm is a shift invariant, i.e.
‖f (x)‖Ud = ‖f (x + h)‖Ud for any h ∈ ZN and they are
genuinely norms for d ≥ 2.

Moreover, ‖f ‖U1 ≤ ‖f ‖U2 ≤ . . . ≤ ‖f ‖L∞ .

The pseudorandom measures ν are close to the constant
measure νconst in the Ud norms.

Suppose that ν is a k-pseudorandom measure. Then

‖ν − νconst‖Ud = ‖ν − 1‖Ud = o(1)

for all 1 ≤ d ≤ k − 1.
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Decomposition theorem

Proposition

Let ν be a k-pseudorandom measure, and let f ∈ L1(ZN) be a
non-negative function satisfying 0 ≤ f (x) ≤ ν(x) for all
x ∈ ZN . Let 0 < ε� 1 be a small parameter, and assume
N > N0(ε) is sufficiently large. Then there exists a σ-algebra B
and an exceptional set Ω ∈ B such that

(smallness condition)

E(ν1Ω) = oε(1);

(ν is uniformly distributed outside of Ω)

‖(1− 1Ω)E(ν − 1|B)‖L∞ = oε(1)

and
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Decomposition theorem

Proposition

(Gowers uniformity estimate)

‖(1− 1Ω)(f − E(f |B))‖Uk−1 ≤ ε1/2k .
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Decomposition theorem

Definitions (The Gowers anti-uniformity)

We introduce the dual (Uk−1)∗ norm, defined as usual by

‖g‖(Uk−1)∗ = sup{| < f , g > | : f ∈ Uk−1(ZN), ‖f ‖Uk−1 ≤ 1}.

We say that g is Gowers anti-uniform if ‖g‖(Uk−1)∗ = O(1) and
‖g‖L∞ = O(1). The dual function DF of F is defined by

DF (x) := E

 ∏
ω∈{0,1}k−1

ω 6=0k−1

F (x + ω · h)

∣∣∣∣∣ h ∈ Zk−1
N


where 0k−1 denotes the element of {0, 1}k−1 consisting entirely
by zeroes.
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Decomposition theorem

Lemma (Lack of Gowers uniformity implies correlation)

Let ν be a k-pseudorandom measure, and let F ∈ L1(ZN) be
any function. Then the following hold

< F ,DF >= ‖F‖2k−1

Uk−1 and

‖DF‖(Uk−1)∗ = ‖F‖2k−1−1
Uk−1 .

If furthermore we assume that |F (x)| ≤ ν(x) + 1 for all

x ∈ ZN , then we have the estimate ‖DF‖L∞ ≤ 22k−1−1 + o(1).
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Decomposition theorem

Sketch of the proof of the Decomposition Theorem

To construct the σ-algebra B required in the proposition, we
will use the philosophy laid out by Furstenberg in his ergodic
structure theorem, which decomposes any measure-preserving
system into a weakly mixing extension of a tower of compact
extensions.

In our setting, the idea is roughly speaking as follows. We
initialize B to be the trivial σ-algebra B = {∅,ZN}. If the
function f − E(f |B) is already Gowers uniform (in the sense of
the Gowers uniformity estimate), then we can terminate the
algorithm. Otherwise, we use the machinery of dual functions
to locate a Gowers anti-uniform function DF1 which has some
non-trivial correlation with f , and add the level sets of DF1 to
the σ-algebra B.
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Decomposition theorem

Sketch of the proof of the Decomposition Theorem

To construct the σ-algebra B required in the proposition, we
will use the philosophy laid out by Furstenberg in his ergodic
structure theorem, which decomposes any measure-preserving
system into a weakly mixing extension of a tower of compact
extensions.
In our setting, the idea is roughly speaking as follows. We
initialize B to be the trivial σ-algebra B = {∅,ZN}. If the
function f − E(f |B) is already Gowers uniform (in the sense of
the Gowers uniformity estimate), then we can terminate the
algorithm. Otherwise, we use the machinery of dual functions
to locate a Gowers anti-uniform function DF1 which has some
non-trivial correlation with f , and add the level sets of DF1 to
the σ-algebra B.
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Sketch of the proof of the Decomposition Theorem

Sketch of the proof of the Decomposition Theorem

The nontrivial correlation property will ensure that the L2 norm
of E(f |B) increases by a non-trivial amount during the
procedure and the pseudorandomness of ν will ensure that
E(f |B) remains uniformly bounded.

