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Abstract We study the notion of recurrence and some of its variations for linear
operators acting on Banach spaces. We characterize recurrence for several classes
of linear operators such as weighted shifts, composition operators and multiplication
operators on classical Banach spaces. We show that on separable complex Hilbert
spaces the study of recurrent operators reduces, in many cases, to the study of unitary
operators. Finally, we study the notion of product recurrence and state some relevant
open questions.
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1 Introduction

The most studied notion in linear dynamics is that of hypercyclicity: a bounded linear
operator T acting on a separable Banach space is hypercyclic if there exists a vector
whose orbit under T is dense in the space. On the other hand, a very central notion
in topological dynamics is that of recurrence. This notion goes back to Poincaré and
Birkhoff and it refers to the existence of points in the space for which parts of their
orbits under a continuous map “return” to themselves. The purpose of this note is the
study of the notion of recurrence, together with its variations, in the context of linear
dynamics. Some examples and characterizations of recurrence for special classes of
linear operators have appeared in [15]. In the present paper we develop the properties of
recurrent operators in a more systematic way, and give examples and characterizations
for some classes of recurrent operators such as weighted shifts, unitary operators,
composition operators and multiplication operators.

In an effort to characterize recurrent linear operators one many times falls back to
the notion of hypercyclicity. This is for example the case when we study the recurrence
properties of backwards shifts, say on �2(Z). The reason behind is that, according to a
result of Seceleanu, [48], the orbits of these operators satisfy a zero-one law: if the orbit
of a weighted backward shift contains a non-zero limit point then the corresponding
shift is actually hypercyclic. Thus a weighted backward shift on �2(Z) is recurrent
if and only if it is hypercyclic. The same equivalence is true, albeit for different
reasons, for the adjoint of a multiplication operators on the Hardy space H2(D). These
connections to hypercyclicity, already observed in [15], come up naturally and thus
motivate a further search on whether the properties of recurrent operators resemble
the properties of hypercyclic ones, in general. It turns out that, indeed, there are many
structural similarities between the set of hypercyclic vectors and the set of recurrent
vectors in the sense that they exhibit the same invariances. Furthermore, the spectral
properties of hypercyclic and recurrent operators are somewhat similar, although this
vague statement should be interpreted with some care. However, these similarities
cannot be pushed too much as there are obviously many classes of operators which are
recurrent without being hypercyclic. One can find such examples among composition
operators on the Hardy space H2(D). However, the primordial example is given just
by considering unimodular multiples of the identity operator. A more general class for
which one needs to address the recurrence properties independently of hypercyclicity
is that of unitary operators on Hilbert spaces.

The discussion above hopefully justifies why we will shortly recall a full set of
definitions relating to hypercyclicity, and not just stick to the notions of recurrence
which is the main object of this paper.

1.1 Notations

We will work on a complex Banach space X and T : X → X will always denote a
bounded linear operator acting on X . We will just refer to T as an operator acting on
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X with the understanding that it is linear and bounded. In several occasions we will
need to work with Fréchet spaces Y in which case we consider operators T : Y → Y
which are continuous with respect to the topology induced by the (complete invariant)
metric. We reserve the notation H for a Hilbert space over the complex numbers.
In general, our spaces will be always considered over the complex numbers unless
otherwise stated. If K ⊂ X we write K for the closure of K in the norm topology.
We will denote by B(x, ε) the open ball in X of center x ∈ X and radius ε > 0 while
we write D(z, r) for disks of center z and radius r > 0 in the complex plane C. We
will write D for the open unit disk of the complex plane and T for its boundary. We
denote by Ĉ the extended complex plane. Finally, we denote by N the set of positive
integers.

1.2 Notions of Recurrence

The classical notion of recurrence specializes to linear operators as follows:

Definition 1.1 An operator T acting on X is called recurrent if for every open set
U ⊂ X there exists some k ∈ N such that

U ∩ T −k(U ) �= ∅.

A vector x ∈ X is called recurrent for T if there exists a strictly increasing sequence
of positive integers (kn)n∈N such that

T kn x → x,

as n → +∞. We will denote by Rec(T ) the set of recurrent vectors for T .

A stronger notion of (measure theoretic) recurrence, namely, measure theoretic
rigidity, has been introduced in the ergodic theoretic setting by Furstenberg and Weiss,
[24]. In the context of topological dynamical systems the notions of rigidity and
uniform rigidity have been introduced by Glasner and Maon, [25]. These notions
have also been studied in linear dynamics for example in [19,20]. The corresponding
definitions are as follows.

Definition 1.2 An operator T acting on X is called rigid if there exists an increasing
sequence of positive integers (kn)n∈N such that

T kn x → x for every x ∈ X

i.e., T kn → I (SOT) in the strong operator topology.
An operator T acting on X is called uniformly rigid if there exists an increasing

sequence of positive integers (kn)n∈N such that

‖T kn − I‖ = sup
‖x‖≤1

‖T kn x − x‖ → 0.
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Note that we can always assume that the sequences (kn)n∈N in the previous
definitions satisfy limn→+∞ kn = +∞. Indeed, if kn does not converge to +∞
then T k0 = I for some positive integer k0, so that T nk0 = I for every positive
integer n.

1.3 Notions of Hypercyclicity

As we observed above, in many cases the study of the properties of recurrent operators
is intimately connected to the study of hypercyclic ones. For a general overview of
hypercyclicity in linear dynamics see [8] and [36]. A nice source of examples and
properties of hypercyclic and supercyclic operators is the survey article [32]. See also
the survey articles [10,21,33,34,42]. Here we just recall the definitions of hypercyclic
and supercyclic operators:

Definition 1.3 An operator T acting on X is called hypercyclic if there exists x ∈ X
such that the set

Orb(x, T ) := {T n x : n = 0, 1, 2, . . .},

is dense in X . The set of hypercyclic vectors for T is denoted by HC(T ).
An operator T acting on X is called supercyclic if there exists a vector x ∈ X whose

projective orbit

COrb(x, T ) := {λT n x : n = 0, 1, 2, . . . , λ ∈ C}

is dense in X .
An operator T acting on X is called cyclic if there exists x ∈ X such that the set

span Orb(x, T ) := {p(T )x : p polynomial},

is dense in X .

The first trivial observations is that a hypercyclic operator is always recurrent.
Indeed, every hypercyclic vector is trivially a recurrent vector and we shall see that the
existence of a dense set of recurrent vectors characterizes recurrent operators. Another
way to this easy conclusion is Birkhoff’s transitivity theorem, according to which, an
operator T acting on a separable Banach space X is hypercyclic if and only if it is
topologically transitive:

Definition 1.4 An operator T acting on X is called topologically transitive if for
every pair of non-empty open sets U, V ⊂ X there exists a positive integer n such that
T n(U ) ∩ V �= ∅.

One can immediately compare the definition of topological transitivity above to the
definition of recurrence above. Observe that there is no notion of transitivity in the
definition of a recurrent operator.
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A stronger notion of hypercyclicity was introduced in [9]:

Definition 1.5 An operator T : X → X is called hereditarily hypercyclic with respect
to some strictly increasing sequence of positive integers (kn)n∈N if for every subse-
quence (kln )n∈N there exists a vector x ∈ X such that {T kln x : n ∈ N} = X . If T is
hereditarily hypercyclic with respect to the whole sequence of natural numbers we
will just say that T is hereditarily hypercyclic.

Of course a hereditarily hypercyclic operator is hypercyclic is a very strong sense
and thus recurrent. However, it is not hard to see that a hereditarily hypercyclic operator
can never be rigid. The reason is that if an operator T is rigid then all the vectors in
the space are recurrent for T , and in fact along the same sequence of iterates of T .

Observe that the notions of cyclicity and hypercyclicity defined above are only
meaningful when the Banach space X is separable. This one other point where the
theory for hypercyclic and recurrent operators becomes significantly different.

Remark 1.6 The notions and definitions above where given with respect to a Banach
space. However, they extend in an obvious manner to the case that T : Y → Y is
a continuous linear operator acting on a Fréchet space Y . All one needs to do is to
replace the norm convergence in the definitions by convergence with respect to the
metric of Y .

The rest of this article is organized as follows. In Sect. 2 we give some simple
invariances of recurrent operators, motivated by similar results in hypercyclicity, and
describe the spectral properties of such operators. In Sects. 3–7 we study particu-
lar classes of operators which exhibit recurrence such as power bounded operators,
weighted shifts, composition operators, multiplication operators, and operators on
finite dimensional spaces. In Sect. 8 we show that the study of recurrent operators
with “sufficient structure”, acting on complex Hilbert spaces reduces to the study of
recurrent unitary operators. Finally, in Sect. 9, we study product recurrence, again
motivated by the corresponding question for hypercyclic operators. We draw some
connections to orbit reflexive operators and state some relevant open problems.

2 General Properties of Recurrent Operators

We begin the exposition by giving some easy properties of recurrent vectors and
operators.

2.1 General Properties and Invariances of Recurrent Operators

First we give an equivalent characterization of recurrence by means of the following
well known proposition; see for example [23]. We include a proof for the sake of
completeness.

Proposition 2.1 Let T : X → X be a bounded linear operator acting on a Banach
space X. The following are equivalent:
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(i) The operator T is recurrent.
(ii) Rec(T ) = X.

Furthermore, the set of recurrent vectors for T is a Gδ subset of X.

Proof In order show that (ii) implies (i) let us assume that T has a dense set of recurrent
points and let U be an open set in X . Take a recurrent point y ∈ U and ε > 0 such
that B := B(y, ε) ⊂ U . Then there exists a k ∈ N such that ‖T k y − y‖ < ε. Thus
y ∈ U ∩ T −k(U ) �= ∅ and so T is recurrent. We now show that (i) implies (ii). To
that end suppose that T is recurrent and fix an open ball B := B(x, ε) for some x ∈ X
and ε < 1. We need to show that there is a recurrent vector in B. Since T is recurrent
there exists a positive integer k1 such that x1 ∈ T −k1(B) ∩ B for some x1 ∈ X . Since
T is continuous, there exists ε1 <

1
2 such that B2 := B(x1, ε1) ⊂ B ∩ T −k1(B). Now

since T is recurrent, there is a k2 > k1 such that x2 ∈ T −k2(B2)∩ B2 for some x2 ∈ X .
By continuity again there exists ε2 <

1
22 such that B3 := B(x2, ε2) ⊂ B2 ∩ T −k2(B2).

Continuing inductively we construct a sequence (xn)n∈N ⊂ X , a strictly increasing
sequence of positive integers (kn)n∈N and a sequence of positive real numbers εn <

1
2n ,

such that

B(xn, εn) ⊂ B(xn−1, εn−1), T kn (B(xn, εn)) ⊂ B(xn−1, εn−1).

Since X is complete we conclude by Cantor’s theorem that

⋂

n

B(xn, εn) = {y},

for some y ∈ X . It readily follows that T kn y → y, that is, y is a recurrent point in the
original ball B. Finally observe that

Rec(T ) =
∞⋂

s=1

∞⋃

n=0

{
x ∈ X : ‖T n x − x‖ < 1

s

}
,

which shows that the set of T -recurrent vectors is a Gδ-set. ��
Remark 2.2 Observe that the previous proposition remains valid whenever T : X →
X is a continuous map on a complete metric space.

In the following we describe some simple invariances of the set of recurrent vectors.
In particular, we show that unimodular multiples and powers of an operator share the
same set of recurrent vectors. These statements are analogous to the corresponding
results for hypercyclic vectors due to Ansari [3] and Müller and León-Saavedra [41].

Proposition 2.3 Suppose that T is an operator acting on X. We have that

(i) For every λ ∈ C with |λ| = 1 we have that Rec(T ) = Rec(λT ).
(ii) For every positive integer p we have that Rec(T ) = Rec(T p).

In particular, T is recurrent if and only if T p is recurrent for every positive integer
p, if and only if λT is recurrent for every λ ∈ T.
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Proof For (i) it suffices to show that Rec(T ) ⊂ Rec(λT ). Let x ∈ Rec(T ). We define
the set

F := {μ ∈ T : (λT )kn x → μx for some (kn) ⊂ N with kn → +∞}.

In order to show that x ∈ Rec(λT ) we need to show that 1 ∈ F .
First we show that F �= ∅. Since x ∈ Rec(T ), there exists a strictly increasing

sequence of positive integers (kn)n∈N such that T kn x → x . By compactness, there
exists a subsequence of (kn)n∈N, which we call again (kn)n∈N, such that λkn → ρ for
some ρ ∈ T. We conclude that (λT )kn x → ρx . That is ρ ∈ F .

Next we show that the set F is a (multiplicative) semi-group inside T. Indeed, let
μ1, μ2 ∈ F and fix some ε > 0. Since μ1 ∈ F there is a positive integer n1 such that

‖(λT )n1 x − μ1x‖ < ε

2
.

