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Abstract. In this talk we explain how the concept of a net in
general topology arrives naturally from the theory of Riemann in-
tegration in Calculus and why nets describe “convergence”. This
example is historically important; it is what first led E. H. Moore
and H. L. Smith to the concept of a net.

1. How the notion of nets arrives naturally from the
theory of Riemann integration in Calculus

Riemann integration theory is one of the basics in Calculus. And in
the theory of real functions we work with sequences of real numbers.
So, how do nets arise naturally in this setting?

Let us describe what a Riemann integrable function f : [a, b] → R
is. We start with the notion of a tagged partition of a closed interval
[a, b]. A (tagged) partition is a finite sequence of numbers of the form
a = x0 < x1 < . . . < xn = b. The set of all partitions of [a, b] will be
denoted by P . The lower Riemann sum of f on ∆ ∈ P is defined by

L∆ :=
n∑

i=1

(
(xi − xi−1) · inf{f(x) : x ∈ [xi−1, xi]}

)
and, similarly, the upper Riemann sum of f on ∆ is

U∆ :=
n∑

i=1

(
(xi − xi−1) · sup{f(x) : x ∈ [xi−1, xi]}

)
.

We say that a function f : [a, b] → R is Riemann integrable if the
limits of the lower and upper Riemann sums of a function exist and
are equal as the partitions get finer. Intuitively, a partition gets finer
if we add more points. To be more precise, a partition ∆2 is finer (or
bigger) than a partition ∆1 if ∆1 ⊆ ∆2. When ∆2 is finer that ∆1

we write ∆1 ≤ ∆2. It is important to notice that given two partitions
∆1,∆2 ∈ P it is not always true that ∆1 ≤ ∆2 or ∆2 ≤ ∆1. For
example take as [a, b] the unit interval [0, 1], take as ∆1 = {0, 1/2, 1}
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and ∆2 = {0, 1/3, 1}. What is always true is that given ∆1,∆2 ∈ P
there always exists ∆3 ∈ P such that ∆1 ⊆ ∆3 and ∆1 ⊆ ∆3. As
∆3 we may take a partition consisting of the union of the points of
∆1 and ∆2. For instance, in the previous example we may take as
∆3 = {0, 1/3, 1/2, 1}. Hence, formally, a function f : [a, b] → R is
Riemann integrable if there exists a real number c such that for every
ε > 0 there exists a partition ∆0 ∈ P such that

|L∆ − c| < ε and |U∆ − c| < ε for every ∆ ≥ ∆0.

However, there is an unfortunate problem with this definition: it
is very difficult to work with since we must know beforehand what is
the value of c, i.e. the value of the Riemann integral. In order to
check more easily if a function is Riemann integrable, without knowing
beforehand the Riemann integral, Riemann gave a nice criterion that
carries his name.

Proposition 1.1 (Riemann’s criterion). A function f : [a, b] → R is
Riemann integrable if for every ε > 0 there is a partition ∆0 ∈ P such
that |U∆ − L∆| < ε for every ∆ ≥ ∆0.

Sooooo? Where are the nets? Let us recall the definition of a net.
We need firstly to define what a directed set is.

Definition 1.2. A non empty set P equipped with a relation ≤ is
called a directed set with direction ≤ if the following hold.

(1) x ≤ x for every x ∈ P .
(2) If x ≤ y and y ≤ z then x ≤ z, where x, y, z ∈ P and
(3) for every x, y ∈ P there exists z ∈ P such that x ≤ z and y ≤ z.

A typical example for a directed set is the set P of all finite partitions
of a closed interval [a, b].

Now, do you remember what a sequence of real numbers is? An easy
way to reply is to say that a sequence of real numbers is a function
p : N → R. As usual we denote a sequence by (xn)n∈N. So now we are
ready to say what a net is.

Definition 1.3. Let X be a non empty set. A net in X is a map
p : P → X, where P is a directed set with a direction ≤. A net will be
denoted by (xi)i∈P and a point of P is called an index.