We then repeat the above algorithm until f − E(f |B) becomes
sufficiently Gowers uniform, at which point we terminate the
algorithm.



The primes
contain

arbitrarily long
arithmetic

progressions

Antonios
Manoussos

The
Green-Tao
theorem

Basic
definitions and
notation

The proof of
the Green-Tao
theorem

The proof of
the
Szemeredi’s
theorem
relative to a
pseudorandom
measure

Supplementary
material

Sketch of the proof of the Decomposition Theorem

Sketch of the proof of the Decomposition Theorem

The nontrivial correlation property will ensure that the L2 norm
of E(f |B) increases by a non-trivial amount during the
procedure and the pseudorandomness of ν will ensure that
E(f |B) remains uniformly bounded.
We then repeat the above algorithm until f − E(f |B) becomes
sufficiently Gowers uniform, at which point we terminate the
algorithm.
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The proof of the Szemeredi’s theorem relative to a
pseudorandom measure

The idea is to decompose an arbitrary function f into a Gowers
uniform part and a bounded Gowers anti-uniform part.

The contribution of the Gowers-uniform part to the
expression in Szemerédi’s theorem relative to a
pseudorandom measure, which counts k-term arithmetic
progressions, will be negligible by a generalized von
Neumann theorem.

The contribution from the Gowers anti-uniform component
will be bounded from below by Szemerédi’s theorem in its
traditional form.
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The proof of the Szemeredi’s theorem relative to a
pseudorandom measure

The idea is to decompose an arbitrary function f into a Gowers
uniform part and a bounded Gowers anti-uniform part.

The contribution of the Gowers-uniform part to the
expression in Szemerédi’s theorem relative to a
pseudorandom measure, which counts k-term arithmetic
progressions, will be negligible by a generalized von
Neumann theorem.

The contribution from the Gowers anti-uniform component
will be bounded from below by Szemerédi’s theorem in its
traditional form.
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The proof of the Szemeredi’s theorem relative to a
pseudorandom measure

The idea is to decompose an arbitrary function f into a Gowers
uniform part and a bounded Gowers anti-uniform part.

The contribution of the Gowers-uniform part to the
expression in Szemerédi’s theorem relative to a
pseudorandom measure, which counts k-term arithmetic
progressions, will be negligible by a generalized von
Neumann theorem.

The contribution from the Gowers anti-uniform component
will be bounded from below by Szemerédi’s theorem in its
traditional form.
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The proof of the Szemeredi’s theorem relative to a
pseudorandom measure

Proposition (A generalized von Neumann theorem)

Suppose that ν is k-pseudorandom. Let f0, . . . , fk−1 ∈ L1(ZN)
be functions which are pointwise bounded by ν + νconst , or in
other words

|fj(x)| ≤ ν(x) + 1 for all x ∈ ZN , 0 ≤ j ≤ k − 1.

Let c0, . . . , ck−1 be a permutation of k consecutive elements of
{−k + 1, . . . ,−1, 0, 1, . . . , k − 1} (in practise we will take
cj := j). Then

E

k−1∏
j=0

fj(x + cj r)

∣∣∣∣∣ x , r ∈ ZN

 = O( inf
0≤j≤k−1

‖fj‖Uk−1) + o(1).
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The proof of the Szemeredi’s theorem relative to a
pseudorandom measure

Remark

The reason we have an upper bound of ν(x) + 1 instead of ν is
because we shall apply this proposition to functions fj which
roughly have the form fj = f − E(f | B), where f is some
function bounded pointwise by ν, and B is a σ-algebra such
that E(ν | B) is essentially bounded (up to o(1) errors) by 1, so
that we can essentially bound |fj | by ν(x) + 1.