Now since μ2 ∈ F there is a positive integer n2 such that

‖(λT )n2 x − μ2x‖ < ε

2‖(λT )n1‖ .

We thus get

‖(λT )(n1+n2)x − μ1μ2x‖ ≤ ∥∥(λT )n1
(
(λT )n2 x − μ2x

)∥∥ + ∥∥μ2
(
(λT )n1 x − μ1x

)∥∥

≤ ‖(λT )n1‖‖(λT )n2 x − μ2x‖ + ε

2
< ε.

So μ1μ2 ∈ F .
We have already shown that there is a ρ ∈ F . Since F is a semi-group this means

that for every positive integer n, ρn ∈ F . If ρ is a rational rotation this means that
1 ∈ F and we are done. If ρ is an irrational rotation there is a strictly increasing
sequence of positive integers τk such that ρτk → 1. Now we just need to observe that
F is closed in order to conclude that 1 ∈ F .

For (ii) it is enough to show that Rec(T ) ⊆ Rec(T p) since the opposite inclusion
is obvious. For this, let x ∈ Rec(T ) and take a strictly increasing sequence of posi-
tive integers (kn)n∈N such that T kn x → x as n → +∞. From this we conclude that
T p�n+vn x → x as n → +∞ for an increasing sequence (�n)n∈N and a sequence
(vn)n∈N ⊂ {0, 1, 2, . . . , p − 1}. Since (vn)n∈N is bounded we conclude that there is a
v ∈ {0, 1, 2, . . . , p − 1} such that T p�n+vx → x as n → +∞ for some subsequence
of (�n)n∈N which we call again (�n)n∈N. Let now U be any open neighborhood of x .
Since T p�n+vx → x there is a positive integer m1 := �n1 such that T pm1+vx ∈ U .
We have that

T p(�n+m1)+2vx = T p�n+vT pm1+vx −→ T pm1+vx ∈ U, as n → +∞.

We can thus find a positive integer m2 := m1 +�n2 > m1 such that T pm2+2vx ∈ U .
Continuing inductively we can find a positive integer m p := m p−1 + �n p > m p−1
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such that T pm p+pvx ∈ U . That is, (T p)m p+vx ∈ U which shows that x ∈
Rec(T p). ��
Remark 2.4 Actually, part (ii) of the previous proposition is valid whenever X is a
T1-topological space and T : X → X is just continuous. See [28].

Proposition 2.3 has an analogue for rigid and uniformly rigid operators. In the case
of uniform rigidity the proof is identical to that of Proposition 2.3 and thus we omit
it. The argument for rigid operators is slightly more subtle so we include the details
of the proof.

Proposition 2.5 Let T be an operator acting on X. Then,

(i) The operator T is (uniformly) rigid if and only if, for any positive integer p, the
operator T p is (uniformly) rigid.

(ii) The operator T is (uniformly) rigid if and only if, for any λ ∈ T, the operator λT
is (uniformly) rigid.

Proof For (i) it is clear that T is rigid whenever T p is rigid, for some positive integer
p > 0. To see the opposite implication, assume that T is rigid so there exists a
strictly increasing sequence of positive integers (kn)n∈N such that T kn x → x as
n → +∞, for all x ∈ X . Then the uniform boundedness principle implies that
M := supn∈N ‖T kn ‖ < +∞. It follows that

‖T pkn x − x‖ ≤ ‖I + T kn + T 2kn + · · · T (p−1)kn ‖‖T kn x − x‖

≤
⎛

⎝
p−1∑

�=0

M�

⎞

⎠ ‖T kn x − x‖.

This shows that T p is rigid whenever T is rigid.
In order to show the equivalence in (ii) it suffices to show that if T is rigid and

λ ∈ T then λT is rigid. Let us define the set

F := {
μ ∈ T : μI ∈ {λT, (λT )2, (λT )3, . . .}SOT}

.

In order to show that λT is rigid it suffices to show that 1 ∈ F . Since T is rigid there
exists a strictly increasing sequence of positive integers (mn)n∈N such that T mn → I in
SOT. By compactness there exists a subsequence (τn)n∈N of (mn)n∈N, such that λτn →
ρ, for some ρ ∈ T, and of course we still have that T τn → I in SOT. Furthermore, the
uniform boundedness principle implies that M := supn ‖T τn ‖ < +∞. We now have,
for all positive integers k, that

‖(λT )kτn x − ρk x‖ ≤
(

k−1∑

�=0

M�

)
‖(λT )τn x − ρx‖.

Observing that (λT )τn → ρ I in SOT we conclude that (λT )kτn → ρk I in SOT
and thus ρk ∈ F for all non-negative integers k. If ρ ∈ Q we gave that 1 = ρko for
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some suitable positive integer ko and thus 1 ∈ F . If ρ ∈ R\Q then there is a sequence
(mn)n∈N such that ρmn → 1 as n → +∞. Since (ρmn )n∈N ⊂ F and F is closed we
conclude that 1 ∈ F . ��
Proposition 2.6 Let T : X → X be an invertible operator. Then T is recurrent if and
only if T −1 is recurrent.

Proof It suffices to show that if T is recurrent then T −1 is recurrent. Since

Rec(T −1) =
∞⋂

s=1

∞⋃

n=0

{
x ∈ X : ‖T −n x − x‖ < 1

s

}
,

in view of Baire’s category theorem it suffices to show that, given s ∈ {1, 2, . . .}, ε > 0
and y ∈ X , there exist x ∈ X and n ∈ {0, 1, 2, . . .} such that ‖y − x‖ < ε and
‖T −n x − x‖ < 1/s. Indeed, we can choose a z ∈ Rec(T ) such that ‖y − z‖ < ε/2.
We also may find a positive integer n such that ‖z − T nz‖ < min{1/s, ε/2}. Define
x = T nz. Then we have ‖y − x‖ ≤ ‖y − z‖ + ‖z − x‖ < ε and ‖T −n x − x‖ =
‖z − T nz‖ < 1/s. This completes the proof of the proposition. ��
Remark 2.7 If T is invertible, the operators T, T −1 do not necessarily share the same
recurrent vectors. Consider for example a hypercyclic, invertible, bilateral backward
weighted shift Bw, on �2(Z). For a detailed definition see § 5. Such hypercyclic
weighted shifts exist as shown in [47]. Since the hypercyclic vectors of Bw are dense
in �2 there exists a x = (xn)n∈Z ∈ �2(Z) which is hypercyclic for Bw and satisfies
x0 �= 0. Let y = (yn)n∈Z ∈ �2(Z) be the vector with yn := xn if n ≥ 0 and yn := 0 if
n < 0. Observe that (Bk

w y)n = (Bk
wx)n if n ≥ −k. We claim that y ∈ HC(Bw). To see

this, let ε > 0 and z ∈ �2(Z). There exists some n0 such that
∑

|n|>n0
|zn|2 < ε2/4.

Now let N > no such that ‖B N
w x − z‖2 < ε/2. We can estimate

‖B N
w y − z‖2 ≤

⎛

⎝
∑

n≤−N

|(B N
w y)n − zn|2

⎞

⎠

1
2

+
⎛

⎝
∑

n≥−N

|(B N
w y)n − zn|2

⎞

⎠

1
2

≤
⎛

⎝
∑

|n|≥N

|zn|2
⎞

⎠

1
2

+ ‖B N
w x − z‖2 < ε.

This shows the claim and thus y ∈ HC(Bw) ⊆ Rec(Bw). On the other hand, B−1
w

is a bilateral forward weighted shift thus ‖B−n
w y − y‖2 ≥ |y0| �= 0 for every n ≥ 1.

This shows that y cannot be recurrent for B−1
w .

The following lemma is an immediate consequence of the definitions and states that
the notions of recurrence, rigidity and uniform rigidity are invariant under similarity
transformations. We omit the simple proof.

Lemma 2.8 Let T : X → X be an operator acting on X and S : X → X be an
invertible bounded operator. Then:
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(i) T is recurrent if and only if S−1T S is recurrent.
(ii) T is rigid if and only if S−1T S is rigid.

(iii) T is uniformly rigid if and only if S−1T S is uniformly rigid.

2.2 Spectral Properties of Recurrent Operators

In this paragraph we study some spectral properties of recurrent operators. We denote
by σ(T ) the spectrum of T, σp(T ) the point-spectrum of T and by r(T ) the spectral
radius of T . In general we will see that the spectral properties of recurrent operators
tend to resemble the spectral properties of hypercyclic operators.

Proposition 2.9 Let T : X → X be an operator acting on X. If r(T ) < 1 then T is
not recurrent.

Proof Since r(T ) < 1, we have that ‖T n‖ → 0 as n → +∞. Hence ‖T n x‖ → 0 for
every x ∈ X and therefore T is not recurrent. ��
Proposition 2.10 Let T1, T2 be two operators acting on the Banach spaces X1, X2
respectively. If T1 ⊕ T2 is recurrent then both T1, T2 are recurrent operators.

Proof Take a recurrent vector x1 ⊕ x2 for T1 ⊕ T2. It is clear that x1, x2 are recurrent
vectors for T1, T2 respectively. The last implies that T1, T2 are recurrent operators. ��
Proposition 2.11 If T : X → X is a recurrent operator then every component of the
spectrum of T, σ (T ), intersects the unit circle T.

Proof We first show the following statement

if σ(T ) ⊂ {λ : |λ| > 1} then T is not recurrent. (2.1)

Indeed, the hypothesis on the spectrum implies that T is invertible and that
r(T −1) < 1. By Proposition 2.9 it follows that T −1 is not recurrent and by Proposition
2.6 we conclude that T is not recurrent.

Let us now prove the full conclusion of the proposition. Arguing by contradiction,
assume that some component C1 of the spectrum σ(T ) does not intersect the unit
circle. Then either C1 ⊂ D or C1 ⊂ C\D. By [8, Lemma 1.21] there exists a clopen
set σ1 ⊂ σ(T ) such that either C1 ⊂ σ1 ⊂ D or C1 ⊂ σ1 ⊂ C\D. By the Riesz
decomposition theorem applied for σ1 and σ2 := σ(T )\σ1 there exist operators T1, T2
and a decomposition of the space X, X = X1 ⊕ X2 such that T = T1 ⊕T2, Ti : Xi →
Xi , i = 1, 2 and σ(Ti ) = σi , i = 1, 2. Now, Proposition 2.9 and (2.1) imply that
T1 is not recurrent and by Proposition 2.10 we conclude that T is not recurrent, thus
reaching a contradiction. This completes the proof of the proposition. ��
Corollary 2.12 A compact operator on an infinite dimensional Banach space cannot
be recurrent.

Example 2.13 It is well known that there exist compact operators K acting on separa-
ble Banach spaces X such that I + K is hypercyclic and thus recurrent. It is however
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not difficult to construct a compact operator K such that I + K is recurrent but not
hypercyclic. Indeed, consider the space �2(N) and take K to be the operator

K (x1, x2, . . . , x j , . . .) := ((eiθ − 1)x1, 0, . . . , 0, . . .),

for some θ ∈ R. Then for every positive integer n we have that

(I + K )n x − x = (einθ x1, x2, . . . , x j , . . .)− x = ((einθ − 1)x1, 0, . . . , 0, . . .).

Thus K is a compact operator with one-dimensional range and I + K is recurrent.
An obvious modification provides a compact operator K with d-dimensional range,
for any positive integer d, such that I + K is recurrent. Of course I + K cannot be
hypercyclic in this case.

In a similar fashion one can construct a compact operator K with infinite dimen-
sional range such that I + K is recurrent but not hypercyclic. For this just take a
sequence (θn)n∈N with θn → 0 as n → +∞ and define K : �2(N) → �2(N) as

K (x1, x2, . . . , x j , . . .) = ((eiθ1 − 1)x1, (e
iθ2 − 1)x2, . . . , (e

iθ j − 1)x j , . . .).

Again we have for every positive integer n

(I + K )n x = (einθ1 x1, einθ2 x2, . . . , einθ j x j , . . .).

Based on the previous identity we can show that I +K is recurrent. Indeed, note that
for every positive integer m and every a = (a1, . . . , am) ∈ T

m there exists a strictly
increasing sequence of positive integers (kn)n∈N such that (akn

1 , akn
2 , . . . , akn

m ) →
(1, 1, . . . , 1) as n → +∞. Using the fact that θn → 0 we readily see that K is
compact.

Proposition 2.14 Let T : X → X be an operator. If T is recurrent then for every
λ ∈ C\T the operator T − λI has dense range, hence σp(T ∗) ⊂ T. Here T ∗ denotes
the Banach space adjoint of the operator T .