An example? The upper and the lower Riemann sums of a function
f : [a, b] → R!

And what about convergence of nets? Recall that a sequence (xn)n∈N
converges to x if for every open neighborhood U of x we can find n0 ∈ N
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such that xn ∈ U for every n ≥ n0. We can the same say for nets! A
net (xi)i∈P converges to x if for every open neighborhood U of x we can
find i0 ∈ P such that xi ∈ U for every i ≥ i0! So now, we can revisit
Riemann integration and say that a function f : [a, b] → R is Riemann
integrable if there exists a real number c such that the nets L∆ → c
and U∆ → c. The Riemann’s criterion takes the following form: A
function f : [a, b] → R is Riemann integrable if the net U∆ − L∆ → 0.

2. Why nets describe “convergence”?

As we saw, “a sequence or a net comes close to a point x” means
that for any choice of an open neighborhood of x our sequence or net is
“finally” inside this neighborhood. So open neighborhoods of points are
closely related with nets and their convergence. The reason that nets
describe convergence is a “special” net which is related to the family of
all open neighborhoods of a point: Let x be a point in our space and U
be the family of all open neighborhoods of x. We can define a natural
direction on U in such a way that “≥” means to be “closer” to x: Let
U1, U2 be open neighborhoods of x. We say that U1 ≤ U2 if U2 ⊆ U1.
It is easy to check that this really defines a direction on U . Now if
we pick a point xU from each U ∈ U we have a net xU → x! Indeed,
just notice that for every open neighborhood V of x there is an index
U0 := V ∈ U such that for every U ≥ U0 it holds xU ∈ U ⊆ U0 = V !!

Are the nets “good” enough to describe convergence? They will
be “good” if the “good” maps of the theory of convergence respect
them! And what are the “good” maps of the theory of convergence?
Before we give an answer we must say what are the “good” maps (the
“morphisms”) in any theory. Good maps are those that respect the
underlying structures! For example, in the theory of linear spaces we
have two operations, an addition of vectors and a multiplication of
a vector by a scalar. So a “good” map must respect them, that is
f(x + y) = f(x) + f(y) and f(λx) = λf(x). Such a map is called a
linear map. In the theory of convergence we have xi → x for a net (or a
sequence) (xi)i∈P . So the “good” maps must respect convergence, that
is whenever (xi)i∈P is a net with xi → x for a point x then f(xi) →
f(x). Such a map is called a continuous map. But we have seen that a
continuous map at a point x is defined in another way, namely a map
f is continuous at x if for every open neighborhood V of f(x) there is
an open neighborhood U of x such that f(U) ⊆ V . Next theorem says
that the two definitions are equivalent.

Theorem 2.1. A map f : X → Y is continuous at a point x ∈ X if and
only if whenever (xi)i∈P is a net in X with xi → x then f(xi) → f(x).
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Proof. Assume that f is continuous at a point x and (xi)i∈P is a net
in X with xi → x. We will show that f(xi) → f(x). Let V be an
open neighborhood of f(x) in Y . Since f is continuous there is an
open neighborhood U of x in X such that f(U) ⊆ V . The net (xi)i∈P
converges to x, hence there is an index i0 ∈ P such that xi ∈ U for
every i ≥ i0. Therefore, f(xi) ∈ f(U) ⊆ V for every i ≥ i0. So,
f(xi) → f(x).

For the converse implication we argue by contradiction. Assume that
whenever (xi)i∈P is a net in X with xi → x then f(xi) → f(x) but f
is not continuous at x. Then, there is an open neighborhood V of f(x)
such that if U is any open neighborhood of x then f(U) * V . So, for
each open neighborhood U of x there exists a point xU ∈ U such that
f(xU) /∈ V . As we saw before, the points (xU) form a “natural” net
which converges to x. But f(xU) /∈ V for every U , hence f(xU) 9 f(x)
which is a contradiction to our assumption. �
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