Note that O( inf
0≤j≤k−1

‖fj‖Uk−1) is small if at least one of the

norms ‖fj‖Uk−1 is small.
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The proof of the Szemeredi’s theorem relative to a
pseudorandom measure

Remark

The reason we have an upper bound of ν(x) + 1 instead of ν is
because we shall apply this proposition to functions fj which
roughly have the form fj = f − E(f | B), where f is some
function bounded pointwise by ν, and B is a σ-algebra such
that E(ν | B) is essentially bounded (up to o(1) errors) by 1, so
that we can essentially bound |fj | by ν(x) + 1.

Note that O( inf
0≤j≤k−1

‖fj‖Uk−1) is small if at least one of the

norms ‖fj‖Uk−1 is small.
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The proof of the Szemeredi’s theorem relative to a
pseudorandom measure

Definition

Let f ∈ L1(ZN) be a non-negative function satisfying
0 ≤ f (x) ≤ ν(x) for all x ∈ ZN and let B be the σ-algebra
described in the Decomposition theorem. Let
f̃ := fU + fU⊥ = (1− 1Ω)f , where fU := (1− 1Ω)(f − E(f |B))
and fU⊥ := (1− 1Ω)E(f |B) (the subscript U stands for Gowers
uniform, and U⊥ for Gowers anti-uniform). Hence f̃ = f
outside a small set Ω and 0 ≤ f̃ ≤ f .
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The proof of the Szemeredi’s theorem relative to a
pseudorandom measure

Let f , δ be as in the Szemeredi’s theorem relative to a
pseudorandom measure, and let 0 < ε� δ be a parameter to
be chosen later.

Let B be as in the Decomposition theorem , and write
fU := (1− 1Ω)(f − E(f |B)) and fU⊥ := (1− 1Ω)E(f |B) (the
subscript U stands for Gowers uniform, and U⊥ for Gowers
anti-uniform).
Observe that from the smallness condition, the assumptions of
our theorem and the measurability of Ω we have

E(fU⊥) = E((1− 1Ω)E(f |B)) = E((1− 1Ω)f ) ≥
E(f )− E(ν1Ω) ≥ δ − oε(1).
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The proof of the Szemeredi’s theorem relative to a
pseudorandom measure

Let f , δ be as in the Szemeredi’s theorem relative to a
pseudorandom measure, and let 0 < ε� δ be a parameter to
be chosen later.
Let B be as in the Decomposition theorem , and write
fU := (1− 1Ω)(f − E(f |B)) and fU⊥ := (1− 1Ω)E(f |B) (the
subscript U stands for Gowers uniform, and U⊥ for Gowers
anti-uniform).

Observe that from the smallness condition, the assumptions of
our theorem and the measurability of Ω we have

E(fU⊥) = E((1− 1Ω)E(f |B)) = E((1− 1Ω)f ) ≥
E(f )− E(ν1Ω) ≥ δ − oε(1).
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The proof of the Szemeredi’s theorem relative to a
pseudorandom measure

Let f , δ be as in the Szemeredi’s theorem relative to a
pseudorandom measure, and let 0 < ε� δ be a parameter to
be chosen later.
Let B be as in the Decomposition theorem , and write
fU := (1− 1Ω)(f − E(f |B)) and fU⊥ := (1− 1Ω)E(f |B) (the
subscript U stands for Gowers uniform, and U⊥ for Gowers
anti-uniform).
Observe that from the smallness condition, the assumptions of
our theorem and the measurability of Ω we have

E(fU⊥) = E((1− 1Ω)E(f |B)) = E((1− 1Ω)f ) ≥
E(f )− E(ν1Ω) ≥ δ − oε(1).
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Also, since ν is uniformly distributed outside of Ω, we see that
fU⊥ is bounded above by 1 + oε(1). Since f is non-negative,
fU⊥ is also.

We may thus apply the reformulated Szemerédi’s theorem to
obtain

E(fU⊥(x)fU⊥(x + r) · · · fU⊥(x + (k − 1)r) | x , r ∈ ZN)

≥ c(k , δ)− oε(1)− ok,δ(1).