Proof Suppose that (T − λI )(X) �= X for some λ ∈ C\T. Since T is recurrent and
the set X\(T − λI )(X) is non-empty and open there exists a non-zero vector x ∈ X
such that x ∈ Rec(T ) ∩ X\(T − λI )(X). By the Hahn-Banach theorem there exists
x∗ ∈ X∗ such that x∗(x) �= 0 and x∗((T − λI )(X)) = {0}. Then for every y ∈ X we
have x∗(T y) = λx∗(y) and thus x∗(T n y) = λn x∗(y) for every n = 1, 2, . . .. Since
x ∈ Rec(T ) there exists a sequence of positive integers (kn)n∈N such that kn → +∞
and T kn x → x . Hence λkn x∗(x) = x∗(T kn x) → x∗(x). Using that x∗(x) �= 0 we
conclude that λkn → 1, which is a contradiction since λ ∈ C\T. This completes the
proof. ��
Remark 2.15 If T is hypercyclic then T is recurrent but σp(T ∗) = ∅. However, there
exist several recurrent operators such that ∅ �= σp(T ∗) ⊂ T. For example, this is the
case for the operator I + K constructed in Example 2.13 as well as for unimodular
multiples of the identity operator.
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The following lemma contains the classical fact that a sufficiently large supply
of eigenvectors corresponding to unimodular eigenvalues implies that the operator is
recurrent.

Lemma 2.16 Let T : X → X be an operator. If T has discrete spectrum, that is, if

span{x ∈ X : T x = λx for some λ ∈ T} = X (2.2)

then T is recurrent.

Proof Take x, y ∈ X such that T x = μ1x, T y = μ2 y for some μ1, μ2 ∈ T and fix
any λ1, λ2 ∈ C. Since μkn

1 → 1 and μkn
2 → 1 for some strictly increasing sequence

of positive integers (kn)n∈N we get that λ1x + λ2 y ∈ Rec(T ). The last implies that

span{x ∈ X : T x = λx for some λ ∈ T} ⊂ Rec(T )

and by our hypothesis we conclude that T is recurrent. ��
Remark 2.17 A few remarks are in order.

(i) Observe that Lemma 2.16 holds even in the case that the space X is non-
separable. A much stronger form of the hypothesis (2.2) is the assumption that an
operator T , acting on separable Banach space X , has a perfectly spanning set of
eigenvectors associated to unimodular eigenvalues. This means that there exists
a continuous probability measure σ on T such that, for every Borel A ⊂ T with
σ(A) = 1 we have

span{x ∈ X : T x = λx for some λ ∈ A} = X.

In this case we get the stronger conclusion that T is hypercyclic. In fact, in this
case, T is frequently hypercyclic; see [5,6,29,30]. The point of Lemma 2.16 is
that if we only assume the weaker hypothesis (2.2) we can still conclude that T
is recurrent.

(ii) On a similar spirit, if besides (2.2) we further assume that T : X → X is power
bounded, i.e. supn∈N ‖T n‖ < +∞, and X is separable, then T is rigid; see [19].
However, (2.2) is far from being a necessary condition for rigidity since there
exist rigid unitary operators whose point spectrum is empty and so (2.2) fails for
these operators. For such examples see [19] and the references therein.

(iii) The assumption (2.2) alone does not suffice in order to conclude that T is rigid.
To see this consider any hereditarily hypercyclic operator which has a dense set
of periodic points, namely, points x ∈ X for which there exists a positive integer
n with T n x = x . One such example is provided by the operator λB on the space
of square summable sequences, where B is the unweighted unilateral backward
shift and |λ| > 1. Observe that the operator above is hypercyclic and has a dense
set of periodic points, that is, it is chaotic.

(iv) In the case of complex separable Hilbert spaces H , condition (2.2) appears in [22],
and is shown to be equivalent to the existence of an invariant Borel probability



Recurrent Linear Operators 1613

measure of square integrable norm. For the precise definitions see [22]. We only
note here that this class of Borel probability measures contains the interesting
class of Gaussian measures.

2.3 Spectral Properties of Rigid and Uniformly Rigid Operators

We already saw that every component of the spectrum of a recurrent operator meets the
unit circle. If an operator is rigid then we also get that the spectrum must be contained
in the closed unit disk of the complex plane.

Proposition 2.18 Let T be a rigid operator acting on a Banach space X. Then every
component of the spectrum of T intersects the unit circle. Furthermore we have that
σ(T ) ⊆ D.

Proof If T is rigid then it is recurrent so Proposition 2.11 gives the first assertion of
the proposition. We also claim that r(T ) = 1. Indeed, if r(T ) > 1 then follows by
[43, Corollary 1.2] that there exists a non-zero vector y ∈ X such that ‖T n y‖ → +∞
as n → +∞. On the other hand, since T is rigid there exists a strictly increasing
sequence of positive integers (kn)n∈N such that T kn x → x for every x ∈ X . Thus we
should also have that ‖T kn y‖ → ‖y‖, a contradiction. ��

For uniformly rigid operators we have a significant strengthening of the previous
statement.

Proposition 2.19 Let T be a uniformly rigid operator acting on a Banach space X.
Then the spectrum of T is contained in the unit circle. In particular, if T is uniformly
rigid then T is invertible.

Proof Let T be a uniformly rigid operator and suppose that (kn)n∈N is a strictly
increasing sequence of positive integers such that ‖T kn − I‖ → 0 as n → +∞.
Without loss of generality we can assume that kn → +∞. In particular we have
that supn∈N ‖T kn ‖ < +∞. By Proposition 2.18 we have that σ(T ) ⊂ D. Since T
is uniformly rigid it is immediate that σp(T ) ∩ D = ∅ and by Proposition 2.14 we
also have that σp(T ∗) ∩ D = ∅. Thus if λ ∈ σ(T ) ∩ D then λ is necessarily in the
approximate point spectrum of T .

Let λ ∈ σ(T ) ∩ D. By Proposition 2.5 we have that T p is uniformly rigid for
any positive integer p. By the spectral theorem λp ∈ σ(T p) and by the previous
discussion λp is necessarily an approximate eigenvalue of T p. This means that, for
every positive integer p, there exists a sequence (x (p)

n )n∈N with ‖x (p)
n ‖ = 1 such

that ‖T px (p)n − λpx (p)
n ‖ → 0 as n → +∞. Using this we can construct a sequence

(yn)n∈N ⊂ X with ‖yn‖ = 1 for every n ∈ N, such that ‖T n yn −λn yn‖ < 1
n for every

integer n ≥ 1. This immediately implies that

‖T n yn‖ ≤ 1

n
+ |λ|n‖yn‖ ≤ 1

n
+ |λ|n → 0 as n → +∞.
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On the other hand, since T is uniformly rigid along the sequence (kn)n∈N we have
that

∣∣‖T kn ykn ‖ − 1
∣∣ ≤ ‖T kn ykn − ykn ‖ ≤ ‖T kn − I‖ → 0 as n → +∞,

which is clearly a contradiction. Thus σ(T ) ⊆ T. ��
Question 2.20 We have already seen that if an operator T is invertible then T is recur-
rent if and only if T −1 is recurrent. On the other hand, for uniformly rigid operators
we get that T is automatically invertible. However, it is not clear whether T −1 is also
uniformly rigid without some additional information on T . See also Proposition 3.4.
It is natural to ask if the same property is shared by rigid operators, namely, whether
every rigid operator is invertible. Failing that, is it true that if T is rigid and invertible
then T −1 is also rigid? Note that both questions above have affirmative answers in all
the examples of rigid and uniformly rigid operators appearing in this paper.

3 Power Bounded Operators

Recall that an operator T : X → X is called power bounded provided there exists
a positive number M such that ‖T n‖ ≤ M for every positive integer n. The main
purpose of this section is to show that power bounded recurrent operators are similar
to surjective isometries. This is contained in Proposition 3.2 below. In view of Lemma
2.8 this means that the study of power bounded operator recurrent operators reduces
to the study of recurrent surjective isometries.

We start with a simple lemma.

Lemma 3.1 If T : X → X is a power bounded operator then the set Rec(T ) is closed.

Proof Let (xn)n∈N ⊂ Rec(T ) and x ∈ X and suppose that xn → x in X . Since
(xn)n∈N ⊂ Rec(T )we can choose a strictly increasing subsequence of positive integers
(mn)n∈N such that limn→+∞ ‖T mn xn −xn‖ = 0. Using the hypothesis that T is power
bounded it is routine to check that T mn x → x in X thus x ∈ Rec(T ). This shows that
Rec(T ) is a closed set. ��

We continue with our main result for this section.

Proposition 3.2 Let T : X → X be an operator.

(i) If ‖T ‖ ≤ 1 and T is recurrent then T is a surjective isometry.
(ii) If T is power bounded and recurrent then σ(T ) ⊂ T and T −1 is power bounded

and recurrent. In particular, T is similar to an invertible isometry.
(iii) If T is power bounded, recurrent and σ(T ) ∩ T = {λ} for some λ ∈ T then

T = λ I .
(iv) If T is power bounded and recurrent then T is not supercyclic.
(v) If T is power bounded and recurrent then Rec(T ) = X.

Proof Assertion (v) follows from Lemma 3.1 and the fact that T is recurrent. In
order to show (i) we fix some x ∈ X . By (v) we have that x ∈ Rec(T ) thus there
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exists a strictly increasing sequence of positive integers (kn)n∈N such that T kn x → x .
The assumption that T is a contraction implies that ‖T n+1x‖ ≤ ‖T n x‖ for every n.
Since ‖T kn x‖ → ‖x‖ it follows that ‖T n x‖ → ‖x‖. From the last we conclude that
‖T x‖ = ‖x‖. It remains to show that T is surjective. Observe that it is enough to
prove the convergence of the sequence (T kn−1x)n∈N. We have ‖T kn−1x − T kl−1x‖ =
‖T kn x − T kl x‖ → 0 as n, l → +∞. Therefore (T kn−1x)n∈N is a Cauchy sequence.
This completes the proof of (i).

We proceed with the proof of (ii). Define the equivalent norm ‖x‖1 =
supn≥0 ‖T n x‖, x ∈ X . Then T is a contraction and recurrent operator on the Banach
space (X, ‖ · ‖1). By (i) it follows that T is a surjective isometry on (X, ‖ · ‖1), hence
σ(T ) ⊂ T. Therefore T is invertible on (X, ‖ · ‖1). It is clear now that T is also
invertible on (X, ‖ · ‖). We have ‖T −n x‖ ≤ ‖T −n x‖1 = ‖x‖1 for every n ≥ 0 and
every x ∈ X . Thus T −1 : (X, ‖ ·‖) → (X, ‖ ·‖) is power bounded and by [17, Lemma
9] we conclude that T : (X, ‖ · ‖) → (X, ‖ · ‖) is similar to an invertible isometry.
The proof of (ii) is complete.

Let us now prove (iii). We have σ( T
λ
) ∩ T = {1}. The theorem of Katznelson and

Tzafriri [40], gives

lim
n→∞

∥∥∥∥
T n+1

λn+1 − T n

λn

∥∥∥∥ = 0,

or equivalently

lim
n→∞ ‖T n(T − λ I )‖ = 0.

Take a non-zero vector x ∈ X . There exists a strictly increasing sequence of positive
integers (kn)n∈N such that T kn x → x , hence T kn (T − λ I )x → (T − λ I )x . It is now
clear that T x = λx .

Ansari and Bourdon have showed in [2] that, if T is power bounded and supercyclic,
then it is stable, that is, ‖T n x‖ → 0 for every x ∈ X . Assertion (iv) follows. ��
Remark 3.3 As it is observed in [19, Remark 2.2], rigid contractions on Hilbert spaces
are necessarily unitary. Here we show the stronger statement that recurrent contrac-
tions on Banach spaces are surjective isometries and, more generally, recurrent power
bounded operators on complex Banach spaces are similar to invertible isometries.

We close this section by an easy remark on rigid and uniformly rigid power bounded
operators.

Proposition 3.4 Let T be an operator acting on a Banach space X. Then T is power
bounded and (uniformly) rigid if and only if T −1 is power bounded and (uniformly)
rigid.

Proof We will just show the proposition for rigid operators, the proof for the case of
uniform rigidity being a repetition of the same arguments. So assume that T is power
bounded and rigid. Then Proposition 3.2, (ii), implies that T is invertible and T −1 is
power bounded. It remains to show that T −1 is rigid. Since T is rigid there exists a
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strictly increasing sequence of positive integers (kn)n∈N such that T kn x → x for all
x ∈ X . Thus, for every x ∈ X we have

‖T −kn x − x‖ ≤ ‖T −kn ‖‖x − T kn x‖ ≤ sup
m∈N

‖T −m‖‖x − T kn x‖,

which shows that T −1 is rigid with the same sequence (kn)n∈N. ��

4 Finite Dimensional Spaces

In this section we include a characterization of the recurrent operators T : C
d → C

d

and T : R
d → R

d . This is relatively straightforward and probably well known.
However we provide the details here adjusted to our terminology.

We begin with the complex case.

Theorem 4.1 A matrix T : C
d → C

d is recurrent if and only if it is similar to a
diagonal matrix with unimodular entries.

Proof We first assume that T : C
d → C

d is recurrent. Since σp(T ) = σ(T ) and
by Proposition 2.11 every component of the spectrum of T intersects the unit circle,
we conclude that σ(T ) = σp(T ) = {λ1, . . . , λM } for some λ1, . . . , λM ∈ T, with
multiplicities m1, . . . ,mM , respectively, and m1 + · · · + mM = d. By the canonical
Jordan decomposition the matrix T is similar to a block-diagonal matrix T̃ of the form

T̃ :=

⎛

⎜⎜⎜⎝

V1 0 · · · 0
0 V2 · · · 0
...

...
. . .

...

0 0 · · · VM

⎞

⎟⎟⎟⎠ ,

where each Vj , j = 1, . . . ,M , is either a m j × m j Jordan matrix, that is,

Vj =

⎛

⎜⎜⎜⎜⎜⎜⎝

λ j 1 · · · 0 0

0 λ j
. . . 0 0

...
...

. . . 1
...

0 0 · · · λ j 1
0 0 · · · 0 λ j

⎞

⎟⎟⎟⎟⎟⎟⎠
, (4.1)

or of the form Vj = λ j Im j , where Im j is the m j -dimensional identity matrix.
We claim that each block Vj is of the form λ j Im j . Arguing by contradiction we

assume that there exists at least one Jordan block Vjo of the form (4.1), with m jo ≥ 2.
This implies that the 2 × 2 matrix V , where

V =
(
λ jo 1
0 λ jo

)
,
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is recurrent on C
2. An easy calculation shows that for every natural number n we have

V n =
(
λn

jo
nλn−1

jo
0 λn

jo

)
.

Since Rec(V ) = C
2, there exists a recurrent vector z = (z1, z2)

t ∈ C
2×1 with

z2 �= 0. Hence, there exists a strictly increasing sequence of positive integers (kn)n∈N

such that V kn z → z. Since z2 �= 0 this implies that λkn
jo

→ 1. On the other hand we
must have

λ
kn
jo

z1 + knλ
kn−1
jo

z2 → z1.

This is clearly impossible since z2 �= 0 and this contradiction proves the claim.
We have showed that T is similar to a diagonal matrix with unimodular entries. The

opposite direction follows by observing that if (a1, . . . , ad) ∈ T
d then there exists

a strictly increasing sequence of positive integers (kn)n∈N such that akn
j → 1 for all

j = 1, 2, . . . , d. ��
We now move to the study of the real case.

Theorem 4.2 A matrix T : R
d → R

d is recurrent if and only if it is similar to a block
diagonal matrix if the form

⎛

⎜⎜⎜⎜⎜⎜⎝

J1 0 · · · 0 0

0 J2
. . . 0 0

...
...

. . . 0
...

0 0 · · · JM−1 0
0 0 · · · 0 JM

⎞

⎟⎟⎟⎟⎟⎟⎠
,

where each J j , 1 ≤ j ≤ M, is either a 2 × 2 rotation matrix or a 1 × 1 matrix with
entry either 1 or −1.

Proof Let T : R
d → R

d be recurrent. By the canonical Jordan decomposition T is
similar to a block-diagonal matrix consisting of blocks J1, . . . JM . Each block J j is a
real Jordan block and for real Jordan blocks there are two mutually exclusive cases:

Case 1: The Jordan block J j is identical to a complex Jordan block with real eigen-
value. In this case we conclude by the same argument as in the proof of Theorem 4.1
that J is of the form J j = λ j Im j with λ j ∈ {−1,+1} and 1 ≤ m j ≤ d.

Case 2: The Jordan block J j is a block matrix of the form

J =

⎛

⎜⎜⎜⎜⎜⎜⎝

C I2 · · · 0 0

0 C
. . . 0 0

...
...

. . . I2
...

0 0 · · · C I2
0 0 · · · 0 C

⎞

⎟⎟⎟⎟⎟⎟⎠
, (4.2)
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where C is a 2 × 2 matrix

C =
(

a b
−b a

)
,

with a, b ∈ R.
Since T is recurrent and T is a block diagonal matrix consisting of the blocks J j ,

Lemma 2.8 implies that each block J j is itself recurrent on the corresponding subspace
of R

d . Likewise, since the last block row of J j is orthogonal to all but the last block
columns of J j , the 2 × 2 matrix C has to be recurrent on R

2. However, for every
x = (x1, x2) ∈ R

2 and every positive integer n we have

‖Cn x‖ = (a2 + b2)
n
2 ‖x‖,

where ‖ · ‖ is the Euclidean norm on R
2. From this identity it readily follows that C

is recurrent if and only if a2 + b2 = 1. Thus C is a rotation.
We now show that if T is recurrent then every J is itself a rotation C . Indeed,

suppose that J has at least two blocks. Then the block matrix

S =
(

C I2
O C

)

must be recurrent on R
4, for some rotation matrix C . However, the iterates of S have

the form

Sn =
(

Cn nCn−1

O Cn

)
.

By an argument identical to the one used in the case of a complex Jordan matrix
this leads to a contradiction.

The considerations above show that if T is recurrent then T is similar to a block
diagonal matrix, with each block being either a rotation or a 1 × 1 matrix with
entry either 1 or −1. Conversely, every matrix of this form is easily seen to be
recurrent. ��
Remark 4.3 The results in this section show that, in finite dimensions, recurrence of
linear operators is equivalent to uniform rigidity.

5 Weighted Shifts and Diagonal Operators

In this section we study the recurrence properties of weighted shifts and diagonal
operators on classical sequence spaces. We will denote by �p(Z) the Banach space of
doubly indexed sequences a = (an)n∈Z such that

‖a‖p:=
(

∑

n∈Z

|an|p

) 1
p

< +∞, 1 ≤ p < ∞,
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and

‖a‖∞:= sup
n∈Z

|an| < +∞.

Letw = (wn)n∈Z be a weight sequence, that is a bounded sequence of positive real
numbers. The bilateral weighted backward shift with weight sequence w is the linear
operator Bw : �p(Z) → �p(Z) defined as

Bwen :=wnen−1, n ∈ Z,

where (en)n∈Z denotes the canonical base of �p(Z), 1 ≤ p < +∞. It is obvious
that Bw defines a bounded linear operator with ‖Bw‖ ≤ ‖w‖∞.

We define the unilateral weighted backward shift Bw : �p(N) → �p(N) in an
analogous way with the obvious modifications.

It is known that a unilateral or a bilateral weighted backward shift on �p(Z), 1 ≤
p < +∞, is recurrent if and only if it is hypercyclic. See for example [13,48] and [15].
For a characterization of hypercyclic weighted shifts in terms of the weight sequence
see for example [47].

As for rigidity for unilateral or bilateral weighted shifts there is not so much to
talk about since these operators are never rigid. Indeed, if B is a unilateral or bilateral
weighted shift on �p, say, then for every basis vector ek we have that ‖Bnek −ek‖p ≥ 1
if n ≥ 1, thus B cannot be rigid.

5.1 Non Separable Banach Spaces

As we mentioned above, there exist hypercyclic and thus recurrent weighted shifts on
every �p with 1 ≤ p < ∞. It turns out however that there are no recurrent weighted
shifts on �∞(N) or �∞(Z).

Theorem 5.1 There does not exist recurrent unilateral or bilateral weighted backward
shifts on �∞(N) or �∞(Z), respectively.

Proof Let T : �∞(N) → �∞(N) be a unilateral backward weighted shift with weight
sequence a = (αn)n∈N and suppose that T is recurrent. Let M > 1 and define
the vector y := (2,M, 2, 2, . . .). Since T is recurrent there exist a recurrent vector
x = (xn)n∈N and a positive integer l > 1 such that ‖x − y‖∞ < 1

2 and

‖T l x − x‖∞ = sup
j≥1

∣∣∣∣∣

l∏

i=1

αi+ j−1xl+ j − x j

∣∣∣∣∣ <
1

2
.

We get that

1 <

∣∣∣∣∣

l∏

i=1

αi xl+1

∣∣∣∣∣ < 3, M − 1 <

∣∣∣∣∣

l∏

i=1

αi+1xl+2

∣∣∣∣∣ < M + 1
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and 3
2 < |xl+1|, |xl+2| < 5

2 . Using the previous estimates and since

∣∣∣∣
∏l

i=1
αi+1xl+2

∣∣∣∣
∣∣∣∣
∏l

i=1
αi xl+1

∣∣∣∣
= αl+1

α1

|xl+2|
|xl+1| ,

we arrive at

αl+1 >
a1

5
(M − 1).

Since M can be chosen to be arbitrarily large, we conclude that the sequence
(αn)n∈N is unbounded which is a contradiction. The proof for bilateral weighted shifts
is essentially identical so we omit it. ��

A well known result of Salas from [47] says that if T is any unilateral weighted
backward shift on �2(N) then the operator I + T is hypercyclic. In the non-separable
case it is easy to see that I + T can never be recurrent.

Proposition 5.2 Let T : �∞(N) → �∞(N) be a unilateral weighted backward shift.
Then I + T is not recurrent. The same is true if T : �∞(Z) → �∞(Z) is a bilateral
weighted backward shift.

Proof Let T : �∞(N) → �∞(N) be a unilateral weighted backward shift with weight
sequence a = (an)n∈N and suppose that I +T is recurrent. Let y := (1, 1, . . . , 1, . . .).
There exist a vector x ∈ �∞(N) and a positive integer N with Na1 > 5 such that
‖x − y‖∞ < 1

2 and

‖(I + T )N x − x‖∞ = sup
j≥1

∣∣∣∣

(
N∑

l=0

(
N

l

)
T l x

)

j

− x j

∣∣∣∣

= sup
j≥1

∣∣∣∣
N∑

l=0

(
N

l

) (
l∏

i=1

αi+ j−1

)
xl+ j − x j

∣∣∣∣ < 1.

Taking real parts in the previous inequality and j = 1 in the supremum we must
have

∣∣∣∣
N∑

l=0

(
N

l

)(
l∏

i=1

αi

)
Re(xl+1)− Re(x1)

∣∣∣∣ < 1.

The last implies that

∣∣∣∣
N∑

l=0

(
N

l

) (
l∏

i=1

αi

)
Re(xl+1)

∣∣∣∣ < 1 + |Re(x1)| = 1 + Re(x1).
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Now observe that all the terms in the sum above are positive, so we conclude that

Na1Re(x2) < 1 + Re(x1).

Taking into account that Re(x2) > 1/2 and Re(x1) < 3/2, the last inequality above
implies that Na1 < 5, which contradicts the choice of N . A similar argument shows
that I + T is never recurrent when T is a bilateral weighted backward shift. ��

5.2 Diagonal Operators

We now turn to some examples of diagonal recurrent operators. We will see that
diagonal operators on classical sequence spaces are recurrent if and only if they are
rigid. There are however diagonal operators on c0(N), for example, that are rigid
without being uniformly rigid. See the discussion in Example 5.5.

Theorem 5.3 For a sequence λ = (λ1, . . . , λk, . . .) ∈ �∞(N) we define the diagonal
operator Tλ : �∞(N) → �∞(N) by the formula

Tλ(x1, x2, . . . , xk, . . .) := (λ1x1, . . . , λk xk, . . .).

The following are equivalent:

(i) T is recurrent.
(ii) T is rigid.

(iii) T is uniformly rigid.
(v) For every k ∈ N we have λk = e2π iθk for some (θk)k∈N ⊂ R and

lim inf
n→+∞ sup

k∈N

|e2π inθk − 1| → 0.

Proof First of all we claim that if Tλ is recurrent then necessarily |λk | = 1 for
all k ∈ N. Indeed, if Rec(Tλ) = �∞(N) then there exists a recurrent vector
y = (y1, . . . , yk, . . .) ∈ �∞(N) with yk �= 0 for all k ∈ N. Using this it is straightfor-
ward to show the claim. So, it suffices to consider unimodular λk’s, i.e., λk = e2π iθk

for some (θk)k∈N ⊂ R.
Next, we observe that for every n ∈ N we have

‖T n
λ − I‖ = sup

‖x‖∞≤1
‖T n
λ x − x‖∞ ≤ sup

k∈N

|e2π inθk − 1|‖x‖∞.

On the other hand, for 1 := (1, 1, . . . , 1, . . .) ∈ �∞(N) we have

‖T n
λ 1 − 1‖ = sup

k∈N

|e2π inθk − 1|.

We conclude that ‖T n
λ − I‖ = ‖T n

λ 1 − 1‖ = supk∈N|e2π inθk − 1|. Using this
together with Proposition 3.2, (v), it is routine to show the equivalence of (i)–(iv). ��
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Theorem 5.4 For a sequence λ ∈ �∞(N) we define the operator Tλ : X → X as
above, where X = c0(N) or X = �p(N), 1 ≤ p < +∞.