On the other hand, since (1− 1Ω)f is bounded by ν and fU⊥ is
bounded by 1 + oε(1) then fU = (1− 1Ω)f − fU⊥ is pointwise
bounded by ν + 1 + oε(1). Note that from the Gowers

uniformity estimate, we have that ‖fU‖Uk−1 ≤ ε1/2k .
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Applying the generalized von Neumann theorem we thus see
that

E(f0(x)f1(x + r) · · · fk−1(x + (k − 1)r) | x , r ∈ ZN) =

O(ε1/2k ) + oε(1)

whenever each fj is equal to fU or fU⊥ with at least one fj
equals to fU .

Adding 2k estimates of this kind we obtain

E(f̃ (x)f̃ (x + r) · · · f̃ (x + (k − 1)r) | x , r ∈ ZN)

≥ c(k, δ)− O(ε1/2k )− oε(1)− ok,δ(1),

where f̃ := fU + fU⊥ = (1− 1Ω)f .
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that
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But since 0 ≤ f̃ = (1− 1Ω)f ≤ f we obtain that

E(f (x)f (x + r) · · · f (x + (k − 1)r) | x , r ∈ ZN)

≥ c(k, δ)− O(ε1/2k )− oε(1)− ok,δ(1).

Since ε can be made arbitrarily small (as long N is taken
sufficiently large), the error terms on the right-hand side can be
taken to be arbitrarily small by choosing N sufficiently large
depending on k and δ and the proof is finished.
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The work of H. Furstenberg (1977)

Theorem (Multiple recurrence)

Let (X ,B, µ,T ) be a measure preserving probability system and
let k ≥ 1 be an integer. For any subset E ∈ B with µ(E ) > 0

lim inf
N→∞

1

N

N−1∑
n=0

µ(E ∩ T−nE ∩ T−2nE ∩ . . . ∩ T−(k−1)nE ) > 0.

Corollary

Let (X ,B, µ,T ) be a measure preserving probability system
and let k ≥ 1 be an integer. For any subset E ∈ B with
µ(E ) > 0, there exists an integer n ≥ 1 such that

µ(E ∩ T−nE ∩ T−2nE ∩ . . . ∩ T−(k−1)nE ) > 0.
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The work of H. Furstenberg (1977)

Furstenberg then made the beautiful connection to
combinatorics, showing that regularity properties of integers
with positive upper density correspond to multiple recurrence
results:

Theorem (Correspondence principle)

Assume that A is a subset of integers with positive upper
density. There exist a measure preserving probability system
(X ,B, µ,T ) and a measurable set E ∈ B with µ(E ) = d∗(A),
where d∗(A) denotes the upper density of A, such that for all
integers k ≥ 1 and all integers m1, . . . ,mk−1 ≥ 1

d∗(A∩(A+m1)∩. . .∩(A+mk−1)) ≥ µ(E∩T−m1E∩. . .∩T−mk−1E ).

Taking m1 = n,m2 = 2n, . . . ,mk−1 = (k − 1)n, Szemerédi’s
theorem follows from the Corollary.
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The work of H. Furstenberg (1977)

To prove the Multiple Recurrence Theorem, Furstenberg
showed that in any measure preserving system, one of two
distinct phenomena occurs to make the measure of this
intersection positive. The first is weak mixing. The system
(X ,B, µ,T ) is weakly mixing if for all A,B ∈ B

lim
N→∞

1

N

N−1∑
n=0

|µ(T−nA ∩ B)− µ(A)µ(B)| = 0.

So, for any set E , µ(E ∩ T−nE ) is approximately µ(E )2 for
most choices of the integer n. Then it can be shown that

µ(E ∩ T−nE ∩ T−2nE ∩ . . . ∩ T−(k−1)nE )

is approximately µ(E )k for most choices of n, which is clearly
positive when E is a set of positive measure.
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The opposite situation is rigidity, when for appropriately chosen
n, T n is very close to the identity. Then T jnE is very closed to
E and

µ(E ∩ T−nE ∩ T−2nE ∩ . . . ∩ T−(k−1)nE )

is very close to µ(E ), again giving positive intersection for a set
E of positive measure.

One then has to show that the average along arithmetic
progressions for any function can be decomposed into two
pieces, one which exhibits a generalized weak mixing property
and another that exhibits a generalized rigidity property.
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