(A) The following are equivalent:
(i) Tλ is recurrent

(ii) Tλ is rigid.
(iii) For every k ∈ N we have |λk | = 1.

(B) The following are equivalent:
(i) Tλ is uniformly rigid.
(i) For every k ∈ N we have λk = e2π iθk for some (θk)k∈N ⊂ R and

lim inf
n→+∞ sup

k∈N

|e2π inθk − 1| → 0.

Proof We give the prove for the case X = c0(N) since the proof for the case X =
�p(N) is essentially identical. The equivalence in (B) follows by exactly the same
arguments as in the proof of Theorem 5.3. We turn to the equivalences in (A). The
only non-trivial thing to show is that (iii) implies (ii). To that end we fix a sequence
(θk)k∈N ⊂ R such that λk = e2π iθk for all k ∈ N. We exhibit the existence of a strictly
increasing sequence of positive integers (ρn)n∈N satisfying T ρn

λ → I in the strong
operator topology.

For every positive integer � we consider the set

{m(�)
1 <m(�)

2 < · · ·<m(�)
k < · · · } :=

{
m ∈N : |e2π imθ j − 1|< 1

2�
for all j =1, . . . , �

}
.

Observe that for every � ≥ 2 the sequence
(
m(�+1)

k

)
k∈N

is a subsequence of
(
m(�)

k

)
k∈N

. Define ρn := m(n)
n , for every n ∈ N. The above construction easily implies

that for every integer M we have

lim
n→+∞ sup

k≤M
|e2π iρnθk − 1| = 0.

Using this it is easy to see that T ρn
λ x → x as n → +∞, for every x ∈ c0(N). ��

Example 5.5 For θ ∈ R consider the sequence (λk)k∈N with λk := e2π ikθ for all
k ∈ N. If θ ∈ Q it is easy to check that the sequence (e2π ikθ )k∈N satisfies the
condition in Theorem 5.3, (iv), and thus the corresponding diagonal operator Tλ is
uniformly rigid on c0(N) and �p(N), 1 ≤ p ≤ +∞. On the other hand if θ ∈ R\Q

then supk∈N|e2π inkθ − 1| = 2 for every n ∈ N and, therefore, Tλ fails to be uniformly
rigid on any of the spaces considered above. However, Tλ is still rigid on c0(N) or
�p(N), 1 < p < +∞.

6 Composition Operators

In this section we turn to the study of composition operators in different spaces of
functions and characterize when these operators are recurrent in terms of conditions
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on their symbol. If Y is a Banach or Fréchet space of functions f : A → C, where
A ⊂ C, and φ : A → A, we will denote the composition operator with symbol φ by
Cφ : Y → Y :

Cφ( f ) = f ◦ φ, f ∈ Y,

whenever this operator is well defined.

6.1 Composition Operators on the Space of Continuous Functions C([0, 1])

Let C([0, 1]) denote the space of continuous functions f : [0, 1] → C equipped with
the topology of uniform convergence. For any continuous function φ : [0, 1] → [0, 1]
the composition operator

Cφ : C([0, 1]) → C([0, 1]), Cφ( f )(x) := f (φ(x)), x ∈ [0, 1],

is a well defined bounded linear operator. The first easy observation is that a necessary
condition for Cφ to be recurrent is that φ is one-to-one. Indeed, supposing that it is
not, there exist x1, x2 ∈ [0, 1] with x1 �= x2 such that φ(x1) = φ(x2). We get that for
every recurrent vector f ∈ Rec(Cφ) we must have f (x1) = f (x2) and thus that

C([0, 1]) = Rec(Cφ) ⊂ { f ∈ C([0, 1]) : f (x1) = f (x2)},

which is clearly a contradiction. Furthermore it is easy to see that φ : [0, 1] → [0, 1]
must be onto [0, 1]. However, this is an easy exercise: since φ is one-to-one, if it is
not onto [0, 1] then there must be some interval (a, b) ⊂ [0, 1] that avoids the range
of φ. Constructing a non-zero continuous function with compact support inside (a, b)
immediately leads to a contradiction. Thus φ is a strictly increasing from [0, 1] onto
[0, 1] with φ(0) = 0 and φ(1) = 1 or a strictly decreasing function from [0, 1] onto
[0, 1] with φ(0) = 1 and φ(1) = 0.

If φ is strictly increasing we claim that the only possibility is the identity φ(x) = x .
If not then there is some xo ∈ (0, 1) and some δ > 0 such that φ(xo) < xo − δ or
φ(xo) > xo + δ. Without loss of generality let us assume that φ(xo) < xo − δ so that
φ[n](xo) < xo − δ for all positive integers n ∈ N. Now we observe that φ[n](xo) <

φ[n−1](xo) for all n ≥ 1. To see this for n = 1 we remember that φ(xo) < xo − δ

and that φ is strictly increasing so that φ(φ(xo)) < φ(xo − δ) < φ(xo). The proof for
general n follows easily by induction, using the fact that φ is strictly increasing. Thus
(φ[n])n∈N is strictly decreasing and bounded from below and we can conclude that there
exists y < xo such that φ[n](xo) → y as n → +∞. We get that f (φ[n](xo)) → f (y)
for every f ∈ C([0, 1]). Now let f ∈ Rec(Cφ)with corresponding sequence (kn)n∈N.
We have that

f (φ[kn ](xo)) → f (xo) as n → +∞.

Thus f (xo) = f (y) for all recurrent vectors f ∈ Rec(Cφ). Since xo �= y and
Rec(Cφ) = C([0, 1]) this is clearly a contradiction.
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If φ is strictly decreasing we use the analogous argument to show that the only
choice is φ(x) = 1 − x . We have thus showed the following.

Theorem 6.1 Suppose that Cφ : C([0, 1]) → C([0, 1]) is a composition operator.
The following are equivalent.

(i) Cφ is recurrent.
(ii) Cφ is rigid.

(iii) Cφ is uniformly rigid.
(iv) φ(x) = x or φ(x) = 1 − x.

Remark 6.2 Observe that the spectrum of Cφ : C([0, 1]) → C([0, 1]) for φ(x) =
1 − x is σ(Cφ) = {−1, 1}. Indeed, since Cφ2 = I we have that σ(Cφ) ⊂ {−1, 1}.
Clearly 1 ∈ σp(Cφ). For f (x) = eπ i x + e−π i x we have f (1 − x) = − f (x), hence
−1 ∈ σ(Cφ). In fact we have σp(Cφ) = σ(Cφ) = {−1, 1}. Therefore, the only
possible structures for the spectrum of a composition operator on C([0, 1]) which
is recurrent are of the form {1}, {−1, 1}. The above theorem remains valid, without
changing the proof, by replacing the space C([0, 1]) with the space CR([0, 1]) of real
valued continuous functions on [0, 1]. In this case, the spectrum of the composition
operator Cφ : CR([0, 1]) → CR([0, 1]) for φ(x) = 1 − x , which coincides with the
point spectrum, is also the set {−1, 1}. To see this just consider the real valued function
f (x) = 1

2 − x, x ∈ [0, 1] and observe that f (1 − x) = − f (x), x ∈ [0, 1].
Remark 6.3 As we have already mentioned T. Eisner showed in [19] that if T : X → X
is a power bounded operator acting on a complex separable Banach space X and

span{x ∈ X : T x = λx for some λ ∈ T} = X,

then T is rigid. The composition operator Cφ : C([0, 1]) → C([0, 1]) for φ(x) = x
satisfies trivially the assumptions in Eisner’s theorem. Let us check that this is also the
case for the composition operator Cφ : C([0, 1] → C([0, 1] induced by φ(x) = 1− x
(which is trivially rigid since C2

φ = I ). For every positive integer n the function

fn(x) = ( 1
2 − x)n, x ∈ [0, 1] satisfies fn(1 − x) = fn(x), x ∈ [0, 1] if n is even and

fn(1 − x) = − fn(x), x ∈ [0, 1] if n is odd. Since every non-zero constant function
on [0, 1] is an eigenfunction for Cφ corresponding to the eigenvalue 1 and f1 is also
an eigenfunction for Cφ corresponding to the eigenvalue −1 we conclude that the
monomial p1(x) = x belongs to span{Ker(Cφ − I )∪ Ker(Cφ + I )}. The polynomial
f2, which has degree two, belongs to the vector space span{Ker(Cφ− I )∪Ker(Cφ+ I )}
and since the non-zero constant functions and the monomial p1(x) = x also belong
to span{Ker(Cφ − I ) ∪ Ker(Cφ + I )} it follows that p2(x) = x2 ∈ span{Ker(Cφ −
I ) ∪ Ker(Cφ + I )}. Continuing in the same way we get

{pn(x) = xn : n = 0, 1, 2, . . .} ⊂ span{Ker(Cφ − I ) ∪ Ker(Cφ + I )},

which in turn implies that every polynomial belongs to span{Ker(Cφ − I )∪Ker(Cφ +
I )}. The conclusion now follows by the Weierstrass approximation theorem.
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Observe that, from Eisner’s result and the previous discussion, each of the four
equivalent statements in Theorem 6.1 is equivalent to:

span{ f ∈ C([0, 1]) : Cφ f = λ f for some λ ∈ T} = C([0, 1]).

6.2 Composition Operators on the Space of Entire Functions

Let H(C) denote the Fréchet space of entire functions endowed with the topology
of uniform convergence on compact sets, and let φ ∈ H(C). We will abbreviate
“holomorphic and one-to-one” by “univalent”. The composition operator induced by
φ is defined on H(C) as Cφ( f ) = f ◦ φ. Obviously Cφ is continuous and linear. It is
well known, and easy to prove, that Cφ is hypercyclic if and only if φ is of the form
φ(z) = z + b with b �= 0. See [27]. The class of recurrent composition operators on
H(C) turns out to be slightly wider.

Theorem 6.4 Consider the composition operator Cφ : H(C) → H(C) for some
φ ∈ H(C). The following are equivalent.

(i) Cφ is recurrent.
(ii) φ(z) = az + b with a, b ∈ C and |a| = 1.

Proof Assume first that Cφ is recurrent. By an argument similar to the one used § 6.1
for C([0, 1]) it follows that φ must be univalent. However, the only univalent entire
functions are of the form φ(z) = az + b for some a, b ∈ C.

Now for φ(z) = az + b and n ∈ N we have that

φ[n](z) =
{

anz + an−1
a−1 b, a �= 1,

z + nb, a = 1.

If a = 1 and b �= 0 then Cφ is the translation by b which is known to be hypercyclic
and thus recurrent. On the other hand if a = 1 and b = 0 then Cφ is the identity which
is obviously recurrent. If a �= 1 with |a| = 1 then we will show that every f ∈ H(C)
is a recurrent vector for Cφ and thus Cφ is recurrent. Indeed, take any f ∈ H(C). We
need to check that for every ε, R > 0 and every positive integer N > 0 there exists
n > N such that,

sup
z∈D(0,R)

∣∣∣∣ f

(
anz + an − 1

a − 1
b

)
− f (z)

∣∣∣∣ < ε. (6.1)

By the uniform continuity of f on compact subsets of C there exists δ > 0 such
that:

if z, w ∈ D

(
0, R + 2|b|

|a − 1|
)

and |z − w| < δ, then
∣∣ f (z)− f (w)

∣∣ < ε.
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There exists n > N such that |an − 1| < δ(R + |b|
|a−1| )

−1. Then, for every z ∈
D(0, R) we have that z, anz + an−1

a−1 b ∈ D(0, R + 2|b|
|a−1| ) and

∣∣∣∣a
nz + an − 1

a − 1
b − z

∣∣∣∣ ≤ |an − 1|
(

R + |b|
|a − 1|

)
< δ,

and (6.1) follows.
Finally, for |a| < 1 we have that anz + an−1

a−1 b → − b
a−1 uniformly on compact

subsets of C and a simple argument shows that Cφ cannot be recurrent. Similarly,
if |a| > 1 then take R > 0 sufficiently large so that 0 ∈ D( b

a−1 , R). Then for any
strictly increasing sequence of positive integers (kn)n∈N and every non-constant entire
function f we have

sup
z∈D(0,R)

∣∣∣∣ f

(
akn z + akn − 1

a − 1
b

)
− f (z)

∣∣∣∣ = sup
z∈D( b

a−1 ,R)

∣∣∣∣ f

(
akn z − b

a − 1

)

− f

(
z − b

a − 1

)∣∣∣∣ + ∞

as n → +∞. Thus Cφ cannot be recurrent in this case either. ��
Theorem 6.5 Consider the composition operator Cφ : H(C) → H(C) for some
φ ∈ H(C). The following are equivalent.

(i) Cφ is rigid.
(ii) φ(z) = az + b where, either a = 1 and b = 0 or a ∈ T\{1} and b ∈ C.

Proof Assume that Cφ is rigid. Then Cφ is recurrent and by Theorem 6.4, φ should
be of the form φ(z) = az + b with a, b ∈ C and |a| = 1. Let us first exclude the case
a = 1 and b �= 0. Indeed, if φ(z) = z + b with b �= 0 then it is well known that Cφ
is hereditarily hypercyclic thus Cφ is not rigid. On the other hand if a = 1 and b = 0,
i.e. φ(z) = z, then Cφ is rigid, trivially. It only remains to handle the case a ∈ T\{1}
and b ∈ C. Fix such a and b and then fix a strictly increasing sequence of positive
integers (kn)n∈N such that

|akn − 1| < 1

n
for every n = 1, 2, . . . .

Take any f ∈ H(C). We shall prove that for every ε, R > 0 there exists a positive
integer N such that for every n ≥ N

sup
z∈D(0,R)

∣∣∣∣ f

(
akn z + akn − 1

a − 1
b

)
− f (z)

∣∣∣∣ < ε.

By the uniform continuity of f on compact subsets of C there exists δ > 0 such
that:
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if z, w ∈ D
(

0, R + 2|b|
|a−1|

)
and |z − w| < δ then

∣∣ f (z)− f (w)
∣∣ < ε.

Fix a positive integer N such that

1

N
< δ

(
R + |b|

|a − 1|
)−1

.

Then

|akn − 1| < δ

(
R + |b|

|a − 1|
)−1

for every n ≥ N

and arguing as in the proof of the Theorem 6.4 the conclusion follows. ��

6.3 Composition Operators on the Space of Holomorphic Functions in the Punctured
Plane

Let C
∗:= C\{0} denote the punctured plane and H(C∗) denote the Fréchet space of

holomorphic function on C
∗ endowed with the topology of uniform convergence on

compact sets of C
∗. Then the automorphisms of C

∗ are the functions

φ(z) = az or φ(z) = a

z
, a ∈ C\{0}.

Theorem 6.6 Let φ be an automorphism of C
∗. Then the composition operator Cφ :

H(C∗) → H(C∗) is recurrent if and only if either φ(z) = az with a ∈ T or φ(z) = a
z

with a ∈ C
∗.

Proof Let φ(z) = az with |a| �= 1. Suppose that Cφ is recurrent. Since Rec(Cφ) is
dense in H(C∗), there exists f (z) = ∑

n∈Z
cnzn ∈ Rec(Cφ) with c−1 �= 0. We have

∫

T

((Cφ)
n f (z)− f (z))dz =

∫

T

( f (anz)− f (z))dz = 2π i
(c−1

an
− c−1

)
,

where the unit circle T is positively oriented. Since f ∈ Rec(Cφ) there exists a strictly
increasing sequence of positive integers (kn)n∈N such that the left hand side of the
above equality tends to zero and since c−1 �= 0 we conclude that akn → 1, which is
a contradiction. Consider now φ(z) = az with |a| = 1. Then there exists a strictly
increasing sequence of positive integers (kn)N such that akn → 1 and now it is easy
to show that for every f ∈ H(C∗), (Cφ)kn f → f uniformly on compact subsets of
C

∗, i.e., Cφ is recurrent. It remains to handle the case φ(z) = a
z , a ∈ C

∗. For this
observe that φ ◦ φ(z) = z, z ∈ C

∗ and therefore (Cφ)2n f = f for every n ∈ N

and every f ∈ H(C∗). Therefore Cφ is recurrent and this completes the proof of the
theorem. ��
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Theorem 6.7 Let φ be an automorphism of C
∗. Then the composition operator Cφ :

H(C∗) → H(C∗) is rigid if and only if either φ(z) = az with a ∈ T or φ(z) = a
z

with a ∈ C
∗.

Proof A careful inspection of the proof of Theorem 6.6 gives the desired result. ��

6.4 Composition operators on the space of holomorphic functions on the unit disk

We now consider the Fréchet space H(D) of holomorphic functions on the unit disk D,
endowed with the topology of uniform convergence on the compact subsets of D.
Let φ : D → D be a holomorphic function. We define the composition operator
Cφ : H(D) → H(D) as Cφ( f ) = f ◦ φ. Again it is clear that Cφ is a continuous
linear operator.

We will be especially interested on composition operators induced by linear frac-
tional maps.

Definition 6.8 A non-constant map φ : D → D is called a linear fractional map if it
can be written in the form

φ(z) = az + b

cz + d
, z ∈ D,

for some a, b, c, d ∈ C satisfying ad − bc �= 0. The latter condition is necessary
and sufficient for φ to be nonconstant. We denote by LFM(D) the set of all linear
fractional maps of D into itself. The linear fractional maps that take D onto itself are
called conformal automorphisms of D.

The members of LFM(D) have at least one and at most two fixed points in Ĉ. We
classify them as:

• Linear fractional maps without a fixed point in D.
– parabolic linear fractional maps: those having a unique attractive fixed point

on T.
– hyperbolic maps with attractive fixed point on T: those having an attractive fixed

point α ∈ T and a second fixed point β ∈ Ĉ\D. The linear fractional map is a
hyperbolic automorphism of D if and only if both fixed points are on T.

• Linear fractional maps having a fixed point in D. Here there are two cases:
– either the interior fixed point is attractive, or
– the map is an elliptic automorphism: The automorphisms of D having a fixed

point α ∈ D and the second fixed point β ∈ Ĉ\D.

For these notions and classification we refer the reader to [49].
The following theorem describes the recurrent composition operators, induced by

holomorphic self-maps of the disk.

Theorem 6.9 Let φ : D → D be a holomorphic function. The composition operator
Cφ : H(D) → H(D) is recurrent if and only if either φ is univalent and has no fixed
point in D or φ is an elliptic automorphism.
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Proof First we assume that Cφ is recurrent. Using the the same argument as in the
proof of Theorem 6.4, (i), we see that φ is necessarily univalent. If φ has no fixed
point in D then there is nothing to show. Assume now that φ has an interior fixed
point p ∈ D. If φ is an automorphism of the disk then it is necessarily an elliptic
automorphism; see [49]. If φ is not an elliptic automorphism then the Denjoy–Wolff
Iteration Theorem, [49, Proposition 1, Chapter 5], implies that φ[n] converges to p
uniformly on compact subsets of D. We conclude that the only limit points of the
Cφ-orbit are the constant functions. Therefore Cφ cannot be recurrent in this case.

To show the converse observe that if φ is an elliptic automorphism then φ is con-
jugate to a rotation; see [49, Chapter 0]. Thus, there exists a linear fractional map S
and a complex number λ ∈ T such that Cφ = S−1Cφλ S where φλ(z) = λz, z ∈ D.
As in the proof of Theorem 6.4 it is easy to see that Cφλ is recurrent and by Lemma
2.8 we get that Cφ is recurrent. If φ is univalent and has no fixed point in D then by
the Denjoy–Wolff theorem, [49, p. 78, Chapter 5], there is a point w ∈ T such that
φ[n] → w uniformly on compact subsets of D. This implies that for every compact set
K ⊂ D there exists a positive integer n such that φ[n](K )∩ K = ∅. By [35, Theorem
3.2] Cφ is hypercyclic and thus recurrent. ��

Specializing to linear fractional maps immediately gives the following corollary.

Corollary 6.10 Let φ ∈ LFM(D). The composition operator Cφ : H(D) → H(D) is
recurrent if and only if φ is either parabolic, or hyperbolic with no fixed point in D,
or an elliptic automorphism.

We now characterize the rigid composition operators on H(D).

Theorem 6.11 Let φ : D → D be holomorphic. The composition operator Cφ :
H(D) → H(D) is rigid if and only if φ is an elliptic automorphism.

Proof If φ is an elliptic automorphism we note as in the proof of Theorem 6.9 above
that there exists a linear fractional map S and a complex number λ ∈ T such that
Cφ = S−1Cφλ S where φλ(z) = λz, z ∈ D. It is now an easy exercise to check that
Cφλ is rigid. Assume now that Cφ is rigid. Then Theorem 6.9 implies that either φ
has no fixed point in D or that it is an elliptic automorphism. However, if φ has no
fixed point in D it follows as in the proof of Theorem 6.9 that for every compact set
K ⊂ D there exists a positive integer no such that φ[n](K ) ∩ K = ∅ for all n ≥ no.
This implies that Cφ is hereditarily hypercyclic; see for instance [35, Theorem 3.2].
In this case Cφ cannot be rigid. Thus φ is an elliptic automorphism. ��

6.5 Composition Operators on the Hardy Space H2(D)

In what follows we consider composition operators on the Hardy space H2(D), con-
sisting of holomorphic functions f : D → C such that

‖ f ‖H2(D):= sup
0≤r<1

⎛

⎝ 1

2π

2π∫

0

| f (reiθ )|2dθ

⎞

⎠
1/2

< +∞.

We immediately restrict our attention to the special class of symbols φ ∈ LFM(D).
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Theorem 6.12 Let φ ∈ LFM(D). Then the operator Cφ : H2(D) → H2(D) is
recurrent if and only if φ is either hyperbolic with no fixed point in D, or a parabolic
automorphism, or an elliptic automorphism.

Proof We first consider the case that φ ∈ LFM(D) has no fixed points in D. Then
φ is either parabolic or hyperbolic. In either case, [8, Theorem 1.47] implies that Cφ
is hypercyclic and thus recurrent. If φ is a parabolic non-automorphism then by [49,
The Linear Fractional Hypercyclicity Theorem, p.114], only constant functions can
be limit points of Cφ-orbits. Therefore Cφ is not recurrent.

Assume now that φ has a fixed point p ∈ D. If φ is not an elliptic automorphism
of D we claim that Cφ is not recurrent. Indeed, assume, for the sake of contradiction,
that Cφ is recurrent and consider a non-constant f ∈ Rec(Cφ). Then there exists a
strictly increasing sequence of positive integers (kn)n∈N such that

∥∥ f ◦ φ[kn ] − f
∥∥

H2(D)
→ 0, n → +∞.

Therefore f ◦ φ[kn ] converges to f uniformly on compact subsets of D. Let 0 <
r < 1. Then

sup
|z|≤r

∣∣ f (φ[kn ](z))− f (z)
∣∣ → 0, n → +∞.

Since we have assumed that φ is not an elliptic automorphism, the interior fixed
point p must be attractive. By [49, Proposition 1, Chapter 5] the iterates φ[n] con-
verge to p uniformly on compact subsets of D. We conclude that for every w ∈
D(0, r), f (φ[kn ])(w)) → f (p) as n → +∞. It readily follows that f (w) = f (p)
for every w ∈ D(0, r) and thus f is constant, a contradiction. It only remains to
check what happens when φ is an automorphism of the disk in which case φ is an
elliptic automorphism. Without loss of generality we can assume that φ is of the form
φ(z) = λz for some λ ∈ T and a direct computation shows that every f ∈ H2(D) is
a recurrent vector for Cφ . ��

Theorem 6.13 Let φ ∈ LFM(D). Consider the composition operator Cφ : H2(D) →
H2(D).

(i) Cφ is rigid if and only if φ is an elliptic automorphism.
(ii) Cφ is uniformly rigid if and only if φ is conjugate to a rational rotation.

Proof For (i) first assume that Cφ is rigid. By Theorem 6.12 the operator Cφ is recurrent
and thus φ is either hyperbolic with no fixed point in D, or a parabolic automorphism,
or an elliptic automorphism. If φ is hyperbolic with no fixed point in D or a parabolic
automorphism then Cφ is hereditarily hypercyclic; see [8]. Thus Cφ cannot be recur-
rent. To complete the proof of (i) it remains to show that ifφ is an elliptic automorphism
then Cφ is rigid. Without loss of generality we can assume that φ(z) = λz for some
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λ ∈ T. There exists a strictly increasing sequence of positive integers (kn)n∈N such
that λkn → 1. For any f (z) = ∑

m≥0 am zm ∈ H2(D) we have

‖Ckn
φ f − f ‖2

H2(D)
=

∑

m≥0

|am |2|1 − λmkn |2 → 0 as n → +∞ (6.2)

by dominated convergence. Thus Cφ is rigid.
For the proof (ii) we observe that if either of the equivalences is true then φ is

necessarily conjugate to a rotation so we restrict our attention to φ of the form φ(z) =
λz, with |λ| = 1. For any positive integer n we have

‖Cn
φ − I‖ = sup

m≥0
|1 − λmn|.

However, lim infn→+∞ supm≥0 |1−λmn| = 0 if and only if λ = e2π iθ with θ ∈ Q.
��

7 Multiplication Operators

We now consider multiplication operators on different spaces of functions. For some
Banach or Fréchet space Y we will denote by Mφ : Y → Y the multiplication operator
with symbol φ, that is,

Mφ( f ) = φ f, f ∈ Y,

whenever this operator is well defined. In most cases we will see that the recurrent
multiplication operators are, in some sense, trivial, meaning that the symbol of the
operator is a constant function.

7.1 Multiplication Operators on Spaces of Continuous Functions

First we consider multiplication operators on spaces of continuous functions.

Theorem 7.1 Let (K , d) be a compact and connected metric space and denote by
C(K ) the continuous functions f : K → C. For φ ∈ C(K ) the following are
equivalent.

(i) Mφ : C(K ) → C(K ) is recurrent.
(ii) Mφ : C(K ) → C(K ) is rigid.

(iii) Mφ : C(K ) → C(K ) is uniformly rigid.
(iv) There exists a ∈ T such that φ(x) = a for every x ∈ K .

Proof The implications (iv) ⇒ (iii), (iii) ⇒ (ii), (ii) ⇒ (i) are trivial to show. In order
to show that (i) implies (iv) let us assume that Mφ is recurrent. Suppose that there exist
x0 ∈ K with |φ(x0)| �= 1 and consider any f ∈ Rec(Mφ). If |φ(x0)| < 1 then, by
the continuity of φ, there exists an open ball B(x0, δ) = {y ∈ K : d(y, x0) < δ} such
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that |φ(y)| < 1 for every y ∈ B(x0, δ). From the last and the fact that f ∈ Rec(Mφ)

it easily follows that f (y) = 0 for every y ∈ B(x0, δ). Therefore we have

Rec(Mφ) ⊂ { f ∈ C(K ) : f (y) = 0 for every y ∈ B(x0, δ)}.

However the right hand set in the above inclusion cannot be dense in C(K ) (there
is hidden here an argument involving the connectedness of the space K which is left
to the reader), thereby giving a contradiction. The case |φ(x0)| > 1 can be handled
in a similar fashion and we leave the details to the reader. At this point we know that
|φ(x)| = 1 for every x ∈ K , which in turn implies that ‖Mφ‖ = 1. Therefore Mφ

is power bounded and we get that Rec(Mφ) = C(K ). Assume that φ(x1) �= φ(x2)

for some x1, x2 ∈ K . The set K is connected, hence φ(K ) is connected and since
|φ(x1)| = |φ(x2)| = 1 with φ(x1) �= φ(x2) there exists a set L ⊂ K and an arc
J ⊂ T, φ(x1), φ(x2) ∈ J such that J ⊂ φ(L). Observe that the constant function
h(x) = 1, x ∈ K , is recurrent for Mφ since Rec(Mφ) = C(K ). Thus, there exists a
sequence of positive integers (kn)n∈N such that supx∈K |φ(x)kn − 1| → 0. It follows
that supz∈J |zkn − 1| → 0, which is clearly a contradiction. Hence, there exists a ∈ T

such that φ(x) = a for every x ∈ K . ��

7.2 Multiplication Operators on Hilbert Spaces of Analytic Functions on Domains
of C

n

We fix a non-empty open connected set � of C
n, n ∈ N, and H a Hilbert space of

holomorphic functions on � such that:

– H �= {0}, and
– for every z ∈ �, the point evaluation functionals f → f (z), f ∈ H , are bounded.

Every complex valued function φ : � → C such that the pointwise product φ f
belongs to H for every f ∈ H is called a multiplier of H . In particular φ defines the
multiplication operator Mφ : H → H in terms of the formula

Mφ( f ) = φ f, f ∈ H.

By the boundedness of point evaluations along with the closed graph theorem
it follows that Mφ is a bounded linear operator on H . It turns out that under our
assumptions on H , every multiplier φ is a bounded holomorphic function, that is
‖φ‖∞ := supz∈� |φ(z)| < +∞. In particular we have that ‖φ‖∞ ≤ ‖Mφ‖; see [26].

The recurrent properties of multiplication operators on Hilbert spaces of analytic
functions as above are contained in the following theorem, proved in [15]:

Theorem 7.2 Suppose that every non-constant bounded holomorphic function φ on
� is a multiplier of H such that ‖Mφ‖ = ‖φ‖∞. Then for each such φ the following
hold.

(i) The multiplication operator Mφ is not recurrent.
(ii) The adjoint M∗

φ is recurrent if and only if it is hypercyclic if and only if φ(�)∩
T �= ∅ .
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Remark 7.3 It is not hard to see that under the hypothesis of the previous theorem
M∗
φ is never rigid. Indeed, every value φ(z), z ∈ �, is an eigenvalue of M∗

φ ; see
[26]. By Proposition 2.18 we must have |φ(z)| ≤ 1. On the other hand if M∗

φ is rigid
then by the previous proposition M∗

φ is hypercyclic and then we necessarily have that
‖M∗

φ‖ = ‖Mφ‖ = ‖φ‖∞ > 1. Since these two conditions are mutually exclusive we
see that M∗

φ is not rigid.
On the other hand, again under the assumptions of Theorem 7.2, the multiplication

operator Mψ is recurrent if and only if M∗
ψ is recurrent if and only if ψ is equal

to a unimodular constant, everywhere on �. In the latter case Mψ,M∗
ψ are, in fact,

uniformly rigid.

7.3 Multiplication Operators on Banach Spaces of Holomorphic Functions
in the Unit Disk

Let X be a a non-trivial Banach space of functions holomorphic in the unit disk D. A
functionφ ∈ H(D) is said to be a (pointwise) multiplier of X into X ifφ f ∈ X for every
f ∈ X . Then the multiplication operator Mφ : X → X is defined by Mφ f = φ f for
every f ∈ X . Assuming in addition that each point-evaluation functional is bounded
on X , it follows that: (i) Mφ is a bounded operator, (ii) φ is bounded on D, i.e.
φ ∈ H∞(D) and (iii) ‖φ‖∞ ≤ ‖Mφ‖, see for instance [1].

7.4 Multiplication Operators on Hardy and Bergman Spaces

For 1 ≤ p < ∞ the Hardy space H p consists of all holomorphic functions f in the
unit disk D such that

‖ f ‖H p(D):= sup
0≤r<1

⎛

⎝ 1

2π

2π∫

0

| f (reiθ )|pdθ

⎞

⎠
1/p

< +∞.

Equipped with this norm H p(D) becomes a Banach space and for every f ∈ H p

we have that

| f (z)| ≤ ‖ f ‖H p(D)

(1 − |z|2)1/p
, z ∈ D; (7.1)

see [18]. The last estimate implies that all point-evaluation functionals are bounded.
For 1 ≤ p < ∞ the Bergman space Ap(D) consists of all holomorphic functions

f in the unit disk D such that

‖ f ‖Ap(D):=
⎛

⎝
∫

D

| f (z)|pd A(z)

⎞

⎠
1/p

< ∞,

where d A(z) = 1
π

dxdy is the normalized area measure in D with A(D) = 1. Then
Ap becomes a Banach space and for every f ∈ Ap(D) we have that
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| f (z)| ≤ ‖ f ‖Ap(D)

(1 − |z|2)2/p
, z ∈ D, (7.2)

which in turn implies that all point-evaluation functionals of Ap(D) are bounded. For
the growth estimate above see for example [1].

We will also consider the Dirichlet space on the unit disc, denoted by D, and
consisting of all the holomorphic functions f on the unit disc such that

‖ f ‖2
D:=| f (0)|2 +

∫

D

| f ′(z)|2d A(z) < +∞.

Finally, we consider the Bloch space on the unit disc, denoted by B, and consisting
of all functions f , holomorphic on D, such that

‖ f ‖B:=| f (0)| + sup
z∈D

(1 − |z|2)| f ′(z)|2 < +∞.

It is well known that functions both in the Dirichlet space D as well as in the Bloch
space B satisfy growth estimates similar to (7.1) and thus the corresponding point
evaluation functionals are bounded. See for example [1].

Theorem 7.4 Let 1 ≤ p < ∞. Consider a multiplier φ of H p(D) into H p(D) and
the corresponding multiplication operator Mφ : H p(D) → H p(D). The following
are equivalent.

(i) Mφ is recurrent.
(ii) Mφ is rigid.

(iii) Mφ is uniformly rigid.
(iv) There exists a ∈ T such that φ(x) = a for every x ∈ D.

Proof We only have to prove that (i) implies (iv) since all the other implications are
trivial. Consider f ∈ Rec(Mφ) so that f is not identically zero. We have

|φ(z)n f (z)− f (z)| ≤ ‖Mn
φ f − f ‖H p(D)

(1 − |z|2)1/p
, z ∈ D.

There exists a strictly increasing sequence of positive integers (kn)n∈N such that
‖Mkn

φ f − f ‖H p(D) → 0 as n → +∞. Therefore, φ(z)kn f (z) → f (z) uniformly on

compact subsets of D and since f is not identically zero we conclude that φ(z)kn → 1
uniformly on any open disk B such that B ⊂ D. It follows that |φ(z)| = 1 for every
z ∈ B and by the maximum modulus principle and analytic continuation we conclude
that φ is a unimodular constant on D. ��
Theorem 7.5 Let X be either the Bergman space Ap(D), 1 ≤ p < +∞, the Dirich-
let space D or the Bloch space B. Consider a multiplier φ of X into X and the
corresponding multiplication operator Mφ : X → X. The following are equivalent.
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(i) Mφ is recurrent.
(ii) Mφ is rigid.

(iii) Mφ is uniformly rigid.
(iv) There exists a ∈ T such that φ(x) = a for every x ∈ D.
(v) φ is an isometric multiplier of X.

Proof We give the proof in the case of the Bergman space Ap(D). For the other
two cases the proof is similar using the corresponding growth estimates instead of
(7.2). We first prove that (i) implies (iv). Using (7.2) and arguing as in the proof of
the previous theorem the desired implication follows. In [1] it is proved that (iv) is
equivalent to (v). Now, all other implications are trivial. This completes the proof of the
theorem. ��

7.5 Multiplication Operators on L2(X, μ)

Let (X, μ) be a measure space where μ is a non-negative finite Borel measure. For
φ ∈ L∞(X, μ) we define the multiplication operator Mφ : L2(X, μ) → L2(X, μ) as
Mφ( f ) = φ f . Obviously Mφ is a bounded linear operator with ‖Mφ‖ ≤ ‖φ‖L∞(X,μ).
We have the following.

Theorem 7.6 Let Mφ : L2(X, μ) → L2(X, μ) be the multiplication operator with
symbol φ.

(A) The following are equivalent.
(i) Mφ is recurrent.
(ii) Mφ is rigid.
(iii) There exists a strictly increasing sequence of positive integers (kn)n∈N

such that

φ(x)kn → 1 as n → +∞, μ-almost everywhere. (7.3)

(B) The following are equivalent.
(i) Mφ is uniformly rigid.
(ii) There exists a strictly increasing sequence of positive integers (kn)n∈N such
that

‖φkn − 1‖L∞(X) → 0 as n → +∞.

In particular if Mφ is recurrent then |φ| = 1μ-almost everywhere.

Proof We begin by showing the equivalences in (A). Let φ ∈ L∞(X, μ) satisfy (7.3).
Applying Lebesgue’s dominated convergence theorem we immediately get that Mφ is
rigid.

We now prove that (i) implies (iii) so we assume that Mφ is recurrent. We first show
that |φ| = 1 for μ-almost every x ∈ X . For any positive integer m let Em := {x ∈ X :
|φ(x)| > 1 + 1

m } and assume, for the sake of contradiction, that μ(Em) > 0 for some
m. Since Mφ is recurrent and Em has positive measure there exists a recurrent vector
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f ∈ L2(X, μ) which is not identically zero on Em . Then for any strictly increasing
sequence of positive integers (ln)n∈N we have

‖Mln
φ f − f ‖L2(X,μ) ≥

⎛

⎜⎝
∫

Em

|φ(x)ln − 1|2| f (x)|2dμ(x)

⎞

⎟⎠

1
2

≥ ∣∣(1 + 1/m)ln − 1
∣∣
∫

Em

| f (x)|2 → +∞

as n → +∞ which is a contradiction since f was a recurrent vector. Thusμ(Em) = 0
for all positive integers m which shows that μ({x ∈ X : |φ(x)| > 1}) = 0. A similar
argument shows that μ({x ∈ X : |φ(x)| < 1}) = 0 so that |φ| = 1, μ-almost
everywhere.

Observe now that Mφ is unitary since |φ| = 1μ-almost everywhere and this implies
that every f ∈ L2(X, μ) is a recurrent vector for Mφ . In particular the constant function
1 ∈ L2(X, μ) is a recurrent vector thus there exists a strictly increasing sequence of
positive integers (kn)n∈N such that

‖φkn − 1‖L2(X,μ) → 0 as n → +∞.

By standard arguments we get the existence of a subsequence which we also call
(kn)n∈N such that φkn (x) → 1, for μ-almost every x ∈ X . For (B) it is enough to note
that for every n ∈ N we have ‖Mn

φ − I‖ = ‖φn − 1‖L∞(X). ��
We would like to have a more hands-on characterization of the functions φ that

give rise to recurrent operator Mφ . For example, it is straightforward to see that for
every constant function φ such that φ(x) = a for some a ∈ T, μ-almost everywhere,
the operator Mφ is recurrent; but are these the only ones? It turns out that the answer
is no in general, and that one cannot expect a characterization of the symbols φ that
give recurrent multiplication operators on L2(X, μ), in the case of a general measure
space (X, μ). We illustrate this by two examples.

Example 7.7 Let X = T and dμ = dθ be the Lebesgue measure on the circle.
By the previous analysis we immediately restrict our attention to measurable func-
tions φ : T → T. It is clear that constant unimodular functions as well as functions
that take a finite number of values on T give rise to recurrent operators. Instead of
showing this, which is an easy exercise, we present a slightly more general example
below.

Example 7.8 Letφ : T → T be a measurable function such that the setφ(T) = {φ(t) :
t ∈ T} is countable. Then the multiplication operator Mφ : L2(T, dθ) → L2(T, dθ)
is recurrent. Indeed, by Theorem 7.6 it suffices to find a strictly increasing sequence of
positive integers (kn)n∈N such that φ(x)kn → 1, μ-almost everywhere. Let us write
φ(T) = {e2π iθk : k = 1, 2, . . .} with (θk)k∈N ⊂ R. We inductively construct a strictly
increasing sequence (kn)n∈N such that
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|e2π iknθ j − 1| < 1/n for all j = 1, 2 . . . , n.

Therefore φ(x)kn → 1 as n → +∞ for all x ∈ T, so we are done.

Example 7.9 There exists a non-constant continuous function φ : [0, 1] → T such
that Mφ is recurrent on L2([0, 1], dθ). To see this, let C denote the triadic Cantor set
on [0, 1] and f : [0, 1] → [0, 1] be the Cantor–Lebesgue function as constructed for
example in [50, pp 35]. Since f is continuous the function φ(t):=e2π i f (t) is a well
defined, continuous function. Furthermore the set {φ(t) : t ∈ [0, 1]\C} is countable.
As in Example 7.8 we can find a strictly increasing sequence of positive integers
(kn)n∈N such that φ(t)kn → 1 for every t ∈ [0, 1]\C , that is, almost everywhere since
|C | = 0. By Theorem 7.6 we get that Mφ is recurrent.

Example 7.10 Let us denote by C(T) the set of continuous functions f : T → C

and set S:={ f ∈ C(T) : | f (z)| = 1 for all z ∈ T}. Recall that a closed set K ⊂ T

is called a Kronecker set if for every f ∈ S and every ε > 0 there exists a positive
integer n such that

sup
z∈K

| f (z)− zn| < ε.

That is, K is Kronecker if we can approximate every continuous unimodular func-
tion on T by characters, uniformly on K . For a detailed discussion of Kronecker sets
see for example [46]. By Theorem 7.6 we get that the functionχ1(z) := z, z ∈ T, gives
rise to a uniformly rigid operator Mχ1 : L2(K , dθ) → L2(K , dθ), whenever K is a
Kronecker set. Automatically we get that all the charactersχm(z) := zm give uniformly
rigid operators on L2(K , dθ) by using the simple estimate |(zm)n − 1| ≤ m|zn − 1|,
whenever z ∈ C with |z| = 1.

8 Unitary, Normal, Hyponormal and m-Iometric Operators

In this section we fix H to be a separable Hilbert space over C. The main theme of this
paragraph is that if a recurrent operator on a Hilbert space has “sufficient structure”
then it reduces to a unitary operator. A first instance of this heuristic is contained in
the following proposition.

Recall that an operator T : H → H is normal if T T ∗ = T ∗T , where T ∗ is the
Hilbert space adjoint of T .

Proposition 8.1 If a normal operator T : H → H is recurrent then T is unitary.

Proof Since T is normal there exist a finite positive Borel measure μ on the spectrum
σ(T ) and a function φ ∈ L∞(μ) such that T is unitarily equivalent to Mφ : L2(μ) →
L2(μ), where Mφ f = φ f for f ∈ L2(μ). By Theorem 7.6 it follows that |φ| = 1μ-
almost everywhere on σ(T ), therefore ‖Mφ‖ = ‖φ‖∞ = 1. Since T is unitarily
equivalent to Mφ we get that ‖T ‖ ≤ 1 and by Proposition 3.2, (i), we conclude that T
is unitary. ��
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It is classical that a normal operator T : H → H is cyclic if and only if there
exists a finite positive Borel measure μ on the spectrum σ(T ) so that T is unitarily
equivalent to Mz : L2(μ) → L2(μ), where Mz f = z f for f ∈ L2(μ). See for
example [14]. Using this, Theorem 7.6 and the fact that recurrence is preserved by
unitary equivalence we immediately get the following corollary.

Corollary 8.2 Let T : H → H be a normal operator. Then T is recurrent and cyclic
if and only if there exist a finite positive Borel measure μ on the spectrum σ(T ) and
a strictly increasing sequence of positive integers (kn)n∈N such that T is unitarily
equivalent to Mz : L2(μ) → L2(μ), where Mz f = z f for f ∈ L2(μ) and

∫

σ(T )

|zkn − 1|2dμ(z) → 0.

We now turn our attention to hyponormal operators, namely, operators T : H → H
having the property ‖T ∗h‖ ≤ ‖T h‖ for every h ∈ H . The next proposition extends
Proposition 8.1. Its proof necessarily avoids the spectral theorem for normal operators.
Instead, it relies on certain inequalities for orbits of hyponormal operators established
by Bourdon in [11].

Proposition 8.3 If a hyponormal operator T : H → H is recurrent then T is unitary.

Proof Take a non-zero vector h ∈ Rec(T ). Then there exists a strictly increasing
sequence of positive integers (kn)n∈N such that T kn h → h. Observe that T nh �= 0 for
every positive integer n. It follows that

‖T kn+1h‖
‖T kn h‖ → ‖T h‖

‖h‖ .

From the last and the continuity of T we get that

‖T kn+mh‖
‖T kn+m−1h‖ → ‖T mh‖

‖T m−1h‖

for every m = 1, 2, . . .. Since T is hyponormal and h /∈ Ker(T ), by [11, Theorem
4.1] and the discussion in [11, p. 350–351], we have that the limit

lim
n→+∞

‖T n+1h‖
‖T nh‖

exists. It readily follows that

‖T h‖
‖h‖ = ‖T 2h‖

‖T h‖ = · · · = ‖T mh‖
‖T m−1h‖ = · · · .
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The above equalities and an easy induction argument imply that

‖T nh‖ = ‖T h‖n

‖h‖n−1 for every n = 1, 2, . . . .

The fact that ‖T kn h‖ → ‖h‖ �= 0 combined with the previous equality implies
that ‖T h‖ = ‖h‖. Hence ‖T h‖ = ‖h‖ for every h ∈ Rec(T ) and since Rec(T ) is
dense we conclude that ‖T h‖ = ‖h‖ for every h ∈ H . Therefore ‖T ‖ = 1 and by
Proposition 3.2, (i), we conclude that T is unitary. ��

An amusing application of the notions in this paragraph is the observation that, if
T : H → H is hyponormal with ‖T ‖ > 1 and h ∈ H is a non-zero recurrent vector
for T then T has a non-trivial invariant subspace. Indeed, by the proof of [11, Theorem
4.1] and the proof of the previous proposition it follows that

lim
n→+∞ ‖T nh‖1/n = lim

n→+∞
‖T n+1h‖
‖T nh‖ = ‖T h‖

‖h‖ = 1 < ‖T ‖.

Now [11, Proposition 4.6] implies that T has a non-trivial invariant subspace. The
existence of non-trivial invariant subspaces for hyponormal operators is, in general,
an open problem. For partial results see [12].

We recall the notion of an (m, p)-isometry in general Banach spaces, introduced
by Bayart in [4].

Definition 8.4 Let T : X → X be an operator and let m ∈ N, p ∈ [1,+∞). T is
called an (m, p)-isometry if

m∑

k=0

(−1)m−k
(

m

k

)
‖T k x‖p = 0,

for every x ∈ X . T is called an m-isometry if it is an (m, p)-isometry for some
p ∈ [1,+∞).

Proposition 8.5 If the operator T : X → X is an m-isometry and recurrent then T
is a surjective isometry.

Proof Let y ∈ Rec(T ). Then there exists a strictly increasing sequence of positive
integers (kn)n∈N such that T kn y → y and hence T kn+1 y → T y. By [4, Proposition
3.1] the sequence (‖T n x‖)n∈N is eventually increasing for every x ∈ X . Therefore
we get ‖T y‖ = ‖y‖. Since Rec(T ) is dense in X we readily see that ‖T x‖ = ‖x‖
for every x ∈ X . So ‖T ‖ = 1 and by Proposition 3.2, (i), we conclude that T is a
surjective isometry. ��

9 The T ⊕ T Problem: Product Recurrence

The problem which concerns us here is whether T ⊕ T is recurrent whenever T is
recurrent. The corresponding problem for hypercyclic operators was a long standing
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question that was only recently settled, in the negative, by de la Rosa and Read [16],
and also by Bayart and Matheron, [7], in classical Banach spaces. Our first result in
this direction is the following.

Theorem 9.1 Let T : X → X be a recurrent operator and consider the commutant
{T }′ of T , i.e. {T }′ = {A : AT = T A}. Suppose there exists a subset M of {T }′ such
that the set

{x ∈ X : {Ax : A ∈ M} = X}

is residual in X. Then T ⊕ T is recurrent.

Proof Since Rec(T ) is Gδ and dense, take x ∈ Rec(T ) ∩ {x ∈ X : {Ax : A ∈ M} =
X} and consider A ∈ M. There exists a strictly increasing sequence of positive
integers (kn)n∈N such that T kn x → x as n → +∞. Since A and T commute we get
that T kn Ax → Ax . It follows that

{x ⊕ Ax : x ∈ Rec(T ) ∩ {x ∈ X : {Ax : A ∈ M} = X}, A ∈ M} ⊂ Rec(T ⊕ T ).

Observe now that the left hand side set in the previous inclusion is dense in X ⊕ X
which in turn implies that T ⊕ T is recurrent. ��
Corollary 9.2 Let T : X → X be an operator. If T is cyclic and recurrent then T ⊕T
is recurrent.

Proof Proposition 2.14 implies that σp(T ∗)◦ = ∅ and in view of [39, Theorem 1] we
conclude that the set of cyclic vectors for T is Gδ-dense in X . Now, the conclusion
follows by applying Theorem 9.1 for M := {p(T ) : p polynomial}. ��

Trivially if T is rigid then T ⊕ T is recurrent. Thus, according to the following
proposition, T ⊕T is recurrent whenever T is a recurrent unitary operator on a complex
Hilbert space.

Proposition 9.3 Let H be a separable Hilbert space and U : H → H be a unitary
operator. The following are equivalent.

(i) U is recurrent.
(ii) U is rigid.

Proof We only have to prove that (i) implies (ii), so suppose that U is recurrent.
By the spectral theorem for unitary operators on separable Hilbert spaces, see [45,
Theorem 1.6], there exists a measure space (X,X , μ), whereμ is a non-negative finite
Borel measure, a unitary map � : H → L2(X, μ), and a function u ∈ L∞(X, μ)
with |u| = 1 such that the operator � ◦ U ◦ �−1 : L2(X, μ) → L2(X, μ) is the
multiplication operator

Mu f := u f, ∀ f ∈ L2(X, μ).

Since U is recurrent we immediately get that Mu is recurrent. By Theorem 7.6 we
get that Mu is rigid and thus U : H → H is rigid on H . ��
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Remark 9.4 If T : H → H is a power bounded operator acting on a separable Hilbert
space then, by Proposition 3.2, we get that T is similar to a unitary operator. Thus
Proposition 9.3 remains valid if the hypothesis that T is unitary is replaced by the
hypothesis that T is power bounded.

The analogue of the previous proposition for a general Banach space X is, to the
best of our knowledge, an open problem:

Question 9.5 Let T : X → X be a surjective isometry. Is it true that T is recurrent if
and only if T is rigid?

Finally, we indicate a connection of the last question with another open problem
in Operator Theory. An operator T : X → X , acting on a separable Banach space X ,
is called orbit reflexive if the only operators S : X → X such that Sx ∈ Orb(x, T )

for every x ∈ X are those in {I, T, T 2, . . .}SOT
. In [38] it was shown that “many”

Hilbert-space operators are orbit reflexive, for instance, normal, compact, algebraic
operators and contractions. Examples of Hilbert-space operators that are not orbit-
reflexive only recently appeared in [31,44]. It is an open question whether every
power bounded operator T : X → X is orbit reflexive. See for example [37]. Observe
that a positive answer to this question would imply an affirmative answer to Question
9.5 above.

For every recurrent operator T appearing in the present paper, T ⊕T is also recurrent.
However, the following questions seems to be open.

Question 9.6 Let T : X → X be a recurrent operator. Is it true that the operator
T ⊕ T is recurrent on X ⊕ X?
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